
Model-based Investigation of Cascade Dynamics on

Multi-layer Networks

Yaofeng Zhong

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Naomi Ehrich Leonard

November 2020

© Copyright by Yaofeng Zhong, 2020.

All Rights Reserved

Abstract

This dissertation examines the spread of an activity among a network of heterogeneous agents with

multiple communication modalities, the spread of a continuous activity level and the learning of

rigid body dynamics from data.

Motivated by the remarkable ability of animal groups in responding to a real threat while

not responding to a spurious one, we investigate how information propagates in a network of

agents using the linear threshold model (LTM). We found that the key to the group’s sensitivity

to a threat and robustness to noise is the existence of multiple communication modalities. To

distinguish different communication modalities, we extend the LTM to multiplex networks. We

propose protocols for an agent to synthesize information from different communication modalities

and study groups with heterogeneous protocols. We propose a provably accurate algorithm and

an efficient approximate algorithm to compute the size of spread given a set of early adopters.

We generalize the discrete LTM into a continuous threshold model (CTM) and analyze cascade

dynamics. We rigorously show the existence of a pitchfork bifurcation in the dynamics. Abrupt

change of all agents’ activity levels happens when the pitchfork is subcritical. We show how high

disparity in the thresholds and network structure lead to a cascade.

Both the LTM and CTM assume the state of agents can be directly observed, which is often the

case in biological systems. To incorporate these insights into designing coordinated engineering

systems, e.g., a robot team, an agent need to infer the activity of neighboring agents from sensor

data. We study the scenario where the activity is indicated by the configuration or the dynamics of

a rigid body system. We propose a neural network model to learn rigid body dynamics assuming

the sensor data are raw images. We design a coordinate-aware variational auto-encoder (VAE) to

infer coordinates from image data and learn Lagrangian/Hamiltonian dynamics on the inferred

coordinates. We show that the prior of Lagrangian/Hamiltonian dynamics improves accuracy

and generalization. We show the coordinate-aware VAE is crucial in learning interpretable coordi-

nates. This interpretability benefits long term prediction and allows for synthesis of energy-based

controllers.

iii

Acknowledgements

I am grateful for the opportunities available to me as a graduate student at Princeton and the people

I met along the journey. I would like to take this opportunity to express my gratitude to those who

supported me and shaped me into who I am.

I am indebted to my advisor Naomi Leonard, who provided help and support in almost all

aspects in my PhD journey. I am grateful for Naomi taking me as her student even though I have

no background in control except math. Naomi provided a perfect environment for me to conduct

research. I never have to worry about funding for research and attending conferences, never have

to work on a problem that I am not willing to work on and never have to present results that I do

not feel ready to present. Naomi’s advising style is both hands-off and hands-on. We don’t have

regular individual meetings but Naomi would always schedule a time to meet when I requested.

This gives me great freedom to progress at my own pace. Many times during our meeting, I am

impressed by Naomi’s passion for research and her creativity by thinking out of the box, which

has a profound impact on my development as a researcher. When it comes to presenting ideas

and writing manuscripts, Naomi would be meticulous in every detail and help the presentation or

manuscript to be a better one. I learned tremendously from how to formalize innovative research

ideas to how to make these ideas accessible to audiences and readers.

I would like to thank my PhD committee members, Clancy Rowley and Amir Ali Ahmadi.

Both of them provided guidance and feedback starting from my general exam and I appreciate their

support throughout the course of my PhD. Clancy also plays a role as a reader of my dissertation and

Amirali as my dissertation examiner. Vaibhav Srivastava has already helped me start my research

from scratch and provided me with concrete instructions while he was a postdoc in our group, yet

he continued his support for my research after joining Michigan State University as a professor and

graciously agreed to be my dissertation reader. Thank you Ani Majumdar for providing helpful

feedback on my research and being my dissertation examiner.

I am thankful to former and current members of the Leonard group. Thank you Katie Fitch

and Liz Davison for introducing your research to me even before I join the group; Will Scott for

our late night conversations in the office when you took a break from dissertation writing; Peter

Landgren for organizing robot camp (twice!) and provided me with guidance to operate the tank

lab; Bec Gray for being creative and suggestive; Renato Pagliara for being supportive when I got

stuck with my research; Anthony Savas for our time together working on APC 503 assignments;

Anastasia Bizyaeva for hosting lab coffee hours during WFH period and maintaining our group

iv

slack channel; Justice Mason for taking on part of my research and probably would apply and extend

it to applications I could not imagine; Udari Madhushani, Mari Kawakatsu, Charlotte Cathcart and

Yunxiu (Joey) Zhou for being both critical and supportive, and providing valuable feedback on my

research. In addition, I would like to thank our former postdocs, Vaibhav Srivastava, Biswadip Dey,

Karla Kvaternik, Kayhan Ozcimder and Zahra Aminzare, all of whom I viewed as role models.

Vaibhav and Biswa are also my wonderful collaborators. Whenever I encountered challenges in my

research and asked them for help, they would direct me to some references immediately addressing

my concerns. I would also like to thank our current postdocs Christine Allen-Blanchette for hosting

weekly reading groups, and Shinkyu Park for sharing his experience as an international student

with me.

The MAE department provides a friendly environment which I enjoyed in the last five years. In

fact, I felt the vibrant and welcoming environment even before I started my graduate life, during the

MAE Open House, which is my first trip to the U.S. Special thanks to our graduate administrator

Jill Ray, who made my trip to the Open House extremely smooth, despite that I require an extra

day of accommodation due to availability of flight tickets. Jill, together with Theresa Russo, helped

me navigate the graduate program. I would like to thank my MAE cohorts, Mengya (Mia) Hu,

Fan Yang, David Feng, Katherine Kokmanian, Tianhan Zhang, Adam Fisher, Yingxian (Estella) Yu,

Alex Novoselov, Fan Yang, Leonid Pogorelyuk, Kristofer Meehan, Anthony Savas, Tasman Powis,

Vivian Steyert, Thomas and Tara Hudson, for creating a welcoming and splendid environment. I

would like to thank former MAE students He Sun and Hao Zhang for their advises on almost every

aspects of graduate life and our conversations on academic problems and challenges. Thank you

Yibin Zhang, Thomas Hudson, Kerry Klemmer and Daniel Dudt for organizing various kinds of

MAE social events.

I would like to thank my English tutor, Jan Papas Gramer, and my host family, Mary Ann

Cavallaro, connected through Davis International Center. Jan accompanied me through my hard

time in my first year at Princeton. Mary Ann helped me better fit in the culture and life at Princeton.

I appreciate their love and care for me.

My graduate life at Princeton would not have started without the support of my undergraduate

mentor and supervisor Hongzhi Zhong, who help me get into the world of scientific research. Thank

you Mengwu Guo for being my role model of a PhD student and all the help you provided to me.

Thank you my undergraduates classmates and I enjoyed our friendship, trips and four years’ time

spent together. Special thanks to friends I met during undergrad in Tsinghua University: Shumiao

Ouyang, Xinlei Sheng, Kangning Liu, Tiancheng Yu, Zehao Pan and Yiyun Cao, all of whom

v

remarkably ended up in the east coast and we had an unforgettable get-together near Princeton.

I would like to thank Liqun (Zoe) Peng, for her love and support. She is thoughtful and

encouraging. She always cares for me, lightens me up when I am down, opens me up when I am

quiet. We shared joy and happiness, and witnessed each other’s progress over the years. Thank

you for proposing our “relax time" from 11PM to 12AM, when we detach ourselves from a whole

day’s work and enjoy our favorite books or episodes of our favorite shows together. This is one of

my favorite moments in grad school and it miraculously fixed my issue of having trouble to sleep at

midnight. (Well, I apologize for taking one of these precious moments to write down these words!)

Above all, I would like to devote my deepest gratitude to my parents for their unconditional love

through my life. It is their endless support and encouragement that has enabled me to pursue my

own passion. This dissertation marks a milestone of my educational journey of more than 20 years,

where my parents played a major role. Their continuous support and respect of my choice would

propel me forward to pursue future endeavors.

This dissertation has been sponsored by Office of Naval Research grants N00014-14-1-0635,

N00014-19-1-2556 and N00014-18-1-2873, and Army Research Office grant W911NF-18-1-0325.

This dissertation carries T#3405 in the records of the

Department of Mechanical and Aerospace Engineering.

vi

To my parents

献给我的父母

vii

Contents

Abstract . iii

Acknowledgements . iv

I Cascade Dynamics and the Learning of Dynamics 1

1 Introduction 2

1.1 Overview . 2

1.2 Related Works . 4

1.3 Contributions . 6

1.4 Outline . 7

2 Cascade Dynamics on Multiplex Networks 9

2.1 Traditional Networks and Multiplex Networks . 10

2.2 The Heterogeneous Multiplex Linear Threshold Model 10

2.3 The Heterogeneous Multiplex Live-edge Model . 12

2.4 Equivalence . 16

2.5 Multiplex Influence Spread . 17

2.6 Examples - Calculate Influence Spread Accurately . 18

2.6.1 Homogeneous Agents . 18

2.6.2 Heterogeneous Agents . 20

2.7 Computation Complexity of Influence Spread . 21

2.8 Multiplex LTM as a Bayesian Network . 22

2.9 Examples - Calculate Influence Spread Approximately 25

3 Continuous Cascade Dynamics 27

3.1 Continuous Threshold Model . 27

viii

3.2 Networks with a Chain of Three Clusters . 28

3.3 Condition for Cascade - Subcritical Pitchfork Bifurcation 30

3.4 An Example of CTM . 33

4 Learning Lagrangian and Hamiltonian Dynamics from Trajectory Data 36

4.1 Lagrangian/Hamiltonian Dynamics . 37

4.1.1 Lagrangian Dynamics . 37

4.1.2 Hamiltonian Dynamics with Control . 38

4.2 Neural ODE for State-space Model . 39

4.3 Symplectic ODE-Net: Lagrangian and Hamiltonian Dynamics as State-space Models 40

4.4 Model Variant: Unstructured Symplectic ODE-Net . 41

4.5 Model Variant: Dissipative Symplectic ODE-Net . 42

4.6 Experimental Setup and Results . 43

4.7 Interpretability . 46

4.7.1 Pendulum Without Dissipation . 46

4.7.2 Pendulum With Dissipation . 47

4.8 Energy-based Control . 48

4.9 Control Results . 49

5 Learning Lagrangian and Hamiltonian Dynamics from Image Data 52

5.1 Problem Formulation . 53

5.2 Variational Autoencoder . 53

5.3 Coordinate-aware Encoder . 54

5.4 Velocity Estimator . 56

5.5 Coordinate-aware Decoder . 57

5.6 Loss Function . 57

5.7 Results . 58

5.8 Interpretability . 60

6 Final Remarks 63

6.1 Cascade Dynamics . 63

6.1.1 Conclusions . 63

6.1.2 Future Directions . 64

6.2 Learning Dynamics . 66

ix

6.2.1 Conclusions . 66

6.2.2 Future Directions . 67

II Papers 70

7 Overview 71

7.1 Outline . 71

7.2 Author Contributions . 72

8 On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks 74

8.1 Introduction . 74

8.2 Multiplex Networks . 76

8.3 The Linear Threshold Model . 77

8.3.1 Monoplex LTM . 77

8.3.2 Multiplex LTM . 77

8.4 The Live-edge Model and Reachability . 78

8.4.1 Monoplex LEM and Reachability . 78

8.4.2 Duplex LEM and Reachability . 78

8.5 Equivalence of LEM and LTM . 80

8.5.1 Monoplex Networks . 80

8.5.2 Duplex Networks: Protocol OR and Reachability OR 81

8.5.3 Duplex Network - Protocol AND and Reachability AND 82

8.6 Social Influence and Cascade Centrality . 84

8.6.1 Monoplex Social Influence and Cascade Centrality 84

8.6.2 Duplex Social Influence and Cascade Centrality 84

8.6.3 Algorithm for Duplex Cascade Centralities . 85

8.6.4 Ordering of probabilities . 86

8.6.5 Example . 86

8.7 Final Remarks . 87

9 Influence Spread in the Heterogeneous Multiplex Linear Threshold Model 88

9.1 Introduction . 89

9.2 Multiplex Networks . 91

9.3 The Heterogeneous Multiplex LTM . 91

x

9.3.1 Monoplex LTM . 92

9.3.2 Multiplex LTM . 92

9.4 The Heterogeneous Multiplex LEM . 93

9.4.1 Monoplex LEM and Reachability . 93

9.4.2 Multiplex LEM and Reachability . 94

9.5 Equivalence of LTM and LEM . 97

9.5.1 Equivalence for Monoplex Networks . 97

9.5.2 Equivalence for Multiplex Networks . 97

9.6 Computing Multiplex Influence Spread . 101

9.6.1 Monoplex Influence Spread and Cascade Centrality 101

9.6.2 Multiplex Influence Spread and Cascade Centrality 101

9.6.3 Computing Multiplex Influence Spread and Centrality 102

9.7 A Bayesian Network Approach . 102

9.8 Analytical Expressions of Influence Spread . 106

9.8.1 Duplex Repeated Path Network . 106

9.8.2 Duplex Permutation Networks . 108

9.9 Heterogeneity in Protocol . 109

9.9.1 Small Heterogeneous Multiplex Networks . 109

9.9.2 Large Heterogeneous Multiplex Networks . 110

9.10 Conclusion . 111

10 A Continuous Threshold Model of Cascade Dynamics 112

10.1 Introduction . 112

10.2 Continuous Threshold Model . 114

10.3 Networks with Three Clusters . 116

10.4 Conditions for Cascade . 118

10.5 An example . 125

11 Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control 127

11.1 Introduction . 128

11.2 Preliminary Concepts . 130

11.2.1 Hamiltonian Dynamics . 130

11.2.2 Control via Energy Shaping . 131

11.3 Symplectic ODE-Net . 132

xi

11.3.1 Training Neural ODE with Constant Forcing 133

11.3.2 Learning from Generalized Coordinate and Momentum 134

11.3.3 Learning from Embedded Angle Data . 134

11.3.4 Learning on Hybrid Spaces R= × T< . 136

11.3.5 Positive Definiteness of the Mass matrix . 137

11.4 Experiments . 137

11.4.1 Experimental Setup . 137

11.4.2 Task 1: Pendulum with Generalized Coordinate and Momentum Data 139

11.4.3 Task 2: Pendulum with Embedded Data . 140

11.4.4 Task 3: CartPole System . 141

11.4.5 Task 4: Acrobot . 141

11.4.6 Results . 142

11.5 Conclusion . 143

11.6 Appendix . 144

11.6.1 Experiment Implementation Details . 144

11.6.2 Special Case of Energy-based Controller - PD Controller with Energy Com-

pensation . 146

11.6.3 Ablation Study of Differentiable ODE Solver 147

11.6.4 Effects of the time horizon � . 148

11.6.5 Fully-actuated Cartpole and Acrobot . 149

11.6.6 Test Errors of the Tasks . 150

12 Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control

into Deep Learning 152

12.1 Introduction . 153

12.2 The Port-Hamiltonian Dynamics . 154

12.3 Dissipative Symplectic ODE-Net . 155

12.3.1 Training Neural ODE with Constant Forcing 155

12.3.2 Learning from Generalized coordinate and Momentum 155

12.3.3 Learning from Embedded Angle Data . 156

12.3.4 Learning on Hybrid Spaces R= × T< . 156

12.3.5 The Dissipation Matrix and the Mass matrix 157

12.4 Experiments . 157

xii

12.4.1 Experimental Setup . 157

12.4.2 Task 1: Pendulum with Generalized Coordinate and Momentum Data 158

12.4.3 Task 2: Pendulum with Embedded Data . 159

12.4.4 Results . 159

13 Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control161

13.1 Introduction . 162

13.1.1 Related work . 162

13.2 Preliminary concepts . 163

13.2.1 Lagrangian dynamics . 163

13.2.2 Control via energy shaping . 164

13.2.3 Training Neural ODE with constant control . 165

13.3 Model architecture . 166

13.3.1 Latent Lagrangian dynamics . 167

13.3.2 Coordinate-aware encoder . 167

13.3.3 Velocity estimator . 170

13.3.4 Coordinate-aware decoder . 170

13.3.5 Loss function . 171

13.4 Results . 172

13.5 Conclusion . 173

13.6 Supplementary Materials . 174

13.6.1 Conservation of energy in Lagrangian dynamics 174

13.6.2 Experimental setup . 175

13.6.3 Ablation study details . 176

xiii

Part I

Cascade Dynamics and the Learning

of Dynamics

1

Chapter 1

Introduction

1.1 Overview

Understanding the spread of an innovation or activity within a group of agents is important for

designing the spread in engineering systems and controlling the spread in biological systems. In

a coordinated robot team, a robot that detects an external signal and takes action can spread the

behavior to the team. In animal groups such as fish schools and bird flocks, an animal that senses a

predator or threat would respond to it and the response can spread to other animals in the group.

A novel high-quality service or product would be adopted by a large number of people through

word of mouth recommendations from early users.

The systems we study involve multiple agents and the activity spread from one agent to another

through the sensing or communication channels among the agents. Traditionally, multi-agent

systems are modelled by graphs, where each node in the graph represents an agent and each edge

represents communication between two agents. However, the graph structure cannot distinguish

different communication channels or sensing modalities in the group. Robots can be equipped

with sensors of different types and ranges. Fish can sense others by their eyes and lateral lines.

We as human beings can communicate face-to-face and through social media. Distinguishing these

different communication modalities is essential to understanding the complex cascading behavior in

biological systems. In order to model multiple communication modalities, we consider a collection

of graphs, each of which models a communication channel. This framework is referred to as the

multiplex network and graphs in the network are referred to as layers.

We study the spread of an activity using the linear threshold model (LTM). The idea behind the

2

LTM is that each agent has a threshold and if the fraction of its active neighbors is greater than its

threshold, it would turn from inactive into active. We extend the LTM to multiplex networks. When

multiple communication channels are taken into account, each agent needs a protocol to combine

signals from different layers. We design a general protocol and then investigate the two key limiting

protocols: Protocol OR models agents that are readily activated, and Protocol AND models agents

that are conservatively activated.

The size of the spread given a few early adopters is an important metric to measure the influence

of agents in terms of spreading the activity. When there is only one early adopter, the size of the

spread at steady state is called the cascade centrality of that agent. We propose an algorithm to

compute the influence spread of a set of agents and the cascade centrality of single agents based

on network structure. Since influence spread in large networks is computationally intractable,

we propose an approximate algorithm by leveraging probabilistic inference in Bayesian networks.

Using cascade centrality, we study the spread of activity, in particular, the role of distinguishing

multiple communication modalities and the role of agent heterogeneity in protocols. We show

how Protocol OR enhances a cascade and Protocol AND diminishes a cascade as compared to a

traditional network not distinguishing different communication modalities. We also show how

heterogeneity in protocols plays a role in the tradeoff between the sensitivity of a cascade to a real

external signal and the robustness of a cascade to a spurious external signal.

The LTM can be viewed as a discrete-time, discrete-state dynamical system. Motivated by the

idea behind the LTM, we propose a continuous threshold model (CTM) to study the spread of an

activity so that we can leverage the rich tools in the world of continuous dynamical systems to

analyze cascade. We apply the model to a class of networks - a chain of three clusters - from which

we can draw fundamental insights. We rigorously prove that there exists a pitchfork bifurcation

in the dynamics and that a subcritical pitchfork leads to a cascade response while a supercritical

pitchfork leads to a contained response. We show the surprising result that a high disparity between

the two clusters at the ends of the chain leads to a cascade.

Both the LTM and the CTM models assume agents possess a single state variable, which can be

observed by the others. In applications, the state of “active" or “inactive" might need to be inferred

instead of being directly observed, especially if each agent has its own dynamics. For example, a

robot in a coordinated team equipped with camera sensors needs to infer the activity of others from

image data. To infer the activity from image pixels directly is challenging since instead of pixel

values, activity is usually associated with high-level concepts such as the configuration or dynamics

of a system. A robot lifting its arm or a wheeled robot turning quickly indicate high activity levels

3

while a legged robot in a sit-down position or a static humanoid suggests a low activity level. To

tackle this challenge, we start by investigating how to learn dynamics of a mechanical system from

image data.

We propose a neural network approach to learning dynamics from images since neural networks

have achieved unprecedented success in computer vision. Our proposed approach simultaneously

learns the embedding from the high dimensional image space to a low dimensional configuration

space, and the dynamics on the configuration space, which describe the time evolution of the system.

We demonstrate the approach on three mechanical systems and show how the learned models can

successfully predict the time evolution of the dynamics based on image inputs and control those

dynamics to a target configuration based on an image of that target configuration. Moreover, unlike

most of black-box neural network models, our model learns interpretable coordinates since we

incorporate the geometry of the system into the model. Our model also learns the system energy

that is consistent with the physical configuration of the system. For example, a pendulum in a more

upright position has a higher learned potential energy. This interpretability allows us to synthesize

energy-based controllers to control the system to a target configuration. This methodology can be

leveraged by agents to estimate the activity level of their neighbors, and can be extended to learn

cascade dynamics from data.

1.2 Related Works

Cascade dynamics and multiplex networks There are two types of models typically used to study

a spread of an activity or a cascade in a group: compartmental models and agent-based models.

Most of the epidemiological models belong to the first type by assuming the population is well

mixed and each individual falls into one of the categories called compartments (e.g., susceptible,

infected, recovered) [2, 39]. Agent-based models explicitly model each individual as an agent and

the connections among agents. The agents and their connections are usually modelled as a graph

or a network. There are some hybrid models; for example, Pagliara and Leonard [67] studied

epidemiological models on networks.

A popular class of models studies the spread of an innovation or activity so that each agent has a

binary state indicating if it is active or not. The spread of the activity is based on a set of rules. Two

most studied models of this kind are the linear threshold models (LTM) and the independent cascade

model (ICM) Kempe et al. [45]. Here we briefly survey the LTM, first proposed by Granovetter [31]

and Schelling [80]. It describes the spread of an activity, innovation or strategy which an agent

4

adopts or rejects by comparing the fraction of its neighbors that have adopted the activity with

its individual threshold. Kempe et al. [45] studied the LTM with random thresholds and mapped

it to a live-edge model (LEM), which does not require temporal iteration, to compute the size of

cascade given a group of early adopters. Lim et al. [55] specialized this method to a single early

adopter and defined the size of cascade at steady state as the cascade centrality, a metric that

measures the ability of the early adopter’s ability in terms of spreading information. Acemoglu

et al. [1] analyzed the LTM for deterministic thresholds. LTM has been well studied in single-layer

networks, see for example in [70, 25, 24, 72]. Yağan and Gligor [94] studied LTM with multiplex

networks with a weighted average to synthesize information from different layers. Salehi et al. [75]

reviewed various spreading dynamics on multilayer networks. We refer readers to [12] for a review

of multiplayer networks. Among the spreading models on multilayer networks, few of them focus

on heterogeneous agents.

Networks of robotic systems with Lagrangian/Hamiltonian dynamics Nair et al. [62] studied

coordinated control of networked mechanical systems using the method of controlled Lagrangians.

Each agent in the network is a mechanical system where the time evolution is governed by La-

grangian dynamics. Nair and Leonard [59] further applied the method to a network of rotating

rigid bodies. Stable synchronization of networked robotic systems is studied in [83, 60, 61, 79, 36].

This line of works assume the coordinates of a neighboring system in the configuration space is

directly observed. The more realistic scenarios where the coordinates need to be inferred from

high-dimensional sensor data have not been studied.

Physics-informed neural network models Physics-informed neural networks incorporate physics

priors into deep learning to enhance transparency of the model and improve generalization. La-

grangian and Hamiltonian dynamics are able to model a broad class of physical systems so previous

research has explored incorporating Lagrangian or Hamiltonian priors into deep learning. Lutter

et al. [56] proposed Deep Lagrangian Network to learn Lagrangian dynamics for rigid-body sys-

tems from position, velocity and acceleration data. The model allows online learning and control.

Cranmer et al. [20] proposed Lagrangian Neural Network to learn an arbitrary Lagrangian beyond

rigid-body systems. Greydanus et al. [33] proposed Hamiltonian Neural Network to learn Hamilto-

nian dynamics from position, momentum data and their derivatives. Sanchez-Gonzalez et al. [78]

proposed Hamiltonian Graph Networks with ODE integrators to learn Hamiltonian dynamics from

only position and velocity data. Chen et al. [18] learns symplectic dynamics using symplectic inte-

5

grators. This line of works require direct observation of low dimensional data in the configuration

space or phase space. It is not clear how to infer coordinates in the configuration space from high

dimensional data so that the learned coordinates can be used by physics-informed neural networks.

Learning dynamics without supervision Various works explore how to infer a low dimensional

latent space from a high dimension image space but the latent space is usually not interpretable and

cannot be used as the configuration space required by physics priors. Among these works, Belbute-

Peres et al. [8] found that their model is not able to learn meaningful dynamics when no position

and velocity data are provided. However, with a little supervision data, the model is able to infer

meaningful dynamics. This suggests that useful inductive biases are needed to learn dynamics in a

unsupervised way. Various kinds of inductive biases are explored in the literature. Watter et al. [89]

and Levine et al. [53] learned locally linear dynamics. Jaques et al. [42] learned unknown parameters

of dynamics within a given class. Kossen et al. [48] extracted position and velocity of each object

from videos directly. Watters et al. [91] used an object-oriented design to improve data efficiency

and robustness in unsupervised learning. Battaglia et al. [6], Sanchez-Gonzalez et al. [76] and

Watters et al. [90] incorporated objects and their relations into supervised learning. These object-

oriented designs improve learning but they focus little on rotations of objects. Saemundsson et al.

[74] proposed Variational Integrator Network which work with rotational coordinates but it cannot

model systems with more than one rotational coordinates. As rotational coordinates are common

with Lagrangian or Hamiltonian dynamics, previous unsupervised learning approaches do not

work well with Lagrangian or Hamiltonian priors. Toth et al. [86] incorporate the Hamiltonian

prior but the latent coordinates are not interpretable.

1.3 Contributions

This dissertation contains several separate studies at the intersection of multi-agent systems, dy-

namical systems, control and machine learning. The contributions of this dissertation are listed as

follows:

• We study the spread of an activity by extending the linear threshold model and its corre-

spondent live-edge model from traditional networks to multiplex networks where different

communication modalities are distinguished.

• We propose different protocols for an agent to synthesize information from different layers in

the network. We study heterogeneous groups where different agents use different protocols.

6

We show the role of heterogeneity in the trade off between the sensitivity of spreading a real

signal and the robustness of spreading a spurious signal.

• We propose two algorithms to compute the size of cascade (influence spread) in the heteroge-

neous multiplex LTM. The first algorithm accurately computes the influence spread based on

heterogeneous protocols and network structure. The second algorithm computes the influence

spread approximately by solving a probabilistic inference problem in Bayesian networks.

• We introduce a physics-informed neural network model which learns Hamiltonian dynamics

with control from generalized coordinate data and their first-order derivatives. The model

narrows the gap between model-based methods and the data-driven methods by the angle-

aware design.

• Our proposed physics-informed neural network model learns interpretable energy directly,

which allows synthesis of energy-based controllers.

• We design a coordinate-aware VAE to infer generalized coordinates from images, which works

with our physics-informed neural network model to learn Lagrangian/Hamiltonian dynamics

from images.

1.4 Outline

This dissertation is organized into two parts, where Part II (Chapters 8 to 13) contains four published

peer-reviewed papers and two papers that have been submitted for publication.

Part I is organized into six chapters. In Chapter 1, we introduce the main theme of this disserta-

tion and survey related works in the literature. In Chapter 2, we present and define the multiplex

LTM, protocols, influence spread and cascade centrality, based on Chapter 8 [100] and Chapter 9

[103]. We prove the equivalence of multiplex LTM to multiplex live-edge model. We map the prob-

lem of computing cascade centrality into a probabilistic inference problem in a Bayesian network.

We show the problem of computing influence spread in multiplex networks are computationally

complex and an approximate algorithm is the best we can achieve for large networks. In Chapter

3, we generalize the LTM to the continuous threshold model (CTM), proposed in Chapter 10 [98].

We study the CTM on a family of networks with three clusters. With bifurcation analysis, we show

that high disparity in the network leads to a cascade. In Chapter 4, we study the problem of learn-

ing dynamics from trajectory data and summarize results from Chapter 11 [101] and Chapter 12

7

[102]. We show that the physics-informed neural networks outperform baseline models in terms of

prediction accuracy and generalization. In Chapter 5, we assume trajectory data are not given and

we need to infer those from images. We present the coordinate-aware VAE proposed in Chapter 13

[99] and demonstration of the framework on three mechanical systems. In Chapter 6, we conclude

the dissertation and discuss future directions.

8

Chapter 2

Cascade Dynamics on Multiplex

Networks

This chapter considers the spread of an activity among a group of agents where multiple commu-

nication modalities among the agents exist, presented in Part II: Chapters 8 and 9, which appear

as Zhong et al. [100] and Zhong et al. [103]. The spread of an activity is referred to as the cascade

dynamics, which widely exist from biological systems to engineering systems. This chapter is moti-

vated by the spread of starling behavior in the fish school. The starling behavior is a quick twitch of

a fish to flee away from a predator. If a predator is near a fish school, it would startle a few fish in the

school and the starling behavior would spread across the group so that the fish that does not directly

sense the predator could swim away from the potential threat. Moreover, disturbance and noise

exist in the environment where the fish school stays. The fish school seems good at distinguishing

a real threat from environmental disturbances. It is known that a fish can sense other fish by its eye

and lateral line. While a fish might see another fish in the front, it can also feel others behind with

its lateral line. This multiple sensing modalities exist in various kinds of groups. In this chapter, we

investigate how multiple communication modalities affect the spread of an activity. We also show

how individual preferences along with multiple communication modalities help a group respond

to a real threat while not responding to disturbances. We first introduce multiplex network - a

framework that allows us to explicitly model different communication modalities.

9

2.1 Traditional Networks and Multiplex Networks1

A network or a graph is usually used to model a multi-agent system. A graph � = (+, �) is a

collection of nodes + and edges � ⊆ + × + . Traditionally, we model agents as nodes in the graph

and the communications among agents as edges. When there are more than one communication

modalities among agents, modelling all communications in a traditional network fails to distinguish

different modalities. Multiplex networks are a framework that allows us to distinguish those

modalities. A multiplex network G is a collection of< ∈ N directed weighted graphs �1 , �2 , ..., �< .

Each graph �: = (+, �:), : = 1, . . . , < is referred to as a layer in the multiplex network. The node

set+ = {1, 2, 3, ..., =} is the same across all layers, representing the same group of agents. The edge

set of layer : is �: ⊆ + ×+ and can be different in different layers. Each directed edge 4 :8, 9 ∈ �
: , from

8 to 9 in layer :, is associated with a weight F:
8, 9 ∈ R

+. Here we adopt the “sensing" convention for

edges: edge 4 :8, 9 exists if agent 8 can sense agent 9 in layer : and we say that agent 9 is an out-neighbor

of agent 8 in layer :. We say that the weight of 8’s out-neighbor 9 in layer : is the weight F:
8, 9 . We

assume the weights of all out-neighbors for an agent are normalized, i.e.,
∑
9∈# :

8
F:
8, 9 = 1 for every

agent 8. A traditional network is a multiplex network with < = 1, i.e., with only a single layer and

we refer to it as a monoplex network.

For undirected graphs, every edge is modeled with two opposing directed edges. For un-

weighted graphs, every edge 4 :8, 9 is assigned a weight F:
8, 9 = 1/3:8 , where 3:8 is the out-degree of

node 8 in layer : and equals to the number of out-neighbors of node 8 in layer :. A projection network

of G is the graph proj(G) = (+, �) where � = ∪<
:=1�

: .

Fig. 2.1 shows an illustration of an example multiplex network with two layers of five agents.

Each layer is a unweighted graph. Next, we present the heterogeneous multiplex linear threshold

model - the discrete cascade dynamics on multiplex networks.

2.2 The Heterogeneous Multiplex Linear Threshold Model

The linear threshold model (LTM) studies the spread of an activity among a network of agents.

Each agent 8 has a binary state G8(C) ∈ {0, 1} at a discrete time step C, representing the activity of

the agent. Let (C be the set of agents that are active by the end of iteration C, where (0 is referred

to as the seeds. In a traditional network where all the communication modalities are modelled in

a graph, the LTM determines the spread of the activity as follows [45]. Each agent randomly and

1Adapted from Chapter 9 [103].

10

Figure 2.1: An example multiplex network with two layers (duplex network) of five agents. The
edges in the red layer and the blue layer are different but the nodes in both layers represent a group
of five agents.

independently chooses a threshold �8 ∈ [0, 1] from *(0, 1). At C = 0, all the agents are inactive

except seeds, i.e., (G8(0) = 0,∀8 ∉ (0). At each times step, each agent compare its threshold with the

sum of weights of its active out-neighbors. It becomes active if the sum is greater than its threshold.

Once the agent is active, it remains active so that (C−1 ⊆ (C . For a network of = agents, the steady

state is obtained in C ≤ =.

We extend the LTM to multiplex networks to distinguish different communication modalities.

We propose protocols for an agent to synthesize information from different communication modal-

ities. For a multiplex network with < layers, each agent randomly and independently chooses a

threshold �:8 in each layer from *(0, 1). We say the agent 8 receives a positive input H:8 (C) = 1 from

layer : at C if the sum of weights of active out-neighbors of agent 8 in layer : at C − 1 exceeds �:8 ,

i.e., �:8 <
∑
9∈# :

8 ∩(C−1
F:
8, 9 . Otherwise, agent 8 receives a neutral input. As the neighbors in different

layers might be different, the agents need a protocol to synthesize the inputs from different layer

and decide whether to become active or not. Let the average input be H8(C) =
∑<
:=1 H

:
8 (C)/<.

Definition 1 (Multiplex LTM Protocol [103]). Given multiplex network G with seed set (0, the multiplex

LTM protocol for agent 8 is parametrized by �8 ∈ [1/<, 1] as follows:

G8(0) = 1, ∀8 ∈ (0 (2.1)

G8(0) = 0, ∀8 ∉ (0 (2.2)

G8(C) =

1, if H8(C) ≥ �8 or G8(C − 1) = 1

0, otherwise.

(2.3)

We identify two protocols for the limiting values of �8 :

Protocol OR: �8 = 1/<. Inactive agent 8 at iteration C −1 becomes active at iteration C if it receives a positive

11

input from any layer at C;

Protocol AND: �8 = 1. Inactive agent 8 at iteration C − 1 becomes active at iteration C if it receives positive

inputs from all layers at C. �

Protocol OR models agents that are readily active since positive input in one layer is sufficient

for the agent to become active. Protocol AND models agents that are conservatively activated,

since positive inputs from all layers are required for the agent to become active. We examine

heterogeneous agents where different agents could choose different limiting protocols.

Definition 2 (Sequence of Protocols [103]). Let D8 ∈ {OR,AND} be the protocol used by agent 8. We

define the sequence of protocols U = (D1 , D2 , ..., D=) to be the protocols used by the = agents ordered from

agent 1 to agent =.

Similar to the LTM in the traditional network, the steady state is reached by at most = time steps.

2.3 The Heterogeneous Multiplex Live-edge Model

The LTM in traditional networks has been studied by mapping it into the live-edge model (LEM)

[45], so that we can study the LTM without temporal iteration and performing simulation. We

present the LEM in traditional networks (quoted from [103]):

The LEM for a monoplex network is defined as follows [45]. Let (0 be the set of seeds.

Each unseeded agent randomly selects one of its outgoing edges with probability given

by the edge weight. The selected edge is labeled as “live", while the unselected edges are

labeled as “blocked". The seeds block all of their outgoing edges. Every directed edge

will thus be either live or blocked. The choice of edges that are live is called a selection

of live edges.

Let ! be the set of all possible selections of live edges. The probability @; of selection

; ∈ ! is the product of the weights of the live edges in selection ;. Because the selection

of live edges can be done at the same time for every node, the LEM can be viewed as a

static model. The LEM can alternatively be viewed as an iterative process in the case the

live edges are selected sequentially.

A live-edge path [45] is a directed path that consists only of live edges. Let ℒ8 9 be the set

of all possible distinct live-edge paths from agent 8 ∉ (0 to 9 ∈ (0. The probability A of

live-edge path ∈ ℒ8 9 is the product of the edge weights along the path. We say 8 ∉ (0

12

is reachable from 9 ∈ (0 by live-edge path with probability A, and 8 ∉ (0 is reachable from

9 ∈ (0 with probability A8 9 , where A8 9 =
∑

∈ℒ8 9
A.

Alternatively, we can compute A8 9 in terms of selections of live-edges. Let !8 9 ⊆ ! be the

set of all selections of live edges that contain a live-edge path from 8 ∉ (0 to 9 ∈ (0. Then,

A8 9 =
∑
;∈!8 9 @; . Likewise, let !8(0

⊆ ! be the set of all selections of live edges that contain

a live-edge path from 8 ∉ (0 to at least one node 9 ∈ (0. Then, 8 ∉ (0 is reachable from (0

with probability A8(0
, where A8(0

=
∑
;∈!8(0

@; .

We extend the LEM into multiplex networks so that we can analyze multiplex LTM without

temporal iteration. We can also compute the size of cascade by leveraging network structures.

Definition 3 (Multiplex LEM [103]). Consider a multiplex network G with seed set (0. In each layer :,

each unseeded agent 8 randomly selects one of its outgoing edges 4 :8, 9: with probability F:
8, 9:

. The selected

edges are labeled as “live", while the unselected edges are labeled as “blocked". The seeds block all of their

outgoing edges in every layer. The choice of edges that are live is a multiplex selection of live edges. Let !

be the set of all possible multiplex selections of live edges. The probability @; of selection ; ∈ ! is the product

of the weights of all live edges in selection ;.

A key concept in LTM is reachability. In traditional networks, reachability is defined based on

live-edge paths. Here we generalize live-edge paths to live-edge trees in multiplex networks.

Definition 4 (Live-edge Tree [103]). 2 Given a set of seeds (0 and a multiplex selection of live edges ; ∈ !,

the live-edge tree) ;8 associated with agent 8 ∉ (0 is constructed as follows with agent 8 as the root node.

Let 4 :8, 9: be the live edge of agent 8 in layer :, : = 1, . . . , <. Then the children of the root node are agents

91 , 92 , ..., 9< , and the root node is connected to each child with the live edge in the corresponding layer. The

tree is constructed recursively in this way for each child that itself has at least one child. Any agent in the

network may appear multiple times as a node in the tree.

Fig. 2.2 shows an illustrative example of a multiplex network with three layers and five agents.

In this simple example, there is only one possible live-edge selection, shown in Fig. 2.3. Fig. 2.4

shows the live-edge tree associated with agent 5. Now we are ready to formally define reachability.

Definition 5 (U-Reachability [103]). Consider multiplex network G with seed set (0 and multiplex

selection of live edges ; ∈ !. Let) ;8 be the live-edge tree associated with agent 8 ∉ (0. Suppose there are

2To highlight key differences between multiplex and monoplex networks, we assume each 8 ∉ (0 has at least one neighbor
in each layer. If not, with a slight modification of Defs. 4- 5, the theory and computation are still valid.

13

Figure 2.2: An example of a three-layer multiplex network with five agents. Agent 1 is the seed,
which is denoted by the black circle. Repeated from Fig. 9.1 [103].

Figure 2.3: The unique multiplex selection of live edges for the network in Fig. 2.2. Repeated from
Fig. 9.2 [103].

Figure 2.4: The live-edge tree associated with agent 5 for the example three-layer multiplex network
of Fig. 2.2 and the unique selection of live edges of Fig. 2.3. ℬ5 = {�1 , �2 , ..., �12} is the set of distinct
branches that end with a seed. Repeated from Fig. 9.3 [103].

14

1 distinct branches in) ;8 indexed by � = 1, . . . , 1 and of the form: �� = (8 , 4 :0

8 ,81
, 81 , 4

:1

81 ,82
, 82 , ..., 8B), where

8 9 ∈ + , 9 = 1, . . . , B, 8B ∈ (0, and each agent in + appears at most once in ��. We call each �� a distinct

branch that ends in a seed. Denote the set of these branches as ℬ ;
8 = {�1 , �2 , ..., �1}. For any subset

ℬ̂ ⊆ ℬ ;
8 , let the set of agents in ℬ̂ be +̂ and the set of edges in ℬ̂ be �̂.

Given a sequence of protocols U , we say that branch subset ℬ̂ ⊆ ℬ ;
8 is U-feasible for 8 if ℬ̂ ≠ ∅ and

for every 8̂ ∈ +̂ \ (0 for which D8̂ = AND, all of 8̂’s live edges belong to �̂. Then, 8 is U-reachable from (0

by the selection of live edges ; with probability @; if there exists at least one ℬ̂ ⊆ ℬ ;
8 that is U-feasible

for 8. Let !U
8(0

⊆ ! be the set of all selections of live edges by which 8 is U-reachable from (0. Then, 8 is

U-reachable from (0 with probability AU
8(0

, where AU
8(0

=
∑
;∈!U

8(0

@; . �

We will connect the U-reachability to the LTM in the next section, but now let us look at an

example of U-reachability (quoted from [103]):

To illustrateU-reachability, consider the live-edge tree associated with agent 5 in Fig. 2.4

for the unique selection of live edges in Fig. 2.3 for the multiplex network of Fig. 2.2 with

seed set (0 = {1}. Because the selection of live edges in Fig. 2.3 is unique, it is chosen

with probability @ = 1. Therefore, agent 8 ∉ (0 is U-reachable from (0 with probability

1 if there exists at least one ℬ̂ ⊆ ℬ8 that is U-feasible for 8. For agent 5, there are 12

distinct branches that end in a seed, as shown in Fig. 2.4; thus, ℬ5 = {�1 , �2 , ..., �12}. For

example, �8 = (5, 42
5,1 , 1).

We compute U-reachability from (0 for agent 5 for each the following three sequences

of protocols used by the five agents in the three-layer multiplex network:

U1 = (OR,AND,AND,AND,OR) (2.4)

U2 = (OR,OR,AND,AND,AND) (2.5)

U3 = (OR,AND,AND,AND,AND). (2.6)

1. Let U = U1. Consider ℬ̂ = {�8} ⊂ ℬ5. Then, +̂ = {1, 5} and �̂ = {42
5,1}. Since 5 is

the only unseeded node in +̂ and D5 = OR, ℬ̂ is U-feasible for 5. Thus, agent 5 is

U-reachable from (0 with probability 1.

2. Let U = U2. Consider ℬ̂ = ℬ5. Then, +̂ = {1, 2, 3, 4, 5}. The unseeded nodes 9 ∈ +̂

for which D9 = AND are 9 = 3, 4, 5. From Fig. 2.4, observe that all the live edges of

nodes 3, 4, and 5, belong to �̂, the edge set of ℬ̂ = ℬ5. Thus, ℬ̂ is U-feasible for 5,

and agent 5 is U-reachable from (0 with probability 1.

15

3. Let U = U3. In this case there is no U-feasible subset ℬ̂ ⊆ ℬ5, since D2 = AND

and agent 2 has a live edge 43
2,5, which is not in the edge set of any branch in ℬ5.

Thus, agent 5 is not U-reachable from (0.

2.4 Equivalence

The benefit of LEM is that it is proved to be equivalent to the LTM in single-layer networks, so that it

can be used to compute the size of cascade based on network structure. We present the equivalence

using our notation.

Lemma 1 ([45]). For a given monoplex network G with seed set (0, the probabilities of the following two

events for arbitrary agent 8 ∉ (0 are the same:

1. 8 is active at steady state for the LTM with random thresholds and initial active set (0;

2. 8 is reachable from set (0 under the random selection of live edges in the LEM.

In this section, we generalize this equivalence from single-layer networks to multiplex networks,

so that we can leverage the LEM to compute the size of cascade in the heterogeneous multiplex

LTM. The key in proving the equivalence is to treat the LEM as an iterative model. The following

lemma sheds light on how to do this.

Lemma 2 ([103]). Given a multiplex network G with seed set (0, multiplex selection of live edges ; ∈ ! and

sequence of protocols U , consider agent 8 ∉ (0 and its associated live-edge tree) ;8 . Assume 8’s live edge in

layer : connects to agent 8:
1
, : = 1, . . . , <. Then the U-reachability of 8 from (0 by selection ; can be inferred

from the reachability of its children 8:
1

and its protocol D8 as follows:

1. Let D8 = OR. Then, 8 is U-reachable from (0 by selection of live edges ; if and only if at least one child

8:
1

is U-reachable from (0 by selection of live edges ;.

2. Let D8 = AND. Then, 8 is U-reachable from (0 by selection of live edges ; if and only if every child 8:
1

is U-reachable from (0 by selection of live edges ;.

Using Lemma 2, we can reveal U-reachability of agents iteratively. Starting from (′
0
= (0,

we determine the U-reachability of one-hop neighbors of (′
0
. Those one-hop neighbors that are

determined to be U-reachable are added to (′
0

to form (′
1
. In this way, we get a series of reachable

sets (′
0
, (′

1
, (′

2
, The iterations end at C if (′C = (′C−1

. Leveraging this insight, we are able to prove

the equivalence.

16

Theorem 1 (Equivalence of multiplex LTM and multiplex LEM [103]). For a multiplex network G

with seed set (0, multiplex selection of live edges ; ∈ ! and sequence of protocols U , the probabilities of the

following two events regarding an arbitrary agent 8 ∉ (0 are the same:

1. 8 is active at steady state for the multiplex LTM under U with random thresholds and initial active set

(0;

2. 8 is U-reachable from the set (0 under random selection of live edges in the multiplex LEM.

By leveraging the equivalence, we are able to compute the an agent’s probability of becoming

active and the size of cascade in LTM using network structure instead of temporal iterations. In the

next section, we formally define the size of cascade.

2.5 Multiplex Influence Spread

We study LTM with random thresholds. With different set of thresholds, the outcomes of the spread

are different. The expected number of active agents at steady state given a single-layer network �

and seed set (0 is defined as the influence spread ��
(0

[45]. When the seed set contains only one

agent 9, the influence is specialized to cascade centrality of 9 by Lim et al. [55], denoted as C�
9 = ��9 .

Both influence spread and cascade centrality can be defined in multiplex networks as follows.

Definition 6 (Multiplex influence spread [103]). The multiplex influence spread of agents in (0,

denoted �G ,U
(0

, is defined as the expected number of active agents at steady state for the multiplex LTM given

the network G, sequence of protocols U , and initial active set (0. Let E
G ,U
(0

and P
G ,U
(0

be expected value and

probability, respectively, conditioned on G ,U , (0. Then

�G ,U
(0

= E
G ,U
(0

(=∑
8=1

Ḡ8

)
=

=∑
8=1

P
G ,U
(0

(Ḡ8 = 1). (2.7)

Definition 7 (Multiplex cascade centrality [103]). The multiplex cascade centrality of agent 9, denoted

C
G ,U
9 , is defined as

C
G ,U
9 = �G ,U

9 . (2.8)

From the equivalence of multiplex LTM and multiplex LEM (Theorem 1), we can compute the

multiplex influence spread and cascade centrality by leveraging the LEM.

Corollary 1 ([103]). Given multiplex network G and sequence of protocols U , multiplex influence spread

17

of agents in (0 and multiplex cascade centrality of agent 9 can be determined as

�U
(0

=

=∑
8=1

AU8(0
, CU

9 =

=∑
8=1

AU8 9 . (2.9)

We formalize the procedure of accurately compute multiplex influence spread in the following

algorithm.

Algorithm 1 (Compute multiplex influence spread �G ,U
(0

[103]). Given multiplex network G and

sequence of protocols U :

1. Find the set ! of all possible selections of live edges for multiplex network G and initially active set (0.

Calculate the probability @; of each ; ∈ !.

2. For each agent 8 find !U
8(0

⊆ !, the set of all ; ∈ ! such that 8 is U-reachable from (0 by selection ;.

3. Calculate AU
8(0

=
∑
;∈!U

8(0

@; .

4. Calculate �G ,U
(0

=
∑=
8=1 A

U
8(0

.

2.6 Examples - Calculate Influence Spread Accurately

We present some examples of leveraging Algorithm 1 to compute cascade centrality. We show how

distinguishing multiple communication modalities influence spread and how heterogeneity plays

a role in distinguishing a real threat from disturbances.

