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Oscillator 
Models and 
Collective 
Motion

C
oupled-phase oscillator models are used to
study the behavior of many natural and engi-
neered systems that represent aggregations of
individuals. Examples include the heart’s pace-
maker cells [1, pp. 268–278], neurons in the

brain, a group of fireflies, the central nervous system in a
lamprey eel [2], and an array of superconducting Joseph-
son junctions [3]. In all of these cases, the activity of each
individual is periodic; for example, each individual fire-
fly, neuron, or pacemaker cell flashes or fires at regular
intervals. To investigate how the dynamics of interacting
individuals can converge to a synchronized collective
state, that is, flashing or firing in unison, each individual
is modeled as an oscillator, while the collective is mod-
eled as a network of coupled oscillators [4], [5]. The net-
work model relies on interaction among the individuals;
if individual A is coupled to individual B, then individ-
ual A adjusts its oscillation in response to what individ-
ual B is doing. For example, a firefly modifies the
frequency of its flashing in response to the flashing activ-
ity of its neighbors. With the right kind of interaction,
the model reveals how the whole firefly group can con-
verge to synchronous flashing. 

Synchronization refers to the situation in which all of
the oscillators have the same phase. However, coupled
oscillators often exhibit a different and interesting family
of equilibria called incoherent states [6]. In some incoherent
states, the oscillator phases are distributed around the unit
circle such that their centroid is at the origin. Since the
phases balance themselves around the unit circle, we refer
to these states as balanced states. In biological systems such
as fish schools, synchronization and balancing have differ-
ent implications not only for group characteristics such as
movement, but also for the capacity of groups to fulfill bio-
logical roles such as predator avoidance, social foraging,
and mate selection.

For modeling, analysis, and synthesis of collective
motion, we describe a framework called particles with cou-
pled oscillator dynamics (PCOD), which extends coupled
oscillator dynamics to include spatial dynamics. The phase
of each oscillator defines the direction of a particle moving
in the plane at constant speed. Note that, for circular
motion at a constant speed, the motion of each particle can
be identified with its direction of travel since at regular
intervals the particle is instantaneously heading north.
Synchronization in a spatial framework implies that, at all
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times, all of the particles have the same direction of
motion. On the other hand, collective motion with bal-
anced phases has a fixed center of mass. For example,
when two particles head in opposite directions, their phas-
es are balanced and their center of mass is at rest. PCOD
allows for limited inter-particle interaction, which is fixed
and undirected. In [7], we describe extensions to PCOD
that allow for time-varying, directed interactions, which
arise, for example, when individuals communicate only
with spatial neighbors.

The synthesis problem is to design a steering control for
each particle so that desired collective spatial patterns
emerge. Examples of such steering controls include control
laws that can stabilize parallel motion as well as control
laws that stabilize the circular motion of all particles in a
symmetric pattern. For a class of spatial patterns, we
address the inverse problem, that is, given a spatial pat-
tern, we specify fixed interaction that produces the desired
pattern. Likewise, we analyze spatial pattern bifurcations,
which are changes in group motion that occur as a result of
changing system and control parameters.

These ideas are applicable to engineered mobile sensor
networks and to the study of animal aggregations. For the
former, the inverse problem results make it possible to sys-
tematically design control laws that yield sensor network
patterns that optimize information content in the sampled
data [8]. For animal aggregations, the inverse problem
results and bifurcation analyses make it possible to devel-
op and study simple models of interaction rules that yield
group behavior resembling field observations.

One application to engineered mobile agent collectives
is the problem of mobile sensor network design for search,
mapping, or environmental monitoring. At-sea demonstra-
tions of coordinated control strategies for formations of
underwater mobile sensors are described in [9] and [10].
Likewise, many open questions exist in the study of emer-
gent behavior in biological collectives, in part because of
variation across species [11]–[14]. Related work on collec-
tive motion from the engineering and physics literature
includes [15]–[18].