2.6.1 Homogeneous Agents

We show analytical results of two families of homogeneous networks. The special structure of the

networks enable us to write down analytical expressions of influence spread based on Algorithm 1.

The first family is the duplex repeated path network G', illustrated in Fig. 2.5.

Figure 2.5: Duplex repeated path network G' has path graph �%0 as each layer. Repeated from Fig.
9.5 [103].

The projection network of it is a path graph �%0 = proj(G'). The cascade centrality of an agent

in the network is stated in the following proposition.

18

Proposition 1 (Multiplex cascade centrality for G' [103]). Consider the monoplex path network �%0

and duplex repeated path network G' for # agents with D8 = D ∈ {OR,AND}. Then

C
�%0
9 = ℎ 9(.5), C

G' ,OR

9 = ℎ 9(.75), C
G' ,AND

9 = ℎ 9(.25),

ℎ 9(?0)=

∑#−2
;=0 ? ;

0
+ ?#−2

0
, 9 ∈ {1, #}

1 +
∑#−3
;=0 ? ;

0
+ ?#−3

0
, 9 ∈ {2, # − 1}

∑9−1

;=0
? ;

0
+?

9−1

0
+
∑#−9−1

;=1
? ;

0
+?

#−9−1

0
, o.w.

Moreover,

C
G' ,OR
9 > C

�%0
9 > C

G' ,AND
9 .

The results reveal the role of distinguishing communication modalities. A homogeneous group

with Protocol OR (AND), produce a larger (smaller) size of cascade as compared to projecting the

communication modalities into a traditional graph. The results hold for arbitrary number of agents.

We then examine the duplex permutation networks G% , illustrated in Fig. 2.6.

Figure 2.6: Duplex permutation network G% . Repeated from 9.6 [103].

Different from the duplex path networks, the projection network of the duplex permutation

networks are cycle graphs �� . As the analytical expression of cascade centrality is messy and not

insightful in this case, we show the probability of an agent becoming active given another agent as

the seed in a homogeneous network, i.e., PG% ,D9 (Ḡ8 = 1), D ∈ {OR,AND}.

Proposition 2 (Probabilities for multiplex cascade centrality for G% [103]). Consider the duplex per-

mutation network G% for # agents with D8 = D ∈ {OR,AND} and the cyclic network �� = proj(G%).

Then

P
G% ,OR
9 (Ḡ8=1)= (.75)|8−9 |+.5(.75)#−|8−9 |−3−.5(.75)#−5

P
G% ,AND
9 (Ḡ8=1)= (.25)|8−9 | (2.10)

P
��
9 (Ḡ8=1)= (.5)|8−9 | + (.5)#−|8−9 |

19

where 3 ≤ 8 ≤ # − 3 and 9 = 2, ..., 8 − 2, 8 + 2, ..., # − 2. Moreover,

C
G% ,OR

9 > C
��
9 > C

G% ,AND

9

P
G% ,AND

9 (Ḡ8=1)=P
G' ,AND

9 (Ḡ8=1)= (0.25)|8−9 |

P
G% ,OR

9 (Ḡ8=1)>PG' ,OR

9 (Ḡ8=1).

As we can see from the results, a homogeneous duplex permutation network with Protocol AND

behaves the same as a duplex path network. This is because when D# = AND, D# is always the last

agent to be activated. Information can only be spread from 9 to 8 along the path on �� that does not

contain agent # . This effectively turns a homogeneous duplex permutation network with Protocol

AND into a duplex path network. In a homogeneous duplex permutation network with Protocol

OR, information can be spread through either path between 9 and 8. This enhances the spread of

the activity as compared to the duplex path networks.

2.6.2 Heterogeneous Agents

After knowing the roles of homogeneous Protocol OR and AND, we examine the role of hetero-

geneity in protocols in this section. We use the two-layer multiplex network illustrated in Fig. 2.7.

Figure 2.7: Duplex network with agents 1 to 6, layer 1 (red), and layer 2 (blue). Node 7, the external
signal, is real since it appears in both layers. Repeated from Fig. 9.7 [103].

The network contains 6 agents (denoted as 1 to 6) and a seventh node that represents an external

signal. We are particularly interested in the tension between sensitivity of a spread to a real external

signal and the robustness of the cascade to disturbances. We model a real external signal by

presenting node 7 in both layers and model a disturbance or noise by presenting node 7 in either

layers but not both. We assume only one agent can sense the signal and the edge pointing to the

signal has a weight of 1, since the first agent that sense the signal pays all its attention to detect if it

is a real one or a spurious one. We also assume each of the 6 agents can sense the signal with equal

20

chance since in the real environment, since the threat can come from any direction. The graphs in

layers represent different sensing modalities. The red layer presents directed sensing, where each

agent can only sense others in the front or on the side. The blue layer presents proximity sensing,

where each agent can only sense its closest neighbors. This network structure is motivated by a

robot team equipped with different types of sensors and fish schools with visual sensing and lateral

line sensing. Each agent can use either protocol, and there are 64 different sequences of protocols

possible. We propose a utility function & as a function of U and a design parameter 2 to evaluate

the benefit of the group from responding to a real signal and not responding to a disturbance. The

design parameter 2 captures the tradeoff between sensitivity to a real input and robustness to a

disturbance. We propose the utility function as follows (quoted from [103]),

&(U , 2) =
1

6

6∑
;=1

(
C

G ;
real ,U

7 − 2
1
2
(C

G ;
spur1 ,U

7 + C
G ;

spur2 ,U

7)
)
. (2.11)

Superscript ; indexes the agent sensing node 7. Subscripts “real", “spur1" and “spur2"

index the networks where node 7 appears in both layers, layer 1 only, and layer 2

only, respectively. Increasing 2 increases cost of response to spurious signals relative

to benefit of response to real signals. Given 2, the optimal sequence of protocols is

U 2 = argmaxU&(U , 2).

Using Algorithm 1, we can calculate the utility given 2 and U . We can then get the optimal

configuration for a given 2. Fig. 2.8 shows the optimal configuration for 2 ranges from 0 to 3. With

a low value of 2, the disturbance rejection is not taken into account in the utility function, so that

the optimal configuration is that all six agents are vigilant, choosing Protocol OR. With a high value

of 2, the utility function cares more about disturbance rejection then actually responding to a real

input, so all the agents in the optimal configuration choose Protocol AND. When 2 is in between,

we see from Fig. 2.8 how the optimal configuration changes from all ORs to all ANDs.

2.7 Computation Complexity of Influence Spread

After knowing how Algorithm 1 can help us gain insight into the role of multiple communication

modalities and the role of heterogeneity, we find that Algorithm 1 is slow on large networks,

which indicates calculating influence spread accurately is computationally complex, shown in the

following theorem.

21

Figure 2.8: The optimal fraction of agents using Protocol AND with illustration of optimal solution
U 2 as 2 varies from 0 to 3. Symmetry is implied. Repeated from Fig. 9.8 [103].

Theorem 2 ([103]). Consider a multiplex network G for which proj(G) is a DAG, with seed set (0 and

sequence of protocols U . Computing �G ,U
(0

for the multiplex LTM is #P-complete.

The theorem says that computing influence spread in general is computationally complex and

an accurate algorithm is not practical for large networks. In the next section, we propose an

approximate algorithm of computing influence spread by leveraging probabilistic inference on

Bayesian networks, so that when the network is large, we can approximately calculate influence

spread.

2.8 Multiplex LTM as a Bayesian Network

A Bayesian network is a graphical model that represents a set of variables and conditional de-

pendencies among the variables. Probabilistic inference in a Bayesian network is to compute the

marginal probabilities variables. By converting a multiplex LTM to a Bayesian network, we can

calculate multiplex cascade centrality by leveraging probabilistic inference in Bayesian networks.

First, we formally define a Bayesian network.

Definition 8 (Bayesian network [103]). Let � = (+, �), where + = 1, 2, ..., = and � ⊂ + × + , be a

directed acyclic graph (DAG). Each node 8 ∈ + is associated with a random variable G′8 ∈ X′
8 . Denote the set of

out-neighbors of 8 ∈ + as #′
8 . Let P(G′8 |G

′
#′
8
) be the probability of G′8 conditioned on the states of nodes in #′

8 .

Then � is a Bayesian network if the joint distribution of the random variables is factorized into conditional

probabilities: P(G′1 , G
′
2 , ..., G

′
=) =

∏=
8=1 P(G

′
8 |G

′
#′
8
).

The belief propagation (BP) algorithm proposed by Pearl [68] is a messsage-passing algorithm to

solve probabilistic inference in Bayesian networks. Pearl [68] showed that the algorithm is exact on

22

trees and polytrees, but suffers from convergence issues when applied to DAGs with loops. Murphy

et al. [58] investigated the convergence issue and found that it provides a good approximation

when it converges. The application of Pearl’s algorithm on DAGs with loops is called loopy belief

propagation (LBP). For general graph structures, the junction tree algorithm can perform exact

inference by first turning the graph into a junction tree and then applying belief propagation on the

modified graph.

We focus on a class of multiplex networks where the projection networks are DAGs. We show

that the joint probability of agents being active can be naturally expressed as a Bayesian network.

Algorithm 2 (Bayesian network from multiplex LTM [103]). Given multiplex network G for which

proj(G) is a DAG and sequence of protocols U :

1. Let � = proj(G) be the underlying DAG for the Bayesian network. Then #′
8 = #8 = ∪<

:=1#
:
8 .

2. Let the random variable G′8 of node 8 in the Bayesian network be Ḡ8 , the steady-state value of agent 8 for

the multiplex LTM on G. Then G′8 ∈ X′
8 = {0, 1}.

3. Construct the conditional probabilities for the Bayesian network in terms of the conditional probabilities

for the multiplex LTM: P(G′8 |G
′
#8
) = PG ,D8 (Ḡ8 |Ḡ#8).

We use the multiplex network in Fig. 2.9 as an illustrative example of using Algorithm 2 to turn

a multiplex LTM into a Bayesian network (quoted from [103]):

Since all random variables are discrete, the conditional probabilityP(G′8 |G
′
#8
) = PG ,D8 (Ḡ8 |Ḡ#8)

can be fully described with a conditional probability table (CPT). We show how to con-

struct a CPT for PG ,D8 (Ḡ8 |Ḡ#8) for the Fig. 2.9 example. The CPT of 8 has 2|#8 | rows. For

agent 6, #6 = {3, 4, 5}, Ḡ#6 = {Ḡ3 , Ḡ4 , Ḡ5} and its CPT has 2|#6 | = 8 rows. The CPT

provides PG ,D6(Ḡ6 = 0|Ḡ3 , Ḡ4 , Ḡ5) and PG ,D6(Ḡ6 = 1|Ḡ3 , Ḡ4 , Ḡ5). Table 2.1 and Table 2.2 are

the CPTs for agent 6 when it uses Protocol OR and Protocol AND, respectively.

Figure 2.9: Multiplex network GB with two unweighted layers and six agents. Red (blue) arrows
represent edges in layer 1 (layer 2). (0 = {1}. Repeated from Fig. 9.4 [103].

23

Table 2.1: CPT of agent 6 with D6 = OR for GB of Fig. 2.9. Repeated from 9.1.

Ḡ3 Ḡ4 Ḡ5 POR(Ḡ6=0|Ḡ3,Ḡ4,Ḡ5) POR(Ḡ6=1|Ḡ3,Ḡ4,Ḡ5)

0 0 0 1.00 0.00
0 0 1 0.25 0.75
0 1 0 0.50 0.50
0 1 1 0.00 1.00
1 0 0 0.50 0.50
1 0 1 0.00 1.00
1 1 0 0.25 0.75
1 1 1 0.00 1.00

Table 2.2: CPT of agent 6 with D6 = AND for GB of Fig. 2.9. Repeated from Table 9.2.

Ḡ3 Ḡ4 Ḡ5 PAND(Ḡ6=0|Ḡ3,Ḡ4,Ḡ5) PAND(Ḡ6=1|Ḡ3,Ḡ4,Ḡ5)

0 0 0 1.00 0.00
0 0 1 0.75 0.25
0 1 0 1.00 0.00
0 1 1 0.50 0.50
1 0 0 1.00 0.00
1 0 1 0.50 0.50
1 1 0 0.75 0.25
1 1 1 0.00 1.00

Algorithm 2 handles the case where the projection network is a DAG. A general multiplex

network can be handled by the junction tree algorithm. The probability of each agent being active,

however, needs to be obtained by a further marginalization. In the next theorem, we show that the

marginal probability is indeed what we need to calculate influence spread.

Theorem 3 ([103]). Given a multiplex network G for which proj(G) is a DAG, with seed set (0 and sequence

of protocols U , the following two probabilities are the same:

1. P
G ,U
(0

(Ḡ8 = 1), the probability that agent 8 is active at steady state for the multiplex LTM.

2. PG ,U (Ḡ8 = 1|Ḡ 9 = 1, Ḡ; = 0, 9 ∈ (0 , ; ∉ (0 , #; = ∅), the marginal probability of node 8 in the

corresponding Bayesian network of Algorithm 5, conditioned on observed nodes in the seed set and

those not in the seed set that have no out-neighbors.

The next corollary directly follows from Theorem 3, which says we can compute influence spread

by probabilistic inference on Bayesian networks, which can be solved by BP algorithms.

Corollary 2 ([103]). Given a multiplex network G for which proj(G) is a DAG, with seed set (0 and sequence

24

of protocols U , multiplex influence spread �G ,U
(0

can be computed as

=∑
8=1

P
G ,U (Ḡ8 = 1|Ḡ 9 = 1, Ḡ; = 0, 9 ∈ (0 , ; ∉ (0 , #; = ∅).

2.9 Examples - Calculate Influence Spread Approximately

We examine multiplex cascade centrality for random multiplex networks with 20 agents. The

network has two layers and the projection network is a DAG. We fix a topological order of nodes

and generate edges randomly with probability ?4 . A lower ?4 generates a less connected network

and a higher ?4 generates a more connected network. We are interested in the cascade centrality

of the root node with difference protocol configurations. We study the homogeneous groups

with all ORs and all ANDs as well as the heterogeneous group where the agents randomly and

independently choose Protocol OR or AND with equal chance.

We change ?4 from 0 to 1 and with each ?4 , we generate 400 random networks and plot the

average cascade centrality over the networks of the three protocol configurations using the methods

in Section 2.8. Fig. 2.10 shows how the cascade centrality changes with ?4 . When ?4 is close to 0,

the network is disconnected and the root node can trigger no other agents to be active, regardless

of the protocols. Thus, the cascade centrality goes to 1. When ?4 is close to 1, the root node triggers

every other agent regardless of the protocols. Thus, the cascade centrality goes to 20. When ?4 is in

the middle. We observe a gap among the three protocol configurations.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

A
v

er
ag

e
C

as
ca

d
e

C
en

tr
al

it
y

OR

Het

AND

Figure 2.10: Multiplex cascade centrality of root node, averaged over 400 networks, as a function of
probability ?4 of edges in the DAG. Repeated from Fig. 9.9 [103].

In this chapter we derived the LTM in multiplex networks and analyzed two protocols which

25

models responsive and conservative agents. We proved the equivalence of the LTM and the LEM

with the proposed U-reachability. By leveraging the LEM, we are able to calculate the probability

of agents becoming active based on network structure instead of conducting simulations with the

LTM. This, in turn, enables the calculation of size of spread. We generalized influence spread and

cascade centrality into multiplex networks. We showed analytical results of cascade centrality in

two homogeneous networks with symmetry. We showed that Protocol OR enhances a cascade and

Protocol AND diminishes a cascade, which is consistent with our intuition about the protocols.

The analytical results also showed that distinguishing multiple communication modalities gives

us different results than projecting all the communication modalities into a traditional graph. We

also studied a two-layer multiplex network with 6 heterogeneous agents, motivated by fish schools

with directed sensing and proximity sensing. We showed that heterogeneity in thresholds plays an

important role in the tradeoff between sensitivity to a real signal and robustness to disturbances.

Our model then provides an explanation of how an animal group could distinguish real signals

from disturbances. By showing that the problem of computing influence spread is computationally

complex, we know Algorithm 1 is not practical for large networks. For large networks, we proposed

to leverage probabilistic inference to calculate the influence spread. We proposed an algorithm

to turn a problem of calculating influence spread in a multiplex network, of which the projection

network is a DAG, into a problem of probabilistic inference problem in Bayesian networks. Then we

are able to leverage algorithms such as loopy belief propagation to calculate the influence spread.

One limitation of the method is that it requires a special structure of the multiplex network. An

efficient algorithm for general multiplex networks are underexplored and could be pursued in the

future.

The main model in this chapter is the LTM - a discrete dynamical model. Although it is nice

to develop the LEM to analyze the LTM, the tools in the field of discrete dynamical models are

limited. We would like to further investigate cascade dynamics with continuous dynamical models

and leverage the tools from continuous dynamical system to help us understand the role of network

structure and heterogeneity in cascade. We introduce one of such models in the next chapter.

26

Chapter 3

Continuous Cascade Dynamics

The LTM presented in the previous chapter is studied with random thresholds and the LTM with

deterministic thresholds lacks analytical tractability. Moreover, the LTM is a discrete dynamics

and how fast an agent responds to an external signal is not captured. In biological systems, the

response to a threat is fast. For example, in the presence of a predator, all the fish in a fish school

suddenly turn their bodies away from it and flee. Although the LTM is able to model a spread,

it fails to model how quickly a cascade occurs. In order to capture the speed of a cascade, in this

chapter, we generalize the LTM to a continuous threshold model (CTM), which is presented in Part

II: Chapter 10 which appears as Zhong and Leonard [98]. The CTM is a continuous dynamical

system approach where the speed of a change of state can be observed. The CTM also allows us to

study deterministic thresholds and how heterogeneity in thresholds influences a cascade.

We empirically observe the cascade response - a quick change of activity levels of agents - with

the CTM on a class of networks. This is in contrast to a contained response, where the activity levels

change slowly. We show that the cascade response is caused by a subcritical pitchfork bifurcation in

the CTM. We show how the cascade response depend on the network structure and heterogeneous

agents by proving the condition of a subcriticial pitchfork bifurcation. We conclude that a large

disparity in network structure and individual preferences lead to a cascade.

3.1 Continuous Threshold Model

We consider a network of agents and the interaction among agents are encoded in the graph. Each

agent 8 is associated with a state G8 ∈ R, representing the agent’s activity level. Different from the

LTM, here each agent has a continuous activity level. We proposed the continuous threshold model

27

(CTM), which describes how the states of agents evolve over time, as follows

¤G8 = −38G8︸︷︷︸
resistance

+

#∑
9=1

08 9D((EG 9)

︸ ︷︷ ︸
social

+ 38(1 − 2�8)︸ ︷︷ ︸
preference

. (3.1)

The dynamics is inspired by the Hopfield network [40] and adapted from nonlinear consensus

dynamics [32]. Similar dynamics has also been used to model opinion dynamics [9]. The dynamics

consist of three terms. The first term is an inertia term, where 38 is the degree of agent 8. The second

term contains the social cues from other agents where 08 9 = 1(0) if agent 9 is (is not) a neighbor

of agent 8. The function ((·) is a symmetric sigmoidal function, e.g., tanh (·). The parameter

D represents “social sensitivity" since a large D means a large attention to social signals. The

parameter E represents “social effort" since a large E means a strong cue sent by neighbors. The

third term is a preference term where �8 ∈ [0, 1] is the threshold of agent 8, which captures agent 8’s

tendency to raise its activity level.

The CTM is a generalization of the LTM. By letting D = 1 and E → ∞, the CTM becomes

1
38

¤G8 = −G8 + 2
(#∑
9=1

08 9

38

((EG 9) + 1

2︸ ︷︷ ︸
fraction of active ngbrs

−�8

)
. (3.2)

In particular, we interpret a positive(negative) state as active(inactive). Then the dynamics behave

as the LTM with deterministic thresholds, which are challenging to understand with the LTM. The

CTM formalism generalizes the binary activity into a continuous activity level and the rules of

spreading in LTM into continuous dynamics. The CTM enables us to study cascade with tools in

dynamical systems.

3.2 Networks with a Chain of Three Clusters

Our goal is to investigate how heterogeneity in thresholds influence cascade in the network. We

start with a class of networks where agents are clustered into multiple groups. The agents in the

same group have the same threshold but different groups have different thresholds. This class

of networks is motivated by the scenarios where the thresholds represent a trait of agent that is

determined by spatial locations of agents. For example, people in a country with a large number

of confirmed cases of a potentially deadly infectious disease, such as COVID-19, have a tendency

28

to adopt advice, such as social distancing or wearing a mask, from medical experts. People in a

neighboring country with less confirmed cases might have a tendency to do so. The spread of

mitigation strategies, e.g. wearing a mask, can be modelled by CTM where people in a region with

larger confirmed cases choose a lower threshold. We start with a class of networks with a chain of

three clusters, as illustrated in Figure 3.1. The left cluster (cluster 1) is a high response cluster since

every agent 8 in it has a threshold �8 = 1/2− &, representing a tendency to become active. The right

cluster is a low response cluster (cluster 2) since every agent 9 in it has a threshold �9 = 1/2 + &,

representing a reluctance to become active. The middle cluster (cluster 3) is a neutral response

cluster since every agent : in it has a threshold �: = 1/2.

Figure 3.1: Network with three clusters: # = 11 and = = 4. Cluster 1 (high response) is on the left,
cluster 2 (low response) is on the right, and cluster 3 (neutral response) is in the middle. White
arrows indicate all-to-all, undirected connections between nodes in clusters.Repeated from Figure
10.1 [98].

There is an underlying symmetry in the network structure. There are = agents in clusters 1, =

agents in cluster 2 and # − 2= agents in cluster 3. All the edges are undirected. The connections

within a cluster are all-to-all. Each agent in cluster 1 is connected to each agent in cluster 3 and each

agent in cluster 2 is connected to each agent in cluster 3.

To analyze CTM on this class of networks, we let E = 1 and D as a feedback control. We treat

D as a tunable parameter of the system for now. We show that trajectories of Eqn (3.1) converge

exponentially to the following three-dimensional manifold

¤H1 = − (# − = − 1)H1 + (= − 1)D((H1) + (# − 2=)D((H3) + 2(# − = − 1)& (3.3)

¤H2 = − (# − = − 1)H2 + (= − 1)D((H2) + (# − 2=)D((H3) − 2(# − = − 1)& (3.4)

¤H3 = − (# − 1)H3 + (# − 2= − 1)D((H3) + =D((H1) + =D((H2). (3.5)

Let y = [H1 , H2 , H3]
) and �(y, D, &) the right hand side of (3.3)-(3.5). Next, we show that � exhibits a

pitchfork bifurcation and we prove the condition for the transition from a supercritical pitchfork to

a subcritical pitchfork. We also show that the supercritical pitchfork implies a contained response

and the subcritical pitchfork implies a cascade.

29

3.3 Condition for Cascade - Subcritical Pitchfork Bifurcation

By symmetry, y★ = [H★,−H★, 0]) is an equilibrium of (3.3)-(3.5). For a given & and D, y★ satisfies

−(# − = − 1)H★ + (= − 1)D((H★) + 2(# − = − 1)& = 0. (3.6)

Here we apply a perturbation analysis to investigate if there is a perturbed solution around y★ as

y★ + Δy = [H★ + ΔH1 ,−H
★ + ΔH2 ,ΔH3]

) , where Δy ≠ 0. The change of existence of those perturbed

solution indicates a bifurcation in the dynamics. In the following analysis, we will use Taylor series

expansions to the third order.

((H★+ΔH1) =((H
★) + (′(H★)ΔH1 +

1

2
(′′(H★)(ΔH1)

2 +
1

6
(′′′(H★)(ΔH1)

3 + >((ΔH1)
3) (3.7)

((−H★+ΔH2)=((−H
★)+(′(−H★)ΔH2+

1

2
(′′(−H★)(ΔH2)

2 +
1

6
(′′′(−H★)(ΔH2)

3 + >((ΔH2)
3) (3.8)

((ΔH3) =(
′(0)ΔH3 +

1

2
(′′(0)(ΔH3)

2 +
1

6
(′′′(0)(ΔH3)

3 + >((ΔH3)
3). (3.9)

Without loss of generality, we use tanh(·) as the sigmoidal function in the analysis. For other types

of sigmoidal functions, the analysis is similar. With ((·) = tanh(·), Eqn. (3.9) becomes

tanh(ΔH3) = ΔH3 −
1
3
ΔH3

3 + >((ΔH3)
3). (3.10)

The following lemma and proposition reduce the dynamics to one-dimensional dynamics which

match the normal form of a pitchfork bifurcation. We can then derive the condition for a subcritical

bifurcation and thus a cascade.

Lemma 3 ([98]). Assume ΔG ∈ R and ΔH ∈ R have small magnitudes and satisfy

0(ΔG)3 + 1(ΔG)2 + 2ΔG = −ΔH +
1
3
(ΔH3) + >((ΔH)3). (3.11)

Then we have

ΔG=−
1
2
ΔH−

1

23
(ΔH)2+

(1
32

−
212

25
+
0

24

)
(ΔH)3+>((ΔH3)).

Proposition 3 ([98]). Consider dynamics (3.3)-(3.5) with ((·) = tanh(·). The conditions for equilibria of

30

the perturbed dynamics of (3.3)-(3.5) around H★ can be reduced to the following single condition:

d
dC

(
ΔH3

)
= �1ΔH3 + �3(ΔH3)

3 + >((ΔH3)
3) = 0, (3.12)

where �1 and �3 depend on H★, D, # , = as follows:

�1(H
★, D, #, =) = − (# − 1) −

(
1 +

= + 1
= − 1

(# − 2=)
)
D

−
=(# − = − 1)

= − 1
2
2

(3.13)

�3(H
★, D, #, =) =

1
3

(
1 +

= + 1
= − 1

(# − 2=)
)
D

+
=(# − = − 1)

= − 1

(2
32

−
412

25
+

20
24

)
(3.14)

with

0(H★, # , =) =
= − 1
− 2=

1
6

tanh′′′(H★) (3.15)

1(H★, # , =) =
= − 1
− 2=

1
2

tanh′′(H★) (3.16)

2(H★, D, #, =) =
= − 1
− 2=

tanh′(H★) −
− = − 1
(# − 2=)D

. (3.17)

Eqn. (3.11) exhibits the normal form of a pitchfork bifurcation. In particular, if �3 < 0, ΔH3

undergoes a supercritical pitchfork bifurcation; if �3 > 0, ΔH3 undergoes a subcritical pitchfork

bifurcation. Fig. 3.2 shows the supercritical and subcritical pitchforks. The green curves represent

how the average state H̄ = (=H1 +=H2 +(# −2=)H3)/# changes as the bifurcation parameter D slowly

increases because of feedback. As we can see, if the pitchfork is supercritical, the system has a

contained response; if the pitchfork is subcritical, the average state suddenly changes to a stable

branch when D crosses the bifurcation point D2 . The sudden change of states indicates a cascade.

Fig. 3.3 shows the bifurcation diagram when there is a small positive disturbance to the dynamics

(3.3). In this case, the contained response and the cascade response still exist. Moreover, even a

negative initial condition of average state H̄(0) < 0 would trigger a cascade.

As the subcritical pitchfork indicates a cascade, the following proposition shows when the

transition from a supercritical pitchfork to a subcritical pitchfork exists.

Proposition 4. The transition from a supercritical pitchfork bifurcation to a subcritical pitchfork bifurcation

of dynamics (10.3)-(10.5) with ((·) = tanh(·) occurs when �3 crosses zero from negative to positive. The

31

Figure 3.2: Pitchfork bifurcation diagrams: supercritical (left) and subcritical (right). Blue (red)
curves are stable (unstable) solutions. Green curves are trajectories as D slowly increases. Repeated
from 10.2 [98].

Figure 3.3: Unfolded pitchfork bifurcation diagrams: supercritical (left) and subcritical (right).
Colors are as in Fig. 3.2. Repeated from Fig. 10.3 [98].

condition for the transition is

�3(H
★, # , =) = 0, (3.18)

where

�3(H
★, # , =) = −

1

3
(# − 1) +

=(# − = − 1)

= − 1
×

20(H★, # , =)2(H★, D(H★, # , =), # , =) − 412(H★, # , =)

25(H★, D(H★, # , =), # , =)
,

(3.19)

and

D(H★, # , =) =
−21 +

√
22

1
− 42220

222
=

−220√
22

1
− 42220 + 21

. (3.20)

32

Here, 0, 1, 2 are given by (10.15), (10.16), (10.17) and

22(H
★, # , =) =

(
= + 1 +

= − 1

− 2=

)
tanh′(H★) (3.21)

21(H
★, # , =) =

(# − 2= − 1)(# − = − 1)
(# − 2=)

+
(# − 1)(= − 1)

− 2=
tanh′(H★) (3.22)

20(H
★, # , =) = −

(# − = − 1)(# − 1)
− 2=

. (3.23)

The value of H★ at the transition is the solution of (10.23). The value of D at the transition is a function of H★,

, and = (10.25). The value of & at the transition is also a function of H★, # , and =:

&(H★, # , =) =
1
2
H★ −

(= − 1)
2(# − = − 1)

D(H★, # , =)tanh(H★). (3.24)

With Proposition 4, the following theorem shows the condition for the existence of a cascade

response in dynamics (3.3) to (3.5). The existence depends on the network structure # , = and the

disparity between thresholds &.

Theorem 4 ([98]). Given # and =, if there exists a H★+ > 0 such that �3(H
★
+ , # , =) > 0, then there exists

H★0 ∈ (0, H★+) and H★1 ∈ (H★+ ,+∞) such that �3(H
★
0 , # , =) = �3(H

★
1 , # , =) = 0. In particular, the existence of

H★0 indicates a transition from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation at &(H★0)

and D(H★0). This implies a cascade in the network with three clusters. If there does not exist such a H★+, then

there is no such transition and thus no cascade.

Based on Theorem 4, Fig. 3.4 shows for a fixed # , how = and & determine the existence of H★+ > 0

and, in turn, a cascade. We observe that a large disparity - in the sense of large =, indicating large

clusters in the ends of the chain and large &, indicating large difference in the thresholds - lead to a

cascade.

3.4 An Example of CTM

From previous sections, we derived conditions under which the cascade happens. We showed

the bifurcation parameter is the social sensitivity D and the cascade happens when D crosses a

subcritical bifurcation. The social sensitivity of a group depends on the states of agents in the

group. This dependence is captured by modelling social sensitivity D as a feedback control, where

D = D0((� |ḠB |). Here ḠB is the slow filtered average state with the dynamics ¤̄GB = �B (Ḡ − ḠB), where

Ḡ =
∑#
8=1 G8/# and D0 , �, �B > 0. As the average state moves away from zero, the social sensitivity

33

Figure 3.4: The curves of �3(H
★) for different values of = and fixed # (left). For lower =, �3(H

★)
remains negative. For higher =, �3(H

★) = 0 has two solutions, and thus at the smaller solution
H★

0
, there is a transition from supercritical to subcritical pitchfork, and the possibility of a cascade.

Critical disparity &∗ for different values of = and fixed # (right). For = ≥ 27, & > &∗ leads to a
cascade. Repeated from Fig. 10.4 [98].

D would slowly ramp up and eventually crosses the bifurcation point and lead to a cascade. We

illustrate this with the example of CTM on the network structure in Fig. 3.1 and threshold disparity

& = 0.2. The initial conditions of the state of agents are generated randomly, where the average is

negative. In the simulation we choose D0 = 3, � = 10, and �B = 0.05 for the feedback control. Fig.

3.5 shows how states evolve over time. We observe that the trajectories converge to three clusters,

where the red, green and blue trajectories correspond to agents in cluster 1, 2, and 3. An external

perturbation � = 1 is added to an agent in cluster 1, resulting in the agent’s state perturbed above

the red clustered states. The fast convergence is a perturbation of the dynamics (3.3)-(3.5). The state

values converges to a perturbed y★ = [H★,−H★, 0]) . The perturbation leads to a slow increase in ḠB ,

which results in a slow increase in D. When D crosses the bifurcation point, the states of all agents

quickly change and a cascade response happens.

Here the network structure # = 11 and = = 4 together with the threshold disparity & = 0.2

determines a subcritical pitchfork in the unperturbed dynamics. The perturbation � = 1 results in

a unfolded subcritical pitchfork thus a negative average initial state results in a cascade as shown in

the right of Fig. 3.3.

In this chapter, we generalized the LTM to a continuous dynamical model - the CTM. We showed

that with a chosen set of parameters, the CTM reduced to the LTM with deterministic thresholds.

34

Figure 3.5: Agent state trajectories of the CTM in a network with three clusters, # = 11, = = 4.
There is a cascade corresponding to the unfolded subcritical pitchfork as can be expected since
0.2 = & > &(H★

0
, # , =) = 0.11. Repeated from 10.5 [98].

As the LTM with deterministic thresholds lacks analytical tractability, we studied the CTM to

leverage the tools in the field of continuous dynamical systems. Our motivating examples are

networks where agents are grouped into clusters. We studied the CTM on chains of three clusters

and showed that the cascade response of the group is due to an underlying subcritical pitchfork

bifurcation. We rigorously proved the condition for the existence of such a subcritical pitchfork, or

equivalently proved the condition for the cascade. The bifurcation parameter is the social sensitivity

D, which is designed to be a feedback parameter dependent on the average state. In this way, we

showed that the model exhibits a quick change of states, where the speed of the change is not

captured in the LTM. The mechanism of the fast change in state values - subcritical pitchfork - is

only one possible way to model cascade. Our model paves the way for using continuous dynamical

systems to model and understand the cascade response observed from animal groups. Both the

LTM and CTM assumes agents can directly sense the activity levels of neighboring agents, but this

might not be the case in engineering applications such as a robot team. We address this in the next

two chapters.

35

Chapter 4

Learning Lagrangian and

Hamiltonian Dynamics from

Trajectory Data

We have investigated cascade dynamics with the LTM and the CTM. Both the LTM and the CTM

assume that agents possess a scalar state variable representing the activity, which can be directly

observed by the others. In the following two chapters, we relax this assumption and study the

scenarios that the activity need to be inferred from observation data. Consider a robot team where

each agent has its own dynamics. A robot in the team need to infer the activity of a neighboring

robot from its configuration or dynamics. For instance, a lifted robot arm or a rotating wheeled

robot indicates high activity levels while a legged robot in a sit-down position or a humanoid at

rest suggests a low activity level. In these scenarios, the activity level can be inferred from the

configuration or dynamics of agents and the dynamics of a neighboring agent need to be inferred

from observation data or sensor data. In this chapter, we assume the agents can sense the position

and velocity of neighboring agents and study how to learn the dynamics from the sensor data. In

the next chapter, we assume the agents are equipped with camera sensors and they need to infer

dynamics from image data. We demonstrate that our methods can successfully achieve these goals.

We leave the learning of cascade dynamics as a future work.

This chapter summarizes results from our work presented in Part II: Chapter 11 and 12 which

appear as Zhong et al. [101] and Zhong et al. [102]. The goal in this chapter is to learn dynamics from

36

trajectory data, i.e., position and velocity data. Moreover, we hope we can learn dynamics with less

data, achieve better generalization and gain interpretability by incorporating physics priors. The

physics prior we choose to incorporate is Lagrangian/Hamiltonian dynamics. We first introduce

the class of dynamics which serves as a physics prior in the learning algorithm.

4.1 Lagrangian/Hamiltonian Dynamics

Lagrangian and Hamiltonian dynamics are both reformulation of Newtonian dynamics. In this

section, we introduce Lagrangian dynamics and Hamiltonian dynamics and apply them on planar

rigid body systems. Although the resulting equations of motion is the same, Lagrangian and Hamil-

tonian frameworks interpret dynamics from an energy perspective. We will use this formulation as

a model prior in the learning algorithm.

4.1.1 Lagrangian Dynamics

For a physical system, the configuration of the system, e.g., positions of objects, at time C is described

by < independent generalized coordinates q(C) = (@1(C), @2(C), ..., @=(C)), where < is the number of

degrees of freedom (DOF). The configuration of the system traces out a trajectory over time. La-

grangian dynamics describe how this trajectory evolves. From D’Alembert’s principle, the equations

of motion (EOM) of the physical system is given by the following Euler-Lagrange equation

d
dC

(%!
% ¤q

)
−

%!

%q
= Q=2 , (4.1)

where the scalar function !(q, ¤q) is referred to as the Lagrangian, ¤q = dq/dC is the time derivative

of the generalized coordinates called generalized velocities, and Q=2 denote the non-conservative

generalized forces. The Lagrangian !(q, ¤q) is defined as the difference between kinetic energy

)(q, ¤q) and potential energy +(q). For a rigid body system, the Lagrangian is

!(q, ¤q) =)(q, ¤q) −+(q) =
1
2
¤q)M(q) ¤q −+(q), (4.2)

where M(q) denotes the mass matrix. In the following, we assume the only non-conservative

generalized forces are control inputs, i.e., Q=2 = g(q)u, where u is a vector of control inputs such

as forces or torques and g(q) is the input matrix. By substituting the Lagrangian and the non-

conservative forces, we get the EOM in the form of < second-order ordinary differential equations

37

(ODE):

¥q = M−1(q)
(
−

1

2

dM(q)

dC
¤q −

d+(q)

dq
+ g(q)u

)
. (4.3)

In the next section, we will derive the same EOM from the Hamiltonian framework.

4.1.2 Hamiltonian Dynamics with Control

Hamiltonian dynamics can be derived from Lagrangian dynamics by setting the non-conservative

force as zero. As we will see later, an important property of Hamiltonian dynamics is the conser-

vation of the Hamiltonian, usually representing the total system energy. This does not apply in

general to control applications where the control input would in most cases make the energy of

the system change. In this work, we consider an extension of Hamiltonian dynamics to include

the control input. First, we introduce the original Hamiltonian dynamics. Hamiltonian dynam-

ics describe the changes of generalized coordinates q(C) = (@1(C), @2(C), ..., @=(C)) and generalized

momenta p(C) = (?1(C), ?2(C), ..., ?=(C)) of the system over time:

¤q =
%�

%p
¤p = −

%�

%q
. (4.4)

where the dynamics is governed by a scalar function�(q, p), which is referred to as the Hamiltonian.

In almost all physical systems, the Hamiltonian equals the total energy of the system, so we have

�(q, p) =)(q, p) ++(q) =
1
2

p)M−1(q)p ++(q), (4.5)

It can be shown that

¤� =

(%�
%q

))
¤q +

(%�
%p

))
¤p = 0, (4.6)

i.e., the total energy is conserved. In order to model systems for control applications, we propose

the following generalization motivated by the port-Hamiltonian formalism:

©«
¤q

¤p

ª®¬
=
©«

%�
%p

− %�
%q

ª®¬
+
©«

0

g(q)

ª®¬
u. (4.7)

As we can see, when u = 0, the system is energy conserved. Notice that p = M(q) ¤q, so we

can express Eqn. (4.7) as a second-order ODE of q, which is exactly (4.3), since Hamiltonian and

Lagrangian are both reformulations of Newtonian dynamics.

38

4.2 Neural ODE for State-space Model

After formalizing the class of dynamics we aim to learn, we need a learning algorithm to learn

the dynamics from data. Neural ODE [17] is a framework to learn an unknown first-order ODE

from data using neural networks. As the Lagrangian/Hamiltonain dynamics can be formulated

as state-space models, which are first-order ODEs, in this section, we summarize the adaptation of

Neural ODE for state-space models proposed in Zhong et al. [101] (Chapter 11). This serves as the

basis of learning Lagrangian/Hamiltonian dynamics.

Here we consider the following state-space model

¤s = f(s, u), (4.8)

with state s and control u. If the right hand side function f is known, i.e., derived by Lagrangian

or Hamiltonian dynamics, we can predict how the state evolves given an initial condition s0 and a

sequence of control input uC0 ,C1 ,...,C= , by integrating the state-space model, which is a first-order ODE.

The problem we would like to solve, however, is that if f is unknown, how to infer it from data? If

we have data of a sequence of state and control pair (s, u2)C0 ,C1 ,...,C= , where u2 remains constant in a

trajectory, the state-space model (4.8) can be written in the following augmented form.

©«
¤s

¤u

ª®¬
=
©«
f(s, u)

0

ª®¬
= f̃(s, u). (4.9)

Now the dimension of the range and the domain of f̃ are the same, which allows us to leverage

Neural ODE to learn f̃, and equivalently f, by parametrizing f̃ with a neural network f̃#. With this

parametrization, we can integrate the ODE with an initial condition (s, uc)C0 and an ODE solver,

(s, u2)C1 , (s, u
2)C2 , ..., (s, u

2)C= = ODESolve((s, uc)C0 , f̃# , C1 , C2 , ..., C=), (4.10)

and get estimation for future states. We then minimize the difference between true states and

estimated states !(sC1 , ..., sC= ;#) =
∑=
8=1 | |sC8 − sC8 | |

2
2 , so that the neural network parameters # get

updated by stochastic gradient descent and we get a better and better approximation f̃#, and

equivalently f#. In this way, we are able to infer the state space model (4.8) from data.

The implementation of neural networks with ODE concerns the ODE solver and how we perform

backpropagation. In fact, with an arbitrary solver, we can write down the equations in each

39

integration step. All the computations in each integration step are differentiable, so backpropagation

works as in any other neural network models. The problem arises if we use an adaptive solver. As

the solver uses finer and finer adaptive time steps, the memory usage would become larger and

larger since all the intermediate variables and their derivatives need to be stored in each training

step. Chen et al. [17] proposed to use the adjoint method to achieve constant memory cost. We

leverage the adjoint method when memory cost is a concern and use the traditional backpropagation

otherwise.

4.3 Symplectic ODE-Net: Lagrangian and Hamiltonian Dynamics

as State-space Models

As we know how to learn a state-space model in the previous section, our goal is to put La-

grangian/Hamiltonian dynamics (Eqn. (4.3)) into a state-space model, so that we can leverage

Neural ODE to infer the dynamics.

The traditional way to turn a second-order ODE into a set of first-order ODE is to define s = (q, ¤q).

However, this is not ideal when dealing with data, especially angle data. For example, if we are

inferring dynamics of a pendulum, it is problematic if we are given the angle data in the form of

@ itself since data in the form of @ treats the angle as a variable in R1 while the angle is a variable

in S1. Treating the angle in R1 does not respect the fact that @ = 0 and @ = 2� represent the same

configuration of the pendulum. This is the reason that angle data are usually given in the form of

(cos @, sin @), which represents the angle in S1. For example, in OpenAI Gym [13] Pendulum task,

the trajectory data are given in the form of (cos @, sin @, ¤@).

For a general planar rigid-body system, we can write the generalized coordinates q as (r,)))),

where r represents translational generalized coordinates and))) represents rotational generalized

coordinates. In order to respect the geometry of rotational generalized coordinates, we propose

the state as s = (s1 , s2 , s3 , s4 , s5) = (r, cos))), sin))), ¤r, ¤)))). To incorporate Lagrangian/Hamiltonian

dynamics (Eqn. (4.3)), we take the derivative of s with respect to C and substitute in (Eqn. (4.3)). We

40

get

¤s=

©«

s4

−s3 ◦ s5

s2 ◦ s5

M−1(s1,s2,s3)
(
− 1

2
dM(s1,s2 ,,s3)

dC
©«
s4

s5

ª®¬
+
©«

−
%+(s1,s2,s3)

%s1

%+(s1,s2,s3)

%s2
s3−

%+(s1,s2,s3)

%s3
s2

ª®¬
+g(s1,s2,s3)u

)

ª®®®®®®®®®®®¬

, (4.11)

where ◦ is the Hadamard (element-wise) product. Here the mass matrix M(·), potential energy+(·)

and input matrix g(·) are not functions of q, but functions of (s1 , s2 , s3) = (r, cos))), sin)))), since we

need to express the right hand side as a function of s and (s1 , s2 , s3) contains the same information

as @.

We assume we are given trajectory data in the form of (r, cos))), sin))), ¤r, ¤))), u2)C0 ,...,C= , then we

use three neural networks, M#1(s1 , s2 , s3), +#2(s1 , s2 , s3), and g#3(s1 , s2 , s3) to parametrize the mass

matrix, potential energy and input matrix, respectively. We use # to denote neural network pa-

rameters. Then Eqn. (4.11) is a state-space model where the right hand side is parametrized by a

neural network. We can then use the augmented dynamics and Neural ODE to learn M#1(s1 , s2 , s3),

+#2(s1 , s2 , s3), and g#3(s1 , s2 , s3) that explain the data (Section 4.2). This learning framework is

referred to as Symplectic ODE-Net (SymODEN)1 since it is first derived from the Hamiltonian frame-

work and the name indicates that the symplectic gradient is incorporated into the model as a physic

prior.

4.4 Model Variant: Unstructured Symplectic ODE-Net

In this section, we introduce a model variant by parametrizing the Hamiltonian as a neural network

instead of exploiting the structure of the Hamiltonian. We refer to this model variant as Unstructured

Symplectic ODE-Net (Unstr. SymODEN). Similar to the previous section, our goal is to put the

Hamiltonian dynamics with control (4.7) into the state space form with state s = (s1 , s2 , s3 , s4 , s5) =

(r, cos))), sin))), ¤r, ¤)))). We use three neural networks as function approximators to approximate mass

matrix, Hamiltonian and input matrix i.e., M#1(s1 , s2 , s3), �#2(s1 , s2 , s3 , p), and g#3(s1 , s2 , s3), where

p = M#1(s1 , s2 , s3)
©«
s4

s5

ª®¬
. (4.12)

1In the original proposal of SymODEN [101], we parametrized the inverse of mass matrix as a neural network. In our
later work [99], we parametrized the mass matrix as a neural network and observed that both parametrization have similar
effects.

41

Then Hamiltonian dynamics with control (4.7) can be written as

¤q =
©«
¤r

¤)))

ª®¬
=

%�#2

%p
(4.13)

¤p = −
%�#2

%q
+ g#3

(s1 , s2 , s3)u =
©«

−
%�#2

%s1

s3 ◦
%�#2

%s2
− s2 ◦

%�#2

%s3

ª®¬
+ g#3

(s1 , s2 , s3)u. (4.14)

Then the state-space model is

¤s =

©«

¤r

−s3
¤)))

s2
¤)))

d
dC (M

−1
#1
(s1 , s2 , s3))p + M−1

#1
(s1 , s2 , s3) ¤p

ª®®®®®®®®¬
, (4.15)

where ¤r, ¤))) and ¤p come from Eqn. (4.13) and (4.14). The derivatives are taken care of by automatic

differentiation. Now the right hand side is a function parametrized by neural networks where we

can leverage techniques in Section 4.2 to learn from data.

4.5 Model Variant: Dissipative Symplectic ODE-Net

Symplectic ODE-Net and Unstructured Symplectic ODE-Net enforce energy conservation. They are

not appropriate for learning a dissipative system such as a damped pendulum. In order to properly

learn dissipative system, we leverage the following port-Hamiltonian dynamics:

¤q

¤p

=

(
0 I

−I 0

︸ ︷︷ ︸
symplectic gradient

− D(q)︸︷︷︸
Dissipation

)
%�
%q

%�
%p

+

0

g(q)

u

︸ ︷︷ ︸
control input

, (4.16)

Compared with Hamiltonian dynamics with control (4.7), the above dynamics have an extra term

that represents dissipation. Similar to previous two sections, we can approximate this unknown

dissipation with a neural network D#4(·), and learn it along with other unknown properties using

Neural ODE. We refer to this model as Dissipative Symplectic ODE-Net (Dissi. SymODEN). When

the structure of Hamiltonian is not exploited, we refer to it as Unstructured Dissipative Sympletic

ODE-Net (Unstr. Dissi. SymODEN).