In the next section, we first present the oscillator
model with spatial dynamics. We make the connection
between phase synchronization and linear momentum of
the group and describe how to design stabilizing steering
control laws by taking the gradient of a phase potential.
These concepts are generalized to the case of fixed, limit-
ed communication by means of interaction networks and
the quadratic form induced by the Laplacian matrix. Sta-

bilization results are summarized, and application to
design of patterns for sensor coverage by mobile sensor
networks is discussed.

In the second half of this article, we use the coupled
oscillator model with spatial dynamics to study biological
collectives. We show how the particle model resembles a
model used to study animal aggregations [19], [20]. We use
this analogy to examine collective motion of the particle
model and show how parameters can be varied to produce
a rich set of complex behaviors. We then use the phase
potential defined by the model to analyze fish-population
data (see “Analysis of Fish Data”), specifically, giant dan-
ios moving about in a 1 m3 tank [20]–[22]. As a preliminary
step, we present two-dimensional analyses of processes
that are typically three-dimensional (3D) in nature. We
conclude with a brief prospectus on the joint pursuits of
engineering analysis by biologists and biological analysis
by engineers (see “Collaborative Engineering and Biologi-
cal Analysis”).

OSCILLATOR MODEL AND COLLECTIVE MOTION
PCOD provides a common mathematical framework for
describing collectives of autonomous robots and biologi-
cal organisms. In PCOD, the collective dynamics are
defined by a particle model in which each individual is
represented by a particle (point mass). The particle
model describes the motion of N identical individuals
defined by their positions and directions of motion. We
assume that the particles have unit mass, travel at unit
speed, and can maneuver by steering but not by speed-
ing up or slowing down.

To illustrate the connection to coupled oscillator
dynamics, we identify the complex plane C with R2 and
use complex notation to describe each particle’s position
and velocity. For k = 1, . . . , N, the position of the kth parti-
cle is rk = xk + iyk ∈ C, while the velocity of the kth particle
is eiθk = cos θk + i sin θk , where θk is the phase of the kth
particle. Each phase θk represents a point on the unit circle
S1, which is the space of angles. The collection of all of the
phases evolves on the N-torus TN , which is equal to
S1 × · · · × S1 (N times). Let r � (r1, . . . , rN)T ∈ CN and
θθθ � (θ1, . . . , θN)T ∈ TN . The steering control uk, which is a
feedback control law, is a function of r and θθθ . With this
notation, the particle model is [15]

ṙk = eiθk , (1)

θ̇k = uk(r, θθθ), k = 1, . . . , N . (2)
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The fact that the phase θk of particle k represents a
point on S1 distinguishes the model (1), (2) from the parti-
cle model used in [16], which describes the orientation of
particle velocity by a real number in the interval [0, 2π).
Note that in (2), θk is not confined to a bounded interval;
θk can be seen to evolve in S1 by identifying θk with
θk + 2π . On TN , the control uk is a 2π -periodic vector
field, that is, for all r, θθθ , uk(r, θθθ + 2π1) = uk(r, θθθ), where
1 � (1, . . . , 1)T ∈ RN . Modeling on the torus leads to glob-
al results such as Theorem 1 below, while modeling on the
real line can provide only local results since the configura-
tion space is not Euclidean. 

If, for all k = 1, . . . , N, the control uk is identically zero,
then each particle travels in a straight line in its initial
direction θk(0). If, on the other hand, for all k = 1, . . . , N,
uk � ω0 is constant but not zero, then each particle travels
around a circle with radius |ω0|−1. The direction of rota-
tion around the circle is determined by the sign of ω0. In
particular, if ω0 > 0, then all particles rotate counterclock-
wise, whereas, if ω0 < 0, then all particles rotate clockwise.
The center of the kth circle is

ck � rk + ω−1
0 ieiθk , (3)

while the center of mass of the particle group is

R � 1
N

N∑
j=1

rj . (4)