42

4.6 Experimental Setup and Results

We evaluate proposed models on 8 tasks:

• Task 1: a pendulum with data (@, ?, D2)C0 ,...,C=

• Task 2: a pendulum with data (cos @, sin @, ¤@, D2)C0 ,...,C=

• Task 3: a fully-actuated CartPole system with data (A, cos), sin), ¤A, ¤), D21 , D
2
2)C0 ,...,C=

• Task 4: a fully-actuated Acrobot with data (cos)1 , cos)2 , sin)1 , sin)2 , ¤)1 , ¤)2 , D
2
1 , D

2
2)C0 ,...,C=

• Task 5: a dissipative pendulum with data (@, ?, D2)C0 ,...,C=

• Task 6: a dissipative pendulum with data (cos @, sin @, ¤@, D2)C0 ,...,C=

• Task 7: a fully-actuated dissipative CartPole system with data (A, cos), sin), ¤A, ¤), D21 , D
2
2)C0 ,...,C=

• Task 8: a fully-actuated dissipative Acrobot with data

(cos)1 , cos)2 , sin)1 , sin)2 , ¤)1 , ¤)2 , D
2
1 , D

2
2)C0 ,...,C=

In Task 1, the training data treat the angle of the pendulum as a variable in R1. We run this task

to compare it with Task 2, where the training data treat the angle in S1. We will show in the next

section the issues caused by failing to respect the geometry of angle coordinates.

We evaluate SymODEN, Unstr. SymODEN and two baseline models on Task 1-4 (tasks with no

dissipation). The Geometric Baseline and Naive Baseline do not incorporate Lagrangian/Hamiltonian

dynamics and use a multi-layer perceptron (MLP) to model the dynamics. The Geometric Baseline

respects the geometry of variables while Naive Baseline does not. We evaluate Dissi. SymODEN,

SymODEN, Unstr. Dissi. SymODEN, Geometric Baseline and Naive Baseline on Task 5-8 (tasks

with dissipation).

We generate the training data using OpenAI Gym [13]. For all tasks, we randomly generate

initial conditions for simulation and combine each initial condition with 5 constant control values

D = −2.0,−1.0, 0.0, 1.0, 2.0 to generate the trajectories for 20 time steps. We use the 4th order

Runge-Kutta method (RK4) for integration.

We propose two metrics to evaluate the performance of models. Train error per trajectory is the

mean-squared error (MSE) between the estimated states and the true states over 20 time steps (in a

trajectory). Prediction error per trajectory is the MSE between the estimated states and the true states

over 40 time steps using the same initial conditions as the training data. Prediction error measures

how well the models perform long-term predictions.

43

102 103

100

101

Tr
ai

n
er

ro
r

Task 1: Pendulum

102 103

number of initial state conditions

101

102

Pr
ed

ict
io

n
er

ro
r

102 103

10 1

100

Task 2: Pendulum(embed)

102 103

number of initial state conditions

100

101

102

102 103

100

101

Task 3: CartPole

102 103

number of initial state conditions

101

102

103

102 103

10 1

100

101

102

Task 4: Acrobot
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

102 103

number of initial state conditions

100

101

102

103
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

Figure 4.1: Train error per trajectory and prediction error per trajectory for all Task 1-4 with different
number of training trajectories. Horizontal axis shows number of initial state conditions (16, 32, 64,
128, 256, 512, 1024) in the training set. Both the horizontal axis and vertical axis are in log scale.
Repeated from Fig. 11.5 [101].

Fig. 4.1 shows the train error and prediction error for different models in all four tasks. We

observe Symplectic ODE-Net outperforms the other models in Task 1, Task 2 and Task 4 in terms

of both metrics. Although Symplectic ODE-Net is not the best in term of train error in Task 3, its

better performance as compared to Geometric Baseline in terms of prediction error indicates that

Geometric Baseline overfits training data.

0.0 2.5 5.0 7.5 10.0
t

0.0

2.5

5.0

7.5

10.0

M
SE

Task1: Pendulum

0.0 2.5 5.0 7.5 10.0
t

0

2

4

6

8
Task 2: Pendulum(embed)

0.0 2.5 5.0 7.5 10.0
t

0

20

40

60

Task 3: CartPole

0.0 2.5 5.0 7.5 10.0
t

0

10

20

30

40

Task 4: Acrobot
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

0.0 2.5 5.0 7.5 10.0
t

6

8

10

12

To
ta

l E
ne

rg
y

0.0 2.5 5.0 7.5 10.0
t

0.4

0.5

0.6

0.7

0.8

0.0 2.5 5.0 7.5 10.0
t

2

0

2

4

6

0.0 2.5 5.0 7.5 10.0
t

0

10

20
Ground Truth
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

Figure 4.2: Mean square error and total energy of test trajectories of Task 1-4. SymODEN works
the best in terms of both MSE and total energy. Since SymODEN has learned the Hamiltonian
and discovered the conservation from data, the predicted trajectories match the ground truth. The
ground truth of energy in all four tasks stay constant. Repeated from Fig. 11.6 [101].

Fig. 4.2 shows the MSE and total energy over a test trajectory. The MSE of Symplectic ODE-Net

stays closer to zero as compared to other models. From the total enery, we observed that both

44

Symplectic ODE-Net and its unstructured variant conserve total energy over a trajectory. This is

because they incorporate Lagrangian/Hamiltonian dynamics. This explains why they perform

better in prediction as compared to the baseline models.

Table 4.1: Train, Test and Prediction Errors of Tasks 5-8. Adapted from Table 12.1.

Naive
Baseline

Geometric
Baseline

UnStr. Dissi.
SymODEN SymODEN

Dissipative
SymODEN

Task 5
#Params 0.36M N/A 0.22M 0.13M 0.15M
Train error 26.38 ± 38.00 N/A 34.80 ± 68.53 4.47 ± 6.40 0.88 ± 1.41

Test error 35.03 ± 49.89 N/A 49.44 ± 81.31 7.52 ± 10.13 1.25 ± 1.81

Pred. error 32.544 ± 36.203 N/A 219.36 ± 296.86 96.50 ± 99.56 34.03 ± 47.83

Task 6
#Params 0.65M 0.46M 0.41M 0.14M 0.16M
Train error 2.02 ± 4.41 0.42 ± 1.16 1.90 ± 3.85 2.37 ± 2.71 0.15 ± 0.27

Test error 2.01 ± 4.99 0.33 ± 1.22 1.61 ± 3.36 2.67 ± 2.83 0.13 ± 0.25

Pred. error 40.18 ± 78.10 0.81 ± 0.68 7.04 ± 13.65 72.78 ± 90.42 1.04 ± 1.3

Task 7
#Params 1.01M 0.82M 0.69M 0.51M 0.53M
Train error 12.92 ± 15.58 0.48 ± 0.50 12.09 ± 18.38 3.33 ± 3.85 0.88 ± 0.89

Test error 20.07 ± 26.42 1.34 ± 3.19 19.87 ± 23.16 3.80 ± 3.71 1.37 ± 1.30

Pred. error 268.24 ± 204.15 60.12 ± 96.18 366.38 ± 405.45 30.21 ± 34.33 8.32 ± 7.81

Task 8
#Params 1.46M 0.97M 0.80M 0.51M 0.53M
Train error 1.76 ± 2.26 1.90 ± 2.82 77.56 ± 111.50 2.92 ± 2.58 0.47 ± 0.64

Test error 5.12 ± 9.14 4.87 ± 7.42 122.70 ± 190.90 5.27 ± 6.55 0.81 ± 1.10

Pred. error 36.65 ± 77.16 44.26 ± 95.70 590.77 ± 807.88 68.26 ± 103.46 12.72 ± 32.12

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Naive Baseline

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Unstr. Dissipative SymODEN

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

SymODEN

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Dissipative SymODEN

Figure 4.3: Learned trajectories of different models. Red and black lines represent the learned and
ground truth trajectories, respectively and the gray arrows show the vector fields learned by each
model. Dissipative SymODEN learns a more accurate vector field than the naive baseline model.
Moreover, it appears that whereas SymODEN learns an energy-conserved vector field slightly
different from the ground truth, Unstructured Dissipative SymODEN learns it completely wrong.
Adapted from Fig. 12.2 [102].

Table 4.1 shows the train, test and prediction error for Task 5-8, where test errors are computed

by predicting 20 time steps given a previously unseen initial condition. We observed that Dissi.

SymODEN performs the best in all four tasks.

45

Fig. 4.3 shows the learned trajectories of different models in Task 5. We can see that by incor-

porating the dissipation matrix, Dissipative SymODEN predict the trajectory well and outperforms

the other models.

4.7 Interpretability

An advantage of incorporating Lagrangian/Hamiltonian dynamics is that we are able to infer the

learned properties and gain insight into the system. In this section, we analyze interpretability in

Task 1 and 2 (without dissipation) and Task 5 and 6 (with dissipation).

4.7.1 Pendulum Without Dissipation

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
SymODEN M 1

1 (q)

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
SymODEN V 2(q)

Figure 4.4: Learned functions in Task 1. Adapted from Figure 11.2 [101].

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
SymODEN M 1

1 (q)/

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
SymODEN V 2(q)

Figure 4.5: Learned functions in Task 2. Without true generalized momentum data, the learned
functions match the ground truth with a scaling. Adapted from Figure 11.3 [101].

Fig. 4.4 shows learned input, mass and potential energy in Task 1. The learned potential energy

differs from the ground truth by a constant. This is acceptable since potential energy is a relative

concept and only the derivative of potential energy plays a role in the dynamics. Around @ = −4,

the mass and the potential energy are not well learned as compared to other range of @. This is

because in Task 1 we treat the angle of the pendulum as in R1. As our training data are not able to

cover the whole R1, our learned model would not be able to generalize to those @ that’s not in our

training data.

46

Fig. 4.5 shows the learned input, mass and potential energy in Task 2. Compared with Task 1,

all the physical properties are well-learnt. This indicates that treating angle data properly benefits

learning since our training data covers the whole S1.

4.7.2 Pendulum With Dissipation

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
Dissipative SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
Dissipative SymODEN M 1

1 (q)

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
Dissipative SymODEN V 2(q)

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 0

Ground Truth
Dissipative SymODEN D0, 0

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 1(=D1, 0)

Ground Truth
Dissipative SymODEN D0, 1

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D1, 1

Ground Truth
Dissipative SymODEN D1, 1

Figure 4.6: Learned functions in Task 5. Adapted from Fig. 12.1 [102].

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
Dissipative SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
Dissipative SymODEN M 1

1 (q)/

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
Dissipative SymODEN V 2(q)

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 0

Ground Truth
Dissipative SymODEN D0, 0

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 1(=D1, 0)
Ground Truth
Dissipative SymODEN D0, 1

4 2 0 2 4
q

0.4

0.2

0.0

0.2

0.4
D1, 1

Ground Truth
Dissipative SymODEN D1, 1

Figure 4.7: Learned functions in Task 6. Adapted from Fig. 12.3 [102].

Fig. 4.6 shows learned functions in Task 5. Similar to Task 1, around @ = −4, the functions are

not well-learned since training data do not cover this range. In particular, the learned dissipation

matrix is not satisfactory.

Fig. 4.7 shows learned functions in Task 6. Compared with Fig. 4.6, there is significant

improvement in learning the dissipation matrix. We achieve this interpretability by designing the

47

model to respect the geometry of the coordinates.

4.8 Energy-based Control

Learning dynamics with the Lagrangian/Hamiltonian prior not only allows us to perform pre-

diction, but also allows us to design controllers. In this section, we discuss energy-based control

for fully actuated systems, i.e., potential energy shaping and damping injection. We derive the

controller with the Lagrangian framework, but the same controller can be derived from the Hamil-

tonian framework [65, 10]. The designed controller can be integrated into the learned models to

control the systems.

For a fully-actuated system, we have control over every degree of freedom. Our control goal is

to steer the system to a desired configuration q★. For Lagrangian dynamics, the controller design

is u(q, ¤q) = ���(q) + v(¤q), with ���(q) the potential energy shaping and v(¤q) the damping injection.

The potential energy shaping lets the system behave as if it is governed by a desired Lagrangian !3

without non-conservative generalized forces, i.e.,

d
dC

(%!
% ¤q

)
−

%!

%q
= g(q)���(q) ⇐⇒

d
dC

(%!3
% ¤q

)
−

%!3
%q

= 0, (4.17)

where the desired Lagrangian differs from the original Lagrangian by the potential energy,

!3(q, ¤q) =)(q, ¤q) −+3(q) =
1
2
¤q)M(q) ¤q −+3(q). (4.18)

In other words, with ���(q), we shape the potential energy of the system to a desired potential energy

+3. We design the desired potential energy +3 to have a global minimum at q★, so that the system

with potential energy shaping would oscillate around q★. By (4.17), we have

���(q) = g)(gg))−1
(%+
%q

−
%+3
%q

)
. (4.19)

In practice, a popular choice of +3 is the quadratic form

+3(q) =
1
2
(q − q★))K?(q − q★), (4.20)

48

where K? > 0. To ensure exponential convergence to q★, we design damping injection of the form

v(¤q) = −g)(gg))−1(K3 ¤q), (4.21)

where K3 > 0.

4.9 Control Results

Based on the learned dynamics, we can design energy-based controllers following the procedures

in the previous section and control systems to a desired configuration. As an illustrative example,

we control the pendulum to the inverted position. We define +3(@) = −+)2
(@) so that the desired

energy +3 has a global minimum in the inverted position of the pendulum. We choose 3 = 3 for

damping injection. From Eqn. (4.19) and (4.21), we have

D(cos @, sin @, ¤@) = 6−1
#3
(cos @, sin @)

(
2
(
−

%+#2

% cos @
sin @ +

%+#2

% sin @
cos @

)
− 3 ¤@

)
. (4.22)

Out of all proposed models, only SymODEN and Dissip. SymODEN directly learn potential

energy so that the learned potential energy can be used to construct the controller.

0 2 4 6 8 10
t

1

0

1
q

sin(q)
cos(q)

0 2 4 6 8 10
t

2.5

0.0

2.5

q

0 2 4 6 8 10
t

10

0

10
u

Figure 4.8: Time-evolution of the state variables (cos @, sin @, ¤@) when the closed-loop control input
D(cos @, sin @, ¤@) is governed by Equation (11.27). The thin black lines show the expected results.
Repeated from Fig. 11.4 [101].

Fig. 4.8 shows the state and control of a controlled trajectory. We construct the controller

based on SymODEN trained in Task 2. We feed the output of the controller into the OpenAI Gym

simulator.

Figure 4.9: Snapshots of a controlled trajectory of the fully-actuated CartPole system with a 0.3s
time interval. Repeated from Fig. 11.8 [101].

49

0 2 4 6 8
t

0.0

0.5

1.0
r

0 2 4 6 8
t

0

1
cos()
sin()

0 2 4 6 8
t

1

0

r

0 2 4 6 8
t

5.0

2.5

0.0

0 2 4 6 8
t

2.5

0.0

2.5
u1

0 2 4 6 8
t

10

0

10

u2

Figure 4.10: Time series of state variables and control inputs of a controlled trajectory shown in
Figure 4.9. Black reference lines indicate expected value in the end. Repeated from Fig. 11.9 [101].

The CartPole and the Acrobot are underactuated systems. In general, potential energy shaping

alone is not enough to control an underactuated system. Thus, we trained fully-actuated versions

of CartPole (Task 3) and Acrobot (Task 4). Fig. 4.9 shows snapshots of a controlled trajectory of

the fully-actuated CartPole. Fig. 4.10 shows the states and control inputs vary over time in the

trajectory shown in Fig. 4.9. The results shows that we can successfully control the CartPole to the

inverted position with energy-based controllers.

Figure 4.11: Snapshots of a controlled trajectory of the fully-actuated Acrobot system with a 1s time
interval. Repeated from Fig. 11.10 [101].

0 5 10 15 20
t

1

0

1
q1

cos(q1)
sin(q1)

0 5 10 15 20
t

0.0

0.5

1.0
q2

cos(q2)
sin(q2)

0 5 10 15 20
t

0

2

q1

0 5 10 15 20
t

0.5

0.0

0.5

q2

0 5 10 15 20
t

2

0

u1

0 5 10 15 20
t

25

0

25
u2

Figure 4.12: Time series of state variables and control inputs of a controlled trajectory shown in
Figure 4.11. Black reference lines indicate expected value in the end. Repeated from 11.11 [101].

Fig. 4.11 shows the snapshots of a controlled trajectory of the fully-actuated Acrobot. Fig. 4.12

shows how the states and control inputs evolve in the trajectory shown in Fig. 4.11. We observe

that @2 =)2 does not converge to the goal value, 0, in the end. This is because the training data

50

probably does not cover the range of states around the inverted position of the Acrobot.

In this chapter, we studied the problem of learning Lagrangian/Hamiltonian dynamics from

trajectory data. We showed that by incorporating Lagrangian/Hamiltonian prior into deep learning,

we are able to learn accurate dynamics with less data and better generalization. Our default model,

SymODEN, assumes no dissipation in the system and our method is able to learn energy conserved

trajectories when no control is applied. We also proposed a model variant, Dissi. SymODEN, to

explicitly model possible dissipation in the system with a dissipation term. We demonstrated both

models with examples. Moreover, we showed that the learned model are interpretable in the sense

that we can infer physical properties such as mass and potential energy from the learned model.

This interpretability enables design of energy-based controllers to control the system to a target

configuration based on learned dynamics. This transparent way of learning paves the way for more

challenging tasks, such as learning dynamics from image data, which is introduced in the next

chapter.

51

Chapter 5

Learning Lagrangian and

Hamiltonian Dynamics from Image

Data

In this chapter, we study the problem of learning Hamiltonian/Lagrangian dynamics from image

data. We relax our assumption that we are given trajectory data in the previous chapter. Instead,

we need to infer trajectories in the configuration space from image data, which is much harder. To

tackle this challenge, we propose two neural netowrk models that are jointly trained. The first model

- the coordinate-aware variational autoencoder (VAE) - infers interpretable generalized coordinates

from images. The second model learns dynamics on the inferred generalized coordinates, and

it is the Symplectic ODE-Net introduced in the previous chapter. As we can see, the key to the

success of learning dynamics is to infer interpretable generalized coordinates from images, so in this

chapter we focus on coordinate-aware VAE. We begin with an formulation of our problem. We then

briefly introduce VAE and coordinate-aware VAE. We demonstrate that the traditional VAE is not

able to infer interpretable dynamics while our proposed coordinate-aware VAE infers interpretable

coordinates which enables prediction and control. This chapter is based on materials presented in

Part II: Chapter 13, which appears as Zhong and Leonard [99].

52

5.1 Problem Formulation

To formalize the problem, we assume that we are given sequences of image and control pair

X = ((x0 , u2), (x1 , u2)), ..., (x)pred , u2)) where x�, � = 0, 1, . . . ,)pred, is the image of a planar rigid-body

system under constant control u2 at time C = �ΔC. We assume the number of rigid bodies = is

given and segmentation of each object in the image is known, i.e., each image can be written as

x� = (x�
1
, ..., x�=), where x�8 is the segmentation of the 8th rigid body at C = �ΔC. Our goal is to infer the

initial state s0 = (r0 , cos)))0 , sin)))0 , ¤r0 , ¤)))0) from images. We briefly introduce VAE, which is a neural

network model that can infer low dimensional variables that generate high dimensional images. In

the next few sections, we will show that the traditional VAE fails to learn interpreable coordinates.

5.2 Variational Autoencoder

Variational Autoencoder (VAE) was proposed by Kingma and Welling [47] to perform variational

inference using neural networks. In this section, we briefly introduce VAE and the evidence lower

bound associated with it.

We consider learning coordinates of a physical system q from images of the physical system x.

Each image can be generated by specifying the coordinates first, and then render the coordinates

into an image. This is referred to as a latent variable model and q is referred to as the latent variable.

It can be presented by the following joint probability distribution of q and x:

%(q, x) = %(q)%(x|q). (5.1)

The problem of variational inference is to find the probability distribution of the latent variable

q. As the true probability distribution is usually intractable, we specify a family of densities D

over the latent variables and our goal is to find a probability distribution in D that is closest to the

distribution given image data, where the closeness is measured by KL divergence, i.e.,

&★(q) = arg min
&(q)∈D

KL(&(q)| |%(q|x)). (5.2)

The family D is usually chosen to be the family of Gaussian distributions. The objective, however,

53

cannot be computed since it depends on the unknown log%(x):

KL(&(q)| |%(q|x)) = E[log&(q)] − E[log%(q|x)] (5.3)

= E[log&(q)] − E[log%(q, x)] + log%(x). (5.4)

The expectation in the above equation are taken with respect to &(q). As we cannot compute the

objective, we optimize another computable objective, called evidence lower bound (ELBO). The

ELBO is equivalent to our original objective up to a constant log%(x),

ELBO = E[log%(q, x)] − E[log&(q)] (5.5)

= E[log%(q)] + E[log%(x|q)] − E[log&(q)] (5.6)

= E[log%(x|q)] − KL(&(q)| |%(q)). (5.7)

In Eqn (5.7), %(q) is the prior distribution of q and &(q) ∈ D is the posterior distribution we would

like to obtain. In order to leverage neural network to solve this variational inference problem, we

let &(q) depend on image data x, i.e.,

ELBO = E[log%(x|q)] − KL(&(q|x)| |%(q)). (5.8)

Now, this objective looks like the structure of an autoencoder, since we need an inference model

&(q|x) which serves as the encoder and a generative model %(x|q) which serves as the decoder.

We can use two neural networks to approximate these probability distributions and learn good

approximations by maximizing the ELBO.

It is intuitive to combine the standard VAE with the Symplectic ODE-Net in Chapter 4 to learn

the embedding of coordinates and the dynamics simultaneously. However, in practice this intuitive

approach fails. After analyzing the failure, we propose the coordinate-aware VAE to learn the value

of chosen coordinates in a given planar rigid-body system.

5.3 Coordinate-aware Encoder

As discussed in the previous section, the encoder is an inference model that learns the distribution

&(q|x) within a family of distributions. Gaussian distribution is the default family of distribution

for modelling the latent variable q. For a translational coordinate A ∈ R, Gaussian distribution

54

is an appropriate candidate since it is a distribution on R1. However, for a rotational coordinate

) ∈ S1, Gaussian distribution is not appropriate since it is not a distribution on S1. Instead of

Gaussian distribution, we use von Mises (vM) distribution to model an angle coordinate). A von

Mises distribution is specified by two statistical parameters: � ∈ R2, | |�| |2 = 1 is the mean, and

� ∈ R≥0 is the concentration around �. When � = 0, the von Mises distribution reduces to a uniform

distribution on S1. To sum up, we have the following posterior and prior distribution assumptions

in our model

• for), a posterior distribution&() |x) = vM((cos)m , sin)m),)�) with prior %()) = vM(·, 0) =

*(S1).

• for A, a posterior distribution &(A |x) = N(Am , Avar) with prior %(A) = N(0, 1).

Although we choose the correct probabilistic model, a black box neural network encoder fails to

learn interpretable generalized coordinates for a dynamical system. We propose a coordinate-aware

encoder by incorporating the geometry of the system into the design of encoder.

Figure 5.1: One choice of generalized coordinates and their corresponding reference frames in three
example systems. Repeated from Fig. 13.2 [99].

Each generalized coordinate @ 9 determines the position/rotation of a rigid body 8 9 in the system.

Intuitively, the coordinate can be learned from the image segmentation of 8 9 . The reference frame of a

generalized coordinates, however, might change across images since it depends on other generalized

coordinates. For example, the CartPole system in Fig. 5.1 has two degrees of freedom. The choices

of generalized coordinates are the horizontal position of the cart @1 = A and the rotation of the pole

@2 =). The origin of the reference frame of A is at the center of the image and this applies to all

the images. The origin of the reference frame of) is at the center of the cart, which is not at the

same position across images since the cart can move horizontally. In order to learn), we place the

center of our encoding attention window of the pole segmentation image at the center of the cart.

We achieve this by shift our encoding attention window horizontally with direction and magnitude

given by A and then feed it into a neural network to learn).

55

The default attention window is the image grid which corresponds to the default reference

frame, where the origin is at the center of the image. The above shift of encoding attention window

can be formalized by the transformation from the default reference frame to the reference frame of

each generalized coordinate. A point (G3 , H3) in the default reference frame and the corresponding

point (GC , HC) in the target reference frame is related by the following transformation T (G, H, �)

©«

GC

HC

1

ª®®®®¬
= T (G, H, �)

©«

G3

H3

1

ª®®®®¬
, where T (G, H, �) =

©«

cos� sin� G

− sin� cos� H

0 0 1

ª®®®®¬
. (5.9)

Here the transformation is a translation by (G, H) and a rotation by �. We let T ((G, H, �)enc
9) be

the transformation from default reference frame to the reference frame of generalized coordinate

@ 9 . This transformation might depend on constant parameters c associated with size of rigid

bodies and generalized coordinates q−9 , which represents the vector of all generalized coordinates

except @ 9 . Let (G, H, �)enc
9 =)enc

9 (q−9 , c), where both q−9 and c are learned from images. The

function)enc
9 is predefined by leveraging the geometry of the system. For example, in the CartPole

system, (@1 , @2) = (A,)), and)enc
1 ≡ (0, 0, 0) and)enc

2 (@1) = (@1 , 0, 0). In the Acrobot system,

(@1 , @2) = ()1 ,)2), and)enc
1 ≡ (0, 0, 0) and)enc

2 (@1 , ;1) = (;1 sin @1 , ;1 cos @1 , 0).

This transformation can be implemented by a spatial transformer network (STN) [41], i.e.,

x̃8 9 = STN(x8 9 ,T ()enc
9 (q−9 , c))), where x̃8 9 is the transformed image from x8 9 . To sum up, to encode

@ 9 , we use a multilayer perceptron (MLP) that takes x̃8 9 as input and infers the parameters of the

@ 9 distribution. For a translational coordinate @ 9 , we have (@m
9 , log @var

9) = MLPenc
9 (x̃8 9). For a

rotational coordinate @ 9 , we have (9 , � 9 , log @�9) = MLPenc
9 (x̃8 9), where the mean of the von Mises

distribution is computed by normalization (cos @<9 , sin @<9) = (9 , � 9)/
√
2
9 + �2

9 . In this way, we can

infer (r� , cos)))� , sin)))�) from x�. We will use (r0 , cos)))0 , sin)))0) and (r1 , cos)))1 , sin)))1).

5.4 Velocity Estimator

In order to infer the initial state s0 = (r0 , cos)))0 , sin)))0 , ¤r0 , ¤)))0), we still need to infer the initial velocity

(¤r0 , ¤)))0). Here we use a simple first-order finite difference estimator

¤r0
= (rm1 − rm0)/ΔC , (5.10)

¤)))0 =
(
(sin)))m1 − sin)))m0) ◦ cos)))m0 − (cos)))m1 − cos)))m0) ◦ sin)))m0)/ΔC , (5.11)

56

where (rm0 , cos)))m0 , sin)))m0) and (rm1 , cos)))m1 , sin)))m1) are the means of the generalized coordi-

nates encoded from the image at time C = 0 and C = ΔC.

5.5 Coordinate-aware Decoder

The decoder is a generative model that generate %(x|q) = N(x̂, I), where x̂ is the reconstruction

image of the image data x. We proposed the following coordinate-aware decoder inspired by

Jaques et al. [42] to better deal with generalized coordinates. The coordinate-aware decoder first

generates a static image x28 of every rigid body 8 in the system, at a default position and orientation,

using a MLP with a nonzero constant input, i.e., x28 = MLPdec
8 (1). The coordinate-aware decoder

then transform the rigid body from a default position into a position and orientation specified by

the generalized coordinates to provide x̂. As in Jaques et al. [42], we use the inverse transformation

matrix T −1((G, H, �)dec
8) where T is given by (5.9) and (G, H, �)dec

8 =)dec
8 (q, c). For example, in the

CartPole system, (@1 , @2) = (A,)), and)dec
1 (A) = (A, 0, 0) and)dec

2 (A,)) = (A, 0,)). In the Acrobot

system, (@1 , @2) = ()1 ,)2), and)dec
1 ()1) = (0, 0,)1) and)dec

2 ()1 ,)2) = (;1 sin)1 , ;1 cos)1 ,)2). The

reconstruction image is then x̂ = (x̂1 , ..., x̂=), where x̂8 = STN(x28 ,T
−1()dec

8 (q, c))).

5.6 Loss Function

Fig. 5.2 shows the model architecture using CartPole as an illustrative example. The images are

fed into the coordinate-aware encoder to infer the initial condition of the state-space model. The

state-space model is then integrated to get states at future time steps. The position information in

the states at different time step are put into the coordinate-aware decoder to get the reconstruction

image. We then minimize the following loss function

ℒ(X) = −Eq0∼&[log%(x0 |q0)]+KL(&(q0 |x0)| |%(q0))︸ ︷︷ ︸
VAE loss

+

)pred∑
�=1

| |x̂�−x� | |22

︸ ︷︷ ︸
prediction loss

+�
∑
9

√
2
9 +�

2
9

︸ ︷︷ ︸
vM regularization

. (5.12)

The VAE loss is the negative of ELBO (Section 5.2). The prediction loss measures how inaccurate

the latent Lagrangian/Hamiltonian dynamics is. The vM regularization with weight � penalizes

large norms of vectors (9 , � 9), so that these vectors would not blow up during training.

57

Figure 5.2: Left: Model architecture. (Using CartPole as an illustrative example.) The initial state
s0 is constructed by sampling the distribution and a velocity estimator. The latent Lagrangian
dynamics take s0 and the constant control u2 for that trajectory and predict future states up to
)pred. The diagram shows the)pred = 2 case. Top-right: The coordinate-aware encoder estimates
the distribution of generalized coordinates. Bottom-right: The initial and predicted generalized
coordinates are decoded to the reconstruction images with the coordinate-aware decoder. Repeated
from Fig. 13.1 [99].

5.7 Results

The model is trained on the pendulum, the fully-actuated CartPole and the fully-actuated Acrobot.

The images in the training set are generated by OpenAI Gym simulator [13]. The mean square

error (MSE) in the image space is not a good metric of measuring prediction accuracy, as indicated

by Minderer et al. [57]. Here we show the results of predicting a test image sequence. Fig. 5.3

shows the results of our proposed model, denoted as Lagrangian+caVAE. We also compare the

results with two model variants: MLPdyn+caVAE, which replaces the Lagrangian latent dynamics

with MLP latent dynamics, and Lagrangian+VAE, which replaces the coordinate-aware VAE with a

traditional VAE. The traditional VAE completely fails to reconstruct images of the CartPole system,

though it succeeds for the much simpler pendulum system. This indicates that coordinate-aware

VAE is crucial to inferring interpretable generalized coordinates. The MLP dynamics fails to learn

the dynamics accurate enough to perform long term prediction in both systems. Incorporating

Lagrangian/Hamiltonian dynamics helps learn trajectories that preserves energy. At the bottom of

the figure, we show the controlled trajectories of the three systems to the inverted position with the

designed energy-based controllers. We discuss the details in the next section.

It is important to understand which component in our model contributes the most to learning

interpretable dynamics. We design the following four ablations.

58

Figure 5.3: Top: Prediction sequences of Pendulum and CartPole with a previously unseen initial
condition and zero control. Prediction results show both Lagrangian dynamics and coordinate-
aware VAE are necessary to perform long term prediction. Bottom: Control sequences of three
systems. Energy-based controllers are able to control the systems to the goal positions based on
learned dynamics and encoding with Lagrangian+caVAE. Repeated from Fig. 13.3 [99].

1. tradEncoder+caDecoder: replacing the coordinate-aware encoder with a black-box MLP,

2. caEncoder+tradDecoder: replacing the coordinate-aware decoder with a black-box MLP,

3. caAE: replacing the coordinate-aware VAE with a coordinate-aware AE,

4. PAIG: a Physics-as-inverse-graphics (PAIG) model [42].

The prediction sequences for the ablation models of Pendulum and CartPole are shown in Fig. 5.4.

All models can correctly reconstruct pendulum images. Out of all the ablation models, only tradEn-

coder+caDecoder seems to generate realistic CartPole images, but the coordinate values are not well-

learned. The Acrobot is a chaotic system so long term prediction is not possible. Fig. 5.5 shows short

term reconstruction sequences of the ablation models for the Acrobot. Only tradEncoder+caDecoder

learns realistic reconstruction. Thus, we conclude that the coordinate-aware decoder has a primary

contribution to learning interpretable coordinates and reconstruction images, while the coordinate-

aware encoder has a secondary contribution.

59

Figure 5.4: Prediction sequences of ablations of Pendulum and CartPole with a previously unseen
initial condition and zero control. For the Pendulum experiment, the coordinate-aware encoder is
a traditional MLP encoder. All the ablations get good predictions. For the CartPole experiment,
all the ablations fail to get good predictions. The PAIG is able to reconstruct the cart initially
but it fails to reconstruct the pole and make prediction. The caAE fails to reconstruct anything.
The caEncoder+tradDecoder fails to reconstruct meaningful rigid bodies. The tradEncoder+caDecoder
seems to extract meaningful rigid bodies but it fails to put the rigid bodies in the right place in the
image, indicating the coordinates are not well learned. Repeated from Fig. 13.5 [99].

5.8 Interpretability

The key to performing long term prediction is the interpretability of our proposed model. Fig. 5.6

shows the learned potential energy of pendulum, CartPole and Acrobot along with reconstruction

images at selected coordinates. The learned potential energy and coordinates are consistent with

physics, i.e., when the pendulum/pole/links are in a higher position, the potential energy of the

system is higher. This interpretability is a key contribution of our work.

Moreover, the interpretable potential energy allows us to design energy-based controllers (Sec-

tion 4.8). The control sequences shown in Fig. 5.3 are generated in the following way. First, an

image of the goal position x★ is provided and it is fed into the coordinate-aware encoder to infer

the goal generalized coordinates q★. As each time step, the OpenAI Gym simulator of the system

takes a control input, integrate one time step forward, and generate an image of the system at the

next time step. The control input to the simulator is u(q, ¤q) = ���(q) + v(¤q) which is designed as

60

Figure 5.5: Reconstruction image sequences of ablations of Acrobot with a previously unseen
initial condition and zero control. The PAIG and caAE fail to reconstruct anything. The caEn-
coder+tradDecoder fails to reconstruct the green link at all. The tradEncoder+caDecoder makes good
reconstruction. Repeated from Fig. 13.6 [99].

Figure 5.6: Learned potential energy with Lagrangian+caVAE of three systems and reconstruction
images at selected coordinates. Both the learned coordinates and potential energy are interpretable.
Repeated from Fig. 13.4 [99].

in Section 4.8 with learned potential energy, input matrix, coordinates encoded from the output

images and q★. From the sequences, we know that we can successfully control the pendulum,

fully-actuated CartPole and fully-actuated Acrobot to the inverted positions based on the learned

dynamics, coordinates and energy-based controllers.

In this chapter, we studied the problem of learning Lagrangian/Hamiltonian dynamics from

image data. As we have shown how to incorporate Lagrangian/Hamiltonian dynamics in the

previous chapter, the challenge in this chapter is to infer generalized coordinates from image data in

a unsupervised way. Without proper inductive bias, the neural network might learn anything, not

necessarily the generalized coordinates, that can help it reconstruct images. One might think using a

traditional VAE with a prior on the dynamics would guide the neural network to learn interpretable

generalized coordinates. We showed that this is not the case. We showed that additional inductive

61

biases are required to learn interpretable coordinates. We presented one possible inductive bias by

proposing the coordinate-aware VAE. The proposed coordinate-aware VAE takes the geometry of

coordinates into account and it is able to learn interpretable coordinates. We showed that the learned

potential energy of three systems - the pendulum, the Cartpole and the Acrobot - as a function of

generalized coordinates and the reconstruction images at sampled coordinates. We observed that

the potential energy and the corresponding configuration of systems in the reconstruction images

are consistent with physics. Our approach focuses on interpretability and learns dynamics in a

transparent and explainable way. It would be great to extend this kind of approaches to more

complex settings, where we can solve challenging problems in an explainable way. This chapter

also paves the way for designing engineering multi-agent systems where the activity levels of

neighboring agents need to be inferred from the dynamics. For example, in a robot team where

each robot is equipped with camera sensors, our method can help a robot to learn the dynamics

of other agents based on sensor data in order to infer activity or use the dynamics for downstream

tasks such as control.

62

Chapter 6

Final Remarks

In this dissertation, we analyzed the linear threshold model on multiplex networks with heteroge-

neous agents. We also generalized the linear threshold model to the continuous threshold model,

which can potentially be extended to multiplex networks. To address the scenarios where an agent

need to infer activity of other agents from their dynamics, we investigated machine learning of rigid

body dynamics from trajectory and image data. We conclude our work and list future directions on

cascade dynamics and learning dynamics separately in the following sections.

6.1 Cascade Dynamics

6.1.1 Conclusions

In Chapter 2, we formalize the multiplex LTM and prove its equivalence to the multiplex LEM.

We then propose an accurate algorithm to calculate the influence spread by leveraging multiplex

LEM. We show the examples with symmetry so that we can write down the analytical expression

of the influence spread by multiplex LEM. We also investigate the role of heterogeneity in the

tradeoff between sensitivity to a real signal and the robustness to a disturbance. We show that

computing influence spread in general is computationally intractable, so we propose to leverage

probabilistic inference in Bayesian networks to compute the influence spread approximately. We

apply this method on random multiplex networks and again show that Protocol OR enhances

cascade while Protocol AND diminishes cascade. In Chapter 3, we generalize the LTM into a

continuous dynamics - the CTM. We study the CTM on a family of networks - chains of three

clusters. We prove the existence of a pitchfork bifurcation in the dynamics and observe cascade

63

when the pitchfork is subcritical. We derive the condition for the transition from a supercritical

bifurcation to a subcritical bifurcation, thus gives the condition for a cascade. The condition depends

on the sizes of the clusters and the disparity in thresholds among the clusters. We show that large

disparity in cluster sizes and thresholds lead to a cascade.

Our study on multiplex LTM helps us gain insight into the remarkable phenomenon in ani-

mal groups that they are good at distinguishing real threats nearby from the disturbances in the

environment. By analyzing this phenomenon using a mathematical model, we are able to apply

the mechanism to engineering systems such as a team of robots. Understanding the mechanism

also helps us design strategies to control the spread in multi-agent systems, such as controlling

the spread of disease in a group of people. The study of spreading using continuous dynamics

is usually done with compartmental models, where agents and individual interactions are not ex-

plicitly modelled. The CTM we propose models agents and their interactions with a continuous

dynamical model. We demonstrate, from a modelling perspective, that a cascade can be related

to subcritical bifurcations in the underlying dynamics. When the bifurcation parameter crosses a

subcritical bifurcation, the stable branch which the trajectory stays on becomes unstable. Because

of the subcritical bifurcation, there are no stable branch in the neighborhood of the trajectory. The

trajectory would be attracted to a stable branch far away. This attraction is observed as a quick,

switch-like change in the state values, which captures the speed of a cascade observed in biological

systems. This sparks new opportunities to investigate spreading dynamics.

6.1.2 Future Directions

Our work on cascade dynamics sparks many exciting future directions. It indicates how hetero-

geneity and multiple sensing modalities play important roles in the sensitivity and robustness of a

multi-agent system. Spreading dynamics on traditional homogeneous networks can be extended

in this direction to explore richer behaviors that helps us understand collective behaviors. We list a

few future directions below.

Efficient algorithm for general multiplex networks. We have shown that computing influence

spread in multiplex networks of which the projection networks are DAGs is computationally in-

tractable. That also means in general the problem of computing influence spread in multiplex

networks is computationally complex and intractable. We have proposed to leverage probabilistic

inference to compute influence spread efficiently for multiplex networks of which the projection

networks are DAGs. For general multiple networks, the problem remains unsolved. The junction

64

tree algorithm can be used to solve probabilistic inference on general networks but the algorithm

requires adding edges to network to form a junction tree. Junction trees are a class of networks with

the running intersection property, which is not satisfied by most of the network we study or in ap-

plications. It is not clear how to turn the problem of computing influence spread into a probabilistic

inference problem in a junction tree. Moreover, even if we can solve the marginalization problem

in junction tree, we still need to perform further marginalization within each node in the junction

tree. How to leverage junction tree algorithm to compute the influence spread is unclear, not trivial

and requires further efforts to investigate.

Control of spread. Our work on cascade dynamics focuses on the mechanisms of spread and

provides insights into how cascade happens and how heterogeneity and network structure influence

the spread. These insights can help us control the spread of an activity. For example, we might

want to increase the number of people wearing a mask during a pandemic in order to slow down

the spread of diseases. The cascade centrality we proposed in this dissertation measures the ability

of an individual in terms of spreading an activity. It would be most effective to target those agents

with high cascade centrality or a group of agents with high influence spread in order to control the

spread. For example, letting a person with high cascade centrality wear a mask would influence a

large number of people to start wearing a mask. Taking down a video that goes viral but with fake

news or rumors would slow down the spread of misleading information. It would be interesting to

study how to mitigate or enhance spread in multiplex network in a systematic way.

Cascade dynamics in time-varying networks. Our work assumes the network structure is fixed

and this assumption holds true when the network structure remains unchanged within the period

of cascade. In some biological and engineering systems, however, the network structure would

change while an activity spreads among the agents. For example, an agent’s response might change

its location in the space, e.g., a fish school fleeing away from a predator. If the sensory network

is dependent on spatial locations of agents, the network structure would change. Time-varying

graphs have been studied with Markov switching graphs [15]. Similar ideas can be leveraged to

study cascade dynamics in time-varying networks. It is interesting to generalize Markov switching

graphs into multiplex networks and gain insights into how a spread of an activity would change

network structure and how time-varying network structures would influence the spread of an

activity.

65

Refined models for arbitrary network structure. The CTM we have studied explores one possible

mechanism for switch-like change of states - subcritical pitchfork bifurcation. By generalizing

the LTM to continuous dynamics we hope the great number of tools from continuous dynamical

systems, including but not limited to subcritical bifurcations, can be leveraged to understand various

kinds of cascade dynamics in natural systems and how animal groups distinguish a real threat from

noise and disturbances. Subcritical bifurcations might not be the only mathematical mechanism

that exhibits a cascade. Other types of nonlinear dynamical models can be explored to understand

the nature of multi-agent biological systems. It would be great to extend the CTM or other types

of continuous models to analyze more general network structures beyond the class of chains of

three clusters. It would also be exciting to explore continuous cascade dynamics on multiplex

networks with heterogeneous agents to better understand the role of distinguishing different sensing

modalities.

6.2 Learning Dynamics

6.2.1 Conclusions

In Chapter 4, we study the problem of learning rigid body dynamics from trajectory data, motivated

by the scenario of a robot team where the activity level of agents are not directly observable and need

to be inferred from the dynamics. The neighboring agents then need to learn the dynamics from

trajectory sensor data. We build a neural network model that learns dynamics and control. We show

that incorporating physics prior such as Lagrangian/Hamiltonian dynamics benefits prediction

accuracy and generalization outside of the training data. Based on the learnt dynamics, we can

design energy-based controllers to control planar rigid body system to a desired configuration. In

Chapter 5, we assume the sensor data are raw images from cameras and we need to infer both

the embedding from images to coordinates and the dynamics on the coordinates at the same time.

We propose a coordinate-aware VAE that incorporate the geometry of chosen coordinates and we

show that this is crucial to learning meaningful coordinates as compared to a traditional VAE.

The coordinate-aware VAE works well with the model we design in the previous chapter to learn

embedding and dynamics at the same time. The learned model makes realistic prediction in the

image space. As the energy of the systems are directly learned, the interpretable learned energy

allows synthesis for energy-based controllers.

Our study on learning dynamics from trajectory and image data narrows the gap between

66

traditional system identification and black-box neural network approaches. Traditional system

identification estimated unknown parameters in the systems based on the data using techniques

such as regression. It fails to handle the scenario where the data are raw images. Neural networks

are usually treated as black boxes. Even though they perform astonishingly well in certain tasks,

it is hard to explain what is going on under the hood. By incorporating physics priors of La-

grangian/Hamiltonian dynamics, we gain interpretability of the neural network approach since we

can interpret the learned potential energy. Moreover, the coordinate-aware VAE learns interpretable

coordinates by explicitly taking into account the geometry of generalized coordinates. This enables

the coordinate-aware VAE to learn coordinates, the change of which over time are captured by La-

grangian/Hamiltonian dynamics. Our methods also pave the way for learning cascade dynamics

from data.

6.2.2 Future Directions

Our work on learning dynamics also paves the way for a few exciting future directions. We only

explored the learning of planar fully-actuated rigid-body systems and similar methodology can be

extended to 3D systems and under-actuated systems. The method can potentially be used to learn

cascade dynamics too. Possible future directions are elaborated as follows.

Learning three-dimensional rigid body dynamics. Our work on learning dynamics focuses on

planar rigid body systems. The ideas we have built into the model can be extended into three-

dimensional rigid body dynamics. From a data-driven perspective, image data might not be

sufficient for us to infer three-dimensional rigid body dynamics. Previous research has explored

using 3D point cloud data to infer SE(3) dynamics [14]. It would be great to explore how to

incorporate Lagrangian or Hamiltonian dynamics to directly infer physics-consistent energy of a

3D rigid body system. It is interesting to compare it with previous methods to see how much data

efficiency we gain by incorporating physics priors. Also, the rotation of 3D rigid bodies cannot

be modelled by von Mises distributions any more, since the rotation is on the manifold SO(3).

One possibility is to leverage the Bingham distribution on the space of quaternions to model 3D

rotational coordinates [26].

Learning to control under-actuated systems. From a control perspective, the systems we consid-

ered are all fully actuated, so that we are able to control the systems by potential energy shaping.

For under-actuated systems, potential energy shaping alone might not be sufficient to perform the

67

control task. Kinetic energy shaping might also be required. It is unclear how to incorporate kinetic

energy shaping into deep learning, but this presents an avenue of future research. It is an inter-

esting and promising direction to explore the control of under-actuated systems based on learned

dynamics. The whole framework would enable learning dynamics and control from data and de-

signing safe, interpretable controllers. The black-box nature of neural networks is one of the main

reasons neural networks have not yet convinced people to use it in scenarios such as human-robot

interactions. Neural network models usually lack theoretical guarantees and deploying them with

robots that interact with people might cause harm to people. Hopefully the interpretable approach

would enable us to design models that can leverage the vast amount of data and at the same time

provide interpretability and guarantees for us to safely deploy them in applications in the physical

world.

Design interpretable models for complex mechanical systems. We have tested our models on

three simple mechanical systems - the pendulum, the CartPole and the Acrobot. All of these systems

have small degrees of freedom and we demonstrated that our frameworks can successfully learn

dynamical systems with small degrees of freedom. However, it is unclear if the same framework

would face any challenge when applying to more complex systems with large degrees of freedom.

For a complex system, more training data might be needed to contain the rich dynamical behaviors

of the system. It is not feasible to get data that exhibits the whole range of dynamics for such

systems. However, maybe only part of the dynamics is relevant to applications or downstream

tasks. Similar philosophy has already shown in the Acrobot system we studied. The Acrobot is

a chaotic system so that long term prediction is not possible. In fact, for chaotic systems, it is

intuitively impossible to learn the full range of dynamical behaviors from data. In our work we

focused on the control of Acrobot to a target position, so that those trajectories in the state space

with large speeds are not relevant. When generating training data, we generate data where the

speeds are small. Of course, the learned dynamics would not be able to generalize to regions with

high speeds but as long as we are concerned about the control of the Acrobot, the learned dynamics

are sufficient for us to perform the control task. As for complex systems, the question is how do we

design methods and generate training data that can help us learn relevant dynamics efficiently for

downstream tasks? This is a challenging problem. Most of the existing methods that work well on

more complex systems use large neural networks and incorporate heuristics to restrict the search

space. Although they perform well in given tasks, it is hard to decipher why they perform well and

why they fails occasionally on some tasks. The famous example in image classification is helpful to

68

illustrate this point. Although convolution neural networks achieve close-to-human performance in

image classification tasks, a small change in pixel values, even not noticeable by human, would trick

the learned neural network to classify an image to the wrong category [30]. Why neural networks

are so brittle and at the same time so powerful remain to be explored. We believe interpretability

would give us insights into the this mystery of neural networks.

Machine learning approaches to modelling cascade dynamics. Eventually we would like to

leverage machine learning to study cascade dynamics from data. In the dissertation, we draw

inspiration from biological systems and design models to explain observations from biologists.

Nowadays with advanced sensors and computer software that tracks animals in videos, we could

obtain a large amount of data of animal groups. For example, the sensory network formed by visual

cues in fish groups can be extracted from videos [71]. We are able to record the cascade response

of animal groups. A natural question is how can we leverage these data and hopefully learn the

cascade dynamics from the data? An important theme in this dissertation is that incorporating

prior knowledge can benefit learning. One way of incorporating the prior knowledge is to constrain

the neural network architecture so that it searches solutions in a smaller domain. In Chapter 4,

we constrain the neural networks to approximate Lagrangian/Hamiltonian dynamics so that the

solutions are searched within the class of Lagrangian/Hamiltonian dynamics. This raises the

question of how to choose a class of dynamics to incorporating into learning cascade dynamics so

that we can use less data to learn accurate cascade dynamics? These are interesting and important

questions that require further efforts to explore.