The particle model (1), (2) describes a second-order
Newtonian model of N point masses, each of which is sub-
ject to a force orthogonal to its velocity. Note that, for all
k = 1, . . . , N, r̈k = ukiṙk, which implies that the total kinetic
energy is conserved, since (d/dt)(1/2)|ṙk|2 = 〈ṙk, r̈k〉 = 0,
where 〈x, y〉 � Re{x∗y} and ∗ denotes the conjugate trans-
pose. Total linear momentum, which is proportional to the
velocity Ṙ of the center of mass, is not conserved. In fact,
control of total linear momentum plays a role in the design
methodology described below. 

Let rkj � rk − rj and θkj � θk − θj denote, respectively,
the position and phase of particle k relative to particle j. A
shape control for particle k depends only on the shape vari-
ables θkj and rkje−iθk for all j = 1, . . . , N. The closed-loop
particle model with shape control is invariant to rigid rota-
tion and translation of the collective [15]. Since rigid trans-
lation of the collective exercises two degrees of freedom
while rigid rotation of the collective exercises one degree of
freedom, the closed-loop dynamics evolve on shape space,

which is a reduced configuration space that has three fewer
dimensions than the full configuration space.

Equilibria of the dynamics in shape space are called rel-
ative equilibria of the full space. Two types of relative equi-
libria of the particle model are parallel formations and
circular formations. Particles in a parallel formation travel
in a constant, identical direction, which means θ̇k = 0 and
θk = θj for all pairs j and k. Particles in a circular formation
travel around the same circle in the same direction, which
means θ̇kj = 0 and ck = cj for all pairs j and k. One of our
goals is to derive shape controls that provably stabilize
these formations for N ≥ 2.

Phase Model
As a first step in designing steering controls for the parti-
cle model, we independently consider the subsystem of
phases. To do this, we split the control uk into three terms,
specifically,

uk = ω0 + uspac
k (r, θθθ) + uori

k (θθθ), k = 1, . . . , N, (5)

where ω0 ∈ R is a constant, uspac
k (r, θθθ) is the spacing con-

trol, and uori
k (θθθ) is the orientation control. By ignoring the

particle positions and setting uspac
k = 0, we obtain the

phase model

θ̇k = ω0 + uori
k (θθθ), k = 1, . . . , N, (6)

which is a system of coupled-phase oscillators with iden-
tical natural frequency ω0. In general, the orientation
control uori

k depends on the phases θ1, . . . , θN . If uori
k is a

shape control, then uori
k depends only on the relative

phases θkj, and the phase model is invariant to rigid rota-
tion of all of the phases.

The phases θj and θk are phase locked if θ̇kj = 0. A syn-
chronized phase arrangement θθθ is a phase-locked arrange-
ment for which θk = θj for all pairs j and k, which implies
that the particles are in a parallel formation. The phase
order parameter pθ , which is a measure of synchrony of
coupled-phase oscillators, is defined by [5]

pθ � 1
N

N∑
j=1

eiθj . (7)

The magnitude |pθ |, which satisfies 0 ≤ |pθ | ≤ 1, is propor-
tional to the level of synchrony of the phases; in particular,
|pθ | = 1 for synchronized phases. A balanced phase
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Analysis of Fish Data

E vidence of phase synchronization has been found in actual

fish schooling data by computing the value of the Laplacian

phase potential W1(θθθ). Phase synchronization is characterized

by small values of W1(θθθ) given by (12) with L = Lori. Recall that

W1(θθθ) is nonnegative for directed or undirected graphs and zero

if θ is synchronized. Even if the interaction network is not con-

nected, W1(θθθ) = 0 only if the phases within each connected

subgraph are synchronized.

We examine trajectories of individual fish within four-fish and

eight-fish populations of giant danios (danio aequipinnatus). The

trajectories are recorded

using stereo videography

and a computerized tracking

algorithm; see [20] for

details on the data collec-

tion. Each experiment con-

tains ten minutes of data

collected in a 1-m3 tank,

shown in Figure S1. Contin-

uous fish trajectories are

generated from the raw data

using smoothing splines to

remove frame-rate noise.

We calculate smoothed unit-

velocity estimates by averag-

ing over a five-second

moving window. We use only

the horizontal components of

position and velocity, which is

appropriate for an initial

analysis because many of the

spatial patterns evident in

these data are primarily two

dimensional [21]. 

As a first step, we cal-

culate W1(θθθ) using the

switching interaction net-

work generated from the

realistic orientation zones

defined in [20]. A typical

body length for a giant

danio is 5.3 cm, which we

denote by b. The orienta-

tion zone of the kth fish is contained in the annulus defined by

{r | 1.4b ≤ |r − rk| ≤ 2.4b} and with the trailing blind spot

αk = 60◦. A snapshot of each data set is shown in Figure S2 with

orientation zones shown in gray. The four-fish data set exhibits

periods of highly synchronized collective motion. The two eight-

fish data sets, panels (b) and (c) in Figure S2, exhibit markedly

different schooling behavior that we refer to as tight-milling and

diffuse-milling, respectively. For this type of interaction network,

low values of the phase potential are generated if the orientation

zones are mostly empty, as in the case of diffuse-milling.

To overcome this limitation, we recalculate the Laplacian

phase potential using an interaction network generated by the

nearest n neighbors of each fish. In the left column of Figure S3,

we plot the potential W1(θθθ) scaled by (2/n + 1) so that the result-

ing magnitude is in the interval [0, 1] for all n. In each panel, we

plot the results for n = 1 and n = N − 1 for a representative 30 s

period starting from t = 30 s. In the right column of Figure S3, we

plot the histograms of the scaled potentials for all 10 min of each

data set for n = 1 and n = N − 1 as well as the histogram of the

difference between the two values of the phase potential. For

n = 1, if the nearest neighbor is in the zone of repulsion

{r | |r − rk| ≤ 1.4b}, we use the second nearest neighbor. Note

that n = N − 1 corresponds to the complete graph, in which case

(2/n + 1)W1(θθθ) = 1 − |p θ |2 by (13) and (8). This metric is

inversely related to the mobility of the center of mass of the

group, which may be constrained by the size of the tank.

FIGURE S2 Actual fish school trajectories and estimated perceptual zones. The position (red circle),
direction of motion (black arrow), trajectory (blue line), and orientation zone (gray patch) are plotted
for each fish. (a) The four-fish experiment is characterized by polarized motion; (b) the tight-milling
eight-fish experiment is characterized by small inter-fish spacing; (c) the diffuse-milling eight-fish
experiment is characterized by large inter-fish spacing, which leads to predominantly empty neigh-
bor sets in the orientation directed graph.
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FIGURE S1 Tight-milling eight-fish experiment. (a) 1-m3 tank experimental enclosure with eight giant
danios; note the solitary fish near the top of the tank. (b) Close-up view of seven of the eight fish
swimming in a highly polarized school.

(a) (b)
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FIGURE S3 The value of the Laplacian phase potential W1(θθθ) for fish-schooling data using the directed graph generated by the n
nearest neighbors of each fish. (a) The scaled potentials W blue

1
�= 2/(n + 1)W1(θθθ)|n =N−1 and W red

1
�= 2/(n + 1)W1(θθθ)|n =1 are shown

for a representative 30-s period starting at t = 30 s. (b) Histograms of W blue
1 , W red