69

Part II

Papers

70

Chapter 7

Overview

Part II of this dissertation contains four published peer-reviewed papers and two papers that have

been submitted for publication. Only minor modifications regarding formatting are present between

the published or submitted articles and the papers presented here.

7.1 Outline

Each paper is organized into a chapter as follows.

• Chapter 8 [100] presents a generalization of the linear threshold model to two-layer multiplex

networks and proposes protocols that synthesize information from different layers in the

network. The analysis is performed by generalizing the live-edge model and reachability

from monoplex network to the two-layer multiplex networks. The results show that two-

layer multiplex networks with homogeneous agents exhibit richer behaviors than monoplex

networks. In particular, Protocol OR enhances a spread and Protocol AND diminishes a

spread.

• Chapter 9 [103] generalizes the linear threshold model to multiplex networks with hetero-

geneous agents. The reachability in the live-edge model is generalized to U-reachability in

multiplex networks. The main theorem in this chapter shows the equivalence of the linear

threshold model and live-edge model in the multiplex setting. Based on the theorem, a di-

rect algorithm is proposed to calculate the cascade centrality of agents in the network. An

efficient algorithm based on probabilistic inference in Bayesian network is also proposed to

approximately compute cascade centrality in large networks.

71

• Chapter 10 [98] presents a continuous threshold model (CTM) of cascade dynamics, which

is motivated by the linear threshold model. Each agent has a real-valued state that changes

continuously and a threshold between 0 and 1. The cascade dynamics are studied with the

CTM on a network with three clusters. The agents are heterogeneous in thresholds. The

analysis shows that the dynamics exhibit a pitchfork bifurcation. Moreover, if the pitchfork is

supercritical, the response of agents will be contained, whereas if the bifurcation is subcritical,

there will be a cascade. It is shown that a large enough disparity in the thresholds and network

structure results in a cascade.

• Chapter 11 [101] addresses the problem of how to learn Hamiltonian dynamics from trajectory

data of physical systems. With the prior knowledge of Hamiltonian dynamics, the proposed

Symplectic ODE-Net model predicts energy-conserved trajectories and outperforms a baseline

model which does not incorporate Hamiltonian dynamics. The model also paves the way for

energy-based controllers since energy is directly learned.

• Chapter 12 [102] generalizes Symplectic ODE-Net to model physical systems with dissipation.

Besides the mass, the potential energy and the control input matrices, a dissipation matrix that

accounts for possible dissipation in the system is jointly learned. This generalization works

well in several systems and energy-based controllers can be designed with those fully-actuated

systems.

• Chapter 13 [99] presents an approach of unsupervised learning of Lagrangian dynamics from

images for prediction and control. A coordinate-aware variational autoencoder is proposed

to extract interpretable coordinates from images. A dynamical model on the coordinates

incorporates Lagrangian dynamics to perform long-term prediction. The ablation study

shows that both components are important in learning interpretable coordinates and making

accurate long-term prediction. The model also allows synthesizing energy-based controllers

to control fully-actuated physical systems to a goal position based on an image of that goal

position.

7.2 Author Contributions

I am the lead author and lead contributor to the mathematical analysis, illustration, simulations,

software development and writing presented in all six papers. My advisor, Professor Naomi Ehrich

Leonard, advised me on almost all aspects of the research. I list specific author contributions below

72

• In Chapter 8, Vaibhav Srivastava provided Lim et al. [55] to me, which guided my initial ques-

tions and analysis. Naomi E. Leonard, Vaibhav Srivastava and I framed the main questions.

I developed the mathematical model with the guidance of Naomi E. Leonard and Vaibhav

Srivastava.

• In Chapter 9, I developed the extended models and performed analysis. Vaibhav Srivastava

suggested to map the problem of calculate cascade centrality into a problem of marginalization

on Bayesian network based on the results in Nguyen and Zheng [64]. Naomi E. Leonard

suggested to get analytical results on networks with symmetry. Naomi E. Leonard and

Vaibhav Srivastava provided suggestions of the structure of the manuscript. I wrote the initial

draft and both Naomi E. Leonard and Vaibhav Srivastava revised and edited the draft.

• In Chapter 10, Naomi E. Leonard suggested the ideas of modelling switch-like behavior with

continuous dynamical systems and suggested to look at the 12-agent example from [32] and

study a more general class - chains of three clusters. I mapped the LTM to the CTM, inspired

by the dynamics from [32]. I performed the bifurcation analysis on chains of three clusters.

Naomi E. Leonard provided helpful suggestions of designing a feedback controller. I wrote

the draft and Naomi E. Leonard helped reconstructured and edited the draft.

• In Chapter 11, I got the high-level idea of incorporating physics prior into deep learning from

discussions with Naomi E. Leonard and Anirudha Majumdar. Biswadip Dey suggested using

the port-Hamiltonian dynamics to add control components into the Hamiltonian dynamics.

I developed the algorithms, wrote computer programs, and implemented the model on three

dynamical systems. Biswadip Dey suggested using energy-based controllers to control the

systems based on the learned models. I implemented the controllers. I wrote the initial draft

and edited the draft together with Biswadip Dey. Amit Chakraborty supervised and provided

supports for the work.

• In Chapter 12, I extended the work in Chapter 11 to include dissipation in the model. I ran

all the experiments and wrote the manuscript. Biswadip Dey revised the manuscript. Amit

Chakraborty supervised and provided supports for the work.

• In Chapter 13, I proposed to use a coordinate-aware VAE to learn dynamics from images. I

developed the framework and ran all the experiments. I wrote the draft and Naomi E. Leonard

provided invaluable suggestions on how to present the idea clearly and revised the draft.

73

Chapter 8

On the Linear Threshold Model for

Diffusion of Innovations in Multiplex

Social Networks

Yaofeng Desmond Zhong, Vaibhav Srivastava, Naomi Ehrich Leonard

Appears as Zhong et al. [100] in 2017 IEEE 56th Conference on Decision and Control

Diffusion of innovations in social networks has been studied using the linear threshold model.

These studies assume monoplex networks, where all connections are treated equally. To reflect the

influence of different kinds of connections within social groups, we consider multiplex networks,

which allow multiple layers of connections for a given set of nodes. We extend the linear threshold

model to multiplex networks by designing protocols that combine signals from different layers.

To analyze these protocols, we generalize the definition of live-edge models and reachability to

the duplex setting. We introduce the live-edge tree and with it an algorithm to compute cascade

centrality of individual nodes in a duplex network.

8.1 Introduction

In multi-agent network models, nodes represent agents and edges represent sensing, communica-

tion or physical connections among agents. Typically, the network has a single layer of connections,

where each connection refers to the same kind of sensing, communication or interaction. In real

74

networks, however, there can be more than one mode of sensing, communication, or interaction

among agents. For example, a group of friends or colleagues may be connected both through

face-to-face interactions as well as through social media. Individuals in a crowd may be able to see

people standing in front of them but may be able to hear people standing behind them. Here, we

propose studying dynamics on multiplex networks, which allow multiple layers of connections for a

given set of nodes [12].

Diffusion of innovations refers to the dynamic spread of an idea or activity. Young [97] discussed

three approaches to modeling diffusion of innovation in networks: (i) dynamics in which agents

adopt or reject an innovation deterministically by comparing the fraction of their neighbors that

have adopted the innovation with a potentially random threshold; (ii) dynamics in which agents

adopt or reject innovation probabilistically based on a coordination game played on the network;

(iii) dynamics that allow network structure itself to evolve. The model from the first approach is

sometimes referred to as the linear threshold model (LTM).

The LTM was first introduced in [31, 80] and its various applications including, riot behavior,

voting, and migration were discussed. Watts [92] used the LTM to explain cascades in random

networks that are triggered by small initial shocks. Kempe et al. [45] and Lim et al. [55] studied

diffusion of innovations in standard single-layer (monoplex) networks using a LTM with randomly

drawn thresholds. Como et al. [19] studied LTM in large scale networks using mean-field ap-

proximation and associated bifurcations. Lelarge [52] studied diffusion in random network using

LTM and identified conditions for widespread adoption of innovation in the network. The LTM is

discrete-time network dynamics, in which a set of agents (0 is initially active (has an innovation) and

over time other agents become active (adopt an innovation) if a sufficiently large number of their

neighbors are active (number is above a threshold). In [45] an equivalence is established between

the LTM and a live-edge process, This live-edge process, referred to as live-edge model (LEM) in

this paper, can be studied without temporal iteration. In the LEM, one edge among incoming edges

is randomly selected for each agent, and connectivity of the agent with (0 is examined.

The LEM is used to evaluate the social influence of a set of agents (0, defined in [45] as the

expected number of active agents after iterating over the initially active set (0. In [55] the social

influence of a single active agent is called cascade centrality and a closed-form expression is provided

using the LEM. This expression requires enumerating every path between the single active agent

and the rest of the agents in the network. Acemoglu et. al. [1] studied the LTM for deterministic

thresholds at each node; in this case, analysis of the LTM becomes very challenging and has limited

analytic tractability. Yağan and Gligor [94] proposed a LTM for multiplex networks in which each

75

node computes the weighted average fraction of its active neighbors in each layer and compares it

to a randomly drawn threshold. They analyzed their model for random multiplex networks.

The problem of finding the set of : agents in a monoplex network that maximizes social influence

in the LTM was proved to be NP-hard in [45], and approximations were used. Nguyen and Zheng

[64] studied the same problem using the independent cascade model [45]. They designed efficient

algorithms to approximate social influence by casting the problem as statistical inference in a

Bayesian network.

In this paper, we introduce the weighted linear threshold model with thresholds chosen uni-

formly at random in [0, 1] for fixed multiplex networks and define protocols to combine inputs

from different layers. We specialize to duplex networks (two-layer multiplex networks) and derive

tools to analyze cascade dynamics. We make the following contributions for duplex networks.

First, we define and analyze two LTM protocols: Protocol OR and Protocol AND, which describe a

sensitive and a conservative response, respectively, to active neighbors. Second, we generalize the

live-edge model and introduce the notion of reachability to duplex networks, and prove equivalence

of the duplex LEM to the duplex LTM. Third, we introduce the live-edge tree, a representation of the

network topology, to compute reachability in the duplex LEM. Fourth, we define and provide an

algorithm to compute duplex cascade centrality.

In Section 8.2, we define multiplex networks and graph-related properties. In Section 8.3, we

define the multiplex LTM and propose protocols for the duplex LTM. In Section 8.4, we generalize

the LEM to duplex networks and define reachability corresponding to the duplex LTM protocols. In

Section 8.5, we prove equivalence of the duplex LTM and LEM. In Section 8.6, we generalize social

influence and cascade centrality to duplex networks and illustrate with an example. We conclude

in Section 8.7.

8.2 Multiplex Networks

A multiplex network G is a family of < ∈ N directed weighted graphs �1 , ..., �< . Each graph

�: = (+, �:), : = 1, . . . , <, is referred to as a layer of the multiplex network. The agent set

+ = 1, 2, 3, ..., = is the same in all layers. The edge set of layer : is �: ⊆ + ×+ and can be different

in different layers. Each edge 4 :D,E ∈ �: , pointing from D to E in layer :, is assigned a weight

F:
D,E ∈ R+. Agent D is said to be an in-neighbor of agent E in layer : if 4 :D,E exists. We denote the set of

in-neighbors of E in layer : as # :
E . For an agent E, we say that the weight of its in-neighbor D in layer

: is the weight of the edge connecting them, i.e. F:
D,E . We assume the weights of all in-neighbours

76

of an agent sum up to 1, i.e.
∑
D∈# :

E
F:
D,E = 1 for any agent E.

For undirected graphs, every edge is modeled with two opposing directed edges. For un-

weighted graphs, every edge 4 :D,E can be assigned a weight F:
D,E = 1/3:E , where 3:E is the in-degree

(the number of in-neighbors) of node E.

A projection network [12] of G is the graph proj(G) = (+, �) where � = ∪<
:=1
�: .

8.3 The Linear Threshold Model

The linear threshold model (LTM) is described by a discrete-time dynamical system where the state

of each agent at iteration C is either active (on) or inactive (off). At iteration C = 0, all agents are

inactive except an initial active set (0 called seeds. The active state spreads through the network

following the rules introduced below. Once an agent is active, it remains active. Let (C be the set

of agents that are active by the end of iteration C. (C reaches a steady state when (C−1 = (C . For =

agents, steady state is reached by C ≤ =.

8.3.1 Monoplex LTM

In a monoplex network, each agent E = 1, . . . , = chooses a threshold�E randomly and independently

from a uniform distribution *(0, 1). An inactive agent E becomes active at iteration C if the sum of

weights of its active in-neighbors at C − 1 exceeds �E , that is, if �E <
∑
D∈#E∩(C−1

FD,E .

8.3.2 Multiplex LTM

In a multiplex network with < layers, each agent E chooses a threshold �:E in each layer : for

E = 1, . . . , = and : = 1, . . . , <. Each �:E is randomly and independently drawn from *(0, 1). Each

agent might have different neighbors in different layers. If the sum of weights of active in-neighbors

of E in layer : exceeds �:E , we say agent 8 receives a positive input from layer :. Otherwise, the

input is negative. The inputs that an agent receives can be conflicting, so an inactive agent needs a

protocol to make one decision, either to become active or not. We propose two protocols for duplex

(two-layer) networks:

Protocol OR: an inactive agent E becomes active at iteration C if it receives a positive input from

either layers at C − 1;

Protocol AND: an inactive agent E becomes active at iteration C if it receives positive inputs from

both layers at C − 1.

77

Protocol OR models agents that become active more readily, whereas Protocol AND models

agents that are more conservative in their decisions to become active.

8.4 The Live-edge Model and Reachability

We define the live-edge model (LEM) proposed in [55] for monoplex directed weighted networks in

Section 8.4.1. In Section 8.4.2 we generalize the LEM to duplex networks and introduce two notions

of reachability on the duplex LEM: Reachability OR and Reachability AND.

8.4.1 Monoplex LEM and Reachability

The LEM is defined as follows. Given a set of seeds (0, each unseeded agent randomly selects one

incoming edge among all of its incoming edges; an edge is selected with probability given by its

weight. The selected edge is labeled as “live", while the unselected edges are labeled as “blocked".

The seeds block all of their incoming edges. Every directed edge will thus be either live or blocked.

Because the selection of edges can be done at the same time for every node, the LEM can be viewed

as a static model. The LEM can alternatively be treated as an iterative process in the case the live

edges are selected sequentially.

A live-edge path [45] is a directed path that consists only of live edges. If there exists a live-edge

path from any of the seeds D to an unseeded agent E, we say E is reachable from D by a live-edge

path.

8.4.2 Duplex LEM and Reachability

In a duplex network, each unseeded agent E randomly selects one incoming edge 41
D,E in layer 1 with

probability F1
D,E and one incoming edge 42

F,E in layer 2 with probability F2
F,E . The selected edges

are labeled as “live", while the rest are labeled as “blocked". The seeds block all of their incoming

edges in both layers. We will refer to such labeling process as a selection of live edges.

The challenge in generalizing the LEM to multiplex networks is to properly define reachability.

Here we introduce the live-edge tree representation of a duplex network, which we will use to define

two notions of reachability corresponding to the two duplex LTM protocols.

Definition 9. Given a set of seeds (0 and a selection of live edges, a live-edge tree associated with agent E

is a tree that satisfies

78

1. Every node in the tree corresponds to an agent in the duplex network G. The root corresponds to agent

E;

2. For each parent ? in the tree, ?’s left (respectively, right) child is the agent to which ?’s live edge in layer

1 (respectively, 2) is connected.

Figure 8.1: A duplex network. Blocked edges are light dashed arrows.

Figure 8.2: The live-edge tree for agent 5 in the example duplex network.

Different nodes in the live-edge tree can be the same agent in the duplex network, and branches

of the tree can have infinite length. Figure 8.1 shows an example of duplex network with seed 1

and a selection of live edges. For this example, there is only one possible selection of live edges,

since each unseeded agent has only one in-neighbour in each layer. Figure 8.2 shows the live-edge

tree associated with 5 . Some branches end with 1 , the others come back to 5 again. The

structure under 5 is the same as the structure shown in the figure, so we use dashed lines to show

this repeated information. In this tree, some branches are infinite.

Now we are ready to propose two reachability definitions:

Reachability OR: for a given selection of live edges and a set (0, an agent E is reachable from (0

79

by a selection of live edges if the live-edge tree associated with E has at least one finite branch, and

every finite branch ends with a seed;

Reachability AND: for a given selection of live edges and a set (0, an agent E is reachable from (0

by a selection of live edges if all branches of the live-edge tree associated with E are finite, and every

branch ends with a seed.

Following these definition, the live-edge tree in Figure 8.2 shows that 5 is reachable from 1

under Reachability OR, but not under Reachability AND. A branch is infinite if an agent reappears

in the branch. This simple condition can verify an infinite branch in the algorithm.

8.5 Equivalence of LEM and LTM

The monoplex LEM was introduced in [45] and proved to be equivalent to the monoplex LTM in

the sense that the probability distributions of agents being reachable from a set (0 in the LEM are

equal to the probability distributions of agents being active at steady state after iterating over the

set (0 in the LTM. Computing these probability distributions for the LTM is challenging because it

requires solving over the temporal iterations. However, leveraging the equivalence, the probability

distributions can be computed without temporal iteration using the LEM treated as a static model.

Recall that (C is the set of active agents at the end of iteration C for the LTM. (C reaches steady

state when (C = (C−1, and this takes no longer than = iterations.

To prove the equivalence, the LEM can also be treated as an iterative process by revealing the

reachabilities of live edges gradually as follows [45]. From an initial set (′
0
, check the reachability

of the agents with at least one edge coming from (′
0
. If an agent is determined to be reachable from

(′
0
, add it to (′

0
at the end of the iteration to get a new set (′

1
. In the next iteration, follow the same

procedure and get a sequence of sets (′
0
, (′

1
, (′

2
, The process ends at iteration C if (′C = (

′
C−1

.

In this section, we first show the equivalence for the monoplex case whose proof can be found

in [45]. We then prove the equivalence for the duplex case.

8.5.1 Monoplex Networks

Proposition 5. [45] For a given set (0, the probabilities of the following events regarding an arbitrary

unseeded agent E are the same:

1. E is active by running the LTM under random thresholds given initial active set (0;

2. E is reachable from set (0 by live-edge paths under the random selection of live edges in the LEM.

80

8.5.2 Duplex Networks: Protocol OR and Reachability OR

Lemma 4. Given an initial active set (0 and a selection of live edges, consider an agent 80. Assume its live

edge in layer 1 comes from agent 81
1
, and its live edge in layer 2 comes from agent 82

1
. Then 80 is reachable from

(0 under Reachability OR if and only if either 81
1

or 82
1

is reachable from (0 under Reachability OR.

Proof. If 81
1

is reachable from (0 under Reachability OR, then there exists a finite branch in the

live-edge tree associated with 81
1
. Denote the branch as %81

1
= (81

1
, 81

2
, 81

3
, ..., 81=), where 81= ∈ (0. Then

the live-edge tree associated with 80 has a finite branch %1
80

= (80 , 8
1
1
, 81

2
, ..., 81=), which means 80 is

reachable from (0 under Reachability OR. Following similar analysis for 82
1
, we prove the “if" part.

If neither 81
1

nor 82
1

is reachable under Reachability OR, there is no finite branch in their live-edge

trees that end with the seeds. Consequently, there is no finite branch in the live-edge tree associated

with 80. 80 is not reachable from (0 under Reachability OR. This proves the “only if" part. �

In the following, we prove that the LTM under Protocol OR is equivalent to the LEM under

Reachability OR.

Proposition 6. For a given set (0, the probabilities of the following events regarding an arbitrary unseeded

agent E are the same:

1. E is active at steady state by running the LTM under Protocol OR given the initial active set (0;

2. E is reachable from the set (0 defined by Reachability OR by running the LEM.

Proof. We prove by mathematical induction.

First, we define some events regarding the LTM. Let -: := �:E <
∑
D∈# :

E∩(C
F:
D,E and .: := �:E ≥∑

D∈# :
E∩(C−1

F:
D,E , for : ∈ {1, 2}.

In the LTM, if agent E has not become active at the end of iteration C, then we denote the

probability that it becomes active in iteration C + 1 as %C+1
E . In this case, both �1

E and �2
E have not

been exceeded at the end of iteration C. Then the probability that �1
E is exceeded in iteration C + 1

is %1 = %(-1 |.1 , .2) = %(-1 |.1). The last equality holds because random variables �1
E and �2

E are

independent. Similarly, the probability that �2
E is exceeded in iteration C + 1 is %2 = %(-2 |.2). Using

the inclusion-exclusion principle, we have that %C+1
E = %1 + %2 − %1 × %2.

Then we define some events regarding the LEM. We denote 5 :E (C) as the event that E’s live edge

in layer : comes from reachable set by the end of iteration C. We denote 6:E (C) as E’s live edge in

layer : does not come from reachable set by the end of iteration C. Then we let -′
:
= 5 :E (C + 1) and

.′
:
= 6:E (C) , for : ∈ {1, 2}.

81

We look at the LEM as an iterative process. If agent E has not become reachable at the end of

iteration C, then we denote the probability that it becomes reachable in iteration C+1 as %
′C+1
E . In this

case, the probability that E’s live edge in layer 1 comes from (′C in iteration C+1 is %′
1
= %(-′

1
|.′

1
, .′

2
) =

%(-′
1
|.′

1
). Similarly, the probability that E’s live edge in layer 2 comes from (′C in iteration C + 1 is

%′
2
= %(-′

2
|.′

2
). Then the probability that either E’s live edge in layer 1 comes from (′C or E’s live edge

in layer 2 comes from (′C in iteration C + 1 is %
′C+1
E = %′

1
+%′

2
−%′

1
×%′

2
. By Lemma 4, we conclude that

%
′C+1
E is the probability of reachability of node E under Reachability OR.

Similar to [45], we can see that %1 = %′
1

and %2 = %′
2
, so we have %C+1

E = %
′C+1
E . Thus, by induction

over the iterations, we have proved that the probabilities of the two events are the same. �

8.5.3 Duplex Network - Protocol AND and Reachability AND

Lemma 5. Given an initial active set (0 and a selection of live edges, consider an agent 80. Assume its live

edge in layer 1 (respectively, layer 2) comes from agent 81
1

(respectively, 82
1
). Then 80 is reachable from (0 if

and only if both 81
1

and 82
1

are reachable from (0 under Reachability AND.

Proof. Since 81
1

and 82
1

are reachable from (0 under Reachability AND, their live-edge trees do not

have any infinite branch. In the live-edge tree associated with 80, 80 has two children: 81
1

and 82
1
.

Since the branches under 81
1

and 82
1

are all finite, the live-edge tree associated with 80 has no infinite

branch. Since all the leaves in the tree are the union of leaves of the live-edge trees associated with

81
1

and 82
1
, all of them are seeds. We conclude that 80 is reachable from (0 under Reachability AND. If

81
1

or 82
1

are not reachable under Reachability AND, then the infinite branch will result in an infinite

branch in the live-edge tree associated with 80, or a branch end with unseeded agent will result in

a branch end with unseeded agent in the live-edge tree associated with 80, which means 80 is not

reachable. �

We next prove that the LTM under Protocol AND is equivalent to the LEM under Reachability

AND.

Proposition 7. For a given set (0, the probabilities of the following events regarding an arbitrary unseeded

agent E are the same:

1. E is active at steady state by running the LTM under Protocol AND given the initial active set (0;

2. E is reachable from the set (0 defined by Reachability AND by running the LEM.

Proof. We prove by mathematical induction.

82

In addition to -: and .: in the previous proof, we let /: := �:E <
∑
D∈# :

E∩(C−1
F:
D,E , for : ∈ {1, 2}.

In the LTM, if agent E has not become active at the end of iteration C, then we denote the

probability that it becomes active in iteration C + 1 as %C+1
E . If E becomes active at the end of iteration

C + 1, -1 and -2 must both be true. If E is inactive at the end of iteration C, then at least one of

the thresholds is not exceeded, for which there are three possibilities. The three corresponding

probabilities are %1 = %(-1 , -2 |.1 , .2), %2 = %(-1 , -2 |/1 , .2) and %3 = %(-1 , -2 |.1 , /2). As they are

independent of one another, we have %C+1
E = %1 + %2 + %3.

In addition to -′
:

and .′
:

in the previous proof, we let /′
:
= 5 :E (C), for : ∈ {1, 2}.

We look at the LEM as an iterative process. If agent E has not become reachable by the end of

iteration C, then we denote the probability that it becomes reachable in iteration C + 1 as %
′C+1
E . By

Lemma 5, if E is reachable by the end of iteration C + 1, E’s live edges in both layers must come from

reachable set by the end of iteration C + 1. Moreover, at the end of iteration C at least one of E’s live

edges has not come from the reachable set, for which there are three possible cases. The probabilities

of the three cases are %′
1
= %(-′

1
, -′

2
|.′

1
, .′

2
), %′

2
= %(-′

1
, -′

2
|/′

1
, .′

2
) and %′

3
= %(-′

1
, -′

2
|.′

1
, /′

2
). As they

are independent of one another, we have %
′C+1
E = %′

1
+ %′

2
+ %′

3
.

Similar to [45], we can show that %(-1 |.1) = %(-′
1
|.′

1
) and %(-2 |.2) = %(-′

2
|.′

2
) then we claim

%8 = %
′
8 , 8 = 1, 2, 3:

%1 = %(-1 , -2 , .1 , .2)/%(.1 , .2)

= %(-1 , .1)/%(.1) × %(-2 , .2)/%(.2)

= %(-′
1 , .

′
1)/%(.

′
1) × %(-

′
2 , .

′
2)/%(.

′
2)

= %(-′
1 , -

′
2 , .

′
1 , .

′
2)/%(.

′
1 , .

′
2) = %

′
1;

%2 = %(-1 , -2 , /1 , .2)/%(/1 , .2)

= %(-1 , /1)/%(/1) × %(-2 , .2)/%(.2)

= 1 × %(-2 , .2)/%(.2)

= 1 × %(-′
2 , .

′
2)/%(.

′
2)

= %(-′
1 , /

′
1)/%(/

′
1) × %(-

′
2 , .

′
2)/%(.

′
2)

= %(-′
1 , -

′
2 , /

′
1 , .

′
2)/%(/

′
1 , .

′
2) = %

′
2;

83

%3 = %(-1 , -2 , .1 , /2)/%(.1 , /2)

= %(-1 , .1)/%(.1) × %(-2 , /2)/%(/2)

= %(-1 , .1)/%(.1) × 1

= %(-′
1 , .

′
1)/%(.

′
1) × 1

= %(-′
1 , .

′
1)/%(.

′
1) × %(-

′
2 , .

′
2)/%(/

′
2)

= %(-′
1 , -

′
2 , .

′
1 , /

′
2)/%(.

′
1 , /

′
2) = %

′
3.

Then we can show %C+1
E = %

′C+1
E . Thus, by induction over the iterations, we see that the probabilities

of the two events are the same. �

8.6 Social Influence and Cascade Centrality

8.6.1 Monoplex Social Influence and Cascade Centrality

The social influence of a set of agents (0 is defined as the expected number of active agents at the

steady state of the LTM given that (0 is the initial active set [45]. This measure of social influence

for a single agent as the set (0 is called cascade centrality in [55].

8.6.2 Duplex Social Influence and Cascade Centrality

Duplex social influence and duplex cascade centrality can be defined analogously for each protocol of

the duplex LTM. We define duplex cascade centrality under Protocol OR and under Protocol AND.

Definition 10. The duplex cascade centrality of agent E under Protocol OR is the expected number of

active agents at steady state of the duplex LTM under Protocol OR, given E is the only seed in the network.

Definition 11. The duplex cascade centrality of agent E under Protocol AND is the expected number of

active agents at steady state of the duplex LTM under Protocol AND, given E is the only seed in the network.

The expected number of active agents in the network is the sum of the probabilities of being active

over the agents in the network. Calculating this probability distribution with the LTM requires

doing simulations under different combinations of threshold values of all agents. However, by

Propositions 6 and 7, the LEM gives us a way to calculate cascade centralities from the duplex

network structure.

84

8.6.3 Algorithm for Duplex Cascade Centralities

The following algorithm is not intended to be efficient, but it serves as a way to accurately calculate

duplex cascade centralities by leveraging the LEM.

Algorithm 3. Calculate duplex cascade centralities

1. Find the � different selections of live edges, where � =
∏

9∈+\{8} 3
1
9

∏
9∈+\{8} 3

2
9 .

2. For each selection, construct the live-edge tree for each unseeded agent. Store reachability results under

the two reachability definitions for each unseeded agent.

3. If agent 9 is reachable #OR
9 times under Reachability OR and #AND

9 times under Reachability AND,

then the duplex cascade centralities of agent 8 are

�OR
8 = 1 +

∑
9∈+\{8} #

OR
9 /�,

�AND
8 = 1 +

∑
9∈+\{8} #

AND
9 /�

Theorem 5. The �OR
8 and �AND

8 computed by Algorithm 1 are the duplex cascade centrality of agent 8 under

Protocol OR and Protocol AND, respectively.

Proof. If follows directly from the equivalence of the LTM and the LEM. �

Using Algorithm 1, the two centralities can be calculated at the same time, whereas if we conduct

simulations by the LTM, we must simulate the two protocols separately. From the live-edge tree

associated with 5 in the example of Figure 8.2, we actually obtain the live-edge trees of all unseeded

agents as they are part of this tree. More generally, we might not need to construct live-edge trees

for all unseeded agents. For the example �OR
1

= 5 and �AND
1

= 1: if agent 1 is the seed, all agents

are expected to be active at steady state of the LTM under Protocol OR and only agent 1 would be

active under Protocol AND.

Table 8.1: Comparison of Different Networks

Network %1 %2 %3 %4 %5 Cascade Centrality of 1

Duplex (OR) 1 1 1 7
8

7
8

4.75

Duplex (AND) 1 0 0 0 0 1
Layer 1 1 1

2
1 1

4
1
4

3

Layer 2 1 1
8

1
8

1
2

1
4

2

Projection 1 16
27

5
9

5
9

13
27

3.11

85

8.6.4 Ordering of probabilities

Let G be a duplex network with graphs �1 and �2 as its two layers. Given an initial active set

(0, we consider the probability of an unseeded agent E being active at steady state under Protocol

OR (%OR
E) and under Protocol AND (%AND

E). The probabilities of E being active at steady state in

monoplex networks �1 and �2 separately are denoted by %1
E and %2

E , respectively.

Corollary 3. Under the above setting, we have

%AND
E ≤ %1

E ≤ %OR
E

%AND
E ≤ %2

E ≤ %OR
E

Proof. Under a selection of live edges in the duplex network, if E is reachable under Reachability

AND, all branches are finite and end with the seeds. In particular, this holds true for the leftmost

branch, which only consists of edges in �1. In �1, this selection of edges forms a live-edge path.

Thus, E is reachable in �1 as a monoplex network. Considering all possible selections of live

edges, we conclude that whenever E is reachable under Reachability AND, E is reachable in �1 as a

monoplex network. Using the equivalence of the LTM and LEM, %AND
E ≤ %1

E .

Under a selection of live edges, if E is reachable in �1 as a monoplex network, then a live-edge

path in�1 is formed. Considering the live-edge tree of E for the duplex network, the leftmost branch

only consists of edges in �1 and it is exactly the live-edge path. Thus, this branch is finite and ends

with the seeds and E is reachable under Reachability OR. Considering all possible selections of live

edges, we conclude that whenever E is reachable in �1 as a monoplex network, E is reachable under

Reachability OR. Using the equivalence of the LTM and LEM, %1
E ≤ %OR

E .

The inequality for layer 2 is proved similarly. �

8.6.5 Example

Figure 8.3: Example duplex network

86

Figure 8.3 shows a duplex network with undirected graphs. We calculate cascade centrality of

1 in five cases: duplex cascade centrality under protocol OR, duplex cascade centrality under

protocol AND, layer 1 as a monoplex network, layer 2 as a monoplex network and the projection

network as a monoplex network. The results are shown in Table 8.1, where the middle columns are

the probabilities of agents becoming active. We can see that for each agent, the probabilities follow

the results of Corollary 3.

8.7 Final Remarks

We have generalized the linear threshold model with randomly selected thresholds to study diffu-

sion of innovations in multiplex networks, deriving tools to compute social influence and cascade

centralities in duplex (two-layer) networks. The LTM for duplex networks is more complicated than

it is for monoplex networks as in [45, 55]. Similar to the monoplex case, the live-edge model is

leveraged in the duplex case. However, the latter is inherently more complicated because a decision

in the duplex case depends on selections in both layers, and we cannot simply analyze live-edge

paths in each layer independently. In monoplex networks, the set of selections of live edges in-

creases exponentially with number of agents, but formation of a live-edge path does not depend

on selections of agents not in the path and different live-edge paths form independently. Thus, a

closed form expression for cascade centrality can be provided for a monoplex network. In duplex

networks, these properties do not hold.

We consider directed weighted networks, which is more general than previous research. Our

approach does not require assumptions such as the connectedness of the networks. If we add

some assumptions on the network, we may be able to give specialized algorithms. For instance, if

the graphs in both layers are undirected and connected, we can prove that the finite branches in

live-edge trees always end with seeds. Since infinite branches are caused by cycles in the projection

network, checking for infinite branches can be implemented by checking for cycles in the selection

of live edges and checking for finite branches can be implemented by checking for connectivity in

the selection of live edges.

For multiplex networks with more than two layers, we can generalize our protocols by intro-

ducing another interlayer threshold parameter �inter. Then the protocol is stated as if the portion

of positive inputs from all layers of agent E exceeds �inter, then E will become active. In duplex

networks, �inter ∈ [0, 0.5) corresponds to Protocol OR, and �inter ∈ [0.5, 1) corresponds to Protocol

AND.

87

Chapter 9

Influence Spread in the

Heterogeneous Multiplex Linear

Threshold Model

Yaofeng Desmond Zhong, Vaibhav Srivastava, Naomi Ehrich Leonard

In preparation and appears as Zhong et al. [103]

The linear threshold model (LTM) has been used to study spread on single-layer networks

defined by one inter-agent sensing modality and agents homogeneous in protocol. We define

and analyze the heterogeneous multiplex LTM to study spread on multi-layer networks with each

layer representing a different sensing modality and agents heterogeneous in protocol. Protocols

are designed to distinguish signals from different layers: an agent becomes active if a sufficient

number of its neighbors in each of any 0 of the < layers is active. We focus on Protocol OR,

when 0 = 1, and Protocol AND, when 0 = <, which model agents that are most and least readily

activated, respectively. We develop theory and algorithms to compute the size of the spread at

steady state for any set of initially active agents and to analyze the role of distinguished sensing

modalities, network structure, and heterogeneity. We show how heterogeneity manages the tension

in spreading dynamics between sensitivity to inputs and robustness to disturbances.

88

9.1 Introduction

The spread of an activity or innovation across a population of agents that sense or communicate

over a network has critical consequences for a wide range of systems from biology to engineering.

The adoption of a strategy, such as wearing a face mask during a pandemic, can spread across a

social network even when there are only a few early adopters. The observation and response to

a threat by one or more vigilant animals can spread through a social animal group. A robot that

detects a change in the environment and takes action can spread its behavior across a networked

robot team.

To predict and control spread, we present and analyze a new model that captures the realities of

multiple inter-agent sensing modalities and heterogeneity in responsiveness of agents to others. We develop

and prove the validity of new algorithms that provide the means to systematically determine the

spreading influence of a set of agents as a function of multi-layer network structure and agent

heterogeneity.

The linear threshold model (LTM), from Granovetter [31] and Schelling [80], describes the spread

of an activity as discrete-time, discrete-valued state dynamics where an agent adopts or rejects an

activity by comparing the fraction of its neighbors that have adopted the activity to its individual

threshold. Kempe et al. [45] used the LTM with random thresholds to investigate spread of an

activity over a population on a single-layer network. Lim et al. [55] introduced and analyzed the

notion of cascade and contagion centralities in the model of [45]. The LTM on single-layer networks

has also been studied in [1, 70, 25, 24, 72] and generalized to continuous-time, real-valued dynamics

in [98].

The single-layer network in the LTM represents a single sensing modality or a projection of

multiple sensing modalities. Yet, in real-world systems, agents may distinguish the different sensing

modalities, rather than project them, in ways that impact spread. For example, someone deciding

whether or not to wear a mask may consider as separate signals what they see others doing in the

neighborhood and what they hear over social media that others are doing. And, how they act on the

signals may differ from person to person. A more readily activated person starts wearing a mask

when they observe enough of the first or second group wearing a mask. A less readily activated

person starts wearing a mask only when they observe enough of the first and second groups wearing

a mask.

In this paper we leverage multiplex (multi-layer) networks to model spread in a population of

89

heterogeneous agents that interact through, and distinguish, multiple sensing modalities. Multiplex

networks have been used to study consensus dynamics [28, 87, 81, 3, 88]. Yağan and Gligor [94]

studied a multiplex LTM using a weighted average of activity across layers. Other models of spread

in the case of multiple sensing modalities are reviewed in [75], but most restrict to homogeneous

agents.

In [100], we first introduced the LTM on multiplex networks with homogeneous agents, where

the graph for each layer is associated with a different sensing modality, and Protocols OR and

AND distinguish signals from different layers to model more and less readily activated agents,

respectively. We analyzed the duplex (two-layer) LTM with agents that are homogeneous in protocol

and showed how to compute cascade centrality, an agent’s influence on the steady-state size of the

cascade. Yang et al. [96] studied the influence minimization problem for the homogeneous model

of [100].

Our contributions in the present paper are multifold. First, we define the heterogeneous mul-

tiplex LTM to analyze spreading dynamics on an arbitrary number of network layers with agents

that employ protocols heterogeneously. Second, we define the heterogeneous multiplex live-edge

model (LEM), which generalizes [45], and we introduce the live-edge tree to define reachability on

this LEM. We prove a key result on equivalence of probabilities for the LTM and LEM.

Third, we derive Algorithms 1 and 5 to compute influence spread for the heterogeneous mul-

tiplex LTM. Algorithm 1 is provably correct and useful for small networks. Algorithm 5 maps the

influence spread calculation to an inference problem in a Bayesian network and is efficient for large

networks. We prove that calculating influence spread is #P-complete.

Fourth, we derive analytical expressions for influence spread in classes of multiplex networks.

We show how ORs enhance and ANDs diminish spreading relative to the projected network. Fifth,

we investigate heterogeneity in spreading and show how it can be used to manage the tradeoff

between sensitivity to a real input and robustness to a spurious signal.

Section II describes multiplex networks. Sections III and IV introduce the heterogeneous mul-

tiplex LTM and LEM, respectively. We prove their equivalence in Section V. Sections VI and VII

present Algorithms 1 and 2. Section VIII presents analytical expressions for influence spread.

Heterogeneity is studied in Section IX. We conclude in Section X.

90

9.2 Multiplex Networks

A multiplex network G is a family of < ∈ N directed weighted graphs �1 , ..., �< . Each graph

�: = (+, �:), : = 1, . . . , <, is a layer of the multiplex network. The agent set + = {1, 2, 3, ..., =} is

the same in all layers. The edge set of layer : is �: ⊆ + ×+ and can be different in different layers.

Each edge 4 :8, 9 ∈ �
: , pointing from 8 to 9 in layer :, is assigned a weight F:

8, 9 ∈ R
+. Here we adopt

the “sensing" convention for edges: edge 4 :8, 9 exists if agent 8 can sense agent 9 in layer :. If edge 4 :8, 9

exists, agent 9 is an out-neighbor of agent 8 in layer :. We denote the set of out-neighbors of 8 in layer

: as # :
8 . We say that the weight of agent 8’s out-neighbor 9 in layer : is the weight F:

8, 9 . We assume

the weights of all out-neighbors for every agent sum up to 1, i.e.,
∑
9∈# :

8
F:
8, 9 = 1 for every agent 8. A

monoplex network is a multiplex network with < = 1, i.e., with only a single layer.

For undirected graphs, every edge is modeled with two opposing directed edges. For un-

weighted graphs, every edge 4 :8, 9 can be assigned a weight F:
8, 9 = 1/3:8 , where 3:8 is the out-degree of

node 8 in layer : and equal to the number of out-neighbors of node 8 in layer :. A projection network

of G is the graph proj(G) = (+, �) where � = ∪<
:=1�

: .

9.3 The Heterogeneous Multiplex LTM

The linear threshold model (LTM) is described by a discrete-time dynamical system in which the

state G8(C) ∈ {0, 1} of each agent 8 at iteration C is inactive with G8(C) = 0 or active with G8(C) = 1. The

LTM protocol determines how the active state spreads through the network. Our focus is on which

agents will be active at steady state as a function of which agents are active initially. We define

Ḡ8 = limC→∞ G8(C).

In Section 9.3.1, we recall the LTM for monoplex networks. In Section 9.3.2, we generalize the

LTM to multiplex networks by defining protocols for how the active state spreads when signals

from different layers are distinguished. Our definition allows for heterogeneity among agents in

protocol.

Let (C be the set of agents that are active by the end of iteration C. Once active, an agent remains

active so that (C−1 ⊆ (C . At C = 0, all agents are inactive except the initially active set (0. Every agent

in (0 is called a seed. The LTM protocol determines when inactive agents at iteration C − 1 become

active at iteration C. A steady state is reached when (C−1 = (C .

91

9.3.1 Monoplex LTM

The LTM protocol on a monoplex network is defined as follows (e.g., [45]). Each agent 8 = 1, . . . , =

chooses a threshold�8 randomly and independently from a uniform distribution*(0, 1). An inactive

agent 8 at iteration C −1 becomes active at iteration C if the sum of weights of its active out-neighbors

at C − 1 exceeds �8 , that is, if �8 <
∑
9∈#8∩(C−1

F8 , 9 . For = agents, steady state is reached by C ≤ =.

9.3.2 Multiplex LTM

We introduce the LTM on a multiplex network with < layers by defining a family of protocols as

follows. Each agent 8 chooses a threshold �:8 in each layer : for 8 = 1, . . . , = and : = 1, . . . , <. Each

�:8 is randomly and independently drawn from the uniform distribution *(0, 1). In general, each

agent has different neighbors in different layers. If the sum of weights of active out-neighbors of

agent 8 in layer : at C − 1 exceeds �:8 , that is, �:8 <
∑
9∈# :

8 ∩(C−1
F:
8, 9 , we say agent 8 receives a positive

input H:8 (C) = 1 from layer : at C. Otherwise, agent 8 receives a neutral input H:8 (C) = 0.

The protocols that determine whether or not an inactive agent at C−1 becomes active at C account

for the possibility that the inputs it receives at C from the different layers may be conflicting. Let the

average input agent 8 receives at C be H8(C) =
∑<
:=1 H

:
8 (C)/<.

Definition 12 (Multiplex LTM Protocol). Given multiplex network G with seed set (0, the multiplex

LTM protocol for agent 8 is parametrized by �8 ∈ [1/<, 1] as follows:

G8(0) = 1, ∀8 ∈ (0 (9.1)

G8(0) = 0, ∀8 ∉ (0 (9.2)

G8(C) =

1, if H8(C) ≥ �8 or G8(C − 1) = 1

0, otherwise.

(9.3)

We identify two protocols for the limiting values of �8 :

Protocol OR: �8 = 1/<. Inactive agent 8 at iteration C −1 becomes active at iteration C if it receives a positive

input from any layer at C;

Protocol AND: �8 = 1. Inactive agent 8 at iteration C − 1 becomes active at iteration C if it receives positive

inputs from all layers at C. �

The multiplex LTM protocol specifies that inactive agent 8 at iteration C − 1 becomes active at

iteration C if it receives a positive input from any 08 ∈ {1, . . . , <} of the < layers, where (08 − 1)/< <

92

�8 ≤ 08/<. Asymmetric sensitivity to layers can be modelled with H8 a convex combination of H:8 .

In this paper, we examine the two limiting cases: Protocol OR, where 08 = 1, and Protocol AND,

where 08 = <. Analysis in these cases is sufficient for understanding heterogeneity and spreading

dynamics on multi-layer networks. Our theory can be extended to protocols for 08 ∈ {2, . . . , < − 1}.

Remark 1. Protocol OR models agents that are readily activated: there only needs to be sufficient activity

among neighbors in one layer at C − 1 in order for agents to become active at C. Protocol AND models agents

that are conservatively activated: there needs to be sufficient activity among neighbors in every layer at C − 1

in order for agents to become active at C. Thus, agents with Protocol OR enhance spreading and agents with

Protocol AND diminish spreading.

We study heterogeneous networks in which some agents use Protocol OR while the others use

Protocol AND.

Definition 13 (Sequence of Protocols). Let D8 ∈ {OR,AND} be the protocol used by agent 8. We define

the sequence of protocols U = (D1 , D2 , ..., D=) to be the protocols used by the = agents ordered from agent

1 to agent =.

Lemma 6. For a multiplex network G with = agents, the multiplex LTM converges in at most = iterations.

Proof. Assume the multiplex LTM converges in more than = iterations. Then at least one agent

switches from inactive to active in each of the first = iterations and these agents are distinct. There

is at least one agent in the initial active set that is not one of those = agents. This implies at least

= + 1 agents in the network, which is a contradiction. �

9.4 The Heterogeneous Multiplex LEM

Our approach to analyzing the multiplex LTM generalizes the approach in [45], which uses the live-

edge model (LEM) for monoplex networks to analyze the monoplex LTM. In this section we define

the multiplex LEM. In Section 9.4.1, we recall the LEM proposed in [45] for monoplex networks. In

Section 9.4.2, we generalize the LEM to multiplex networks and introduce the notion of reachability-

U on the multiplex LEM. Unlike in our earlier work [100], the reachability we propose here allows

for heterogeneous protocols among agents.

9.4.1 Monoplex LEM and Reachability

The LEM for a monoplex network is defined as follows [45]. Let (0 be the set of seeds. Each

unseeded agent randomly selects one of its outgoing edges with probability given by the edge

93

weight. The selected edge is labeled as “live", while the unselected edges are labeled as “blocked".

The seeds block all of their outgoing edges. Every directed edge will thus be either live or blocked.

The choice of edges that are live is called a selection of live edges.

Let ! be the set of all possible selections of live edges. The probability @; of selection ; ∈ ! is

the product of the weights of the live edges in selection ;. Because the selection of live edges can

be done at the same time for every node, the LEM can be viewed as a static model. The LEM can

alternatively be viewed as an iterative process in the case the live edges are selected sequentially.

A live-edge path [45] is a directed path that consists only of live edges. Let ℒ8 9 be the set of all

possible distinct live-edge paths from agent 8 ∉ (0 to 9 ∈ (0. The probability A of live-edge path

 ∈ ℒ8 9 is the product of the edge weights along the path. We say 8 ∉ (0 is reachable from 9 ∈ (0

by live-edge path with probability A, and 8 ∉ (0 is reachable from 9 ∈ (0 with probability A8 9 , where

A8 9 =
∑

∈ℒ8 9
A.

Alternatively, we can compute A8 9 in terms of selections of live-edges. Let !8 9 ⊆ ! be the set of

all selections of live edges that contain a live-edge path from 8 ∉ (0 to 9 ∈ (0. Then, A8 9 =
∑
;∈!8 9 @; .

Likewise, let !8(0
⊆ ! be the set of all selections of live edges that contain a live-edge path from 8 ∉ (0

to at least one node 9 ∈ (0. Then, 8 ∉ (0 is reachable from (0 with probability A8(0
, where A8(0

=
∑
;∈!8(0

@; .

9.4.2 Multiplex LEM and Reachability

We introduce the LEM on a multiplex network as follows.