1 , and W blue
1 − W red

1 are shown for: (top row)  four-
fish experiment; (middle row) tight-milling eight-fish experiment; and (bottom row) diffuse-milling eight-fish experiment.
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Using the histograms in Figure S3, we make the following

observations. The four-fish data possess a bimodal distribution

of the scaled phase potential histogram for n = N − 1. The peak

near zero corresponds to synchronized collective motion. The

peak at 0.75 corresponds to several nearly synchronized

motions, such as when three fish move in parallel and one fish

moves in the opposite direction, (the only unbalanced (2, N)-

pattern for N = 4). For the n = 1 histogram, the single peak

near zero provides the strongest evidence for local synchroniza-

tion behavior. For both eight-fish data sets, the n = N − 1

scaled potential histograms have a single peak at unity, which is

consistent with the milling behavior and indicates that the group

center of mass is predominantly fixed. Although each n = 1 his-

togram has a single peak as well, the mean is not at zero.

Nonetheless, evidence for local synchronization is provided by

the histogram of the difference between the values of the scaled

potential for n = N − 1 and n = 1. The difference histogram is

nearly always positive, which implies that the entire school is

less synchronized than neighboring fish. The result that both the

eight-fish data sets contain evidence for local synchronization

suggests that the orientation component of the individual fish

behaviors may be similar even if the group behavior is different.
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arrangement satisfies pθ = 0. Differentiating (4) with
respect to time, using (1) and comparing to (7), we observe
that pθ is equal to the velocity Ṙ of the center of mass of the
particles, which is proportional to the average linear
momentum of the group. The magnitude of the phase
order parameter is thus the speed of the center of mass.
Therefore, each balanced phase arrangement corresponds
to particle motion with a fixed center of mass. 

Controlling Linear Momentum
Controlling the linear momentum of the collective is
equivalent to controlling the magnitude |pθ | of the phase
order parameter. Consider the rotationally invariant
phase potential

U1(θθθ) � N
2

|pθ |2, (8)

which is maximized by synchronized phase arrangements
and minimized by balanced phase arrangements. The gra-
dient of U1(θθθ) is given by

∂U1

∂θk
= 〈ieiθk , pθ 〉, k = 1, . . . , N.

Consider the Taylor series expansion of U1(θθθ) about θ01,
where θ0 is an arbitrary phase. Since the potential U1(θθθ) is
rotationally invariant, it follows that the Taylor series is exact-
ly U(θθθ + θ01) = U(θθθ). In particular, the first-order term is

94 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

Investigation of collective motion represents an overlap of inter-

ests between engineers and biologists who are motivated by

different scientific questions. To engineers, the study of biologi-

cal aggregations is one of many areas in which organisms con-

front design problems that have close engineering analogs.

These organisms may have evolved highly effective solutions

that provide performance benchmarks and inspiration, if not

actual blueprints, for engineers tasked with coordinating large

systems of interacting agents. To biologists, collective motion or,

more generally, social response to neighbors, is ubiquitous,

ranging from quorum sensing in bacteria to schooling in fish.

Yet, establishing mechanistic relationships between realistic indi-

vidual behaviors and their group characteristics, or distinguish-

ing those characteristics of groups that are the primary benefits

of natural selection from those that are incidental or even disad-

vantageous, remain open problems. The results in this article

illustrate a profitable dialogue between biologists, whose obser-

vations help motivate novel analytical directions, and engineers,

whose mathematical formalisms suggest new and insightful

ways of interpreting biological data as measured against ideal-

ized but understandable models.

An example of how this conversation can lead to funda-

mental insights is in the area of scalability. Engineers design-

ing controls for coordinated N -member groups face the

impracticality of information exchange among members as N

gets large. Very large social groups abound in nature; these

organisms appear to have solved the problem. However, in

nearly all of the biologically inspired simulations of collective

motion, large groups lack robustness and tend to fragment

easily into smaller groups unless they also contain explicit

mechanisms, such as a finite spatial domain or common direc-

tional preferences, that suppress the tendency. This difference

between theory and observation suggests that critical ele-

ments, perhaps intelligent processing of limited sensory data,

are missing in our current understanding of collective control

algorithms. Understanding this intelligent processing, or per-

haps determining there is no such intelligence, may supply key

biomimetic insights for engineers and mechanistic individual-

to-group dynamics for biologists.