Definition 14 (Multiplex LEM). Consider a multiplex network G with seed set (0. In each layer :, each

unseeded agent 8 randomly selects one of its outgoing edges 4 :8, 9: with probability F:
8, 9:

. The selected edges

are labeled as “live", while the unselected edges are labeled as “blocked". The seeds block all of their outgoing

edges in every layer. The choice of edges that are live is a multiplex selection of live edges. Let ! be the

set of all possible multiplex selections of live edges. The probability @; of selection ; ∈ ! is the product of the

weights of all live edges in selection ;.

The challenge in generalizing the LEM to multiplex networks is in properly defining reachability.

Here we introduce the live-edge tree, which we use to define reachability.

Definition 15 (Live-edge Tree). 1 Given a set of seeds (0 and a multiplex selection of live edges ; ∈ !,

the live-edge tree) ;8 associated with agent 8 ∉ (0 is constructed as follows with agent 8 as the root node.

Let 4 :8, 9: be the live edge of agent 8 in layer :, : = 1, . . . , <. Then the children of the root node are agents

1To highlight key differences between multiplex and monoplex networks, we assume each 8 ∉ (0 has at least one neighbor
in each layer. If not, with a slight modification of Defs. 15- 16, the theory and computation are still valid.

94

Figure 9.1: An example of a three-layer multiplex network with five agents. Agent 1 is the seed,
which is denoted by the black circle.

Figure 9.2: The unique multiplex selection of live edges for the network in Fig. 9.1.

91 , 92 , ..., 9< , and the root node is connected to each child with the live edge in the corresponding layer. The

tree is constructed recursively in this way for each child that itself has at least one child. Any agent in the

network may appear multiple times as a node in the tree.

Fig. 9.1 provides an example of a three-layer multiplex network with five agents. The network has

only one possible multiplex selection of live edges, given in Fig. 9.2. Fig. 9.3 shows the corresponding

live-edge tree associated with agent 5.

We next define reachability from (0 of an unseeded agent in a multiplex network under a

sequence of protocols U .

Definition 16 (U-Reachability). Consider multiplex network G with seed set (0 and multiplex selection

of live edges ; ∈ !. Let) ;8 be the live-edge tree associated with agent 8 ∉ (0. Suppose there are 1 distinct

branches in) ;8 indexed by � = 1, . . . , 1 and of the form: �� = (8 , 4 :0

8 ,81
, 81 , 4

:1

81 ,82
, 82 , ..., 8B), where 8 9 ∈ + ,

9 = 1, . . . , B, 8B ∈ (0, and each agent in + appears at most once in ��. We call each �� a distinct branch

that ends in a seed. Denote the set of these branches as ℬ ;
8 = {�1 , �2 , ..., �1}. For any subset ℬ̂ ⊆ ℬ ;

8 , let

Figure 9.3: The live-edge tree associated with agent 5 for the example three-layer multiplex network
of Fig. 9.1 and the unique selection of live edges of Fig. 9.2. ℬ5 = {�1 , �2 , ..., �12} is the set of distinct
branches that end with a seed.

95

the set of agents in ℬ̂ be +̂ and the set of edges in ℬ̂ be �̂.

Given a sequence of protocols U , we say that branch subset ℬ̂ ⊆ ℬ ;
8 is U-feasible for 8 if ℬ̂ ≠ ∅ and

for every 8̂ ∈ +̂ \ (0 for which D8̂ = AND, all of 8̂’s live edges belong to �̂. Then, 8 is U-reachable from (0

by the selection of live edges ; with probability @; if there exists at least one ℬ̂ ⊆ ℬ ;
8 that is U-feasible

for 8. Let !U
8(0

⊆ ! be the set of all selections of live edges by which 8 is U-reachable from (0. Then, 8 is

U-reachable from (0 with probability AU
8(0

, where AU
8(0

=
∑
;∈!U

8(0

@; . �

Remark 2. The condition for U-feasibility for 8 of a branch subset ℬ̂ ⊆ ℬ ;
8 does not make explicit a condition

on any 8̂ ∈ +̂ \ (0 for which D8̂ = OR. This follows since for any such agent 8̂, the condition is that at least

one of its live edges must be in �̂ and this is always true by definition.

To illustrate U-reachability, consider the live-edge tree associated with agent 5 in Fig. 9.3 for

the unique selection of live edges in Fig. 9.2 for the multiplex network of Fig. 9.1 with seed set

(0 = {1}. Because the selection of live edges in Fig. 9.2 is unique, it is chosen with probability @ = 1.

Therefore, agent 8 ∉ (0 is U-reachable from (0 with probability 1 if there exists at least one ℬ̂ ⊆ ℬ8

that is U-feasible for 8. For agent 5, there are 12 distinct branches that end in a seed, as shown in

Fig. 9.3; thus, ℬ5 = {�1 , �2 , ..., �12}. For example, �8 = (5, 42
5,1 , 1).

We compute U-reachability from (0 for agent 5 for each the following three sequences of

protocols used by the five agents in the three-layer multiplex network:

U1 = (OR,AND,AND,AND,OR) (9.4)

U2 = (OR,OR,AND,AND,AND) (9.5)

U3 = (OR,AND,AND,AND,AND). (9.6)

1. Let U = U1. Consider ℬ̂ = {�8} ⊂ ℬ5. Then, +̂ = {1, 5} and �̂ = {42
5,1}. Since 5 is the only

unseeded node in +̂ and D5 = OR, ℬ̂ is U-feasible for 5. Thus, agent 5 is U-reachable from (0

with probability 1.

2. Let U = U2. Consider ℬ̂ = ℬ5. Then, +̂ = {1, 2, 3, 4, 5}. The unseeded nodes 9 ∈ +̂ for which

D9 = AND are 9 = 3, 4, 5. From Fig. 9.3, observe that all the live edges of nodes 3, 4, and 5,

belong to �̂, the edge set of ℬ̂ = ℬ5. Thus, ℬ̂ is U-feasible for 5, and agent 5 is U-reachable

from (0 with probability 1.

3. Let U = U3. In this case there is no U-feasible subset ℬ̂ ⊆ ℬ5, since D2 = AND and agent

2 has a live edge 43
2,5, which is not in the edge set of any branch in ℬ5. Thus, agent 5 is not

U-reachable from (0.

96

In the next section we prove the equivalence of the probability that agent 8 is U-reachable from

(0 for the multiplex LEM and the probability that agent 8 is active at steady state for the multiplex

LTM with seed set (0. For our example, this implies that under U1 or U2, agent 5 will become active

at steady state with probability 1 and under U3, agent 5 will remain inactive at steady state.

9.5 Equivalence of LTM and LEM

The monoplex LEM was introduced in [45] and proved to be equivalent to the monoplex LTM in

the sense that the probabilities of agents being reachable from a set (0 in the LEM are equal to the

probabilities of agents being active at steady state given seed set (0 in the LTM. Computing these

probabilities for the LTM is challenging because it requires solving over temporal iterations. How-

ever, leveraging the equivalence, the probability distributions can be computed without temporal

iteration using the LEM as a static model.

The equivalence is recalled in Section 9.5.1 for monoplex networks and proved in Section 9.5.2

for multiplex networks.

9.5.1 Equivalence for Monoplex Networks

The LTM and LEM were proved to be equivalent in [45] in the following sense. For a given monoplex

network � with seed set (0, the probabilities of the following two events for arbitrary agent 8 ∉ (0

are the same:

1. 8 is active at steady state for the LTM with random thresholds and initial active set (0;

2. 8 is reachable from set (0 under the random selection of live edges in the LEM.

9.5.2 Equivalence for Multiplex Networks

We generalize the equivalence of LTM and LEM to multiplex networks in this section. First, we

prove the following lemma that infers an agent’s U-reachability from the U-reachability of its

children in the live-edge tree. We then leverage this lemma to prove the equivalence in Theorem 6.

Lemma 7. Given a multiplex network G with seed set (0, multiplex selection of live edges ; ∈ ! and sequence

of protocols U , consider agent 8 ∉ (0 and its associated live-edge tree) ;8 . Assume 8’s live edge in layer :

connects to agent 8:
1
, : = 1, . . . , <. Then the U-reachability of 8 from (0 by selection ; can be inferred from

the reachability of its children 8:
1

and its protocol D8 as follows:

97

1. Let D8 = OR. Then, 8 is U-reachable from (0 by selection of live edges ; if and only if at least one child

8:
1

is U-reachable from (0 by selection of live edges ;.

2. Let D8 = AND. Then, 8 is U-reachable from (0 by selection of live edges ; if and only if every child 8:
1

is U-reachable from (0 by selection of live edges ;.

Proof. Let) ;
8:
1

be the corresponding live-edge tree associated with agent 8’s child 8:
1

for : = 1, . . . , <.

1) Let D8 = OR and suppose 8:
1

is U-reachable from (0 by selection ; for some :. By Definition 16,

the set ℬ ;
8:
1

of distinct branches that end with a seed in) ;
8:
1

is nonempty and there exists a subset

ℬ̂: ⊆ ℬ ;
8:
1

that is U-feasible for 8:
1

such that for every 8̂ ∈ +̂: \ (0 for which D8̂ = AND, all of 8̂’s live

edges belong to �̂: , where +̂: and �̂: are the sets of agents and edges in ℬ̂: , respectively.

For every branch �:A = (8:
1
, 4 :

′

8:
1
,82
, 82 , ..., 8B) ∈ ℬ̂: , there exists a branch �:0A = (8,4 :

8,8:
1

,8:
1
,4 :

′

8:
1
,82
,82,...,8B)

in) ;8 . Let ℬ̂:0 ⊆ ℬ ;
8 be the set of all branches in) ;8 that correspond to branches in ℬ̂: . Then,

+̂:0 = +̂: ∪ {8} is the set of agents in ℬ̂:0 and �̂:0 = �̂: ∪ {4 :
8,8:

1

} is the set of edges in ℬ̂:0. Thus,

since D8 = OR and ℬ̂: is U-feasible for 8:
1
, by Definition 16, ℬ̂:0 must be U-feasible for 8. Agent 8 is

therefore U-reachable from (0 by selection ;. This proves the “if” part of the statement.

If no child 8:
1

is U-reachable from (0 by selection ;, then there exists no nonempty ℬ̂: in) ;8: that

is U-feasible for 8:
1
. This implies there is no nonempty ℬ̂:0 in) ;8 that is U-feasible for 8. Therefore,

agent 8 cannot be U-reachable from (0 by selection ;. This proves the “only if” part of the statement.

2) Let D8 = AND and suppose 8:
1

is U-reachable from (0 by selection ;, for every : = 1, . . . , <.

By Definition 16, for every :, there exists a subset ℬ̂: ⊆ ℬ ;
8:
1

in) ;
8:
1

that is U-feasible for 8:
1
. For every

: let ℬ̂:0 ⊆ ℬ ;
8 be the set of all branches in) ;8 that correspond to branches in ℬ̂: as defined in the

proof of 1). Let ℬ̂0 = ∪<
:=1

ℬ̂:0 ⊆ ℬ ;
8 with agent set +̂0 and edge set �̂0. By construction, 8 ∈ +̂0

and all of agent 8’s live edges belong to �̂0. It follows that ℬ̂0 is U-feasible for 8 and thus agent 8 is

U-reachable from (0 by selection ;. This proves the “if” part of the statement.

If there is one child 8:
1

that is not U-reachable from (0 by selection ;, then there exists no set ℬ̂:

in) ;8: that is U-feasible for 8:
1
. Suppose there is a set ℬ̂0 ⊆ ℬ ;

8 in) ;8 that is U-feasible for 8. Since

D8 = AND, by Definition 16, it follows that edge 4 :
8,8:

1

∈ �̂0. For every branch in ℬ̂0 that starts with

8 and edge 4 :
8,8:

1

, i.e., �:0A = (8 , 4 :
8,8:

1

, 8:
1
, 4 :

′

8:
1
,82
82 , ..., 8B), we denote the set of all corresponding branches

�:A = (8:
1
, 4 :

′

81 ,82
, 82 , ..., 8B) as ℬ̂: ⊆ ℬ ;

8:
1

. It follows that ℬ̂: is U-feasible for 8:
1

in) ;
8:
1

and 8:
1

is reachable

from (0. This is a contradiction. Thus, there is no set ℬ̂0 that is U-feasible for 8 and agent 8 cannot

be U-reachable from (0 by selection ;. This proves the “only if” part of the statement. �

While Definition 16 uses the LEM to define U-reachability in a static way, the LEM can also be

used to reveal the U-reachability of agents as an iterative process over time [45] as follows. First,

98

using Lemma 7, determine the U-reachability of the agents with at least one edge coming from

initial set (′
0
= (0. If an agent is determined to be U-reachable from (′

0
, add it to (′

0
to get a new

reachable set (′
1
. In the next iteration, follow the same procedure and get a sequence of reachable

sets (′
0
, (′

1
, (′

2
, The process ends at iteration C if (′C = (′C−1

, where (′C is the set of agents that are

U-reachable from (0. The mapping between static and temporal determinations of reachability for

the LEM is the key to proving the equivalence of the multiplex LTM and multiplex LEM. We also

make use of the following definitions.

Definition 17 (LTM-related events). We define 5 :8 (C) (6:8 (C)) to be the event that the sum of weights of

active out-neighbors of 8 in layer : does (does not) exceed �:8 at C: 5 :8 (C) = {�:8 <
∑
9∈# :

8 ∩(C
F:
8, 9} and

6:8 (C) = {�:8 ≥
∑
9∈# :

8 ∩(C
F:
8, 9}. Let

-: = 5 :8 (C), .: = 6:8 (C − 1), /: = 5 :8 (C − 1).

Definition 18 (LTM-related probabilities). For agent 8 that is inactive at C, we define the probability that

8 becomes active at C + 1 as PC+1
8(OR)

if 8 uses Protocol OR, and as PC+1
8(AND)

if 8 uses Protocol AND.

Definition 19 (LEM-related events). We define 5 ′:8 (C) (6′:8 (C)) to be the event that agent 8’s live edge in

layer : does (does not) connect to the reachable set (′C at C. Let

-′
: = 5 ′:8 (C), .′

: = 6′:8 (C − 1), /′
: = 5 ′:8 (C − 1).

Definition 20 (LEM-related probabilities). Consider the LEM as an iterative process. If agent 8 ∉ (′C ,

then we define the probability that 8 ∈ (′C+1
as P

′C+1
8(OR)

if 8 uses Protocol OR, and as P
′C+1
8(AND)

if 8 uses Protocol

AND.

We state the equivalence of multiplex LTM and multiplex LEM in the following theorem.

Theorem 6. For a multiplex network G with seed set (0, multiplex selection of live edges ; ∈ ! and sequence

of protocols U , the probabilities of the following two events regarding an arbitrary agent 8 ∉ (0 are the same:

1. 8 is active at steady state for the multiplex LTM under U with random thresholds and initial active set

(0;

2. 8 is U-reachable from the set (0 under random selection of live edges in the multiplex LEM.

Proof. We prove by mathematical induction.

99

We use P(-: |.:) = P(-′
:
|.′
:
), which we have from [45]. We show i) PC+1

8(OR)
= P

′C+1
8(OR)

and ii)

P
C+1
8(AND)

= P
′C+1
8(AND)

, so by induction over the iterations, the probabilities of the two events in the

statement of the theorem are the same.

i) Proving PC+1
8(OR)

= P
′C+1
8(OR)

(when 8 uses Protocol OR)

In the LTM, 8 being inactive at C means none of 8’s thresholds is exceeded at C − 1 and 8 being

active at C + 1 means 8’s thresholds in at least one layer is exceeded at C. In this case, the probability

that �:8 is exceeded at C is P: = P(-: |.1 , .2 , ..., .<) = P(-: |.:). The last equality holds because

random variables �1
8 , �

2
8 , ..., �<8 are independent. Then PC+1

8(OR)
is the complement of the probability

that its threshold in none of the layers are exceeded, i.e., PC+1
8(OR)

= 1 −
∏<

:=1(1 − P:)

In the LEM, by Lemma 7, 8 ∉ (′C means all of 8’s live edges are not connected to (′C−1
and 8 ∈ (′C+1

means at least one live edge of 8 is connected to (′C . In this case, the probability that 8’s live edge in

layer : connects to (′C is P′
:
= P(-′

:
|.′

1
, .′

2
, ..., .′

:
) = P(-′

:
|.′
:
). Then P

′C+1
8(OR)

is the complement of the

probability that none of 8’s live edges connects to (′C , i.e., P
′C+1
8(OR)

= 1 −
∏<

:=1(1 − P′
:
).

From P(-: |.:) = P(-′
:
|.′
:
) we have P: = P′

:
, : = 1, 2, ..., <. So that we conclude that PC+1

8(OR)
=

P
′C+1
8(OR)

.

ii) Proving PC+1
8(AND)

= P
′C+1
8(AND)

(when 8 uses Protocol AND)

In the LTM, 8 being inactive at C means at least one of its thresholds is not exceeded at C − 1

and being active at C + 1 means all of 8’s thresholds are exceeded at C. In this case, there are

2< − 1 possible events, with probabilities denoted as P<+1 , . . . , P2<+<−1. We have that P<+1 =

P(-1 , -2 , ..., -< |.1 , .2 , ..., .<). The other probabilities have a similar form but with one or more,

but not all, of the .: replaced by /: . Since .: and /: are mutually exclusive for all :, we have

P
C+1
8(AND)

=
∑2<+<−1
;=<+1 P; .

In the LEM, by Lemma 7, 8 ∉ (′C means at least one of 8’s live edges are not connected to (′C−1
and

8 ∈ (′C+1
means all of 8’s live edges are connected to (′C . In this case, there are 2< − 1 possible events,

with probabilities denoted asP′<+1
, . . . , P′

2<+<−1
. We have thatP′<+1

= P(-′
1
, -′

2
, ..., -′

< |.
′
1
, .′

2
, ..., .′

<).

The other probabilities have similar form but with one or more, but not all, of the .′
:

replaced by

/′
:
. Since .′

:
and /′

:
are mutual exclusive for all :, we have P

′C+1
8(AND)

=
∑2<+<−1
;=<+1 P

′
;
.

Since the thresholds are independent of one another, P; can be separated into the product of

< terms, each of which involves events associated to one layer only: P; =
∏<

:=1 P0: , where P0:

is either P(-: , .:)/P(.:) = P(-: |.:) or P(-: , /:)/P(/:) = 1. Since the live edges that each agent

uses are independent of one another, similar analysis applies to P′
;
: P′

;
=

∏<
:=1 P

′
0:

, where P′
0:

is

either P(-′
:
, .′

:
)/P(.′

:
) = P(-′

:
|.′
:
) or P(-′

:
, /′

:
)/P(/′

:
) = 1. It follows from P(-: |.:) = P(-′

:
|.′
:
) that

100

P; = P
′
;
, ; = < + 1, < + 2, ..., 2< + < − 1 and PC+1

8(AND)
= P

′C+1
8(AND)

. �

Theorem 6 generalizes the equivalence of LTM and LEM to multiplex networks. Leveraging

Theorem 6, we can calculate an agent’s influence, in terms of spreading information through the

network, without needing to simulate the multiplex LTM.

9.6 Computing Multiplex Influence Spread

In this section we define multiplex influence spread and multiplex cascade centrality for the LTM.

We then derive and prove the validity of an algorithm to compute them.

9.6.1 Monoplex Influence Spread and Cascade Centrality

The monoplex influence spread of agents in (0, denoted ��
(0

, is defined as the expected number of active

agents at steady state for the monoplex LTM given the network � and initial active set (0 [45]. The

monoplex cascade centrality of agent 9, denoted C�
9 , is the influence spread of agent 9 defined in [55] as

C�
9 = ��9 , the expected number of active agents at steady state for the monoplex LTM given � and

(0 = { 9}.

9.6.2 Multiplex Influence Spread and Cascade Centrality

Influence spread and cascade centrality are naturally generalized to the multiplex setting as follows.

Definition 21 (Multiplex influence spread). The multiplex influence spread of agents in (0, denoted

�G ,U
(0

, is defined as the expected number of active agents at steady state for the multiplex LTM given the

network G, sequence of protocols U , and initial active set (0. Let E
G ,U
(0

and P
G ,U
(0

be expected value and

probability, respectively, conditioned on G ,U , (0. Then

�G ,U
(0

= E
G ,U
(0

(=∑
8=1

Ḡ8

)
=

=∑
8=1

P
G ,U
(0

(Ḡ8 = 1). (9.7)

Definition 22 (Multiplex cascade centrality). The multiplex cascade centrality of agent 9, denoted

C
G ,U
9 , is defined as

C
G ,U
9 = �G ,U

9 . (9.8)

When U = (D, ..., D), we replace U with D in the superscript. For example, when D = OR, we

write PG ,OR

(0
(Ḡ8 = 1) and C

G ,OR

9 . When G is understood we drop it from the superscript.

101

9.6.3 Computing Multiplex Influence Spread and Centrality

We can directly compute multiplex influence spread and multiplex cascade centrality by computing

probabilities of U-reachability for the LEM, which is much easier than computing probabilities of

agents being active at steady state for the LTM. We summarize in a corollary to Theorem 6.

Corollary 4. Given multiplex network G and sequence of protocols U , multiplex influence spread of agents

in (0 and multiplex cascade centrality of agent 9 can be determined as

�U
(0

=

=∑
8=1

AU8(0
, CU

9 =

=∑
8=1

AU8 9 . (9.9)

Proof. By Definition 16, AU
8(0

is the probability that 8 is U-reachable from (0 in the multiplex LEM

of Definition 14. By Theorem 6, AU
8(0

= PU
(0
(Ḡ8 = 1). Thus, by Definition 21,

∑=
8=1 A

U
8(0

=
∑=
8=1 P

U
(0
(Ḡ8 =

1) = �U
(0

. In case (0 = { 9}, by Definition 22, CU
9 = �U

9 =
∑=
8=1 A

U
8 9 . �

Algorithm 1 uses (9.9) to compute multiplex influence spread and can be specialized to compute

cascade centrality.

Algorithm 4 (Compute multiplex influence spread �G ,U
(0

). Given multiplex network G and sequence of

protocols U :

1. Find the set ! of all possible selections of live edges for multiplex network G and initially active set (0.

Calculate the probability @; of each ; ∈ !.

2. For each agent 8 find !U
8(0

⊆ !, the set of all ; ∈ ! such that 8 is U-reachable from (0 by selection ;.

3. Calculate AU
8(0

=
∑
;∈!U

8(0

@; .

4. Calculate �G ,U
(0

=
∑=
8=1 A

U
8(0

.

Although the algorithm is not efficient, we can use it to accurately calculate multiplex influence

spread for multiplex networks with a small number of agents. Next, we propose an efficient

approach that sacrifices accuracy to calculate multiplex influence spread for large networks.

9.7 A Bayesian Network Approach

In this section, we map the problem of computing multiplex influence spread into a problem of

probabilistic inference in Bayesian networks (BN). This means we can compute multiplex influence

102

spread by using an appropriate algorithm for inference in BNs, such as the loopy belief propagation

algorithm. We first recall the definition of a BN.

Definition 23 (Bayesian network). Let � = (+, �), where + = 1, 2, ..., = and � ⊂ + × + , be a directed

acyclic graph (DAG). Each node 8 ∈ + is associated with a random variable G′8 ∈ X′
8 . Denote the set of

out-neighbors of 8 ∈ + as #′
8 . Let P(G′8 |G

′
#′
8
) be the probability of G′8 conditioned on the states of nodes in #′

8 .

Then � is a Bayesian network if the joint distribution of the random variables is factorized into conditional

probabilities: P(G′
1
, G′

2
, ..., G′=) =

∏=
8=1 P(G

′
8 |G

′
#′
8
).

Probabilistic inference in a Bayesian network refers to calculating the marginal probability of

the state of each unobserved node, conditioned on the states of the observed nodes. The belief

propagation (BP) algorithm was first proposed by Pearl [68] to solve probabilistic inference in

Bayesian networks. Pearl [68] showed that the algorithm is exact on DAGs without loops, i.e.,

trees and polytrees [68]. It is not guaranteed to converge when applied to DAGs with loops.

However, Murphy et al. [58] showed that loopy belief propagation (LBP) - the application of Pearl’s

algorithm to DAGs with loops - provides a good approximation when it converges. The junction

tree algorithm [51] was proposed to perform exact inference on a general graph. The general graph

is first modified with additional edges to make it a junction tree, and then belief propagation is

performed on the modified network.

In the following algorithm, we show how the joint distribution of the probability of activation

of agents in a class of LTM admits the graphical structure of Bayesian network.

Algorithm 5 (Bayesian network from multiplex LTM). Given multiplex network G for which proj(G)

is a DAG and sequence of protocols U :

1. Let � = proj(G) be the underlying DAG for the Bayesian network. Then #′
8 = #8 = ∪<

:=1#
:
8 .

2. Let the random variable G′8 of node 8 in the Bayesian network be Ḡ8 , the steady-state value of agent 8 for

the multiplex LTM on G. Then G′8 ∈ X′
8 = {0, 1}.

3. Construct the conditional probabilities for the Bayesian network in terms of the conditional probabilities

for the multiplex LTM: P(G′8 |G
′
#8
) = PG ,D8 (Ḡ8 |Ḡ#8).

Since all random variables are discrete, the conditional probability P(G′8 |G
′
#8
) = PG ,D8 (Ḡ8 |Ḡ#8) can

be fully described with a conditional probability table (CPT). We show how to construct a CPT

for PG ,D8 (Ḡ8 |Ḡ#8) for the Fig. 9.4 example. The CPT of 8 has 2|#8 | rows. For agent 6, #6 = {3, 4, 5},

Ḡ#6 = {Ḡ3 , Ḡ4 , Ḡ5} and its CPT has 2|#6 | = 8 rows. The CPT provides PG ,D6(Ḡ6 = 0|Ḡ3 , Ḡ4 , Ḡ5) and

103

PG ,D6(Ḡ6 = 1|Ḡ3 , Ḡ4 , Ḡ5). Table 9.1 and Table 9.2 are the CPTs for agent 6 when it uses Protocol OR

and Protocol AND, respectively.

Figure 9.4: Multiplex network GB with two unweighted layers and six agents. Red (blue) arrows
represent edges in layer 1 (layer 2). (0 = {1}.

Table 9.1: CPT of agent 6 with D6 = OR for GB of Fig. 9.4

Ḡ3 Ḡ4 Ḡ5 POR(Ḡ6=0|Ḡ3,Ḡ4,Ḡ5) POR(Ḡ6=1|Ḡ3,Ḡ4,Ḡ5)

0 0 0 1.00 0.00
0 0 1 0.25 0.75
0 1 0 0.50 0.50
0 1 1 0.00 1.00
1 0 0 0.50 0.50
1 0 1 0.00 1.00
1 1 0 0.25 0.75
1 1 1 0.00 1.00

Table 9.2: CPT of agent 6 with D6 = AND for GB of Fig. 9.4

Ḡ3 Ḡ4 Ḡ5 PAND(Ḡ6=0|Ḡ3,Ḡ4,Ḡ5) PAND(Ḡ6=1|Ḡ3,Ḡ4,Ḡ5)

0 0 0 1.00 0.00
0 0 1 0.75 0.25
0 1 0 1.00 0.00
0 1 1 0.50 0.50
1 0 0 1.00 0.00
1 0 1 0.50 0.50
1 1 0 0.75 0.25
1 1 1 0.00 1.00

We focus on the case when proj(G) is a DAG. The case when proj(G) is not a DAG can be

handled by by combining the junction tree algorithm and belief propagation. However, a subse-

quent marginalization within the appropriate junction node maybe required to obtain the desired

probability.

Theorem 7. Given a multiplex network G for which proj(G) is a DAG, with seed set (0 and sequence of

protocols U , the following two probabilities are the same:

1. P
G ,U
(0

(Ḡ8 = 1), the probability that agent 8 is active at steady state for the multiplex LTM.

104

2. PG ,U (Ḡ8 = 1|Ḡ 9 = 1, Ḡ; = 0, 9 ∈ (0 , ; ∉ (0 , #; = ∅), the marginal probability of node 8 in the

corresponding Bayesian network of Algorithm 5, conditioned on observed nodes in the seed set and

those not in the seed set that have no out-neighbors.

Proof. Since the event that node 8 is activated is conditioned on the state of node 8’s out-neighbors

in proj(G), it is independent of the state of all other nodes. Thus, the joint probability of activation

of each node 8 factors into components based on the graphical structure of the Bayesian network

constructed in Algorithm 5. So, the probability that agent 8 is active at steady state for the multiplex

LTM (probability in the first statement) can be computed by probabilistic inference on the corre-

sponding Bayesian network (the marginal probability in the second statement). The values of the

observed nodes in the marginal probability are obtained as follows. Each 9 ∈ (0 is always active, so

we observe Ḡ 9 = 1. The state G; of ; that has no out-neighbors does not change over time. If also

; ∉ (0, then ; is always inactive, and we observe Ḡ; = 0. �

The equivalence in Theorem 7 implies that we can compute multiplex influence spread using

probabilistic inference in BNs, which can be solved with BP algorithms.

Corollary 5. Given a multiplex network G for which proj(G) is a DAG, with seed set (0 and sequence of

protocols U , multiplex influence spread �G ,U
(0

can be computed as

=∑
8=1

P
G ,U (Ḡ8 = 1|Ḡ 9 = 1, Ḡ; = 0, 9 ∈ (0 , ; ∉ (0 , #; = ∅).

Proof. This follows from Theorem 7 and Definition 21. �

Nguyen and Zheng [64] showed that computing influence spread in a monoplex DAG with the

Independent Cascade Model (ICM) is #P-complete. Here, we prove a similar result for computing

influence spread for the multiplex LTM. The implication is that approximating influence spread for

the multiplex LTM is the best we can do for large networks.

Theorem 8. Consider a multiplex network G for which proj(G) is a DAG, with seed set (0 and sequence of

protocols U . Computing �G ,U
(0

for the multiplex LTM is #P-complete.

Proof. The multiplex LTM problem, i.e., computing �G ,U
(0

for the multiplex LTM, is #P-complete if

(i) it is #P-hard and (ii) it is in #P. We first prove (ii). By Corollary 5, every instance of the multiplex

LTM problem can be reduced to a marginalization problem. Since the marginalization problem is

#P-complete, the multiplex LTM problem is in #P.

105

We prove (i) by showing that the multiplex LTM problem is a reduction from the ICM problem,

which has been shown to be #P-complete (Theorem 1 of [64]). The ICM problem refers to computing

the influence spread ��,ICM

(0
for the ICM on a monoplex DAG � = (+, �) with seed set (0 and

probability F 9 ,8 assigned to each edge 4 9 ,8 ∈ �.

Let < be the largest number of out-neighbors over all nodes in+ . Consider a multiplex network

with < layers �1 , ..., �< where �: = (+, �:). To define edge sets �: , assign all edges in � and to the

multiplex network such that for each node there is at most one outgoing edge in each layer :. Let

F 9 ,8 be the weight of edge from 8 to 9 in the multiplex network. Define a set +′ with a node 8′ ∈ +′

for each node 8 ∈ + . For each 8 and :, compute the sum of weights of 8’s outgoing edges in layer :.

If the sum is not 1, create an edge 4 :8,8′ ∈ �
′: from 8 to 8′ and assign to the edge a weight that makes

the sum equal 1. Let multiplex network G′ have < layers �′
1
, ..., �′

< where �′
:
= (+ ∪+′, �: ∪ �′:).

Then proj(G′) is a DAG. Further, every node 8′ ∈ +′ has no out-neighbors and 8′ ∉ (0. So in the

multiplex LTM 8′ ∈ +′ remains inactive. Let U = {OR, ...OR}. By construction, �G′ ,U
(0

= ��,ICM
(0

. �

9.8 Analytical Expressions of Influence Spread

We derive analytical expressions for multiplex cascade centrality for two illustrative classes of the

LTM with a two-layer (duplex) network and # agents. In Section 9.8.1, each of the layers is the same

path network. This means that each agent has the same neighbors for each sensing modality; for

example, each agent can see and hear its neighbors. Our results reveal how the cascade is affected

when agents distinguish between signals rather than project them. If we view the path network as a

cycle network with one link missing, then the duplex permutation network we study in Section 9.8.2

has one layer missing the link between agents 1 and # and the other layer missing the link between

agents # − 1 and # .

9.8.1 Duplex Repeated Path Network

Let G' be the duplex repeated path network of Fig. 9.5, which has the monoplex path network

�%0 = proj(G') on each of its two layers. For any # and any agent 9, monoplex cascade centrality

C
�%0
9 and multiplex cascade centralitiesCG' ,OR

9 andC
G' ,AND
9 can be expressed analytically as follows.

Figure 9.5: Duplex repeated path network G' has path graph �%0 as each layer.

106

Proposition 8 (Multiplex cascade centrality for G'). Consider the monoplex path network �%0 and

duplex repeated path network G' for # agents with D8 = D ∈ {OR,AND}. Then

C
�%0
9 = ℎ 9(.5), C

G' ,OR

9 = ℎ 9(.75), C
G' ,AND

9 = ℎ 9(.25),

ℎ 9(?0)=

∑#−2
;=0 ? ;

0
+ ?#−2

0
, 9 ∈ {1, #}

1 +
∑#−3
;=0 ? ;

0
+ ?#−3

0
, 9 ∈ {2, # − 1}

∑9−1

;=0
? ;

0
+?

9−1

0
+
∑#−9−1

;=1
? ;

0
+?

#−9−1

0
, o.w.

Moreover,

C
G' ,OR
9 > C

�%0
9 > C

G' ,AND
9 .

Proof. The result can be derived from Algorithm 1. Here, we provide a perspective from probabilistic

inference in BNs. Table 9.3 shows the CPT of agent 8 ∈ {2, . . . , # − 1} for �%0 and for G' with

D = OR and D = AND. With one initially active agent 9, the activity can only spread from an agent

Table 9.3: CPT of agent 8 ∈ {2, 3, ..., # − 1}. For �%0 , ?0 = .5; for G' with D = OR, ?0 = .75; for G'
and D = AND, ?0 = .25.

G8−1 G8+1 PG ,D(G8=0|G8−1 , G8+1) PG ,D(G8=1|G8−1 , G8+1)

0 0 1 0
0 1 1 − ?0 ?0
1 0 1 − ?0 ?0
1 1 0 1

closer to 9 to an agent farther from 9. Assume 1 < 9 < 8 < # , for all three networks, the probability

that agent 8 is active at steady state for the LTM can be factorized as follows:

P
G ,D
9 (Ḡ8 = 1) = PG ,D(Ḡ8=1|Ḡ8−1=1, G8+1=0) (9.10)

× PG ,D(Ḡ8−1=1|Ḡ8−2=1, G8=0) × · · ·

× PG ,D(Ḡ 9+1=1|Ḡ 9=1, G 9+2=0) = ?
8−9

0 .

The last equality holds since each agent uses the same protocol and so each conditional probability

is ?0. The cascade centralities follow by Definitions 21 and 22. Cases 8 , 9 ∈ {1, #} are calculated

similarly. The inequality follows since PG' ,OR
9 (Ḡ8=1) > P�%09 (Ḡ8=1) > PG' ,AND

9 (Ḡ8=1). �

Proposition 8 provides a systematic way to evaluate spread for any number of agents # in the

multiplex LTM on G'. The inequality is consistent with the intuition in Remark 1: when agents can

107

distinguish signals from different sensing modalities and use Protocol OR (AND), they are more

(less) easily activated, and the cascade is enhanced (diminished) relative to when agents cannot

distinguish signals.

9.8.2 Duplex Permutation Networks

Let G% be the duplex permutation network of Fig. 9.6. Then proj(G%) = �� , the cycle network. We

derive analytical expressions for PG% ,D9 (Ḡ8 = 1), D ∈ {OR,AND}, as follows.

Figure 9.6: Duplex permutation network G% .

Proposition 9 (Probabilities for multiplex cascade centrality for G%). Consider the duplex permutation

network G% for # agents with D8 = D ∈ {OR,AND} and the cyclic network �� = proj(G%). Then

P
G% ,OR

9 (Ḡ8=1)= (.75)|8−9 |+.5(.75)#−|8−9 |−3−.5(.75)#−5

P
G% ,AND

9 (Ḡ8=1)= (.25)|8−9 | (9.11)

P
��
9 (Ḡ8=1)= (.5)|8−9 | + (.5)#−|8−9 |

where 3 ≤ 8 ≤ # − 3 and 9 = 2, ..., 8 − 2, 8 + 2, ..., # − 2. Moreover,

C
G% ,OR

9 > C
��
9 > C

G% ,AND

9

P
G% ,AND

9 (Ḡ8=1)=P
G' ,AND

9 (Ḡ8=1)= (0.25)|8−9 |

P
G% ,OR

9 (Ḡ8=1)>PG' ,OR

9 (Ḡ8=1).

Proof. The probabilities derive from Algorithm 1. The first inequality follows since PG% ,OR

9 (Ḡ8=1) >

P
��
9 (Ḡ8=1) > PG% ,AND

9 (Ḡ8=1). The rest follows from (9.10) and (9.11). �

When D# = AND, the activity can only spread in G% from 9 to 8 along the path between 9 and

8 on �� that does not contain # . This explains the equality of probabilities for G% and G'. When

D8 = D = OR, the activity can spread in G% from 9 to 8 along either path between 9 and 8 on �� . This

explains the last inequality, i.e., that the cascade is greater in G% than in G'. As in Proposition 8,

the first inequality in Proposition 9 is consistent with the intuition in Remark 1.

108

9.9 Heterogeneity in Protocol

9.9.1 Small Heterogeneous Multiplex Networks

We compute multiplex cascade centrality to evaluate for the LTM the role of heterogeneity in

the tradeoff between sensitivity of the cascade to a real input and robustness of the cascade to a

spurious signal. Knowing that agents that use Protocol OR enhance the cascade and agents that use

AND diminish the cascade, we examine how to leverage heterogeneity in protocol to advantage.

Parametrizing the tradeoff by 2, we solve as a function of 2 for the optimal heterogeneous distribution

of agents using OR and agents using AND.

We investigate with the duplex network of Fig. 9.7, which is small enough that we can compute

cascade centrality with Algorithm 1. There are six agents (nodes 1 to 6) and a seventh node that

represents an external signal. When node 7 appears in both layers, as in Fig. 9.7, we interpret it

as real. When node 7 appears in only one layer, we interpret it as spurious. We assume that only

one agent (e.g., agent 1 in Fig. 9.7) senses node 7, whether or not it is real or spurious, and that it is

equally likely to be any of the six agents that sense it. We assume the edge pointing to the signal

has a weight of 1.

The graph in layer 1 (red edges) in Fig. 9.7 represents a directed sensing modality, e.g., a team

of robots with front and side facing cameras or a school of fish that see poorly to their rear. The

graph in layer 2 (blue edges) represents a proximity sensing modality, e.g., robots that receive local

broadcasts or fish that detect local movement with their lateral line.

Figure 9.7: Duplex network with agents 1 to 6, layer 1 (red), and layer 2 (blue). Node 7, the external
signal, is real since it appears in both layers.

As each agent can use either protocol, there are 26 = 64 different possible sequences of protocols

U in total. We define the utility function & as a function of U and 2 ≥ 0 to measure the benefit of

cascades that result from real signals less the cost of cascades that result from spurious signals:

&(U , 2) =
1

6

6∑
;=1

(
C

G ;
real ,U

7 − 2
1
2
(C

G ;
spur1 ,U

7 + C
G ;

spur2 ,U

7)
)
. (9.12)

109

Superscript ; indexes the agent sensing node 7. Subscripts “real", “spur1" and “spur2" index the

networks where node 7 appears in both layers, layer 1 only, and layer 2 only, respectively. Increasing

2 increases cost of response to spurious signals relative to benefit of response to real signals. Given

2, the optimal sequence of protocols is U 2 = argmaxU&(U , 2).

Fig. 9.8 illustrates U 2 (with symmetry implied) on a plot of the optimal fraction of agents using

AND as a function of 2. A white (gray) circle represents an agent using OR (AND). When 2 is 0 or

small, responding to real signals dominates and all agents use OR. When 2 is increases towards 3

and beyond, avoiding spurious signals dominates and all agents use AND. For 2 in between, the

optimal solution is heterogeneous with more agents using AND as 2 increases: first agent 1 or 2,

then agents 1 and 2, then {1,2,5} or {1,2,6}, then {1,2,3,6} or {1,2,4,5}, and then {1,2,3,5,6} or {1,2,4,5,6}.

Figure 9.8: The optimal fraction of agents using Protocol AND with illustration of optimal solution
U 2 as 2 varies from 0 to 3. Symmetry is implied.

9.9.2 Large Heterogeneous Multiplex Networks

We apply Corollary 5 to study multiplex cascade centrality for a random multiplex network with 20

agents and homogeneous and heterogeneous protocols. We randomly generate duplex networks,

for which the projection networks are DAGs, by fixing a topological order of nodes and assigning

edges randomly with probability ?4 . A higher probability ?4 means agents sense a greater number

of the other agents. We consider homogeneous groups, where D = OR and D = AND. We also

consider heterogeneous groups in which each agent randomly chooses OR or AND with equal

likelihood.

We let the root node be the initial active agent and study how the cascade centrality of the root

changes as we vary ?4 from 0 to 1. For every value of ?4 , we randomly generate 400 networks. Fig. 9.9

shows how the cascade centrality, averaged over the random networks, changes as a function of ?4 .

Regardless of the protocol, as ?4 → 0, the DAG become disconnected and the cascade centrality

goes to 1 (only the root node is active at steady state). As ?4 → 1, the root node activates every other

110

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

A
v

er
ag

e
C

as
ca

d
e

C
en

tr
al

it
y

OR

Het

AND

Figure 9.9: Multiplex cascade centrality of root node, averaged over 400 networks, as a function of
probability ?4 of edges in the DAG.

agent and the cascade centrality goes to 20. For ?4 in between, Fig. 9.9 shows that the homogeneous

groups with D = OR are most readily activated and cascade size is sensitive in the range ?4 ∈ (0, .5).

Homogeneous groups with D = AND are least readily activated and cascade size is sensitive in the

range ?4 ∈ (.5, 1).

9.10 Conclusion

We have extended the LTM to multiplex networks where agents use different protocols that distin-

guish signals from multiple sensing modalities. We have derived algorithms to compute influence

spread accurately using the multiplex LEM and approximately using probabilistic inference. We

have shown how multiple sensing modalities affect spread and how heterogeneity trades off sensi-

tivity and robustness of spread.

111

Chapter 10

A Continuous Threshold Model of

Cascade Dynamics

Yaofeng Desmond Zhong, Naomi Ehrich Leonard

Appears as Zhong and Leonard [98] in 2019 IEEE 58th Conference on Decision and Control

We present a continuous threshold model (CTM) of cascade dynamics for a network of agents

with real-valued activity levels that change continuously in time. The model generalizes the linear

threshold model (LTM) from the literature, where an agent becomes active (adopts an innovation)

if the fraction of its neighbors that are active is above a threshold. With the CTM we study the

influence on cascades of heterogeneity in thresholds for a network comprised of a chain of three

clusters of agents, each distinguished by a different threshold. The system is most sensitive to

change as the dynamics pass through a bifurcation point: if the bifurcation is supercritical the

response will be contained, while if the bifurcation is subcritical the response will be a cascade. We

show that there is a subcritical bifurcation, thus a cascade, in response to an innovation if there is

a large enough disparity between the thresholds of sufficiently large clusters on either end of the

chain; otherwise the response will be contained.

10.1 Introduction

Cascade dynamics refer to the spread of an activity or innovation among a group of agents. They

have been modelled as discrete-time, discrete-valued state dynamics in which an agent accepts

112

or rejects an innovation at each time step after comparing the fraction of its neighbors who have

accepted the innovation to a threshold between 0 and 1. This model is referred to as the linear

threshold model (LTM).

The LTM was first introduced in [31, 80]. Kempe et al. [45] and Lim et al. [55] studied the

LTM with uniformly drawn thresholds. Zhong et al. [100] generalized the LTM to duplex networks

where there exist two different types of interactions among the agents. All of these results leverage

thresholds drawn from a uniform distribution. Acemoglu et al. [1] studied cascade dynamics using

the LTM with deterministic thresholds. In this case, the analysis becomes challenging. Yang et

al. [95] studied the influence minimization problem for the deterministic LTM by formulating the

problem as a linear integer programming problem. Fardad and Kearney [24] studied the optimal

seeding problem of cascade failure using a relaxation of the deterministic LTM and formulated

the problem as a convex program. Pinheiro et al. [69] introduced nonlinearity to the fraction of

neighbors and investigated cascades on the all-to-all network. However, the analysis of cascades

remains challenging for more general network graphs, heterogeneous agents, and deterministic

thresholds.

We propose a continuous threshold model (CTM) that introduces continuous-time, real-valued

state dynamics with nonlinearity. The CTM is adapted from nonlinear consensus dynamics [32],

which exhibit very rapid transitions in system state when the system passes through a bifurcation

point. Using the proposed model, we can thus prove conditions for sudden cascades using methods

from nonlinear dynamics.

We show how the CTM generalizes the LTM. We then use the CTM to study the influence on

cascades of heterogeneity in (deterministic) thresholds among the agents. We consider networks

comprised of three clusters of agents, each cluster associated with a different threshold and thus

a different level of responsiveness to the state of neighbors. A lower threshold implies a higher

responsiveness. Let & > 0. Cluster 1 is the “high response” cluster where agents use a threshold

� = 1/2 − &. Cluster 2 is the “low response” cluster where agents use a threshold � = 1/2 + &.

Cluster 3 is the “neutral response” cluster where agents use a threshold � = 1/2.

For the networks considered, we show how the size = of clusters 1 and 2 and the strength of

the disparity 2& between their thresholds determines whether or not there is a cascade in response

to the introduction of an innovation. When the size and disparity are small the group exhibits a

contained response, whereas when the size and disparity are sufficiently large the group exhibits a

rapid increase in state, indicating a cascade. This is an interesting and even surprising result.

In the analysis, the contained response corresponds to a supercritical pitchfork bifurcation in

113

the dynamics and the cascade corresponds to a subcritical pitchfork bifurcation. Gray. et al. [32]

observed the transition from supercritical to subcritical pitchfork in nonlinear consensus dynamics;

however, they did not prove conditions under which this transition exists. The transition is also

exhibited in the replicator-mutator dynamics studied by Dey et al. [23]. They showed the existence

of the transition for the system with two strategies. We derive rigorous conditions for existence of the

transition in the CTM dynamics of a network of # agents comprised of three clusters distinguished

by their thresholds.

Our contribution is twofold. First, we present a new model of cascade dynamics that generalizes

the LTM. Second, we provide new results on how cascades are influenced by heterogeneity in

thresholds of agents, i.e., how ready an agent is to change its behavior in response to its neighbors.

For a network of three clusters, we derive a necessary condition for there to be a cascade that

depends on the sizes of the clusters with disparate thresholds and # . We show that there is a

corresponding critical value &∗ > 0 such that we can expect a cascade when & > &∗ but not when

& < &∗.

Section 10.2 describes the CTM dynamics and equivalence to the LTM. In Section 10.3, we

specialize the dynamics to a family of network graphs with three clusters. In Section 10.4, we define

a cascade for the CTM and prove conditions under which a cascade occurs. Section 10.5 provides

an example.

10.2 Continuous Threshold Model

The proposed model generalizes the discrete linear threshold model (LTM), and it is inspired by the

Hopfield network dynamics [40] and adapted from nonlinear consensus dynamics [32]. To describe

complex contagion within a group of # agents, let G8 ∈ R be the state of agent 8, representing the

activity level of agent 8. Agent 8 is said to be active (inactive) if G8 > 0 (G8 < 0). A greater absolute

value of the state |G8 | means that agent 8 is more active (more inactive).

Interactions among agents, i.e., who can sense or communicate with whom, are encoded in

graph � = (+, �), where + = {1, . . . , #} is the set of # agents and � ⊂ + × + is the edge set

representing interactions. An edge 48 9 ∈ � implies that 9 is a neighbor of 8. We assume there are no

self-loops, i.e., 488 ∉ �. The graph adjacency matrix � ∈ R#×# is a matrix with elements of 0 and 1,

where 08 9 = 1 if and only if 48 9 ∈ �. The degree matrix � ∈ R#×# is a diagonal matrix with diagonal

entries 38 =
∑#
9=1 08 9 .

The continuous threshold model (CTM) defines the change in activity level of each agent over time

114

as a function of the agent’s current state and the state of its neighbors:

¤G8 = −38G8 +

#∑
9=1

08 9D((EG 9) + 38(1 − 2�8). (10.1)

�8 can be interpreted as the threshold of agent 8 and D, E > 0 as control parameters. (: R→ [−1, 1]

is a smooth, odd sigmoidal function that satisfies the following conditions: (′(G) > 0,∀G ∈ R;

(′(0) = 1; and sgn((′′(G)) = −sgn(G), where (·)′ denotes the derivative and sgn is the sign function.

Sigmoids are ubiquitous in models of biological and physical systems; here they serve to saturate

influence from neighbors.

The control parameter D can be interpreted as the strength of the “social sensitivity” since a

larger D means a greater attention to social cues. The control parameter E can be interpreted as the

strength of the “social effort” since a larger E means a stronger signal sent by neighbors. The CTM

generalizes the LTM in the following way. Let D = 1 and E → +∞, then the dynamics (10.1) become

1
38

¤G8 = −G8 + 2
(#∑
9=1

08 9

38

((EG 9) + 1

2
− �8

)
. (10.2)

Since E → +∞, the sigmoidal function approaches the sign function, which maps a negative state

to -1 and a positive state to +1. The fraction (((EG 9) + 1)/2 maps a negative state to 0 and a positive

state to 1. So the summation gives the fraction of active neighbors. Thus, the difference between

the summation and �8 is the comparison of fraction of active neighbors of agent 8 to the threshold

of agent 8.

Now consider the equilibrium points of (10.2). If agent 8’s fraction of active neighbors is greater

than its threshold, the steady-state value of G8 is positive and agent 8 is active; otherwise, the

steady-state value of G8 is negative and agent 8 is inactive. Let unseeded agents be defined by a

negative initial state and seeded agents by a large positive initial state. Then it follows that the

dynamics (10.2) behave like the LTM with deterministic thresholds �8 , 8 = 1, . . . , # in the sense that

the ordering of unseeded agents switching from inactive to active is the same and hence the steady

states are the same.

We study the CTM for E = 1 and D a feedback control that depends on the slow filtered average

state ḠB . We let D = D0((� |ḠB |) and ¤̄GB = �B (Ḡ − ḠB) with Ḡ =
∑#
8=1 G8/# and D0 , �, �B > 0.

115

10.3 Networks with Three Clusters

Consider a class of networks with # agents in three clusters as in Section 10.1: every agent 8 in the

high response cluster 1 has �8 = 1/2− &, every agent 9 in the low response cluster 2 has �9 = 1/2+ &

and every agent : in the neutral response cluster 3 has �: = 1/2. Let there be = agents in cluster 1,

= in cluster 2, and # − 2= in cluster 3.

Let all edges in the network be undirected, i.e., 08 9 = 0 98 . Within each cluster, the graph is

all-to-all. Each agent in cluster 3 is connected to each agent in clusters 1 and 2, and there are

no connections between agents in cluster 1 and agents in cluster 2. The network is motivated by

environments in which a feature that influences threshold adoption is distributed and agents with

biased thresholds interact with agents with similarly biased or unbiased thresholds. One example

is a population clustered by age bracket, where the youngest are most likely and the eldest least

likely to purchase a new technology when their friends do. Another is a spatially distributed group

in which agents at one end measure smoke and adopt a low threshold to flee a fire, and agents on

the other end miss the smoke and adopt a high threshold. Fig. 10.1 shows a network with # = 11

and = = 4.

Figure 10.1: Network with three clusters: # = 11 and = = 4. Cluster 1 (high response) is on the
left, cluster 2 (low response) is on the right, and cluster 3 (neutral response) is in the middle. White
arrows indicate all-to-all, undirected connections between nodes in clusters.

With an approach similar to that in Theorem 4 of [32], it can be shown that the trajectories of

(10.1) converge exponentially to the three-dimensional manifold where all the states in the same

116

cluster are the same. Let H: be the average state of cluster : = 1, 2, 3. The reduced dynamics are

¤H1 = − (# − = − 1)H1 + (= − 1)D((H1)

+ (# − 2=)D((H3) + 2(# − = − 1)& (10.3)

¤H2 = − (# − = − 1)H2 + (= − 1)D((H2)

+ (# − 2=)D((H3) − 2(# − = − 1)& (10.4)

¤H3 = − (# − 1)H3 + (# − 2= − 1)D((H3)

+ =D((H1) + =D((H2). (10.5)

Let y = [H1 , H2 , H3]
) and �(y, D, &) the RHS of (10.3)-(10.5).

� commutes with the action of the nontrivial element of /2, the cyclic group of order 2, repre-

sented by the matrix:

� =

0 −1 0

−1 0 0

0 0 −1

, i.e., �(�y, D, &) = ��(y, D, &).

This implies a /2-symmetric singularity. We show in the next section that � possesses a pitchfork

bifurcation, and we prove a necessary condition for the transition from a supercritical to a subcritical

pitchfork.

The bifurcations are illustrated in Fig. 10.2 where the horizontal axis represents the bifurcation

parameter D and the vertical axis the average state H̄ = (=H1 + =H2 + (# − 2=)H3)/# . Blue curves

represent stable solutions and red curves unstable solutions to (10.3)-(10.5). The neutrally active

average state H̄ = 0 is always a solution, and it is stable for D < D2 and unstable for D > D2 , where

D = D2 is the bifurcation point.

Due to the feedback, the social sensitivity parameter D will slowly increase when an innovation

has been introduced and cross the bifurcation point where the system is highly sensitive to change

(see [32] for generalizations to heterogeneous D8). For initial conditions corresponding to one or

more active agents such that H̄(0) > 0, the solution will increase as shown by the green curves

in Fig. 10.2. The trajectory in the supercritical pitchfork slowly follows the positive branch of the

pitchfork as D is increased just above the critical value D2sup. We define this slow increase in H̄ as a

contained response. The trajectory in the supercritical pitchfork jumps up to the positive branch as

D is increased just above the critical value D2sub. We define the jump as a cascade since it implies a

117

Figure 10.2: Pitchfork bifurcation diagrams: supercritical (left) and subcritical (right). Blue (red)
curves are stable (unstable) solutions. Green curves are trajectories as D slowly increases.

Figure 10.3: Unfolded pitchfork bifurcation diagrams: supercritical (left) and subcritical (right).
Colors are as in Fig. 10.2.

rapid spread of the innovation.

Fig. 10.3 shows what happens to the bifurcation diagrams in the presence of a small positive input

to the dynamics (10.3), corresponding to the introduction of an innovation as an external cue rather

than as seeded positive initial conditions. The resulting “unfolded” supercritical pitchfork still

exhibits the contained response and the “unfolded” subcritical pitchfork still exhibits the cascade.

Here, even with an initial condition corresponding to an average initial state H̄(0) < 0, the innovation

can still trigger a cascade.

10.4 Conditions for Cascade

Although the transition from supercritical pitchfork to subcritical pitchfork has been observed in

[32], it is unclear for what parameter values the transition exists in the CTM. In this section, we first

show conditions for existence of a pitchfork bifurcation and then for existence of the transition.

By /2-symmetry, y★ = [H★,−H★, 0]) is always an equilibrium of (10.3)-(10.5), where for a given

D and &, H★ satisfies

−(# − = − 1)H★ + (= − 1)D((H★) + 2(# − = − 1)& = 0. (10.6)

Consider a perturbation to the trivial solution y★ and denote the perturbed solution as y★ + Δy =

118

[H★ + ΔH1 ,−H
★ + ΔH2 ,ΔH3]

) . We ask the question, could there be a nontrivial equilibrium point

where Δy ≠ 0? The change from no nontrivial equilibria to the existence of nontrivial equilibria

corresponds to the bifurcation point. The following perturbation analysis allows us to reduce the

dynamics near the trivial equilibrium to one-dimensional dynamics that match the normal form of a

pitchfork bifurcation. We can then evaluate if the pitchfork bifurcation is supercritical or subcritical

by examining the sign of coefficients in the reduction.

We use the Taylor series expansion to third order:

((H★+ΔH1) =((H
★) + (′(H★)ΔH1 +

1

2
(′′(H★)(ΔH1)

2

+
1

6
(′′′(H★)(ΔH1)

3 + >((ΔH1)
3) (10.7)

((−H★+ΔH2)=((−H
★)+(′(−H★)ΔH2+

1

2
(′′(−H★)(ΔH2)

2

+
1

6
(′′′(−H★)(ΔH2)

3 + >((ΔH2)
3) (10.8)

((ΔH3) =(
′(0)ΔH3 +

1

2
(′′(0)(ΔH3)

2

+
1

6
(′′′(0)(ΔH3)

3 + >((ΔH3)
3). (10.9)

Since the sigmoidal is an odd function, we have that ((H★) = −((−H★), (′(H★) = (′(−H★), (′′(H★) =

−(′′(−H★) and (′′′(H★) = (′′′(−H★). Without loss of generality, we use the hyperbolic tangent as

the sigmoidal function from now on. For other types of sigmoidal functions, the analysis follows

similarly. Now Eqn. (10.9) has the form of

tanh(ΔH3) = ΔH3 −
1
3
ΔH3

3 + >((ΔH3)
3). (10.10)

Lemma 8 and Proposition 10 will be used to derive the conditions for transition from supercritical

to subcritical bifurcation.

Lemma 8. Assume ΔG ∈ R and ΔH ∈ R have small magnitudes and satisfy

0(ΔG)3 + 1(ΔG)2 + 2ΔG = −ΔH +
1
3
(ΔH3) + >((ΔH)3). (10.11)

Then we have

ΔG=−
1
2
ΔH−

1

23
(ΔH)2+

(1
32

−
212

25
+
0

24

)
(ΔH)3+>((ΔH3)).

119

Proof. Assume ΔG = 1ΔH + 2(ΔH)
2 + 3(ΔH)

3 + >((ΔH)3), then we have

(ΔG)2 = 2
1(ΔH)

2 + 212(ΔH)
3 + >((ΔH)3)

(ΔG)3 = 3
1(ΔH)

3 + >((ΔH)3).

Substitute the above equations into Eqn. (10.11) and equate the coefficients in front of ΔH, (ΔH)2,

(ΔH)3 in the LHS and RHS, respectively. We get three equations. Then we solve for 1, 2 and 3

and get the result. �

Proposition 10. Consider dynamics (10.3)-(10.5) with ((·) = tanh(·). The conditions for equilibria of the

perturbed dynamics of (10.3)-(10.5) around H★ can be reduced to the following single condition:

d
dC

(
ΔH3

)
= �1ΔH3 + �3(ΔH3)

3 + >((ΔH3)
3) = 0, (10.12)

where �1 and �3 depend on H★, D, # , = as follows:

�1(H
★, D, #, =) = − (# − 1) −

(
1 +

= + 1
= − 1

(# − 2=)
)
D

−
=(# − = − 1)

= − 1
2
2

(10.13)

�3(H
★, D, #, =) =

1
3

(
1 +

= + 1
= − 1

(# − 2=)
)
D

+
=(# − = − 1)

= − 1

(2
32

−
412

25
+

20
24

)
(10.14)

with

0(H★, # , =) =
= − 1
− 2=

1
6

tanh′′′(H★) (10.15)

1(H★, # , =) =
= − 1
− 2=

1
2

tanh′′(H★) (10.16)

2(H★, D, #, =) =
= − 1
− 2=

tanh′(H★) −
− = − 1
(# − 2=)D

. (10.17)

Proof. First we substitute y★ + Δy into the RHS of (10.3), (10.4) and set them equal to zero. With

120

(10.7), (10.8) and (10.10), we get

−(# − = − 1)ΔH1 + (= − 1)D
(
(′(H★)ΔH1

+
1

2
(′′(H★)(ΔH1)

2 +
1

6
(′′′(H★)(ΔH1)

3
)

+ (# − 2=)D(ΔH3 −
1

3
(ΔH3)

3) + >((ΔH3)
3) = 0 (10.18)

−(# − = − 1)ΔH2 + (= − 1)D
(
(′(−H★)ΔH2

+
1

2
(′′(−H★)(ΔH2)

2 +
1

6
(′′′(−H★)(ΔH2)

3
)

+ (# − 2=)D(ΔH3 −
1

3
(ΔH3)

3) + >((ΔH3)
3) = 0. (10.19)

Eqns. (10.18) and (10.19) can be written as follows:

0(ΔH1)
3+1(ΔH1)

2+2ΔH1 = −ΔH3+
1

3
(ΔH3)

3+>((ΔH3)
3)

0(ΔH2)
3−1(ΔH2)

2+2ΔH2 = −ΔH3+
1

3
(ΔH3)

3+>((ΔH3)
3)

with 0, 1, and 2 given by (10.15), (10.16), and (10.17), respectively.

By Lemma 8, we have

ΔH1 = −
1

2
ΔH3 −

1

23
(ΔH3)

2 +
(

1

32
−

212

25
+
0

24

)
(ΔH3)

3

+ >((ΔH3)
3) (10.20)

ΔH2 = −
1

2
ΔH3 +

1

23
(ΔH3)

2 +
(

1

32
−

212

25
+
0

24

)
(ΔH3)

3

+ >((ΔH3)
3). (10.21)

We substitute y★ + Δy into the RHS of (10.5) and set it equal to zero. We leverage (10.6), (10.18)

and (10.19) to get

dΔH3

dC
= − (# − 1)ΔH3 + (# − 2= − 1)D(ΔH3 −

1
3
ΔH3

3)

+
=(# − = − 1)

= − 1
(ΔH1 + ΔH2) + >((ΔH3)

3) = 0. (10.22)

As we are able to express ΔH1 and ΔH2 in terms of ΔH3 from (10.20) and (10.21), we can substitute

them into (10.22). This gives a reduction of the conditions for equilibria of (10.3)-(10.5) from three

equations to a single equation in terms of ΔH3. We can see clearly the terms with (ΔH3)
2 cancel out,

121

which is consistent with the /2-symmetry. We then get our main equation (10.12) with �1 and �3

given by (10.13) and (10.14), respectively.

�

We examine (10.12) from Proposition 10. If �3 < 0, and �1 crosses zero from negative to positive,

ΔH3 undergoes a supercritical pitchfork bifurcation. For �1 < 0 and |�1 | sufficiently small, there

is a single stable solution at ΔH3 = 0, which implies ΔH1 = ΔH2 = 0. In this case y★ is a stable

equilibrium of (10.3)-(10.5) and there are no other solutions nearby. For �1 > 0 and |�1 | sufficiently

small, ΔH3 = 0 is unstable and two stable equilibria ΔH3 = ±
√
−�1/�3 appear.

If �3 > 0, and �1 crosses zero from negative to positive, ΔH3 undergoes a subcritical pitchfork

bifurcation. For�1 < 0 and |�1 | sufficiently small, there are two unstable equilibriaΔH3 = ±
√
−�1/�3

and one stable equilibrium ΔH3 = 0. For �1 > 0 and |�1 | sufficiently small, the three equilibria

collapse into one unstable equilibrium ΔH3 = 0.

The following proposition gives the condition for existence of the transition from supercritical

to subcritical pitchfork.

Proposition 11. The transition from a supercritical pitchfork bifurcation to a subcritical pitchfork bifurcation

of dynamics (10.3)-(10.5) with ((·) = tanh(·) occurs when �3 crosses zero from negative to positive. The

condition for the transition is

�3(H
★, # , =) = 0, (10.23)

where

�3(H
★, # , =) = −

1
3
(# − 1) +

=(# − = − 1)
= − 1

×
20(H★, # , =)2(H★, D(H★, # , =), # , =) − 412(H★, # , =)

25(H★, D(H★, # , =), # , =)
, (10.24)

and

D(H★, # , =) =
−21 +

√
22

1 − 42220

222
=

−220√
22

1 − 42220 + 21

. (10.25)

122

Here, 0, 1, 2 are given by (10.15), (10.16), (10.17) and

22(H
★, # , =) =

(
= + 1 +

= − 1

− 2=

)
tanh′(H★) (10.26)

21(H
★, # , =) =

(# − 2= − 1)(# − = − 1)
(# − 2=)

+
(# − 1)(= − 1)

− 2=
tanh′(H★) (10.27)

20(H
★, # , =) = −

(# − = − 1)(# − 1)
− 2=

. (10.28)

The value of H★ at the transition is the solution of (10.23). The value of D at the transition is a function of H★,

, and = (10.25). The value of & at the transition is also a function of H★, # , and =:

&(H★, # , =) =
1
2
H★ −

(= − 1)
2(# − = − 1)

D(H★, # , =)tanh(H★). (10.29)

Proof. From previous discussions, the transition from a supercritical bifurcation to a subcritical

bifurcation occurs when �3 crosses zero from negative to positive. The bifurcation corresponds to

�1 = 0. So at the transition, the following equations should be satisfied:

6(H★, D, &, # , =) = 0 (10.30)

�1(H
★, D, &, # , =) = 0 (10.31)

�3(H
★, D, &, # , =) = 0. (10.32)

Here 6(·) denotes the LHS of Eqn. (10.6). The dependence of 6, �1 and �3 on variables and

parameters is indicated. Thus, given # and =, which specify the network graph structure in the

family of networks with three clusters, we can solve for H★, D and & from Eqn. (10.30)-(10.32).

Eqns. (10.31) and (10.32) do not depend on & explicitly. Eqn. (10.31) can be rearranged as the

following quadratic equation:

22(H
★, # , =)D2 + 21(H

★, # , =)D + 20(H
★, # , =) = 0 (10.33)

with 22, 21, 20 given by (10.26), (10.27), (10.28).

Since tanh′(H★) ∈ (0, 1], we get that 22 > 0, 21 > 0 and 20 < 0. Thus, the quadratic equation

(10.33) has one positive and one negative solution. We are only interested in a positive D, so we can

write D as a function of H★, # and = as in (10.25).

As H★ increases, tanh′(H★) decreases. Then 21 and 22 decrease. Thus, the denominator of the

123

RHS of Eqn. (10.25) decreases. As the numerator is a positive constant, we see that D(H★, # , =) is a

strictly increasing function of H★ with D(0, # , =) = 1 and D(+∞, # , =) = (# − 1)/(# − 2= − 1). From

Eqn. (10.30), we can express & as a function of H★, # , and = as given by (10.29).

In Eqns. (10.13) and (10.14), the terms in the big parenthesis in front of D are the same. Thus,

setting �1 = 0 in Eqn. (10.31), we can simplify the expression for �3 to get

�3 = −
1

3
(# − 1) +

=(# − = − 1)

= − 1

(
20

24
−

412

25

)
. (10.34)

From (10.34), we see that �3 depends on # , =, 0, 1 and 2. From (10.15)-(10.17) and the fact that we

can express D as a function of H★, we can then express �3 as �3(H
★, # , =) and get (10.24). �

Our main theorem gives the condition for the existence of a transition from supercritical pitchfork

to subcritical pitchfork in dynamics (10.3)-(10.5). The existence only depends on the network

structure, i.e., # and =.

Theorem 9. Given # and =, if there exists a H★+ > 0 such that �3(H
★
+ , # , =) > 0, then there exists

H★
0
∈ (0, H★+) and H★

1
∈ (H★+ ,+∞) such that �3(H

★
0
, # , =) = �3(H

★
1
, # , =) = 0. In particular, the existence of

H★
0

indicates a transition from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation at &(H★
0
)

and D(H★
0
). This implies a cascade in the network with three clusters. If there does not exist such a H★+, then

there is no such transition and thus no cascade.

Proof. From the proof of Proposition 11, we know that D(H★) is a continuous function of H★ and

D(H★) ∈ [1, (# − 1)/(# − 2= − 1)). Then from (10.17), 2 as a function of H★ does not blow up and is

continuous in H★. Thus, from (10.17), (10.25), we have

2(H★)=
= − 1

− 2=
tanh′(H★) −

− = − 1
(# − 2=)

√
22

1 − 42220 + 21

−220

≤
= − 1
− 2=

tanh′(H★) −
− = − 1
(# − 2=)

21 + 21

−220

= −
(# − = − 1)(# − 2= − 1)

(# − 2=)(# − 1)
< 0.

Thus, from (10.24) it follows that �3(H
★, # , =) does not blow up and is continuous in H★. Moreover,

we have

�3(0, # , =) = −
1
3
(# − 1) −

2
3
=(# − = − 1)
(# − 2=)

< 0

�3(∞, # , =) = −
1
3
(# − 1) < 0.

124

If there exists a H★+ > 0 such that �3(H
★
+ , # , =) > 0, then from the continuity of �3(H

★, # , =), we

know there exists a H★
0

∈ (0, H★+) and H★
1

∈ (H★+ ,+∞) such that �3(H
★
0
, # , =) = �3(H

★
1
, # , =) = 0.

Thus, �3(H
★
0
, # , =) crosses zero from negative to positive, and from Proposition 11, there exists a

transition from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation in dynamics

(10.3)-(10.5). The value of & and D at which this transition happens can be calculated by &(H★
0
, # , =)

and D(H★
0
, # , =) from Eqns. (10.29) and (10.25), respectively. �

Figure 10.4: The curves of �3(H
★) for different values of = and fixed # (left). For lower =, �3(H

★)
remains negative. For higher =, �3(H

★) = 0 has two solutions, and thus at the smaller solution
H★

0
, there is a transition from supercritical to subcritical pitchfork, and the possibility of a cascade.

Critical disparity &∗ for different values of = and fixed # (right). For = ≥ 27, & > &∗ leads to a
cascade.

Remark 3. Fig. 10.4 illustrates how the existence of a H★+ > 0, and thus a cascade, depends on network

structure parameters # , =, and &. For a fixed # , a large enough =, i.e., a large enough number of agents with

disparity in thresholds, is necessary for the cascade. For = large enough that H★
0

exists, we can expect that for

& ∈ [0, &(H★
0
, # , =)], the bifurcation is supercritical, since it is for & = 0 [32]. As & increases to greater than

the critical value &★ = &(H★
0
, # , =), we expect to see the transition from no cascade to cascade. For # = 100,

a cascade is possible if = ≥ 27. The minimum disparity &★ that guarantees a cascade decreases as = increases.

10.5 An example

We present a simulation of the CTM with the network structure shown in Fig. 10.1 and & = 0.2. The

initial conditions of the 11 agents are picked randomly. Here, the average initial state is negative.

We let D0 = 3, � = 10, and �B = 0.05. Then D = 3tanh(10|ḠB |), where ¤̄GB = 0.05(Ḡ− ḠB), Ḡ =
∑11
8=1 G8/11.

Fig. 10.5 shows how the states evolve. Agents in clusters 1, 2, and 3 are plotted in red, green, and

blue, respectively. A perturbation � = 1 is added to the dynamics (10.1) of an agent in the red

125

cluster; its trajectory takes the largest value after the transient period. Except for the perturbed

agent, states of all agents in each cluster quickly converge to a common value. So, we can interpret

the results in terms of a perturbation of the reduced dynamics (10.3)-(10.5). The solution converges

to a perturbation of y★ = [H★,−H★, 0]) . Because of the perturbation, ḠB slowly increases, which

leads to a slow increase in D. At a certain time, D crosses the bifurcation point, which leads to a

cascade.

Figure 10.5: Agent state trajectories of the CTM in a network with three clusters, # = 11, = = 4.
There is a cascade corresponding to the unfolded subcritical pitchfork as can be expected since
0.2 = & > &(H★

0
, # , =) = 0.11.

In this example, the graph structure # = 11 and = = 4 ensure the existence of H★
0

such that

�3(H
★
0
, # , =) = 0. Thus from Theorem 9, there exists a transition from supercritical pitchfork to

subcritical pitchfork in the symmetric system dynamics. Here &(H★
0
, # , =) = 0.11. With a small &

(e.g., 0.1) the system exhibits a supercritical pitchfork; with a large epsilon (e.g., 0.2), the system

exhibits a subcritical pitchfork. The introduction of an additive perturbation � = 1 to the dynamics

of a node in the high responsive group breaks the symmetry and lets the subcritical pitchfork

unfold as shown in Fig. 10.3 on the right. Thus, as we can see from the simulation, a cascade can be

triggered even with a negative initial average state.

126

Chapter 11

Symplectic ODE-Net: Learning

Hamiltonian Dynamics with Control

Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty

Appears as Zhong et al. [101] in the 8th International Conference in Learning Representations (ICLR

2020)

In this paper, we introduce Symplectic1 ODE-Net (SymODEN), a deep learning framework which

can infer the dynamics of a physical system, given by an ordinary differential equation (ODE),

from observed state trajectories. To achieve better generalization with fewer training samples,

SymODEN incorporates appropriate inductive bias by designing the associated computation graph

in a physics-informed manner. In particular, we enforce Hamiltonian dynamics with control to

learn the underlying dynamics in a transparent way, which can then be leveraged to draw insight

about relevant physical aspects of the system, such as mass and potential energy. In addition, we

propose a parametrization which can enforce this Hamiltonian formalism even when the generalized

coordinate data is embedded in a high-dimensional space or we can only access velocity data instead

of generalized momentum. This framework, by offering interpretable, physically-consistent models

for physical systems, opens up new possibilities for synthesizing model-based control strategies.

1We use the word Symplectic to emphasize that the learned dynamics endows a symplectic structure [4] on the underlying
space.

127

11.1 Introduction

In recent years, deep neural networks [29] have become very accurate and widely used in many

application domains, such as image recognition [38], language comprehension [22], and sequential

decision making [82]. To learn underlying patterns from data and enable generalization beyond

the training set, the learning approach incorporates appropriate inductive bias [37, 7] by promoting

representations which are simple in some sense. It typically manifests itself via a set of assumptions,

which in turn can guide a learning algorithm to pick one hypothesis over another. The success in

predicting an outcome for previously unseen data then depends on how well the inductive bias

captures the ground reality. Inductive bias can be introduced as the prior in a Bayesian model, or

via the choice of computation graphs in a neural network.

In a variety of settings, especially in physical systems, wherein laws of physics are primar-

ily responsible for shaping the outcome, generalization in neural networks can be improved by

leveraging underlying physics for designing the computation graphs. Here, by leveraging a gen-

eralization of the Hamiltonian dynamics, we develop a learning framework which exploits the

underlying physics in the associated computation graph. Our results show that incorporation of

such physics-based inductive bias offers insight about relevant physical properties of the system,

such as inertia, potential energy, total conserved energy. These insights, in turn, enable a more

accurate prediction of future behavior and improvement in out-of-sample behavior. Furthermore,

learning a physically-consistent model of the underlying dynamics can subsequently enable usage

of model-based controllers which can provide performance guarantees for complex, nonlinear sys-

tems. In particular, insight about kinetic and potential energy of a physical system can be leveraged

to synthesize appropriate control strategies, such as the method of controlled Lagrangian [11] and

interconnection & damping assignment [66], which can reshape the closed-loop energy landscape

to achieve a broad range of control objectives (regulation, tracking, etc.).

Related Work

Physics-based Priors for Learning in Dynamical Systems: The last few years have witnessed

a significant interest in incorporating physics-based priors into deep learning frameworks. Such

approaches, in contrast to more rigid parametric system identification techniques [84], use neural

networks to approximate the state-transition dynamics and therefore are more expressive. [77],

by representing the causal relationships in a physical system as a directed graph, use a recurrent

128

graph network to infer latent space dynamics of robotic systems. [56] and [34] leverage Lagrangian

mechanics to learn the dynamics of kinematic structures from time-series data of position, velocity,

and acceleration. A more recent (concurrent) work by [33] uses Hamiltonian mechanics to learn the

dynamics of autonomous, energy-conserved mechanical systems from time-series data of position,

momentum, and their derivatives. A key difference between these approaches and the proposed

one is that our framework does not require any information about higher-order derivatives (e.g.,

acceleration) and can incorporate external control into the Hamiltonian formalism.

Neural Networks for Dynamics and Control: Inferring underlying dynamics from time-series

data plays a critical role in controlling closed-loop response of dynamical systems, such as robotic

manipulators [54] and building HVAC systems [93]. Although the use of neural networks towards

identification and control of dynamical systems dates back to more than three decades ago [63],

recent advances in deep neural networks have led to renewed interest in this domain. [89] learn

dynamics with control from high-dimensional observations (raw image sequences) using a varia-

tional approach and synthesize an iterative LQR controller to control physical systems by imposing

a locally linear constraint. [43] and [49] adopt a variational approach and use recurrent architectures

to learn state-space models from noisy observation. SE3-Nets [14] learn (�(3) transformation of

rigid bodies from point cloud data. [5] use partial information about the system state to learn a

nonlinear state-space model. However, this body of work, while attempting to learn state-space

models, does not take physics-based priors into consideration.

Contribution

The main contribution of this work is two-fold. First, we introduce a learning framework called

Symplectic ODE-Net (SymODEN) which encodes a generalization of the Hamiltonian dynamics.

This generalization, by adding an external control term to the standard Hamiltonian dynamics,

allows us to learn the system dynamics which conforms to Hamiltonian dynamics with control.

With the learned structured dynamics, we are able to synthesize controllers to control the system

to track a reference configuration. Moreover, by encoding the structure, we can achieve better

predictions with smaller network sizes. Second, we take one step forward in combining the physics-

based prior and the data-driven approach. Previous approaches [56, 33] require data in the form of

generalized coordinates and their derivatives up to the second order. However, a large number of

physical systems accommodate generalized coordinates which are non-Euclidean (e.g., angles), and

such angle data is often obtained in the embedded form, i.e., (cos @, sin @) instead of the coordinate

129

(@) itself. The underlying reason is that an angular coordinate lies on S1 instead of R1. In contrast to

previous approaches which do not address this aspect, SymODEN has been designed to work with

angle data in the embedded form. Additionally, we leverage differentiable ODE solvers to avoid the

need for estimating second-order derivatives of generalized coordinates. Code for the SymODEN

framework and experiments is available at https://github.com/d-biswa/Symplectic-ODENet.

11.2 Preliminary Concepts

11.2.1 Hamiltonian Dynamics

Lagrangian dynamics and Hamiltonian dynamics are both reformulations of Newtonian dynamics.

They provide novel insights into the laws of mechanics. In these formulations, the configuration

of a system is described by its generalized coordinates. Over time, the configuration point of the

system moves in the configuration space, tracing out a trajectory. Lagrangian dynamics describes

the evolution of this trajectory, i.e., the equations of motion, in the configuration space. Hamiltonian

dynamics, however, tracks the change of system states in the phase space, i.e. the product space

of generalized coordinates q = (@1 , @2 , ..., @=) and generalized momenta p = (?1 , ?2 , ..., ?=). In

other words, Hamiltonian dynamics treats q and p on an equal footing. This not only provides

symmetric equations of motion but also leads to a whole new approach to classical mechanics [27].

Hamiltonian dynamics is also widely used in statistical and quantum mechanics.

In Hamiltonian dynamics, the time-evolution of a system is described by the Hamiltonian

�(q, p), a scalar function of generalized coordinates and momenta. Moreover, in almost all physical

systems, the Hamiltonian is the same as the total energy and hence can be expressed as

�(q, p) =
1

2
p)M−1(q)p ++(q), (11.1)

where the mass matrix M(q) is symmetric positive definite and+(q) represents the potential energy

of the system. Correspondingly, the time-evolution of the system is governed by

¤q =
%�

%p
¤p = −

%�

%q
, (11.2)

where we have dropped explicit dependence on q and p for brevity of notation. Moreover, since

¤� =

(%�
%q

))
¤q +

(%�
%p

))
¤p = 0, (11.3)

130

the total energy is conserved along a trajectory of the system. The RHS of Equation (11.2) is called

the symplectic gradient [73] of �, and Equation (11.3) shows that moving along the symplectic

gradient keeps the Hamiltonian constant.

In this work, we consider a generalization of the Hamiltonian dynamics which provides a means

to incorporate external control (u), such as force and torque. As external control is usually affine

and only influences changes in the generalized momenta, we can express this generalization as

¤q

¤p

=

%�
%p

− %�
%q

+

0

g(q)

u, (11.4)

where the input matrix g(q) is typically assumed to have full column rank. For u = 0, the generalized

dynamics reduces to the classical Hamiltonian dynamics (11.2) and the total energy is conserved;

however, when u ≠ 0, the system has a dissipation-free energy exchange with the environment.

11.2.2 Control via Energy Shaping

Once we have learned the dynamics of a system, the learned model can be used to synthesize a

controller for driving the system to a reference configuration q★. As the proposed approach offers

insight about the energy associated with a system, it is a natural choice to exploit this information

for synthesizing controllers via energy shaping [65]. As energy is a fundamental aspect of physical

systems, reshaping the associated energy landscape enables us to specify a broad range of control

objectives and synthesize nonlinear controllers with provable performance guarantees.

If rank(g(q)) = rank(q), the system is fully-actuated and we have control over any dimension

of “acceleration" in ¤p. For such fully-actuated systems, a controller u(q, p) = ���(q) + v(p) can be

synthesized via potential energy shaping ���(q) and damping injection v(p). For completeness, we restate

this procedure [65] using our notation. As the name suggests, the goal of potential energy shaping

is to synthesize ���(q) such that the closed-loop system behaves as if its time-evolution is governed

by a desired Hamiltonian �3. With this, we have

¤q

¤p

=

%�
%p

− %�
%q

+

0

g(q)

���(q) =

%�3

%p

−
%�3

%q

, (11.5)

where the difference between the desired Hamiltonian and the original one lies in their potential

energy term, i.e.

�3(q, p) =
1
2

p)M−1(q)p ++3(q). (11.6)

131

In other words, ���(q) shape the potential energy such that the desired Hamiltonian �3(q, p) has a

minimum at (q★, 0). Then, by substituting Equation (11.1) and Equation (11.6) into Equation (11.5),

we get

���(q) = g)(gg))−1
(%+
%q

−
%+3
%q

)
. (11.7)

Thus, with potential energy shaping, we ensure that the system has the lowest energy at the

desired reference configuration. Furthermore, to ensure that trajectories actually converge to this

configuration, we add an additional damping term2 given by

v(p) = −g)(gg))−1(K3p). (11.8)

However, for underactuated systems, potential energy shaping alone cannot3 drive the system to a

desired configuration. We also need kinetic energy shaping for this purpose [16].

Remark If the desired potential energy is chosen to be a quadratic of the form

+3(q) =
1

2
(q − q★))K?(q − q★), (11.9)

the external forcing term can be expressed as

u = g)(gg))−1

(
%+

%q
− K?(q − q★) − K3p

)
. (11.10)

This can be interpreted as a PD controller with an additional energy compensation term.We 4

11.3 Symplectic ODE-Net

In this section, we introduce the network architecture of Symplectic ODE-Net. In Subsection 11.3.1,

we show how to learn an ordinary differential equation with a constant control term. In Subsection

11.3.2, we assume we have access to generalized coordinate and momentum data and derive the

network architecture. In Subsection 11.3.3, we take one step further to propose a data-driven

approach to deal with data of embedded angle coordinates. In Subsection 11.3.4, we put together

the line of reasoning introduced in the previous two subsections to propose SymODEN for learning

dynamics on the hybrid space R= × T< .

2If we have access to q instead of p, we use q instead in Equation (11.8).
3As 66) is not invertible, we cannot solve the matching condition given by Equation (11.7).
4Please refer to Appendix 11.6.2 for more details.

132

11.3.1 Training Neural ODE with Constant Forcing

Now we focus on the problem of learning the ordinary differential equation (ODE) from time

series data. Consider an ODE: ¤x = f(x). Assume we don’t know the analytical expression of the

right hand side (RHS) and we approximate it with a neural network. If we have time series data

X = (xC0 , xC1 , ..., xC=), how could we learn f(x) from the data?

[17] introduced Neural ODE, differentiable ODE solvers with O(1)-memory backpropagation.

With Neural ODE, we make predictions by approximating the RHS function using a neural network

f� and feed it into an ODE solver

xC1 , xC2 , ..., xC= = ODESolve(xC0 , f� , C1 , C2 , ..., C=)

We can then construct the loss function ! = ‖X−X‖2
2 and update the weights � by backpropagating

through the ODE solver.

In theory, we can learn f� in this way. In practice, however, the neural net is hard to train if =

is large. If we have a bad initial estimate of the f�, the prediction error would in general be large.

Although |xC1 − xC1 | might be small, xC# would be far from xC# as error accumulates, which makes

the neural network hard to train. In fact, the prediction error of xC# is not as important as xC1 . In

other words, we should weight data points in a short time horizon more than the rest of the data

points. In order to address this and better utilize the data, we introduce the time horizon � as a

hyperparameter and predict xC8+1 , xC8+2 , ..., xC8+� from initial condition xC8 , where 8 = 0, ..., = − �.

One challenge toward leveraging Neural ODE to learn state-space models is the incorporation

of the control term into the dynamics. Equation (11.4) has the form ¤x = f(x, u) with x = (q, p). A

function of this form cannot be directly fed into Neural ODE directly since the domain and range

of f have different dimensions. In general, if our data consist of trajectories of (x, u)C0 ,...,C= where u

remains the same in a trajectory, we can leverage the augmented dynamics

¤x

¤u

=

f�(x, u)

0

= f̃�(x, u). (11.11)

With Equation (11.11), we can match the input and output dimension of f̃�, which enables us to

feed it into Neural ODE. The idea here is to use different constant external forcing to get the system

responses and use those responses to train the model. With a trained model, we can apply a time-

varying u to the dynamics ¤x = f�(x, u) and generate estimated trajectories. When we synthesize

133

the controller, u remains constant in each integration step. As long as our model interpolates well

among different values of constant u, we could get good estimated trajectories with a time-varying

u. The problem is then how to design the network architecture of f̃�, or equivalently f� such that

we can learn the dynamics in an efficient way.

11.3.2 Learning from Generalized Coordinate and Momentum

Suppose we have trajectory data consisting of (q, p, u)C0 ,...,C= , where u remains constant in a trajectory.

If we have the prior knowledge that the unforced dynamics of q and p is governed by Hamiltonian

dynamics, we can use three neural nets – M−1
�1
(q), +�2

(q) and g�3
(q) – as function approximators to

represent the inverse of mass matrix, potential energy and the input matrix. Thus,

f�(q, p, u) =

%��1 ,�2

%p

−
%��1 ,�2

%q

+

0

g�3
(q)

u (11.12)

where

��1 ,�2
(q, p) =

1

2
p)M−1

�1
(q)p ++�2

(q) (11.13)

The partial derivative in the expression can be taken care of by automatic differentiation. by putting

the designed f�(q, p, u) into Neural ODE, we obtain a systematic way of adding the prior knowledge

of Hamiltonian dynamics into end-to-end learning.

11.3.3 Learning from Embedded Angle Data

In the previous subsection, we assume (q, p, u)C0 ,...,C= . In a lot of physical system models, the state

variables involve angles which reside in the interval [−�,�). In other words, each angle resides

on the manifold S1. From a data-driven perspective, the data that respects the geometry is a 2

dimensional embedding (cos @, sin @). Furthermore, the generalized momentum data is usually not

available. Instead, the velocity is often available. For example, in OpenAI Gym [13] Pendulum-v0

task, the observation is (cos @, sin @, ¤@).

From a theoretical perspective, however, the angle itself is often used, instead of the 2D embed-

ding. The reason being both the Lagrangian and the Hamiltonian formulations are derived using

generalized coordinates. Using an independent generalized coordinate system makes it easier to

solve for the equations of motion.

In this subsection, we take the data-driven standpoint and develop an angle-aware method to

134

accommodate the underlying manifold structure. We assume all the generalized coordinates are

angles and the data comes in the form of (x1(q), x2(q), x3(¤q), u)C0 ,...,C= = (cos q, sin q, ¤q, u)C0 ,...,C= . We

aim to incorporate our theoretical prior – Hamiltonian dynamics – into the data-driven approach.

The goal is to learn the dynamics of x1, x2 and x3. Noticing p = M(x1 , x2) ¤q, we can write down the

derivative of x1, x2 and x3,

¤x1 = − sin q ◦ ¤q = −x2 ◦ ¤q

¤x2 = cos q ◦ ¤q = x1 ◦ ¤q (11.14)

¤x3 =
d
dC

(M−1(x1 , x2)p) =
d
dC

(M−1(x1 , x2))p + M−1(x1 , x2) ¤p

where “◦" represents the elementwise product (i.e., Hadamard product). We assume q and p evolve

with the generalized Hamiltonian dynamics Equation (11.4). Here the Hamiltonian �(x1 , x2 , p) is a

function of x1, x2 and p instead of q and p.

¤q =
%�

%p
(11.15)

¤p = −
%�

%q
+ g(x1 , x2)u = −

%x1

%q

%�

%x1
−

%x2

%q

%�

%x2
+ g(x1 , x2)u

= sin q ◦
%�

%x1
− cos q ◦

%�

%x2
+ g(x1 , x2)u = x2 ◦

%�

%x1
− x1 ◦

%�

%x2
+ g(x1 , x2)u (11.16)

Then the right hand side of Equation (11.14) can be expressed as a function of state variables

and control (x1 , x2 , x3 , u). Thus, it can be fed into the Neural ODE. We use three neural nets –

M−1
�1
(x1 , x2), +�2(x1 , x2) and g�3(x1 , x2) – as function approximators. Substitute Equation (11.15) and

Equation (11.16) into Equation (11.14), then the RHS serves as f�(x1 , x2 , x3 , u).5

f�(x1 , x2 , x3 , u)=

−x2 ◦
%��1 ,�2

%p

x1 ◦
%��1 ,�2

%p

d
dC (M

−1
�1
(x1,x2))p+M−1

�1
(x1,x2)

(
x2◦

%��1,�2
%x1

−x1◦
%��1,�2
%x2

+g�3(x1,x2)u
)

(11.17)

where

��1 ,�2(x1 , x2 , p) =
1
2

p)M−1
�1
(x1 , x2)p ++�2(x1 , x2) (11.18)

p = M�1(x1 , x2)x3 (11.19)

5In Equation (11.17), the derivative of M−1
�1
(x1 , x2) can be expanded using chain rule and expressed as a function of the

states.

135

11.3.4 Learning on Hybrid Spaces R= × T<

In Subsection 11.3.2, we treated the generalized coordinates as translational coordinates. In Sub-

section 11.3.3, we developed an angle-aware method to better deal with embedded angle data. In

most of physical systems, these two types of coordinates coexist. For example, robotics systems

are usually modelled as interconnected rigid bodies. The positions of joints or center of mass are

translational coordinates and the orientations of each rigid body are angular coordinates. In other

words, the generalized coordinates lie on R= ×T< , where T< denotes the <-torus, with T1 = S1 and

T2 = S1 × S1. In this subsection, we put together the architecture of the previous two subsections.

We assume the generalized coordinates are q = (r,)))) ∈ R= × T< and the data comes in the form of

(x1 , x2 , x3 , x4 , x5 , u)C0 ,...,C= = (r, cos))), sin))), ¤r, ¤))), u)C0 ,...,C= . With similar line of reasoning, we use three

neural nets – M−1
�1
(x1 , x2 , x3), +�2(x1 , x2 , x3) and g�3(x1 , x2 , x3) – as function approximators. We have

p = M�1(x1 , x2 , , x3)

x4

x5

(11.20)

��1 ,�2(x1 , x2 , x3 , p) =
1
2

p)M−1
�1
(x1 , x2 , x3)p ++�2(x1 , x2 , x3) (11.21)

with Hamiltonian dynamics, we have

¤q =

¤r

¤)))

=

%��1 ,�2

%p
(11.22)

¤p =

−

%��1 ,�2
%x1

x3 ◦
%��1 ,�2
%x2

− x2 ◦
%��1 ,�2
%x3

+ g�3(x1 , x2 , x3)u (11.23)

Then

¤x1

¤x2

¤x3

¤x4

¤x5

=

¤r

−x3 ¤)))

x2 ¤)))

d
dC (M

−1
�1
(x1 , x2 , x3))p + M−1

�1
(x1 , x2 , x3) ¤p

= f�(x1 , x2 , x3 , x4 , x5 , u) (11.24)

where the ¤r and ¤))) come from Equation (11.22). Now we obtain a f� which can be fed into Neural

ODE. Figure 11.1 shows the flow of the computation graph based on Equation (11.20)-(11.24).

136

Figure 11.1: The computation graph of SymODEN. Blue arrows indicate neural network parametrization. Red
arrows indicate automatic differentiation. For a given (x, u), the computation graph outputs a f�(x, u) which
follows Hamiltonian dynamics with control. The function itself is an input to the Neural ODE to generate
estimation of states at each time step. Since all the operations are differentiable, weights of the neural networks
can be updated by backpropagation.

11.3.5 Positive Definiteness of the Mass matrix

In real physical systems, the mass matrix M is positive definite, which ensures a positive kinetic

energy with a non-zero velocity. The positive definiteness of M implies the positive definiteness of

M−1
�1

. Thus, we impose this constraint in the network architecture by M−1
�1

= L�1
L)�1

, where L�1
is a

lower-triangular matrix. The positive definiteness is ensured if the diagonal elements of M−1
�1

are

positive. In practice, this can be done by adding a small constant & to the diagonal elements of M−1
�1

.

It not only makes M�1
invertible, but also stabilizes the training.

11.4 Experiments

11.4.1 Experimental Setup

We use the following four tasks to evaluate the performance of Symplectic ODE-Net model - (i)

Task 1: a pendulum with generalized coordinate and momentum data (learning on R1); (ii) Task 2:

a pendulum with embedded angle data (learning on S1); (iii) Task 3: a CartPole system (learning

on R1 × S1); and (iv) Task 4: an Acrobot (learning on T2).

Model Variants. Besides the Symplectic ODE-Net model derived above, we consider a variant

by approximating the Hamiltonian using a fully connected neural net��1 ,�2
. We call it Unstructured

Symplectic ODE-Net (Unstructured SymODEN) since this model does not exploit the structure of the

Hamiltonian (11.1).

Baseline Models. In order to show that we can learn the dynamics better with less parameters

by leveraging prior knowledge, we set up baseline models for all four experiments. For the pen-

dulum with generalized coordinate and momentum data, the naive baseline model approximates

137

Equation (11.12) – f�(x, u) – by a fully connected neural net. For all the other experiments, which

involves embedded angle data, we set up two different baseline models: naive baseline approximates

f�(x, u) by a fully connected neural net. It doesn’t respect the fact that the coordinate pair, cos)))

and sin))), lie on T< . Thus, we set up the geometric baseline model which approximates ¤@ and ¤? with

a fully connected neural net. This ensures that the angle data evolves on T< . 6

Data Generation. For all tasks, we randomly generated initial conditions of states and sub-

sequently combined them with 5 different constant control inputs, i.e., D = −2.0,−1.0, 0.0, 1.0, 2.0

to produce the initial conditions and input required for simulation. The simulators integrate the

corresponding dynamics for 20 time steps to generate trajectory data which is then used to construct

the training set. The simulators for different tasks are different. For Task 1, we integrate the true

generalized Hamiltonian dynamics with a time interval of 0.05 seconds to generate trajectories.

All the other tasks deal with embedded angle data and velocity directly, so we use OpenAI Gym

[13] simulators to generate trajectory data. One drawback of using OpenAI Gym is that not all

environments use the Runge-Kutta method (RK4) to carry out the integration. OpenAI Gym favors

other numerical schemes over RK4 because of speed, but it is harder to learn the dynamics with

inaccurate data. For example, if we plot the total energy as a function of time from data generated

by Pendulum-v0 environment with zero action, we see that the total energy oscillates around a

constant by a significant amount, even though the total energy should be conserved. Thus, for

Task 2 and Task 3, we use Pendulum-v0 and CartPole-v1, respectively, and replace the numerical

integrator of the environments to RK4. For Task 4, we use the Acrobot-v1 environment which is

already using RK4. We also change the action space of Pendulum-v0, CartPole-v1 and Acrobot-v1

to a continuous space with a large enough bound.

Model training. In all the tasks, we train our model using Adam optimizer [46] with 1000

epochs. We set a time horizon � = 3, and choose “RK4" as the numerical integration scheme in

Neural ODE. We vary the size of the training set by doubling from 16 initial state conditions to

1024 initial state conditions. Each initial state condition is combined with five constant control

D = −2.0,−1.0, 0.0, 1.0, 2.0 to produce initial condition for simulation. Each trajectory is generated

by integrating the dynamics 20 time steps forward. We set the size of mini-batches to be the

number of initial state conditions. We logged the train error per trajectory and the prediction error

per trajectory in each case for all the tasks. The train error per trajectory is the mean squared error

(MSE) between the estimated trajectory and the ground truth over 20 time steps. To evaluate the

performance of each model in terms of long time prediction, we construct the metric of prediction

6For more information on model details, please refer to Appendix 11.6.1.