Analysis of collective behavior is potentially useful in at least

two directions. First, these results provide a starting point for the

reverse engineering of algorithms from observed trajectories.

Biologists’ abilities to infer underlying behavior from movement

observations has been far more limited, and far more limiting,

than their abilities to simulate movement from hypothetical

behavioral algorithms. As suggested by the analysis of fish tra-

jectories (see “Analysis of Fish Data”), any analytical infrastruc-

ture that permits bidirectional inferences, that is, movement from

algorithm and algorithm from movement, is a big step forward,

even if the underlying models are simplified compared to real

biological behaviors.

Second, the analysis of directed interaction graphs in

PCOD promises an explicit link between control theory and the 

distance-mediated attraction, repulsion, and alignment neigh-

borhoods that are the basis of most social grouping simula-

tions. One interpretation of these results is a biological

hypothesis that the dynamics within a fish school continually

tend toward locally stable ordered states but are continually

perturbed by surrounding neighborhoods of individuals with

distinct and possibly incompatible ordered states. If so, the

analysis suggests explicit and general predictions of what

those states’ characteristics must be, and how the balance

between stability and perturbation may be statistically reflected

in movement data. Biological grouping simulations have long

suffered from a lack of generality, with no way of knowing

whether simulation results reflect fundamental characteristics

of coordinated groups or only idiosyncratic ways of oversimpli-

fying very complex processes. Analytical results that tie gener-

al provable results to reasonable biological models promise to

move the coordinated group discussion between engineers

and biologists toward general necessary and sufficient condi-

tions for attaining specific group properties.

Collaborative Engineering and Biological Analysis



1T ∂U1

∂θ
=

N∑
k =1

〈ieiθk , pθ 〉 = N〈ipθ , pθ 〉 = 0,

which shows that the gradient (∂U1)/(∂ θθθ) of U1(θθθ) is
indeed orthogonal to 1. We use this fact below.

The global maximizers and global minimizers of the
potential U1(θθθ) represent synchronized and balanced
phase configurations. A candidate orientation control uori

k
that extremizes the value of the potential along solutions
of the closed-loop phase model (6) is the gradient of U1(θθθ)

multiplied by the nonzero gain −K1, where the minus sign
is consistent with the coupled-phase oscillator literature
[5]. The candidate control is

uori
k = −K1〈ieiθk , pθ 〉, k = 1, . . . , N . (9)

For the control (9), it follows that

U̇1(θθθ) = ∂U1

∂θθθ

T
θ̇θθ = −K1

N∑
k =1

〈ieiθk , pθ 〉2 ,

and thus the potential U1(θθθ) evolves monotonically along
solutions of (6).

The phase model (6) with the gradient control (9) is
equivalent to 

θ̇k = ω0 + K1

N

N∑
j=1

sin θkj . (10)

For K1 < 0, the system (10) is a simplified version [23] of
the Kuramoto model, which is a general model of oscilla-
tor synchronization and collective behavior [24]. The oscil-
lators in (10) have identical natural frequencies ω0 ,
whereas, in the Kuramoto model, the oscillators have dif-
ferent natural frequencies. For K1 > 0, the system (10) sta-
bilizes balanced phase arrangements. Lyapunov analysis
provides the following stability result on all-to-all orienta-
tion control given in [25].

Theorem 1
For the gradient control (9), all of the solutions of the phase
model (6) converge to the critical set of U1(θθθ), which is the
set of all points where the gradient of U1(θθθ) is zero. If
K1 < 0, then all of the synchronized phase arrangements
are asymptotically stable and all of the remaining equilib-
ria are unstable. If K1 > 0, then the balanced equilibria for
which pθ = 0 are asymptotically stable and all of the
remaining equilibria are unstable. 