138

3 2 1 0 1 2 3
q

2

1

0

1

2

3

p

Trajectory Prediction

Ground Truth
Naive Baseline

3 2 1 0 1 2 3
q

2

1

0

1

2

3

p

Trajectory Prediction

Ground Truth
Unstructured SymODEN

3 2 1 0 1 2 3
q

2

1

0

1

2

3

p

Trajectory Prediction

Ground Truth
SymODEN

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
SymODEN M 1

1 (q)

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
SymODEN V 2(q)

Figure 11.2: Sample trajectories and learned functions of Task 1.

error per trajectory by using the same initial state condition in the training set with a constant

control of D = 0.0, integrating 40 time steps forward, and calculating the MSE over 40 time steps.

The reason for using only the unforced trajectories is that a constant nonzero control might cause

the velocity to keep increasing or decreasing over time, and large absolute values of velocity are of

little interest for synthesizing controllers.

11.4.2 Task 1: Pendulum with Generalized Coordinate and Momentum Data

In this task, we use the model described in Section 11.3.2 and present the predicted trajectories of

the learned models as well as the learned functions of SymODEN. We also point out the drawback

of treating the angle data as a Cartesian coordinate. The dynamics of this task has the following

form

¤@ = 3?, ¤? = −5 sin @ + D (11.25)

with Hamiltonian �(@, ?) = 1.5?2 + 5(1 − cos @). In other words "(@) = 3, +(@) = 5(1 − cos @) and

6(@) = 1.

In Figure 11.2, The ground truth is an unforced trajectory which is energy-conserved. The

prediction trajectory of the baseline model does not conserve energy, while both the SymODEN and

its unstructured variant predict energy-conserved trajectories. For SymODEN, the learned 6�3(@)

and "−1
�1
(@) matches the ground truth well. +�2(@) differs from the ground truth with a constant.

139

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
SymODEN M 1

1 (q)/

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
SymODEN V 2(q)

Figure 11.3: Without true generalized momentum data, the learned functions match the ground
truth with a scaling. Here � = 0.357

This is acceptable since the potential energy is a relative notion. Only the derivative of +�2
(@) plays

a role in the dynamics.

Here we treat @ as a variable inR1 and our training set contains initial conditions of @ ∈ [−�, 3�].

The learned functions do not extrapolate well outside this range, as we can see from the left part in

the figures of "−1
�1
(@) and +�2

(@). We address this issue by working directly with embedded angle

data, which leads us to the next subsection.

11.4.3 Task 2: Pendulum with Embedded Data

In this task, the dynamics is the same as Equation (11.25) but the training data are generated by

the OpenAI Gym simulator, i.e. we use embedded angle data and assume we only have access

to ¤@ instead of ?. We use the model described in Section 11.3.3 and synthesize an energy-based

controller (Section 11.2.2). Without true ? data, the learned function matches the ground truth with

a scaling �, as shown in Figure 11.3. To explain the scaling, let us look at the following dynamics

¤@ = ?/, ¤? = −15 sin @ + 3D (11.26)

with Hamiltonian � = ?2/(2) + 15(1 − cos @). If we only look at the dynamics of @, we have

¥@ = −15 sin @+3D, which is independent of . If we don’t have access to the generalized momentum

?, our trained neural network may converge to a Hamiltonian with a 4 which is different from the

true value, C = 1/3, in this task. By a scaling � = C/4 = 0.357, the learned functions match the

ground truth. Even we are not learning the true C , we can still perform prediction and control since

we are learning the dynamics of @ correctly. We let+3 = −+�2(@), then the desired Hamiltonian has

minimum energy when the pendulum rests at the upward position. For the damping injection, we

140

0 2 4 6 8 10
t

1

0

1
q

sin(q)
cos(q)

0 2 4 6 8 10
t

2.5

0.0

2.5

q

0 2 4 6 8 10
t

10

0

10
u

Figure 11.4: Time-evolution of the state variables (cos @, sin @, ¤@) when the closed-loop control input
D(cos @, sin @, ¤@) is governed by Equation (11.27). The thin black lines show the expected results.

let 3 = 3. Then from Equation (11.7) and (11.8), the controller we synthesize is

D(cos @, sin @, ¤@) = 6−1
�3
(cos @, sin @)

(
2
(
−

%+�2

% cos @
sin @ +

%+�2

% sin @
cos @

)
− 3 ¤@

)
(11.27)

Only SymODEN out of all models we consider provides the learned potential energy which is

required to synthesize the controller. Figure 11.4 shows how the states evolve when the controller

is fed into the OpenAI Gym simulator. We can successfully control the pendulum into the inverted

position using the controller based on the learned model even though the absolute maximum

control D, 7.5, is more than three times larger than the absolute maximum D in the training set,

which is 2.0. This shows SymODEN extrapolates well.

11.4.4 Task 3: CartPole System

The CartPole system is an underactuated system and to synthesize a controller to balance the pole

from arbitrary initial condition requires trajectory optimization or kinetic energy shaping. We show

that we can learn its dynamics and perform prediction in Section 11.4.6. We also train SymODEN in

a fully-actuated version of the CartPole system (see Section 11.6.5). The corresponding energy-based

controller can bring the pole to the inverted position while driving the cart to the origin.

11.4.5 Task 4: Acrobot

The Acrobot is an underactuated double pendulum. As this system exhibits chaotic motion, it

is not possible to predict its long-term behavior. However, Figure 11.6 shows that SymODEN

can provide reasonably good short-term prediction. We also train SymODEN in a fully-actuated

version of the Acrobot and show that we can control this system to reach the inverted position (see

Appendix 11.6.5).

141

11.4.6 Results

102 103

100

101

Tr
ai

n
er

ro
r

Task 1: Pendulum

102 103

number of initial state conditions

101

102

Pr
ed

ict
io

n
er

ro
r

102 103

10 1

100

Task 2: Pendulum(embed)

102 103

number of initial state conditions

100

101

102

102 103

100

101

Task 3: CartPole

102 103

number of initial state conditions

101

102

103

102 103

10 1

100

101

102

Task 4: Acrobot
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

102 103

number of initial state conditions

100

101

102

103
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

Figure 11.5: Train error per trajectory and prediction error per trajectory for all 4 tasks with different number
of training trajectories. Horizontal axis shows number of initial state conditions (16, 32, 64, 128, 256, 512, 1024)
in the training set. Both the horizontal axis and vertical axis are in log scale.

0.0 2.5 5.0 7.5 10.0
t

0.0

2.5

5.0

7.5

10.0

M
SE

Task1: Pendulum

0.0 2.5 5.0 7.5 10.0
t

0

2

4

6

8
Task 2: Pendulum(embed)

0.0 2.5 5.0 7.5 10.0
t

0

20

40

60

Task 3: CartPole

0.0 2.5 5.0 7.5 10.0
t

0

10

20

30

40

Task 4: Acrobot
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

0.0 2.5 5.0 7.5 10.0
t

6

8

10

12

To
ta

l E
ne

rg
y

0.0 2.5 5.0 7.5 10.0
t

0.4

0.5

0.6

0.7

0.8

0.0 2.5 5.0 7.5 10.0
t

2

0

2

4

6

0.0 2.5 5.0 7.5 10.0
t

0

10

20
Ground Truth
Naive Baseline
Geometric Baseline
Unstructured SymODEN
SymODEN

Figure 11.6: Mean square error and total energy of test trajectories. SymODEN works the best in terms of
both MSE and total energy. Since SymODEN has learned the Hamiltonian and discovered the conservation
from data the predicted trajectories match the ground truth. The ground truth of energy in all four tasks stay
constant.

In this subsection, we show the train error, prediction error, as well as the MSE and total energy

of a sample test trajectory for all the tasks. Figure 11.5 shows the variation in train error and

prediction error with changes in the number of initial state conditions in the training set. We can

see that SymODEN yields better generalization in every task. In Task 3, although the Geometric

Baseline Model yields lower train error in comparison to the other models, SymODEN generates

more accurate predictions, indicating overfitting in the Geometric Baseline Model. By incorporating

the physics-based prior of Hamiltonian dynamics, SymODEN learns dynamics that obeys physical

laws and thus provides better predictions. In most cases, SymODEN trained with a smaller training

dataset performs better than other models in terms of the train and prediction error, indicating that

142

better generalization can be achieved even with fewer training samples.

Figure 11.6 shows the evolution of MSE and total energy along a trajectory with a previously un-

seen initial condition. For all the tasks, MSE of the baseline models diverges faster than SymODEN.

Unstructured SymODEN performs well in all tasks except Task 3. As for the total energy, in Task 1

and Task 2, SymODEN and Unstructured SymODEN conserve total energy by oscillating around

a constant value. In these models, the Hamiltonian itself is learned and the prediction of the fu-

ture states stay around a level set of the Hamiltonian. Baseline models, however, fail to find the

conservation and the estimation of future states drift away from the initial Hamiltonian level set.

11.5 Conclusion

Here we have introduced Symplectic ODE-Net which provides a systematic way to incorporate

prior knowledge of Hamiltonian dynamics with control into a deep learning framework. We show

that SymODEN achieves better prediction with fewer training samples by learning an interpretable,

physically-consistent state-space model. Future works will incorporate a broader class of physics-

based prior, such as the port-Hamiltonian system formulation, to learn dynamics of a larger class of

physical systems. SymODEN can work with embedded angle data or when we only have access to

velocity instead of generalized momentum. Future works would explore other types of embedding,

such as embedded 3D orientations. Another interesting direction could be to combine energy

shaping control (potential as well as kinetic energy shaping) with interpretable end-to-end learning

frameworks.

Acknowledgments

This research was inspired by the ideas and plans articulated by N. E. Leonard and A. Majumdar,

Princeton University, in their ONR grant #N00014-18-1-2873. The research was primarily carried

out during Y. D. Zhong’s internship at Siemens Corporation, Corporate Technology. Pre- and

post-internship, Y. D. Zhong’s work was supported by ONR grant #N00014-18-1-2873.

143

11.6 Appendix

11.6.1 Experiment Implementation Details

The architectures used for our experiments are shown below. For all the tasks, SymODEN has the

lowest number of total parameters. To ensure that the learned function is smooth, we use Tanh

activation function instead of ReLu. As we have differentiation in the computation graph, non-

smooth activation functions would lead to discontinuities in the derivatives. This, in turn, would

result in an ODE with a discontinuous RHS which is not desirable. All the architectures shown

below are fully-connected neural networks. The first number indicates the dimension of the input

layer. The last number indicates the dimension of output layer. The dimension of hidden layers is

shown in the middle along with the activation functions.

Task 1: Pendulum

• Input: 2 state dimensions, 1 action dimension

• Baseline Model (0.36M parameters): 2 - 600Tanh - 600Tanh - 2Linear

• Unstructured SymODEN (0.20M parameters):

– ��1 ,�2
: 2 - 400Tanh - 400Tanh - 1Linear

– 6�3
: 1 - 200Tanh - 200Tanh - 1Linear

• SymODEN (0.13M parameters):

– "−1
�1

: 1 - 300Tanh - 300Tanh - 1Linear

– +�2
: 1 - 50Tanh - 50Tanh - 1Linear

– 6�3
: 1 - 200Tanh - 200Tanh - 1Linear

Task 2: Pendulum with embedded data

• Input: 3 state dimensions, 1 action dimension

• Naive Baseline Model (0.65M parameters): 4 - 800Tanh - 800Tanh - 3Linear

• Geometric Baseline Model (0.46M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 2 - 300Tanh - 300Tanh - 300Tanh - 1Linear

– approximate (¤@, ¤?): 4 - 600Tanh - 600Tanh - 2Linear

144

• Unstructured SymODEN (0.39M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 2 - 300Tanh - 300Tanh - 300Tanh - 1Linear

– ��2
: 3 - 500Tanh - 500Tanh - 1Linear

– 6�3
: 2 - 200Tanh - 200Tanh - 1Linear

• SymODEN (0.14M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 2 - 300Tanh - 300Tanh - 300Tanh - 1Linear

– +�2
: 2 - 50Tanh - 50Tanh - 1Linear

– 6�3
: 2 - 200Tanh - 200Tanh - 1Linear

Task 3: CartPole

• Input: 5 state dimensions, 1 action dimension

• Naive Baseline Model (1.01M parameters): 6 - 1000Tanh - 1000Tanh - 5Linear

• Geometric Baseline Model (0.82M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– approximate (¤q, ¤p): 6 - 700Tanh - 700Tanh - 4Linear

• Unstructured SymODEN (0.67M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– ��2
: 5 - 500Tanh - 500Tanh - 1Linear

– 6�3
: 3 - 300Tanh - 300Tanh - 2Linear

• SymODEN (0.51M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– +�2
: 3 - 300Tanh - 300Tanh - 1Linear

– 6�3
: 3 - 300Tanh - 300Tanh - 2Linear

Task 4:Acrobot

• Input: 6 state dimensions, 1 action dimension

• Naive Baseline Model (1.46M parameters): 7 - 1200Tanh - 1200Tanh - 6Linear

145

• Geometric Baseline Model (0.97M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– approximate (¤q, ¤p): 7 - 800Tanh - 800Tanh - 4Linear

• Unstructured SymODEN (0.78M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– ��2
: 6 - 600Tanh - 600Tanh - 1Linear

– 6�3
: 4 - 300Tanh - 300Tanh - 2Linear

• SymODEN (0.51M parameters):

– "−1
�1

= !�1
!)�1

, where !�1
: 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear

– +�2
: 4 - 300Tanh - 300Tanh - 1Linear

– 6�3
: 4 - 300Tanh - 300Tanh - 2Linear

11.6.2 Special Case of Energy-based Controller - PD Controller with Energy

Compensation

The energy-based controller has the form u(q, p) = ���(q) + v(p), where the potential energy shaping

term ���(q) and the damping injection term v(p) are given by Equation (11.7) and Equation (11.8),

respectively.

If the desired potential energy +@(q) is given by a quadratic, as in Equation (11.9), then

���(q) = g)(gg))−1
(%+
%q

−
%+3
%q

)

= g)(gg))−1
(%+
%q

− K?(q − q★)
)
, (11.28)

and the controller can be expressed as

u(q, p) = ���(q) + v(p) = g)(gg))−1
(%+
%q

− K?(q − q★) − K3p
)
. (11.29)

The corresponding external forcing term is then given by

g(q)u =
%+

%q
− K?(q − q★) − K3p, (11.30)

146

which is same as Equation (11.10) in the main body of the paper. The first term in this external forcing

provides an energy compensation, whereas the second term and the last term are proportional and

derivative control terms, respectively. Thus, this control can be perceived as a PD controller with

an additional energy compensation.

11.6.3 Ablation Study of Differentiable ODE Solver

In Hamiltonian Neural Networks (HNN), [33] incorporate the Hamiltonian structure into learning

by minimizing the difference between the symplectic gradients and the true gradients. When the

true gradient is not available, which is often the case, the authors suggested using finite difference

approximations. In SymODEN, true gradients or gradient approximations are not necessary since

we integrate the estimated gradient using differentiable ODE solvers and set up the loss function

with the integrated values. Here we perform an ablation study of the differentiable ODE Solver.

Both HNN and the Unstructured SymODEN approximate the Hamiltonian by a neural network

and the main difference is the differentiable ODE solver, so we compare the performance of HNN

and the Unstructured SymODEN. We set the time horizon � = 1 since it naturally corresponds to the

finite difference estimate of the gradient. A larger � would correspond to higher-order estimates of

gradients. Since there is no angle-aware design in HNN, we use Task 1 to compare the performance

of these two models.

We generate 25 training trajectories, each of which contains 45 time steps. This is consistent

with the HNN paper. In the HNN paper [33], the initial conditions of the trajectories are generated

randomly in an annulus, whereas in this paper, we generate the initial state conditions uniformly in

a reasonable range in each state dimension. We guess the reason that the authors of HNN choose

the annulus data generation is that they do not have an angle-aware design. Take the pendulum

for example; all the training and test trajectories they generate do not pass the inverted position.

If they make prediction on a trajectory with a large enough initial speed, the angle would go over

±2�, ±4�, etc. in the long run. Since these are away from the region where the model gets trained,

we can expect the prediction would be poor. In fact, this motivates us to design the angle-aware

SymODEN in Section 11.3.3. In this ablation study, we generate the training data in both ways.

Table 11.1 shows the train error and the prediction error per trajectory of the two models. We can

see Unstructured SymODEN performs better than HNN. This is an expected result. To see why this

is the case, let us assume the training loss per time step of HNN is similar to that of Unstructured

SymODEN. Since the training loss is on the symplectic gradient, the error would accumulate while

147

0 2 4 6 8 10
t

0

2

4

6

8

10
MSE w/ annulus training data

0 2 4 6 8 10
t

0

2

4

6

8

Total Energy w/ annulus training data

Ground Truth
Unstructured SymODEN
HNN

0 2 4 6 8 10
t

0

2

4

6

8

10
MSE w/ rectangle training data

0 2 4 6 8 10
t

0

2

4

6

8

Total Energy w/ rectangle training data

Figure 11.7: MSE and Total energy of a sample test trajectory. Left two figures: the training data
for the models are randomly generated in an annulus, the same as in HNN. Right two figures: the
training data for the models are randomly generated in a rectangle - the same way that we use in
SymODEN.

integrating the symplectic gradient to get the estimated state values, and MSE of the state values

would likely be one order of magnitude greater than that of Unstructured SymODEN. Figure 11.7

shows the MSE and total energy of a particular trajectory. It is clear that the MSE of the Unstructured

SymODEN is lower than that of HNN. The MSE of HNN periodically touches zero does not mean

it has a good prediction at that time step. Since the trajectories in the phase space are closed circles,

those zeros mean the predicted trajectory of HNN lags behind (or runs ahead of) the true trajectory

by one or more circles. Also, the energy of the HNN trajectory drifts instead of staying constant,

probably because the finite difference approximation is not accurate enough.

Table 11.1: Train error and prediction error per trajectory of Unstructured SymODEN and HNN. The train
error per trajectory is the sum of MSE of all the 45 timesteps averaged over the 25 training trajectories. The
prediction error per trajectory is the sum of MSE of 90 timesteps in a trajectory.

Models
annulus training data rectangle training data

train error prediction error train error prediction error

Unstructured SymODEN 56.59 440.78 502.60 4363.87

HNN 290.67 564.16 5457.80 26209.17

11.6.4 Effects of the time horizon �

Incorporating the differential ODE solver also introduces two hyperparameters: solver types and

time horizon �. For the solver types, the Euler solver is not accurate enough for our tasks. The

adaptive solver “dopri5" lead to similar train error, test error and prediction error as the RK4 solver,

but requires more time during training. Thus, in our experiments, we choose RK4.

Time horizon � is the number of points we use to construct our loss function. Table 11.2 shows

the train error, test error and prediction error per trajectory in Task 2 when � is varied from 1 to

5. We can see that longer time horizons lead to better models. This is expected since long time

horizons penalize worse long term predictions. We also observe in our experiments that longer

148

time horizons require more time to train the models.

Table 11.2: Train error, test error and prediction error per trajectory of Task 2

Time Horizon � = 1 � = 2 � = 3 � = 4 � = 5

Train Error 0.744 0.136 0.068 0.033 0.017

Test Error 0.579 0.098 0.052 0.024 0.012

Prediction Error 3.138 0.502 0.199 0.095 0.048

11.6.5 Fully-actuated Cartpole and Acrobot

CartPole and Acrobot are underactuated systems. Incorporating the control of underactuated

systems into the end-to-end learning framework is our future work. Here we trained SymODEN on

fully-actuated versions of Cartpole and Acrobot and synthesized controllers based on the learned

model.

For the fully-actuated CartPole, Figure 11.8 shows the snapshots of the system of a controlled

trajectory with an initial condition where the pole is below the horizon. Figure 11.9 shows the time

series of state variables and control inputs. We can successfully learn the dynamics and control the

pole to the inverted position and the cart to the origin.

Figure 11.8: Snapshots of a controlled trajectory of the fully-actuated CartPole system with a 0.3s time interval.

0 2 4 6 8
t

0.0

0.5

1.0
r

0 2 4 6 8
t

0

1
cos()
sin()

0 2 4 6 8
t

1

0

r

0 2 4 6 8
t

5.0

2.5

0.0

0 2 4 6 8
t

2.5

0.0

2.5
u1

0 2 4 6 8
t

10

0

10

u2

Figure 11.9: Time series of state variables and control inputs of a controlled trajectory shown in Figure 11.8.
Black reference lines indicate expected value in the end.

For the fully-actuated Acrobot, Figure 11.10 shows the snapshots of a controlled trajectory. Figure

11.11 shows the time series of state variables and control inputs. We can successfully control the

Acrobot from the downward position to the upward position, though the final value of @2 is a little

149

away from zero. Taking into account that the dynamics has been learned with only 64 different

initial state conditions, it is most likely that the upward position did not show up in the training

data.

Figure 11.10: Snapshots of a controlled trajectory of the fully-actuated Acrobot system with a 1s time interval.

0 5 10 15 20
t

1

0

1
q1

cos(q1)
sin(q1)

0 5 10 15 20
t

0.0

0.5

1.0
q2

cos(q2)
sin(q2)

0 5 10 15 20
t

0

2

q1

0 5 10 15 20
t

0.5

0.0

0.5

q2

0 5 10 15 20
t

2

0

u1

0 5 10 15 20
t

25

0

25
u2

Figure 11.11: Time series of state variables and control inputs of a controlled trajectory shown in Figure 11.10.
Black reference lines indicate expected value in the end.

11.6.6 Test Errors of the Tasks

Here we show statistics of train, test, and prediction per trajectory in all four tasks. The train

errors are based on 64 initial state conditions and 5 constant inputs. The test errors are based on

64 previously unseen initial state conditions and the same 5 constant inputs. Each trajectory in

the train and test set contains 20 steps. The prediction error is based on the same 64 initial state

conditions (during training) and zero inputs.

150

Table 11.3: Train, Test and Prediction errors of the Four Tasks

Naive
Baseline

Geometric
Baseline

Unstructured
Symplectic-ODE Symplectic-ODE

Task 1: Pendulum

Model Parameter 0.36M N/A 0.20M 0.13M

Train error 30.82 ± 43.45 N/A 0.89 ± 2.76 1.50 ± 4.17

Test error 40.99 ± 56.28 N/A 2.74 ± 9.94 2.34 ± 5.79

Prediction error 37.87 ± 117.02 N/A 17.17 ± 71.48 23.95 ± 66.61

Task 2: Pendulum (embed)

Model Parameter 0.65M 0.46M 0.39M 0.14M

Train error 2.31 ± 3.72 0.59 ± 1.634 1.76 ± 3.69 0.067 ± 0.276

Test error 2.18 ± 3.59 0.49 ± 1.762 1.41 ± 2.82 0.052 ± 0.241

Prediction error 317.21 ± 521.46 14.31 ± 29.54 3.69 ± 7.72 0.20 ± 0.49

Task3: CartPole

Model Parameter 1.01M 0.82M 0.67M 0.51M

Train error 15.53 ± 22.52 0.45 ± 0.37 4.84 ± 4.42 1.78 ± 1.81

Test error 25.42 ± 38.49 1.20 ± 2.67 6.90 ± 8.66 1.89 ± 1.81

Prediction error 332.44 ± 245.24 52.26 ± 73.25 225.22 ± 194.24 11.41 ± 16.06

Task 4: Acrobot

Model Parameter 1.46M 0.97M 0.78M 0.51M

Train error 2.04 ± 2.90 2.07 ± 3.72 1.32 ± 2.08 0.25 ± 0.39

Test error 5.62 ± 9.29 5.12 ± 7.25 3.33 ± 6.00 0.28 ± 0.48

Prediction error 64.61 ± 145.20 26.68 ± 34.90 9.72 ± 16.58 2.07 ± 5.26

151

Chapter 12

Dissipative SymODEN: Encoding

Hamiltonian Dynamics with

Dissipation and Control into Deep

Learning

Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty

Appears as Zhong et al. [101] in ICLR 2020 Workshop on Integration of Deep Neural Models and

Differential Equations

In this work, we introduce Dissipative SymODEN, a deep learning architecture which can infer the

dynamics of a physical system with dissipation from observed state trajectories. To improve predic-

tion accuracy while reducing network size, Dissipative SymODEN encodes the port-Hamiltonian

dynamics with energy dissipation and external input into the design of its computation graph and

learns the dynamics in a structured way. The learned model, by revealing key aspects of the system,

such as the inertia, dissipation, and potential energy, paves the way for energy-based controllers.

152

12.1 Introduction

Inferring systems dynamics from observed trajectories plays a critical role in identification and

control of complex, physical systems, such as robotic manipulators [54] and HVAC systems [93].

Although the use of neural networks in this context has a rich history of more than three decades

[63], recent advances in deep learning [29] have led to renewed interest in this topic [89, 43, 49, 14, 5].

Deep neural networks learn underlying patterns from data and enable generalization beyond the

training set by incorporating appropriate inductive bias into the learning approach. To promote

representations that are simple in some sense, inductive bias [37, 7] often manifests itself via a set of

assumptions and guides a learning algorithm to pick one hypothesis over another. The success in

predicting an outcome for previously unseen data depends on how well the inductive bias captures

the ground reality. Inductive bias can be introduced as the prior in a Bayesian model, or via the

choice of computation graphs in a neural network.

Incorporation of physics-based priors into deep learning has been a key focus in the recent

times. As these approaches use neural networks to approximate system dynamics, they are more

expressive than traditional system identification techniques [84]. By using a directed graph to

capture the causal relationships in a physical system, [77] introduces a recurrent graph network

to infer latent space dynamics in robotic systems. [56] and [34] leveraged Lagrangian mechanics

to learn the dynamics of kinematic structures from discrete observations. On the other hand, [33]

and [101] have utilized Hamiltonian mechanics for learning dynamics from data. However, strict

enforcement of the Hamiltonian prior is restrictive for real-life systems which often loses energy in

a structured way (e.g. frictional losses in robotic arms, resistive losses in power grids, etc.).

To explicitly encode dissipation as a prior into end-to-end learning, we expand the scope of the

Symplectic ODE-Net (SymODEN) architecture [101] and propose Dissipative SymODEN. The under-

lying dynamics is motivated by the port-Hamiltonian formulation [66], which has a correction term

accounting for the prior of dissipation. With this term, Dissipative SymODEN can accommodate the

energy losses from various sources of dissipation present in real-life systems. Our results show that

inclusion of dissipation into the physics-informed SymODEN architecture improves its prediction

accuracy and out-of-sample behavior, while offering insight about relevant physical properties of

the system (such as inertia matrix, potential energy, energy dissipation etc.). These insights, in turn,

can enable the use of energy-based controllers, such as the method of controlled Lagrangian [11]

and interconnection & damping assignment [66], which offer performance guarantees for complex,

153

nonlinear systems.

Contribution: The main contribution of this work is the introduction of a physics-informed

learning architecture called Dissipative SymODEN which encodes a non-conservative physics, i.e.

Hamiltonian dynamics with energy dissipation, into deep learning. This provides a means to

uncover the dynamics of real-life physical systems whose Hamiltonian aspects have been adapted

to external input and energy dissipation. By ensuring that the computation graph is aligned with

the underlying physics, we achieve transparency, better predictions with smaller networks, and

improved generalization. The architecture of Dissipative SymODEN has also been designed to

accommodate angle data in the embedded form. Additionally, we use differentiable ODE solvers

to avoid the need for derivative estimation.

12.2 The Port-Hamiltonian Dynamics

Hamiltonian dynamics is often used to systematically describe the dynamics of a physical system in

the phase space (q, p), where q = (@1 , @2 , ..., @=) is the generalized coordinate and p = (?1 , ?2 , ..., ?=)

is the generalized momentum. In this approach, the key to the dynamics is a scalar function�(q, p),

which is referred to as the Hamiltonian. In almost all physical systems, the Hamiltonian represents

the total energy which can be expressed as

�(q, p) =
1

2
p)M−1(q)p ++(q), (12.1)

where M(q) is the symmetric positive definite mass/inertia matrix and+(q) represents the potential

energy of the system. The equations of motion are governed by the symplectic gradient [73] of the

Hamiltonian, i.e.,

¤q =
%�

%p
¤p = −

%�

%q
. (12.2)

Moreover, since ¤� = (%�%q
)) ¤q + (%�%p

)) ¤p = 0, moving along the symplectic gradient conserves the

Hamiltonian (i.e. the total energy). However, although the classical Hamiltonian dynamics ensures

energy conservation, it fails to model dissipation and external inputs, which often appear in real-

life systems. The port-Hamiltonian dynamics generalizes the classical Hamiltonian dynamics by

explicitly modelling the total energy, dissipation and external inputs. Motivated by this formulation,

154

we consider the following port-Hamiltonian dynamics in this work:

¤q

¤p

=

(
0 I

−I 0

− D(q)

)
%�
%q

%�
%p

+

0

g(q)

u, (12.3)

where the dissipation matrix D(q) is symmetric positive semi-definite and represents energy dissi-

pation. The external input u is usually affine and only affects the generalized momenta. The input

matrix g(q) is assumed to have full column rank. As expected, with zero dissipation and zero input,

(12.3) reduces to the classical Hamiltonian dynamics.

12.3 Dissipative Symplectic ODE-Net

12.3.1 Training Neural ODE with Constant Forcing

We focus on the problem of learning an ordinary differential equation (ODE) from observation data.

Assume the analytical form of the right hand side (RHS) of an ODE “¤x = f(x, u)" is unknown. An

observation data X = ((xC0 , u2), ..., (xC= , u2)) with a constant input u2 allows us to approximate f(x, u)

with a neural net by leveraging

¤x

¤u

������
X

=

f�(x, u)

0

= f̃�(x, u). (12.4)

Equation (12.4), by matching the input and output dimensions, enables us to feed it into Neural

ODE [17]. With Neural ODE, we make predictions by approximating the RHS of (12.4) using a

neural network and feed it into an ODE solver

(x, u2)C1 ,C2 ,...,C= = ODESolve((x, u2)C0 , f̃� , C1 , C2 , ..., C=).

We can then construct the loss function ! = ‖X − X‖2
2 . In practice, we introduce the time horizon �

as a hyperparameter and predict xC8+1 , xC8+2 , ..., xC8+� from initial condition xC8 , where 8 = 0, ..., = − �.

The problem is then how to design the network architecture of f̃�, or equivalently f�.

12.3.2 Learning from Generalized coordinate and Momentum

Suppose we have data consisting of (q, p, u)C0 ,...,C= , where u remains constant in each trajectory. We

use four neural nets – M−1
�1
(q),+�2(q), g�3(q) and D�4(q) – as function approximators to represent the

155

inverse of mass matrix, potential energy, the input matrix and the dissipation matrix, respectively.

Thus,

f�(q, p, u) =

(
0 I

−I 0

− D�4

(q)

)
%��1 ,�2

%q

%��1 ,�2

%p

+

0

g�3
(q)

u (12.5)

where

��1 ,�2
(q, p) =

1

2
p)M−1

�1
(q)p ++�2

(q) (12.6)

The partial derivative can be taken care of by automatic differentiation. By putting the designed

f�(q, p, u) into Neural ODE, we obtain a systematic way of adding the prior knowledge of a struc-

tured dynamics into end-to-end learning.

12.3.3 Learning from Embedded Angle Data

Often, especially in robotics, the state variables involve angles residing in the interval [−�,�). In

other words, each angle lies on the manifold S1. However, generalized coordinates are typically

assumed to lie on R= . To bridge this gap, we use an angle-aware design [101] and assume that the

generalized coordinates are angles available as (x1(q), x2(q), x3(¤q), u)C0 ,...,C= = (cos q, sin q, ¤q, u)C0 ,...,C= .

Then, similar to [101], we aim to learn a structured dynamics (12.3) expressed in terms of x1, x2 and

x3. As p = M(x1 , x2) ¤q, we can express this dynamics as

¤x1 = − sin q ◦ ¤q = −x2 ◦ ¤q

¤x2 = cos q ◦ ¤q = x1 ◦ ¤q (12.7)

¤x3 =
d
dC

(M−1(x1 , x2)p) =
d
dC

(M−1(x1 , x2))p + M−1(x1 , x2) ¤p,

where “◦" represents the element-wise product. We assume q and p evolve with the structured

dynamics Equation (12.3) and substitute Equation (12.3) in to the RHS of Equation (12.7). Similar

to our approach in Sec 12.3.2, we use four neural nets to express the RHS of Equation (12.7) as

f�(x1 , x2 , x3 , u). Thus, it can be fed into Equation 12.4 and the Neural ODE.

12.3.4 Learning on Hybrid Spaces R= × T<

In most of physical systems, both translational coordinates and rotational coordinates coexist. In

other words, the generalized coordinates lie on R= × T< , where T< denotes the <-torus. Here

we put together the architecture of the previous two subsections. We assume the generalized

coordinates are q = (r,)))) ∈ R= × T< and the data comes in the form of (x1 , x2 , x3 , x4 , x5 , u)C0 ,...,C= =

156

(r, cos))), sin))), ¤r, ¤))), u)C0 ,...,C= . We use neural nets – M−1
�1
(x1 , x2 , x3), +�2(x1 , x2 , x3), g�3(x1 , x2 , x3) and

D�4(x1 , x2 , x3) – as function approximators. Then the dynamics is given by

[¤x1 , ¤x2 , ¤x3 , ¤x4 , ¤x5]
)
= f�(x1 , x2 , x3 , x4 , x5 , u)

12.3.5 The Dissipation Matrix and the Mass matrix

As the dissipation matrix models energy dissipation such as friction and resistance, it is positive

semi-definite. We impose this constraint in the network architecture by D�4 = L�4L
)
�4

, where L�4

is a lower-triangular matrix. In real physical systems, both the mass matrix M and its inverse are

positive definite. Similarly, semi-definiteness is constraint by M−1
�1

= L�1L
)
�1

, where L�1 is a lower-

triangular matrix. The positive definiteness is ensured by adding a small constant & to the diagonal

elements of M−1
�1

. It not only makes M�1 invertible, but also stabilizes training.

12.4 Experiments

12.4.1 Experimental Setup

We use the following four tasks to evaluate the performance of Dissipative SymODEN architecture

– (i) Task 1: a pendulum with generalized coordinate and momentum data; (ii) Task 2: a pendulum

with embedded angle data; (iii) Task 3: a CartPole system; and (iv) Task 4: an Acrobot.

Model Variants: Besides the Dissipative SymODEN model derived above, we consider a variant,

called Unstructured (Unstr.) Dissipative SymODEN, which approximates the Hamiltonian by a fully

connected neural net ��1 ,�2 . We also consider the original SymODEN [101] as a model variant.

Baseline Models: We set up baseline models for all four experiments. For the pendulum with

generalized coordinate and momentum data, the naive baseline model approximates (12.5) – f�(x, u) –

by a fully connected neural net. For all the other experiments, which involves embedded angle data,

we set up two different baseline models: naive baseline approximates f�(x, u) by a fully connected

neural net. Also, we set up the geometric baseline model which approximates ¤q and ¤p with a fully

connected neural net.

Data Generation: For all tasks, we randomly generated initial conditions of states and subse-

quently combined them with 5 different constant control inputs, i.e., D = −2.0,−1.0, 0.0, 1.0, 2.0,

to produce the initial conditions and input required for simulation. The simulators integrate the

corresponding dynamics for 20 time steps to generate trajectory data which is then used to construct

157

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
Dissipative SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
Dissipative SymODEN M 1

1 (q)

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
Dissipative SymODEN V 2(q)

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 0

Ground Truth
Dissipative SymODEN D0, 0

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 1(=D1, 0)

Ground Truth
Dissipative SymODEN D0, 1

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D1, 1

Ground Truth
Dissipative SymODEN D1, 1

Figure 12.1: Learned functions in Task 1 (Pendulum).

the training set and test set.

Model training: In all the tasks, we train our model using Adam optimizer [46] with 1000

epochs. We set a time horizon � = 3, and choose “RK4" as the numerical integration scheme in

Neural ODE. We logged the train error, test error and prediction (pred.) error per trajectory for all the

tasks. Prediction error per trajectory is calculated by using the same initial state condition in the

training set with a constant control of D = 0.0, integrating 40 time steps forward.

12.4.2 Task 1: Pendulum with Generalized Coordinate and Momentum Data

In this task, we use the model described in Section 12.3.2 and present the predicted trajectories

of the learned models as well as the learned functions of Dissipative SymODEN. The underlying

dynamics is given by

¤@ = 3?, ¤? = −5 sin @ − 0.3? + D, (12.8)

with the Hamiltonian �(@, ?) = 1.5?2 + 5(1− cos @). In other words "−1(@) = 3,+(@) = 5(1− cos @),

6(@) = 1 and D�4(@) = [0, 0; 0, 0.1]. Figure 12.1 shows that the learned 6�3(@) and"−1
�1
(@)matches the

ground truth pretty well. Also, +�2(@) differs from the ground truth by an almost constant margin

which is expected since only the derivative of+�2(@) impacts the dynamics. The learned dissipation

matrix D�4(@) does not match the ground truth. We address this issue in the next subsection. In

Table 12.1, Naive Baseline’s prediction error is the lowest because predicted trajectories reach the

origin faster than the ground truth.

158

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Naive Baseline

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Unstr. Dissipative SymODEN

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

SymODEN

3 2 1 0 1 2 3
q

3

2

1

0

1

2

3

p

Dissipative SymODEN

Figure 12.2: Learned trajectories of different models. Red and black lines represent the learned and ground
truth trajectories, respectively and the gray arrows show the vector fields learned by each model. Dissipative
SymODEN learns a more accurate vector field than the naive baseline model. Moreover, it appears that whereas
SymODEN learns an energy-conserved vector field slightly different from the ground truth, Unstructured
Dissipative SymODEN learns it completely wrong.

4 2 0 2 4
q

0

1

2

3

4
g(q)

Ground Truth
Dissipative SymODEN g 3(q)

4 2 0 2 4
q

0

1

2

3

4
M 1(q)

Ground Truth
Dissipative SymODEN M 1

1 (q)/

4 2 0 2 4
q

0

10

20
V(q)

Ground Truth
Dissipative SymODEN V 2(q)

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 0

Ground Truth
Dissipative SymODEN D0, 0

4 2 0 2 4
q

0.2

0.1

0.0

0.1

0.2
D0, 1(=D1, 0)
Ground Truth
Dissipative SymODEN D0, 1

4 2 0 2 4
q

0.4

0.2

0.0

0.2

0.4
D1, 1

Ground Truth
Dissipative SymODEN D1, 1

Figure 12.3: Learned functions in Task 2 (Pendulum with embedded data).

12.4.3 Task 2: Pendulum with Embedded Data

In this task, the dynamics is the same as Equation (12.8) but the training data are generated by

the OpenAI Gym simulator, i.e. we use embedded angle data and assume we only have access

to ¤@ instead of ?. We use the model described in Section 12.3.3 to learn the structured dynamics.

Without true ? data, the learned function matches the ground truth with a scaling �, as shown in

Figure 12.3. Please refer to [101] for explanation of the scaling. In this example, with the scaling

� = 0.357, the learned functions match the ground truth. With the angle-aware design, we learned

the dissipation matrix much better than the previous subsection.

12.4.4 Results

In Table 12.1, we show the train, test and prediction errors for all four tasks. Dissipative SymODEN

performs the best in all three metrics. As SymODEN does not allow dissipation, it does not perform

well in these tasks. Since Unstructured Dissipative SymODEN architecture has trouble learning a

159

good vector field, it performs the worst in all the tasks except Task 2. In conclusion, Dissipative

SymODEN achieves higher accuracy with less model parameters. Moreover, the learned model

reveals physical aspects of the system, which can be leveraged by energy-based controllers.

Table 12.1: Train, Test and Prediction Errors of Four Tasks

Task
Naive

Baseline
Geometric
Baseline

UnStr. Dissipative
SymODEN SymODEN

Dissipative
SymODEN

1 #Parameters 0.36M N/A 0.22M 0.13M 0.15M

Train error 26.38 ± 38.00 N/A 34.80 ± 68.53 4.47 ± 6.40 0.88 ± 1.41

Test error 35.03 ± 49.89 N/A 49.44 ± 81.31 7.52 ± 10.13 1.25 ± 1.81

Pred. error 32.544 ± 36.203 N/A 219.36 ± 296.86 96.50 ± 99.56 34.03 ± 47.83

2 #Parameters 0.65M 0.46M 0.41M 0.14M 0.16M

Train error 2.02 ± 4.41 0.42 ± 1.16 1.90 ± 3.85 2.37 ± 2.71 0.15 ± 0.27

Test error 2.01 ± 4.99 0.33 ± 1.22 1.61 ± 3.36 2.67 ± 2.83 0.13 ± 0.25

Pred. error 40.18 ± 78.10 0.81 ± 0.68 7.04 ± 13.65 72.78 ± 90.42 1.04 ± 1.3

3 #Parameters 1.01M 0.82M 0.69M 0.51M 0.53M

Train error 12.92 ± 15.58 0.48 ± 0.50 12.09 ± 18.38 3.33 ± 3.85 0.88 ± 0.89

Test error 20.07 ± 26.42 1.34 ± 3.19 19.87 ± 23.16 3.80 ± 3.71 1.37 ± 1.30

Pred. error 268.24 ± 204.15 60.12 ± 96.18 366.38 ± 405.45 30.21 ± 34.33 8.32 ± 7.81

4 #Parameters 1.46M 0.97M 0.80M 0.51M 0.53M

Train error 1.76 ± 2.26 1.90 ± 2.82 77.56 ± 111.50 2.92 ± 2.58 0.47 ± 0.64

Test error 5.12 ± 9.14 4.87 ± 7.42 122.70 ± 190.90 5.27 ± 6.55 0.81 ± 1.10

Pred. error 36.65 ± 77.16 44.26 ± 95.70 590.77 ± 807.88 68.26 ± 103.46 12.72 ± 32.12

Acknowledgments

This research was inspired by the ideas and plans articulated by N. E. Leonard and A. Majumdar,

Princeton University, in their ONR grant #N00014-18-1-2873. The research was primarily carried

out during Y. D. Zhong’s internship at Siemens Corporation, Corporate Technology. Pre- and

post-internship, Y. D. Zhong’s work was supported by ONR grant #N00014-18-1-2873.

160

Chapter 13

Unsupervised Learning of Lagrangian

Dynamics from Images for Prediction

and Control

Yaofeng Desmond Zhong, Naomi Ehrich Leonard

To appear as Zhong and Leonard [99] in the 34th Conference on Neural Information Processing Systems

(NeurIPS 2020)

Recent approaches for modelling dynamics of physical systems with neural networks enforce La-

grangian or Hamiltonian structure to improve prediction and generalization. However, these ap-

proaches fail to handle the case when coordinates are embedded in high-dimensional data such as

images. We introduce a new unsupervised neural network model that learns Lagrangian dynamics

from images, with interpretability that benefits prediction and control. The model infers Lagrangian

dynamics on generalized coordinates that are simultaneously learned with a coordinate-aware vari-

ational autoencoder (VAE). The VAE is designed to account for the geometry of physical systems

composed of multiple rigid bodies in the plane. By inferring interpretable Lagrangian dynamics,

the model learns physical system properties, such as kinetic and potential energy, which enables

long-term prediction of dynamics in the image space and synthesis of energy-based controllers.

161

13.1 Introduction

In the past decade, deep learning has achieved significant success in computer vision [38], natural

language processing [85] and sequential decision making [82]. Recently, an increasing number of

works have leveraged deep neural networks to model physical systems. Neural network models

are able to find patterns from data and generalize those patterns beyond training data, partly be-

cause they incorporate appropriate priors through design of the neural network architecture. Since

Lagrangian/Hamiltonian dynamics represent a broad class of physical systems, recent approaches

have incorporated Lagrangian/Hamiltonian dynamics as physics priors [56, 20, 33, 101, 102], in

physical system modeling, to improve prediction and generalization. These approaches, however,

require coordinate data, which are not always available in real-world applications. Another class of

approaches learn physical models from images, by either learning the map from images to coordi-

nates with supervision on true coordinate data [90] or learning the coordinates in an unsupervised

way but only with translational coordinates [57, 50]. The unsupervised learning of rotational

coordinates such as angles of objects are under-explored in the literature.

In this work, we propose an unsupervised neural network model that learns coordinates and

Lagrangian dynamics on those coordinates from images physical systems in motion in the plane.

The latent dynamical model enforces Lagrangian dynamics, which benefits long term prediction

of the system. As Lagrangian dynamics commonly involve rotational coordinates to describe

the changing configurations of objects in the system, we propose a coordinate-aware variational

autoencoder (VAE) that can infer interpretable rotational and translational coordinates from images

without supervision. The interpretable coordinates together with the interpretable Lagrangian

dynamics pave the way for introducing energy-based controllers of the learned dynamics.

13.1.1 Related work

Lagrangian/Hamiltonian prior in learning dynamics To improve prediction and generalization of

physical system modelling, a class of approaches has incorporated the physics prior of Hamiltonian

or Lagrangian dynamics into deep learning. Deep Lagrangian Network [56] and Lagrangian Neural

Network [20] learn Lagrangian dynamics from position, velocity and acceleration data. Hamiltonian

Neural Networks [33] learn Hamiltonian dynamics from position, velocity and acceleration data.

By leveraging ODE integrators, Hamiltonian Graph Networks [78] and Symplectic ODE-Net [101]

learn Hamiltonian dynamics from only position and velocity data. All of these works require direct

162

observation of low dimensional position and velocity data.

Unsupervised learning of dynamics With little position and velocity data, Belbute-Peres et al.

[8] learn underlying dynamics. However, the authors observed that their model fails to learn

meaningful dynamics when there is no supervision on position and velocity data at all. Without

supervision, Watter et al. [89] and Levine et al. [53] learn locally linear dynamics and Jaques et al.

[42] learns unknown parameters in latent dynamics with a given form. Kossen et al. [48] extracts

position and velocity of each object from videos and learns the underlying dynamics. Watters

et al. [91] adopts an object-oriented design to gain data efficiency and robustness. Battaglia et al.

[6], Sanchez-Gonzalez et al. [76] and Watters et al. [90] learn dynamics with supervision by taking

into account the prior of objects and their relations. These object-oriented designs focus little on

rotational coordinates. Variational Integrator Network [74] considers rotational coordinates but

cannot handle systems with multiple rotational coordinates.

13.2 Preliminary concepts

13.2.1 Lagrangian dynamics

Lagrangian dynamics are a reformulation of Newton’s second law of motion. The configuration of

a system in motion at time C is described by generalized coordinates q(C) = (@1(C), @2(C), ..., @<(C)),

where < is the number of degrees of freedom (DOF) of the system. For planar rigid body systems

with = rigid bodies and : holonomic constraints, the DOF is < = 3= − :. From D’Alembert’s

principle, the equations of motion of the system, also known as the Euler-Lagrange equation, are

d
dC

(%!
% ¤q

)
−

%!

%q
= Q=2 , (13.1)

where the scalar function !(q, ¤q) is the Lagrangian, ¤q = dq/dC, and Q=2 is a vector of non-

conservative generalized forces. The Lagrangian !(q, ¤q) is the difference between kinetic energy

)(q, ¤q) and potential energy +(q). For rigid body systems, the Lagrangian is

!(q, ¤q) =)(q, ¤q) −+(q) =
1
2
¤q)M(q) ¤q −+(q), (13.2)

where M(q) is the mass matrix. In this work, we assume that the control inputs are the only non-

conservative generalized forces, i.e., Q=2 = g(q)u, where g(q) is the input matrix and u is a vector

163

of control inputs such as forces or torques. Substituting Q=2 = g(q)u and !(q, ¤q) from (13.2) into

(13.1), we get the equations of motion in the form of < second-order ordinary differential equations

(ODE):

¥q = M−1(q)
(
−

1

2

dM(q)

dC
¤q −

d+(q)

dq
+ g(q)u

)
. (13.3)

13.2.2 Control via energy shaping

Our goal is to control the system to a reference configuration q★, inferred from a goal image x★,

based on the learned dynamics. As we are essentially learning the kinetic and potential energy

associated with the system, we can leverage the learned energy for control by energy shaping [65, 10].

If rank(g(q)) = <, we have control over every DOF and the system is fully actuated. For such

systems, control to the reference configuration q★ can be achieved with the control law u(q, ¤q) =

���(q) + v(¤q), where ���(q) is the potential energy shaping and v(¤q) is the damping injection. The goal of

potential energy shaping is to let the system behave as if it is governed by a desired Lagrangian !3

with no non-conservative generalized forces.

d
dC

(%!
% ¤q

)
−

%!

%q
= g(q)���(q) ⇐⇒

d
dC

(%!3
% ¤q

)
−

%!3
%q

= 0, (13.4)

where the desired Lagrangian has desired potential energy +3(q):

!3(q, ¤q) =)(q, ¤q) −+3(q) =
1
2
¤q)M(q) ¤q −+3(q). (13.5)

The difference between !3 and ! is the difference between + and +3, which explains the name

potential energy shaping: ���(q) shapes the potential energy + of the original system into a desired

potential energy +3. The potential energy +3 is designed to have a global minimum at q★. By the

equivalence (13.4), we get

���(q) = g)(gg))−1
(%+
%q

−
%+3
%q

)
. (13.6)

With only potential energy shaping, the system dynamics will oscillate around q★.1 The purpose

of damping injection v(¤q) is to impose convergence, exponentially in time, to q★. The damping

injection has the form

v(¤q) = −g)(gg))−1(K3 ¤q). (13.7)

For underactuated systems, however, this controller design is not valid since gg) will not be invert-

1Please see Supplementary Materials for more details.

164

ible. In general, we also need kinetic energy shaping [10] to achieve a control goal.

Remark The design parameters here are +3 and K3. A quadratic desired potential energy

+3(q) =
1

2
(q − q★))K?(q − q★), (13.8)

results in a controller design

u(q, ¤q) = g)(gg))−1

(
%+

%q
− K?(q − q★) − K3 ¤q

)
. (13.9)

This can be interpreted as a proportional-derivative (PD) controller with energy compensation.

13.2.3 Training Neural ODE with constant control

The Lagrangian dynamics can be formulated as a set of first-order ODE

¤s = f(s, u), (13.10)

where s is a state vector and unknown vector field f, which is a vector-valued function, can be

parameterized with a neural network f#. We leverage Neural ODE, proposed by Chen et al. [17],

to learn the function f that explains the trajectory data of s. The idea is to predict future states

from an initial state by integrating the ODE with an ODE solver. As all the operations in the

ODE solver are differentiable, f# can be updated by back-propagating through the ODE solver and

approximating the true f. However, Neural ODE cannot be applied to (13.10) directly since the

input dimension and the output dimension of f are not the same. Zhong et al. [101] showed that if

the control remains constant for each trajectory in the training data, Neural ODE can be applied to

the following augmented ODE:

©«
¤s

¤u

ª®¬
=
©«
f#(s, u)

0

ª®¬
= f̃#(s, u). (13.11)

With a learned f#, we can apply a controller design u = u(s) that is not constant, e.g., an energy-based

controller, by integrating the ODE ¤s = f(s, u(s)).

165

Figure 13.1: Left: Model architecture. (Using CartPole as an illustrative example.) The initial
state s0 is constructed by sampling the distribution and a velocity estimator. The latent Lagrangian
dynamics take s0 and the constant control u2 for that trajectory and predict future states up to
)pred. The diagram shows the)pred = 2 case. Top-right: The coordinate-aware encoder estimates
the distribution of generalized coordinates. Bottom-right: The initial and predicted generalized
coordinates are decoded to the reconstruction images with the coordinate-aware decoder.

13.3 Model architecture

Let X = ((x0 , u2), (x1 , u2)), ..., (x)pred , u2)) be a given sequence of image and control pairs, where x�,

� = 0, 1, . . . ,)pred, is the image of the trajectory of a rigid-body system under constant control u2 at

time C = �ΔC. From X we want to learn a state-space model (13.10) that governs the time evolution

of the rigid-body system dynamics. We assume the number of rigid bodies = is known and the

segmentation of each object in the image is given. Each image can be written as x� = (x�
1
, ..., x�=),

where x�8 ∈ R=G contains visual information about the 8th rigid body at C = �ΔC and =G is the

dimension of the image space.

In Section 13.3.1, we parameterize f(s, u) with a neural network and design the architecture

of the neural network such that (13.10) is constrained to follow Lagrangian dynamics, where the

physical properties such as mass and potential energy are learned from data. Since we have no

access to state data, we need to infer states s, i.e., generalized coordinates and velocities from

image data. Sections 13.3.2 and 13.3.4 introduce an inference model (encoder) and a generative

model (decoder) pair. Together they make up a variational autoencoder (VAE) [47] to infer the

generalized coordinates in an unsupervised way. Section 13.3.3 introduces a simple estimator of

velocity from learned generalized coordinates. The VAE and the state-space model are trained

together, as described in Section 13.3.5. The model architecture is shown in Figure 13.1.

166

13.3.1 Latent Lagrangian dynamics

The Lagrangian dynamics (13.3) yield a second-order ODE. From a model-based perspective, they

can be re-written as a first-order ODE (13.10) by choosing the state as s = (q, ¤q). However, from

a data-driven perspective, this choice of state is problematic when the generalized coordinates

involve angles. Consider the pendulum task in Figure 13.2 as an example where we want to infer

the generalized coordinate, i.e., the angle of the pendulum), from an image of the pendulum. The

map from the image to the angle) should be bĳective. However, if we choose the state as s = (), ¤)),

the map is not bĳective, since) and) + 2� map to the same image. If we restrict) ∈ [−�,�), then

the dynamics are not continuous when the pendulum moves around the inverted position. Inspired

by Zhong et al. [101], we solve this issue by proposing the state as s = (cos), sin), ¤)), such that the

mapping from the pendulum image to (cos), sin)) is bĳective.

In general, for a planar rigid-body system with q = (r,)))), where r ∈ R<' are translational

generalized coordinates and))) ∈ T<) are rotational generalized coordinates , the proposed state is

s = (s1 , s2 , s3 , s4 , s5) = (r, cos))), sin))), ¤r, ¤)))), where cos and sin are applied element-wise to))). To

enforce Lagrangian dynamics in the state-space model, we take the derivative of s with respect to C

and substitute in (13.3) to get

¤s=

©«

s4

−s3 ◦ s5

s2 ◦ s5

M−1(s1,s2,s3)
(
− 1

2
dM(s1,s2 ,,s3)

dC
©«
s4

s5

ª®¬
+
©«

−
%+(s1,s2,s3)

%s1

%+(s1,s2,s3)

%s2
s3−

%+(s1,s2,s3)

%s3
s2

ª®¬
+g(s1,s2,s3)u

)

ª®®®®®®®®®®®¬

(13.12)

where ◦ is the element-wise product. We use three neural networks, M#1(s1 , s2 , s3),+#2(s1 , s2 , s3),

and g#3(s1 , s2 , s3), to approximate the mass matrix, the potential energy and the input matrix,

respectively. Equation (13.12) is then a state-space model parameterized by a neural network

¤s = f#(s, u). It can be trained as stated in Section 13.2.3 given the initial condition s0. Next, we

present the means to infer s0 = (r0 , cos)))0 , sin)))0 , ¤r0 , ¤)))0) and u2 from the given images.

13.3.2 Coordinate-aware encoder

From a latent variable modelling perspective, an image x of a rigid-body system can be generated

by first specifying the values of the generalized coordinates and then assigning values to pixels

167

based on the generalized coordinates with a generative model - the decoder. In order to infer

those generalized coordinates from images, we need an inference model - the encoder. We perform

variational inference with a coordinate-aware VAE.

The coordinate-aware encoder infers a distribution on the generalized coordinates. The Gaussian

distribution is the default for modelling latent variables in VAE. This is appropriate for modelling

a translational generalized coordinate A since A resides in R1. However, this is not appropriate for

modelling a rotational generalized coordinate) since a Gaussian distribution is not a distribution

on S1. If we use a Gaussian distribution to model hyperspherical latent variables, the VAE performs

worse than a traditional autoencoder [21]. Thus, to model), we use the von Mises (vM) distribution,

a family of distributions on S1. Analogous to a Gaussian distribution, a Von Mises distribution is

characterized by two parameters: � ∈ R2, | |�| |2 = 1 is the mean, and � ∈ R≥0 is the concentration

around �. The Von Mises distribution reduces to a uniform distribution when � = 0.

In our model, for a rotational generalized coordinate), we assume a posterior distribution

&() |x) = vM((cos)m , sin)m),)�) with prior %()) = vM(·, 0) = *(S1). For a translational general-

ized coordinate A, we assume a posterior distribution &(A |x) = N(Am , Avar) with prior N(0, 1). We

denote the joint posterior distribution as &(q|x) and joint prior distribution as %(q). The encoder is

a neural network that takes an image as input and provides the parameters of the distributions as

output. A black-box neural network encoder would not be able to learn interpretable generalized

coordinates for a system in motion described by Lagrangian dynamics. Instead, we propose a

coordinate-aware encoder by designing the architecture of the neural network to account for the

geometry of the system. This is the key to interpretable encoding of generalized coordinates.

Figure 13.2: One choice of generalized coordinates and their
corresponding reference frames in three example systems

Recall that each generalized coor-

dinate @ 9 specifies the position/angle

of a rigid body 8 9 in the system.

In principle, the coordinate can be

learned from the image segmentation

of 8 9 . However, the reference frame

of a generalized coordinate might de-

pend on other generalized coordi-

nates and change across images. Take the CartPole example in Figure 13.2 as motivation. The

system has two DOF and natural choices of generalized coordinates are the horizontal position of

the cart @1 = A and the angle of the pole @2 =). The origin of the reference frame of A is the center

of the image, which is the same across all images. The origin of the reference frame of), however,

168

is the center of the cart, which is not the same across all the images since the cart can move. In

order to learn the angle of the pole, we can either use a translation invariant architecture such as

Convolution Neural Networks (CNN) or place the center of the encoding attention window of the

pole segmentation image at the center of the cart. The former approach does not work well in ex-

tracting generalized coordinates.2 Thus, we adopt the latter approach, where we shift our encoding

attention window horizontally with direction and magnitude given by generalized coordinate A,

before feeding it into the encoder to learn). In this way we exploit the geometry of the system in

the encoder.

The default attention window is the image grid and corresponds to the default reference frame,

where the origin is at the center of the image with horizontal and vertical axes. The above encoding

attention window mechanism for a general system can be formalized by considering the trans-

formation from the default reference frame to the reference frame of each generalized coordinate.

The transformation of a point (G3 , H3) in the default reference frame to a point (GC , HC) in the target

reference frame is captured by transformation T (G, H, �) corresponding to translation by (G, H) and

rotation by � as follows:

©«

GC

HC

1

ª®®®®¬
= T (G, H, �)

©«

G3

H3

1

ª®®®®¬
, where T (G, H, �) =

©«

cos� sin� G

− sin� cos� H

0 0 1

ª®®®®¬
. (13.13)

So let T ((G, H, �)enc
9) be the transformation from default frame to reference frame for the generalized

coordinate @ 9 . This transformation depends on constant parameters c associated with the shape and

size of the rigid bodies and generalized coordinates q−9 , which denotes the vector of generalized

coordinates with @ 9 removed. Let (G, H, �)enc
9 =)enc

9 (q−9 , c). Both q−9 and c are learned from images.

However, the function)enc
9 is specified by leveraging the geometry of the system. In the CartPole

example, (@1 , @2) = (A,)), and)enc
1 ≡ (0, 0, 0) and)enc

2 (@1) = (@1 , 0, 0). In the Acrobot example,

(@1 , @2) = ()1 ,)2), and)enc
1 ≡ (0, 0, 0) and)enc

2 (@1 , ;1) = (;1 sin @1 , ;1 cos @1 , 0).

The shift of attention window can be implemented with a spatial transformer network (STN)

[41], which generates a transformed image x̃8 9 from x8 9 , i.e., x̃8 9 = STN(x8 9 ,T ()enc
9 (q−9 , c))). In

general, to encode @ 9 , we use a multilayer perceptron (MLP) that takes x̃8 9 as input and provides the

parameters of the @ 9 distribution as output. For a translational coordinate @ 9 , we have (@m
9 , log @var

9) =

2Here we expect to encode the angle of the pole from a pole image regardless of where it appears in the image. As
the translation invariance of CNN is shown by Kauderer-Abrams [44] to be primarily dependent on data augmentation,
the encoding of generalized coordinates might not generalize well to unseen trajectories. Also, in general we need both
translation invariance and rotation invariance, a property that CNN do not have.

169

MLPenc
9 (x̃8 9). For a rotational coordinate @ 9 , we have (9 , � 9 , log @�9) = MLPenc

9 (x̃8 9), where the mean

of the von Mises distribution is computed as (cos @<9 , sin @<9) = (9 , � 9)/
√
2
9 + �2

9 . We then take

a sample from the @ 9 distribution.3 Doing this for every generalized coordinate @ 9 , we can get

(r� , cos)))� , sin)))�) from x� for any �.4 We will use (r0 , cos)))0 , sin)))0) and (r1 , cos)))1 , sin)))1).

13.3.3 Velocity estimator

To integrate Equation (13.12), we also need to infer (¤r0 , ¤)))0), the initial velocity. We can estimate the

initial velocity from the encoded generalized coordinates by finite difference. We use the following

simple first-order finite difference estimator:

¤r0
= (rm1 − rm0)/ΔC , (13.14)

¤)))0 =
(
(sin)))m1 − sin)))m0) ◦ cos)))m0 − (cos)))m1 − cos)))m0) ◦ sin)))m0)/ΔC , (13.15)

where (rm0 , cos)))m0 , sin)))m0) and (rm1 , cos)))m1 , sin)))m1) are the means of the generalized coordi-

nates encoded from the image at time C = 0 and C = ΔC, respectively. Jaques et al. [42] proposed to

use a neural network to estimate velocity. From our experiments, our simple estimator works better

than a neural network estimator.

13.3.4 Coordinate-aware decoder

The decoder provides a distribution %(x|q) = N(x̂, I) as output, given a generalized coordinate q as

input, where the mean x̂ is the reconstruction image of the image data x. Instead of using a black

box decoder, we propose a coordinate-aware decoder. The coordinate-aware decoder first generates

a static image x28 of every rigid body 8 in the system, at a default position and orientation, using a

MLP with a constant input, i.e., x28 = MLPdec
8 (1). The coordinate-aware decoder then determines x̂8 ,

the image of rigid body 8 positioned and oriented on the image plane according to the generalized

coordinates. The proposed decoder is inspired by the coordinate-consistent decoder by Jaques et al.

[42]. However, the decoder of [42] cannot handle a system of multiple rigid bodies with constraints

such as the Acrobot and the CartPole, whereas our coordinate-aware decoder can.

As in Jaques et al. [42], to find x̂8 we use the inverse transformation matrix T −1((G, H, �)dec
8)

3We use the reparametrization trick proposed by Davidson et al. [21] to sample from a von Mises distribution.
4For a transformation that depends on one or more generalized coordinate, those generalized coordinates must be

encoded before the transformation can be applied. In the CartPole example, we need to encode A before applying the
transformation to put the attention window centered at the cart to encode). We use the mean of the distribution, i.e., @m

9

or (cos @<9 , sin @<9), for those transformations that depend on @ 9 .

170

Figure 13.3: Top: Prediction sequences of Pendulum and CartPole with a previously unseen initial
condition and zero control. Prediction results show both Lagrangian dynamics and coordinate-
aware VAE are necessary to perform long term prediction. Bottom: Control sequences of three
systems. Energy-based controllers are able to control the systems to the goal positions based on
learned dynamics and encoding with Lagrangian+caVAE.

where T is given by (13.13) and (G, H, �)dec
8 =)dec

8 (q, c). In the CartPole example, (@1 , @2) = (A,)),

and)dec
1

(A) = (A, 0, 0) and)dec
2

(A,)) = (A, 0,)). In the Acrobot example, (@1 , @2) = ()1 ,)2), and

)dec
1

()1) = (0, 0,)1) and)dec
2

()1 ,)2) = (;1 sin)1 , ;1 cos)1 ,)2). The reconstruction image is then

x̂ = (x̂1 , ..., x̂=), where x̂8 = STN(x28 ,T
−1()dec

8 (q, c))).

13.3.5 Loss function

The loss ℒ(X) consists of the sum of three terms:

ℒ(X) = −Eq0∼&[log%(x0 |q0)]+KL(&(q0 |x0)| |%(q0))︸ ︷︷ ︸
VAE loss

+

)pred∑
�=1

| |x̂�−x� | |22

︸ ︷︷ ︸
prediction loss

+�
∑
9

√
2
9 +�

2
9

︸ ︷︷ ︸
vM regularization

. (13.16)

The VAE loss is a variational bound on the marginal log-likelihood of initial data %(x0). The predic-

tion loss captures inaccurate predictions of the latent Lagrangian dynamics. The vM regularization

with weight � penalizes large norms of vectors (9 , � 9), preventing them from blowing up.

171

Figure 13.4: Learned potential energy with Lagrangian+caVAE of three systems and reconstruction
images at selected coordinates. Both the learned coordinates and potential energy are interpretable.

13.4 Results

We train our model on three systems: the Pendulum, the fully-actuated CartPole and the fully-

actuated Acrobot. The training images are generated by OpenAI Gym simulator [13]. The training

setup is detailed in Supplementary Materials. As the mean square error in the image space is not a

good metric of long term prediction accuracy [57], we report on the prediction image sequences of

a previously unseen initial condition and highlight the interpretability of our model.

Lagrangian dynamics and coordinate-aware VAE improve prediction. As the Acrobot is a chaotic

system, accurate long term prediction is impossible. Figure 13.3 shows the prediction sequences of

images up to 48 time steps of the Pendulum and CartPole experiments with models trained with

)pred = 4. We compare the prediction results of our model (labelled as Lagrangian+caVAE) with two

model variants: MLPdyn+caVAE, which replaces the Lagrangian latent dynamics with MLP latent

dynamics, and Lagrangian+VAE, which replaces the coordinate-aware VAE with a traditional VAE.

The traditional VAE fails to reconstruct meaningful images for CartPole, although it works well in

the simpler Pendulum system. With well-learned coordinates, models that enforce Lagrangian dy-

namics result in better long term prediction, e.g., as compared to MLPdyn+caVAE, since Lagrangian

dynamics with zero control preserves energy (see Supplementary Materials).

Learned potential energy enables energy-based control. Figure 13.4 shows the learned po-

tential energy of the three systems and reconstruction images at selected coordinates with La-

grangian+caVAE. The learned potential energy is consistent with the true potential energy of those

systems, e.g., the pendulum at the upward position has the highest potential energy while the

pendulum at the downward position has the lowest potential energy. Figure 13.4 also visualizes the

172

learned coordinates. Learning interpretable coordinates and potential energy enables energy-based

controllers. Based on the learned encoding and dynamics, we are able to control Pendulum and

fully-actuated Acrobot to the inverted position, and fully-actuated CartPole to a position where the

pole points upward. The sequences of images of controlled trajectories as shown in Figure 13.3 are

generated based on learned dynamics and encoding with Lagrangian+caVAE as follows. We first

encode an image of the goal position x★ to the goal generalized coordinates q★. At each time step,

the OpenAI Gym simulator of a system can take a control input, integrate one time step forward,

and output an image of the system at the next time step. The control input to the simulator is

u(q, ¤q) = ���(q) + v(¤q) which is designed as in Section 13.2.2 with the learned potential energy, input

matrix, coordinates encoded from the output images, and q★.

Ablation study To understand which component in our model contributes to learning inter-

pretable generalized coordinates the most, we also report results of four ablations, which are

obtained by (a) replacing the coordinate-aware encoder with a black-box MLP, (b) replacing the

coordinate-aware decoder with a black-box MLP, (c) replacing the coordinate-aware VAE with a

coordinate-aware AE, and (d) a Physics-as-inverse-graphics (PAIG) model [42]. We observe that

the coordinate-aware decoder makes the primary contribution to learning interpretable coordi-

nates, and the coordinate-aware encoder makes a secondary contribution. The coordinate-aware

AE succeeds in Pendulum and Acrobot tasks but fails in the CartPole task. PAIG uses AE with a

neural network velocity estimator. We find that PAIG’s velocity estimator overfits the training data,

which results in inaccurate long term prediction. Please see Supplementary Materials for prediction

sequences of the ablation study.

13.5 Conclusion

We propose an unsupervised model that learns planar rigid-body dynamics from images in an

explainable and transparent way by incorporating the physics prior of Lagrangian dynamics and a

coordinate-aware VAE, both of which we show are important for accurate prediction in the image

space. The interpretability of the model allows for synthesis of model-based controllers.

Broader Impact

We focus on the impact of using our model to provide explanations for physical system modelling.

Our model could be used to provide explanations regarding the underlying symmetries, i.e., con-

173

servation laws, of physical systems. Further, the incorporation of the physics prior of Lagrangian

dynamics improves robustness and generalizability for both prediction and control applications.

We see opportunities for research applying our model to improve transparency and explanability

in reinforcement learning, which is typically solved with low-dimensional observation data instead

of image data. Our work also enables future research on vision-based controllers. The limitations of

our work will also motivate research on unsupervised segmentation of images of physical systems.

Acknowledgements

This research has been supported in part by ONR grant #N00014-18-1-2873 and by the School

of Engineering and Applied Science at Princeton University through the generosity of William

Addy ’82. Yaofeng Desmond Zhong would like to thank Christine Allen-Blanchette, Shinkyu Park,

Sushant Veer and Anirudha Majumdar for helpful discussions.

13.6 Supplementary Materials

13.6.1 Conservation of energy in Lagrangian dynamics

In the following, we review the well known result from Lagrangian mechanics, which shows that

with no control applied, the latent Lagrangian dynamics conserve energy, see, e.g., Goldstein et al.

[27], Hand and Finch [35].

Theorem 10 (Conservation of Energy in Lagrangian Dynamics). Consider a system with Lagrangian

dynamics given by Equation (3). If no control is applied to the system, i.e, u = 0, then the total system energy

�(q, ¤q) =)(q, ¤q) ++(q) is conserved.

Proof. We compute the derivative of total energy with respect to time and use the fact that, for any

real physical system, the mass matrix is symmetric positive definite. We compute

d�(q, ¤q)
dC

=
%�

%q
¤q +

%�

% ¤q
¥q

=
1
2
¤q)

dM(q)

dC
¤q + ¤q)

d+(q)

dq
+ ¤q)M(q) ¥q

= ¤q)g(q)u,

where we have substituted in Equation (3). Thus, if u = 0, the total energy �(q, ¤q) is conserved. �

174

With Lagrangian dynamics as our latent dynamics model, we automatically incorporate a prior

of energy conservation into physical system modelling. This explains why our latent Lagrangian

dynamics result in better prediction, as shown in Figure 3.

This property of energy conservation also benefits the design of energy-based controllers

u(q, ¤q) = ���(q) + v(¤q). With only potential energy shaping ���(q), we shape the potential energy

so that the system behaves as if it is governed by a desired Lagrangian !3. Thus, the total energy is

still conserved, and the system would oscillate around the global minimum of the desired potential

energy +3, which is q★. To impose convergence to q★, we add damping injection v(¤q). In this way,

we systematically design an interpretable controller.

13.6.2 Experimental setup

Data generation

All the data are generated by OpenAI Gym simulator. For all tasks, we combine 256 initial conditions

generated by OpenAI Gym with 5 different constant control values, i.e., D = −2.0,−1.0, 0.0, 1.0, 2.0.

For those experiments with multi-dimensional control inputs, we apply these 5 constant values to

each dimension while setting the value of the rest of the dimensions to be 0. The purpose is to learn

a good g(q). The simulator integrates 20 time steps forward with the fourth-order Runge-Kutta

method (RK4) to generate trajectories and all the trajectories are rendered into sequences of images.

Model training

There are two important hyperparameters - the prediction time step)pred and the ODE solver

used in training. A large prediction time step)pred penalizes inaccurate long term prediction but

requires more time to train. In practice, we found that)pred = 2, 3, 4, 5 are able to get reasonably

good prediction. In the paper, we present results of models trained with)pred = 4. As for the ODE

solver, it is tempting to use RK4 since this is how the training data are generated. However, in

practice, using RK4 would make training extremely slow and sometimes the loss would blow up.

It is because the operations of RK4 result in a complicated forward pass, especially when we also

use a relatively large)pred. Moreover, since we have no access to the state data in the latent space,

we penalize the reconstruction error in the image space. The accuracy gained by higher-order ODE

solvers in the latent space might not be noticable in the reconstruction error in the image space.

Thus, during training, we use an first-order Euler solver. As the Euler solver is inaccurate especially

for long term prediction, after training, we could use RK4 instead of Euler for integration to get

175

better long term prediction results with learned models.

As our data are generated with 20 times steps in each trajectory, we would like to rearrange

the data so that each trajectory contains)pred + 1 time steps, as stated in Section 3. In order

to utilize the data as much as possible, we rearrange the data ((x̃1 , u2), (x̃2 , u2)), ..., (x̃20 , u2)) into

((x̃8 , u2), (x̃8+1 , u2), ..., (x̃8+)pred , u2)), where 8 = 1, 2, ..., 20 −)pred.

For all the experiments, we use the Adam optimizer to train our model.

13.6.3 Ablation study details

We report on the following four ablations:

(a) tradEncoder + caDecoder: replacing the coordinate-aware encoder with a traditional black-

box MLP

(b) caEncoder + tradDecoder: replacing the coordinate-aware decoder with a traditional black-

box MLP

(c) caAE: replacing the coordinate-aware VAE with a coordinate-aware AE

(d) PAIG: a Physics-as-inverse-graphics model

Figure 13.5 shows the prediction sequences of ablations of Pendulum and CartPole. Our proposed

model is labelled as caVAE. Since long term prediction of the chaotic Acrobot is not possible,

Figure 13.6 shows the reconstruction image sequences of ablations of Acrobot. From the results, we

find that PAIG and caAE completely fails in CartPole and Acrobot, although they work well in the

simple Pendulum experiment. By replacing the coordinate-aware decoder, caEncoder+tradDecoder

fails to reconstruct rigid bodies in CartPole and Acrobot. By replacing the coordinate-aware encoder,

tradEncoder+caDecoder reconstructs correct images with well-learned coordinates in Pendulum

and Acrobot, but in CartPole, the coordinates are not well-learned, resulting in bad prediction.

Thus, we conclude that the coordinate-aware decoder makes the primary contribution to learning

interpretable generalized coordinates and getting good reconstruction images, while the coordinate-

aware encoder makes a secondary contribution.

176

Figure 13.5: Prediction sequences of ablations of Pendulum and CartPole with a previously unseen
initial condition and zero control. For the Pendulum experiment, the coordinate-aware encoder is
a traditional MLP encoder. All the ablations get good predictions. For the CartPole experiment,
all the ablations fail to get good predictions. The PAIG is able to reconstruct the cart initially
but it fails to reconstruct the pole and make prediction. The caAE fails to reconstruct anything.
The caEncoder+tradDecoder fails to reconstruct meaningful rigid bodies. The tradEncoder+caDecoder
seems to extract meaningful rigid bodies but it fails to put the rigid bodies in the right place in the
image, indicating the coordinates are not well learned.

Figure 13.6: Reconstruction image sequences of ablations of Acrobot with a previously unseen
initial condition and zero control. The PAIG and caAE fail to reconstruct anything. The caEn-
coder+tradDecoder fails to reconstruct the green link at all. The tradEncoder+caDecoder makes good
reconstruction.

177

Bibliography

[1] D. Acemoglu, A. Ozdaglar, and E. Yildiz. Diffusion of innovations in social networks. In IEEE

Conf. Decision and Control, pages 2329–2334, 2011.

[2] R. M. Anderson, B. Anderson, and R. M. May. Infectious diseases of humans: dynamics and

control. Oxford university press, 1992.

[3] C. G. Antonopoulos and Y. Shang. Opinion formation in multiplex networks with gen-

eral initial distributions. Scientific Reports, 8(1), 2018. ISSN 2045-2322. doi: 10.1038/

s41598-018-21054-0.

[4] V. I. Arnold, A. B. Givental, and S. P. Novikov. Symplectic geometry. In Dynamical systems IV,

pages 1–138. Springer, 2001.

[5] I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari. Learning dynamical systems from

partial observations. arXiv:1902.11136, 2019.

[6] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and K. Kavukcuoglu. Interaction

networks for learning about objects, relations and physics. In Advances in Neural Information

Processing Systems 29, pages 4502–4510, 2016.

[7] J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:

149–198, 2000.

[8] F. d. A. Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end differ-

entiable physics for learning and control. In Advances in Neural Information Processing Systems

31, pages 7178–7189, 2018.

[9] A. Bizyaeva, A. Franci, and N. E. Leonard. A general model of opinion dynamics with tunable

sensitivity. arXiv preprint arXiv:2009.04332, 2020.

178

[10] A. M. Bloch, N. E. Leonard, and J. E. Marsden. Controlled lagrangians and the stabilization

of mechanical systems. i. the first matching theorem. IEEE Transactions on Automatic Control,

45(12):2253–2270, 2000.

[11] A. M. Bloch, N. E. Leonard, and J. E. Marsden. Controlled lagrangians and the stabilization

of euler–poincaré mechanical systems. International Journal of Robust and Nonlinear Control, 11

(3):191–214, 2001.

[12] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance,

I. Sendina-Nadal, Z. Wang, and M. Zanin. The structure and dynamics of multilayer networks.

Physics Reports, 544(1):1–122, 2014.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.

Openai gym. arXiv e-prints, art. arXiv:1606.01540, 2016.

[14] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural networks.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 173–180. IEEE,

2017.

[15] S. H. Cen, V. Srivastava, and N. E. Leonard. On robustness and leadership in markov switching

consensus networks. In 2017 IEEE 56th Annual Conference on Decision and Control, pages 1701–

1706, 2017.

[16] D. E. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden, and C. A. Woolsey. The equivalence

of controlled lagrangian and controlled hamiltonian systems. ESAIM: Control, Optimisation

and Calculus of Variations, 8:393–422, 2002.

[17] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential

equations. In Advances in Neural Information Processing Systems 31, pages 6571–6583, 2018.

[18] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic recurrent neural networks. In

International Conference on Learning Representations, 2020.

[19] G. Como, W. S. Rossi, and F. Fagnani. Threshold models of cascades in large-scale networks.

arXiv preprint arXiv:1604.05490, 2016.

[20] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural

networks. arXiv e-prints, art. arXiv:2003.04630, 2020.

179

[21] T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak. Hyperspherical variational

auto-encoders. 34th Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[23] B. Dey, A. Franci, K. Özcimder, and N. E. Leonard. Feedback controlled bifurcation of

evolutionary dynamics with generalized fitness. In American Control Conference, pages 6049–

6054, 2018.

[24] M. Fardad and G. Kearney. On a linear programming approach to the optimal seeding of

cascading failures. In IEEE Conf. Decision and Control, pages 102–107, 2017.

[25] A. Garulli, A. Giannitrapani, and M. Valentini. Analysis of threshold models for collective

actions in social networks. In European Control Conference, pages 211–216, 2015.

[26] J. M. Glover. The quaternion Bingham distribution, 3D object detection, and dynamic manipulation.

PhD thesis, Massachusetts Institute of Technology, 2014.

[27] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics. American Association of Physics

Teachers, 2002.

[28] S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C. J. Perez-Vicente, Y. Moreno, and A. Arenas.

Diffusion dynamics on multiplex networks. Physical Review Letters, 110(2), 2013. ISSN 0031-

9007, 1079-7114.

[29] I. Goodfellow, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT Press, 2016.

[30] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.

In International Conference on Learning Representations, 2015.

[31] M. Granovetter. Threshold models of collective behavior. American Journal of Sociology, 83(6):

1420–1443, 1978.

[32] R. Gray, A. Franci, V. Srivastava, and N. E. Leonard. Multiagent decision-making dynamics

inspired by honeybees. IEEE Transactions on Control of Network Systems, 5(2):793–806, 2018.

[33] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In Advances in

Neural Information Processing Systems 32, pages 15379–15389, 2019.

180

[34] J. K. Gupta, K. Menda, Z. Manchester, and M. J. Kochenderfer. A general framework for

structured learning of mechanical systems. arXiv:1902.08705, 2019.

[35] L. N. Hand and J. D. Finch. Analytical Mechanics. Cambridge University Press, 1998.

[36] H. Hanßmann, N. E. Leonard, and T. R. Smith. Symmetry and reduction for coordinated rigid

bodies. European journal of control, 12(2):176–194, 2006.

[37] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning

framework. Artificial Intelligence, 36(2):177–221, 1988.

[38] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016.

[39] H. W. Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653, 2000.

[40] J. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

[41] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks.

In Advances in Neural Information Processing Systems 28, pages 2017–2025, 2015.

[42] M. Jaques, M. Burke, and T. Hospedales. Physics-as-inverse-graphics: Unsupervised physical

parameter estimation from video. In International Conference on Learning Representations, 2020.

[43] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised

learning of state space models from raw data. arXiv:1605.06432, 2016.

[44] E. Kauderer-Abrams. Quantifying translation-invariance in convolutional neural networks.

arXiv e-prints, art. arXiv:1801.01450, 2017.

[45] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social

network. In Proc. 9th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, page

137–146, 2003. ISBN 1581137370. doi: 10.1145/956750.956769.

[46] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980, 2014.

[47] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on

Learning Representations, 2014.

181

[48] J. Kossen, K. Stelzner, M. Hussing, C. Voelcker, and K. Kersting. Structured object-aware

physics prediction for video modeling and planning. In International Conference on Learning

Representations, 2020.

[49] R. G. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state

space models. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[50] T. D. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and V. Mnih.

Unsupervised learning of object keypoints for perception and control. In Advances in Neural

Information Processing Systems 32, 2019.

[51] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. J. Royal Statistical Society, Series B, pages

157–224, 1988.

[52] M. Lelarge. Diffusion and cascading behavior in random networks. Games and Economic

Behavior, 75(2):752–775, 2012.

[53] N. Levine, Y. Chow, R. Shu, A. Li, M. Ghavamzadeh, and H. Bui. Prediction, consistency,

curvature: Representation learning for locally-linear control. In International Conference on

Learning Representations, 2020.

[54] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.

Continuous control with deep reinforcement learning. arXiv:1509.02971, 2015.

[55] Y. Lim, A. Ozdaglar, and A. Teytelboym. A simple model of cascades in networks. Technical

report, MIT, 2015.

[56] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior

for deep learning. In International Conference on Learning Representations, 2019.

[57] M. Minderer, C. Sun, R. Villegas, F. Cole, K. P. Murphy, and H. Lee. Unsupervised learning

of object structure and dynamics from videos. In Advances in Neural Information Processing

Systems 32, pages 92–102, 2019.

[58] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference:

An empirical study. In Proc. 15th Conf. Uncertainty in Artificial Intelligence, pages 467–475, 1999.

182

[59] S. Nair and N. E. Leonard. Stabilization of a coordinated network of rotating rigid bodies. In

2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), volume 5,

pages 4690–4695. IEEE, 2004.

[60] S. Nair and N. E. Leonard. Stable synchronization of rigid body networks. Networks &

Heterogeneous Media, 2(4):597, 2007.

[61] S. Nair and N. E. Leonard. Stable synchronization of mechanical system networks. SIAM

Journal on Control and Optimization, 47(2):661–683, 2008.

[62] S. Nair, N. E. Leonard, and L. Moreau. Coordinated control of networked mechanical systems

with unstable dynamics. In 42nd IEEE International Conference on Decision and Control (IEEE

Cat. No. 03CH37475), volume 1, pages 550–555. IEEE, 2003.

[63] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using

neural networks. IEEE Transactions on Neural Networks, 1(1):4–27, 1990.

[64] H. Nguyen and R. Zheng. Influence spread in large-scale social networks–a belief propagation

approach. In Machine Learning and Knowledge Discovery in Databases, pages 515–530, 2012.

[65] R. Ortega, A. J. Van Der Schaft, I. Mareels, and B. Maschke. Putting energy back in control.

IEEE Control Systems Magazine, 21(2):18–33, 2001.

[66] R. Ortega, A. J. Van Der Schaft, B. Maschke, and G. Escobar. Interconnection and damping

assignment passivity-based control of port-controlled hamiltonian systems. Automatica, 38

(4):585–596, 2002.

[67] R. Pagliara and N. E. Leonard. Adaptive susceptibility and heterogeneity in contagion models

on networks. IEEE Transactions on Automatic Control, 2020.

[68] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, 1988.

[69] F. L. Pinheiro, V. V. Vasconcelos, and S. A. Levin. Consensus and polarization in competing

complex contagion processes. arXiv e-prints, art. arXiv:1811.08525, Nov 2018.

[70] D. Rosa and A. Giua. A non-progressive model of innovation diffusion in social networks. In

IEEE Conf. Decision and Control, pages 6202–6207, 2013.

183

[71] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin. Revealing the hidden

networks of interaction in mobile animal groups allows prediction of complex behavioral

contagion. Proceedings of the National Academy of Sciences, 112(15):4690–4695, 2015.

[72] W. S. Rossi, G. Como, and F. Fagnani. Threshold models of cascades in large-scale networks.

IEEE Transactions on Network Science and Engineering, 6(2):158–172, 2019.

[73] D. J. Rowe, A. Ryman, and G. Rosensteel. Many-body quantum mechanics as a symplectic

dynamical system. Physical Review A, 22(6):2362, 1980.

[74] S. Saemundsson, A. Terenin, K. Hofmann, and M. P. Deisenroth. Variational Integrator

Networks for Physically Structured Embeddings. arXiv e-prints, art. arXiv:1910.09349, 2019.

[75] M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, and D. Montesi. Spreading processes

in multilayer networks. IEEE Transactions on Network Science and Engineering, 2(2):65–83, 2015.

ISSN 2327-4697, 2334-329X. doi: 10.1109/TNSE.2015.2425961.

[76] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and

P. Battaglia. Graph networks as learnable physics engines for inference and control. In

Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 4470–

4479, 2018.

[77] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and

P. Battaglia. Graph networks as learnable physics engines for inference and control. In

International Conference on Machine Learning (ICML), pages 4467–4476, 2018.

[78] A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia. Hamiltonian graph networks

with ode integrators. arXiv e-prints, art. arXiv:1909.12790, 2019.

[79] A. Sarlette, R. Sepulchre, and N. E. Leonard. Autonomous rigid body attitude synchronization.

Automatica, 45(2):572–577, 2009.

[80] T. C. Schelling. Micromotives and Macrobehavior. Norton, 1978.

[81] H. Shao, Y. Xi, M. Mesbahi, D. Li, Y. Xu, and Z. Gan. Relative tempo of consensus dynamics

on multiplex networks. IFAC-PapersOnLine, 50(1):5184–5189, July 2017. ISSN 2405-8963. doi:

10.1016/j.ifacol.2017.08.444.

184

[82] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,

M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550

(7676):354–359, 2017.

[83] T. R. Smith, H. Hanßmann, and N. E. Leonard. Orientation control of multiple underwater

vehicles with symmetry-breaking potentials. In Proceedings of the 40th IEEE Conference on

Decision and Control, volume 5, pages 4598–4603, 2001.

[84] T. Söderström and P. Stoica. System identification. Prentice-Hall, Inc., 1988.

[85] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems 27, pages 3104–3112, 2014.

[86] P. Toth, D. J. Rezende, A. Jaegle, S. Racanière, A. Botev, and I. Higgins. Hamiltonian generative

networks. In International Conference on Learning Representations, 2020.

[87] I. Trpevski, A. Stanoev, A. Koseska, and L. Kocarev. Discrete-time distributed consensus

on multiplex networks. New Journal of Physics, 16(11):113063, 2014. ISSN 1367-2630. doi:

10.1088/1367-2630/16/11/113063.

[88] V. V. Vasconcelos, S. A. Levin, and F. L. Pinheiro. Consensus and polarization in competing

complex contagion processes. Journal of the Royal Society Interface, 16(155):20190196, 2019. doi:

10.1098/rsif.2019.0196.

[89] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally

linear latent dynamics model for control from raw images. In Advances in Neural Information

Processing Systems 28, pages 2746–2754, 2015.

[90] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti. Visual interac-

tion networks: Learning a physics simulator from video. In Advances in Neural Information

Processing Systems 30, pages 4539–4547, 2017.

[91] N. Watters, L. Matthey, M. Bosnjak, C. P. Burgess, and A. Lerchner. Cobra: Data-efficient

model-based rl through unsupervised object discovery and curiosity-driven exploration. arXiv

e-prints, art. arXiv:1905.09275, 2019.

[92] D. J. Watts. A simple model of global cascades on random networks. Proceedings of the National

Academy of Sciences, 99(9):5766–5771, 2002.

185

[93] T. Wei, Y. Wang, and Q. Zhu. Deep Reinforcement Learning for Building HVAC Control. In

Proceedings of the 54th Annual Design Automation Conference (DAC), pages 22:1–22:6, 2017.

[94] O. Yağan and V. Gligor. Analysis of complex contagions in random multiplex networks.

Physical Review E, 86(3):036103, 2012.

[95] L. Yang, A. Giua, and Z. Li. Minimizing the influence propagation in social networks for

linear threshold models. IFAC-PapersOnLine, 50(1):14465 – 14470, 2017. ISSN 2405-8963. doi:

https://doi.org/10.1016/j.ifacol.2017.08.2293.

[96] L. Yang, Z. Yu, M. A. El-Meligy, A. M. El-Sherbeeny, and N. Wu. On multiplexity-aware

influence spread in social networks. IEEE Access, 8:106705–106713, 2020.

[97] H. P. Young. The dynamics of social innovation. Proceedings of the National Academy of Sciences,

108(Supplement 4):21285–21291, 2011.

[98] Y. D. Zhong and N. E. Leonard. A continuous threshold model of cascade dynamics. In 2019

IEEE Conference on Decision and Control, pages 1704–1709, 2019.

[99] Y. D. Zhong and N. E. Leonard. Unsupervised learning of lagrangian dynamics from images

for prediction and control. In Advances in Neural Information Processing Systems, 2020.

[100] Y. D. Zhong, V. Srivastava, and N. E. Leonard. On the linear threshold model for diffusion of

innovations in multiplex social networks. In IEEE Conf. Decision and Control, pages 2593–2598,

2017.

[101] Y. D. Zhong, B. Dey, and A. Chakraborty. Symplectic ode-net: Learning hamiltonian dynamics

with control. In International Conference on Learning Representations, 2020.

[102] Y. D. Zhong, B. Dey, and A. Chakraborty. Dissipative symoden: Encoding hamiltonian

dynamics with dissipation and control into deep learning. In ICLR 2020 Workshop on Integration

of Deep Neural Models and Differential Equations, 2020.

[103] Y. D. Zhong, V. Srivastava, and N. E. Leonard. Influence spread in the heterogeneous multiplex

linear threshold model. arXiv preprint arXiv:2008.04383, 2020.

186

	I Cascade Dynamics and the Learning of Dynamics
	Introduction
	Overview
	Related Works
	Contributions
	Outline

	Cascade Dynamics on Multiplex Networks
	Traditional Networks and Multiplex Networks
	The Heterogeneous Multiplex Linear Threshold Model
	The Heterogeneous Multiplex Live-edge Model
	Equivalence
	Multiplex Influence Spread
	Examples - Calculate Influence Spread Accurately
	Homogeneous Agents
	Heterogeneous Agents

	Computation Complexity of Influence Spread
	Multiplex LTM as a Bayesian Network
	Examples - Calculate Influence Spread Approximately

	Continuous Cascade Dynamics
	Continuous Threshold Model
	Networks with a Chain of Three Clusters
	Condition for Cascade - Subcritical Pitchfork Bifurcation
	An Example of CTM

	Learning Lagrangian and Hamiltonian Dynamics from Trajectory Data
	Lagrangian/Hamiltonian Dynamics
	Lagrangian Dynamics
	Hamiltonian Dynamics with Control

	Neural ODE for State-space Model
	Symplectic ODE-Net: Lagrangian and Hamiltonian Dynamics as State-space Models
	Model Variant: Unstructured Symplectic ODE-Net
	Model Variant: Dissipative Symplectic ODE-Net
	Experimental Setup and Results
	Interpretability
	Pendulum Without Dissipation
	Pendulum With Dissipation

	Energy-based Control
	Control Results

	Learning Lagrangian and Hamiltonian Dynamics from Image Data
	Problem Formulation
	Variational Autoencoder
	Coordinate-aware Encoder
	Velocity Estimator
	Coordinate-aware Decoder
	Loss Function
	Results
	Interpretability

	Final Remarks
	Cascade Dynamics
	Conclusions
	Future Directions

	Learning Dynamics
	Conclusions
	Future Directions

	II Papers
	Overview
	Outline
	Author Contributions

	On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks
	Introduction
	Multiplex Networks
	The Linear Threshold Model
	Monoplex LTM
	Multiplex LTM

	The Live-edge Model and Reachability
	Monoplex LEM and Reachability
	Duplex LEM and Reachability

	Equivalence of LEM and LTM
	Monoplex Networks
	Duplex Networks: Protocol OR and Reachability OR
	Duplex Network - Protocol AND and Reachability AND

	Social Influence and Cascade Centrality
	Monoplex Social Influence and Cascade Centrality
	Duplex Social Influence and Cascade Centrality
	Algorithm for Duplex Cascade Centralities
	Ordering of probabilities
	Example

	Final Remarks

	Influence Spread in the Heterogeneous Multiplex Linear Threshold Model
	Introduction
	Multiplex Networks
	The Heterogeneous Multiplex LTM
	Monoplex LTM
	Multiplex LTM

	The Heterogeneous Multiplex LEM
	Monoplex LEM and Reachability
	Multiplex LEM and Reachability

	Equivalence of LTM and LEM
	Equivalence for Monoplex Networks
	Equivalence for Multiplex Networks

	Computing Multiplex Influence Spread
	Monoplex Influence Spread and Cascade Centrality
	Multiplex Influence Spread and Cascade Centrality
	Computing Multiplex Influence Spread and Centrality

	A Bayesian Network Approach
	Analytical Expressions of Influence Spread
	Duplex Repeated Path Network
	Duplex Permutation Networks

	Heterogeneity in Protocol
	Small Heterogeneous Multiplex Networks
	Large Heterogeneous Multiplex Networks

	Conclusion

	A Continuous Threshold Model of Cascade Dynamics
	Introduction
	Continuous Threshold Model
	Networks with Three Clusters
	Conditions for Cascade
	An example

	Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
	Introduction
	Preliminary Concepts
	Hamiltonian Dynamics
	Control via Energy Shaping

	Symplectic ODE-Net
	Training Neural ODE with Constant Forcing
	Learning from Generalized Coordinate and Momentum
	Learning from Embedded Angle Data
	Learning on Hybrid Spaces RnTm
	Positive Definiteness of the Mass matrix

	Experiments
	Experimental Setup
	Task 1: Pendulum with Generalized Coordinate and Momentum Data
	Task 2: Pendulum with Embedded Data
	Task 3: CartPole System
	Task 4: Acrobot
	Results

	Conclusion
	Appendix
	Experiment Implementation Details
	Special Case of Energy-based Controller - PD Controller with Energy Compensation
	Ablation Study of Differentiable ODE Solver
	Effects of the time horizon
	Fully-actuated Cartpole and Acrobot
	Test Errors of the Tasks

	Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
	Introduction
	The Port-Hamiltonian Dynamics
	Dissipative Symplectic ODE-Net
	Training Neural ODE with Constant Forcing
	Learning from Generalized coordinate and Momentum
	Learning from Embedded Angle Data
	Learning on Hybrid Spaces RnTm
	The Dissipation Matrix and the Mass matrix

	Experiments
	Experimental Setup
	Task 1: Pendulum with Generalized Coordinate and Momentum Data
	Task 2: Pendulum with Embedded Data
	Results

	Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control
	Introduction
	Related work

	Preliminary concepts
	Lagrangian dynamics
	Control via energy shaping
	Training Neural ODE with constant control

	Model architecture
	Latent Lagrangian dynamics
	Coordinate-aware encoder
	Velocity estimator
	Coordinate-aware decoder
	Loss function

	Results
	Conclusion
	Supplementary Materials
	Conservation of energy in Lagrangian dynamics
	Experimental setup
	Ablation study details