All of the points in the critical set of U1(θθθ) other than
the synchronized and balanced phase arrangements are
saddle points. These stationary points satisfy sin θkj = 0 for
all j, k ∈ {1, . . . , N} , which means that these points are
equilibria of (6) with the control (9). For example, consider
the set of stationary points with M < N phases equal to θ0

and N − M phases equal to θ0 + π . These phase arrange-
ments, called unbalanced (2, N)-patterns if M �= N/2, are
unstable equilibria; they look like two unequally sized
clusters of particles on opposite sides of the unit circle.

The particle model (1), (2) with the gradient control (9)
gives rise to four distinct types of motion, shown in Figure 1.
In particular, for ω0 = 0, the particles move along straight
trajectories, while, for ω0 �= 0, the particles move around
circles. In either case, if K1 < 0, then the phases are syn-
chronized; if K1 > 0, then the center of mass of the particles
is fixed. The case ω0 = 0 and K1 < 0, which is an example
of a parallel formation, is the only relative equilibrium
shown in Figure 1. Later, we present spacing controls that
stabilize circular formations, but first we extend the phase
model to systems with limited interaction.

LAPLACIAN QUADRATIC FORMS
Implicit in the gradient control (9) is the assumption that each
particle computes its control using its phase relative to every
other particle. In this section, we extend the orientation con-
trol (9) to scenarios in which interaction is limited. The orien-
tation interaction network is a directed graph that describes
which relative phases are available to each particle for feed-
back. We also consider spacing controls constrained by a
spacing interaction network. We describe here and in the next
section a methodology for stabilizing the collective motion of
the phase and particle models with limited interaction.

We describe an interaction network by a directed graph
G. Let L be the Laplacian matrix of G (see “A Tutorial on
Graph Theory”). Let 〈x, y〉 � ∑N

j=1〈xj, yj〉 , where
x � (x1, . . . , xN)T ∈ CN and y � (y1, . . . , yN)T ∈ CN . Asso-
ciated with L is the Laplacian quadratic form

QL(x) � 1
2N

〈x, Lx〉. (11)

If G is undirected, then L = BBT (see “A Tutorial on Graph
Theory”), and the quadratic form (11) is proportional to
the total length of graph edges, that is,

QL(x) = 1
2N

∑
( j,k)∈E

|xj − xk|2 ,

where E is the set of edges of G (see “A Tutorial on Graph
Theory”). If G is undirected and connected, then QL(x) = 0
if and only if x ∈ span{1}, while QL(x) > 0 otherwise [17].

Laplacian Phase Potentials
Consider the Laplacian quadratic form

W1(θθθ)
�=QL(eiθθθ ) = 1

2N
〈eiθθθ , Leiθθθ 〉, (12)

where eiθθθ � (eiθ1 , . . . , eiθN )T . The Laplacian quadratic form
(12) is called a Laplacian phase potential [26] since it
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generalizes the phase potential U1(θ) defined in (8) for all-
to-all particle interaction. If G is complete (see “A Tutorial
on Graph Theory”), then

W1(θθθ) = N
2

− U1(θθθ), (13)

and W1(θθθ) has the same stationary points as U1(θθθ). If G is
strongly connected (see “A Tutorial on Graph Theory”),
then W1(θθθ) = 0 if and only if θθθ is synchronized; otherwise,
W1(θθθ) > 0. To see this, we compute

W1(θθθ) = 1
2N

N∑
k =1

〈eiθk , Lkeiθθθ 〉

= 1
2N

N∑
k =1

(
dk −

∑
j∈Nk

〈eiθk , eiθj〉
︸ ︷︷ ︸

≤dk

)
≥ 0 ,

where dk is the degree of node k and Nk is the set of neigh-
bors of node k (see “A Tutorial on Graph Theory”). If G is
not strongly connected, then W1(θθθ) is zero if and only if
the phases within each strongly connected subgraph of G
are synchronized; otherwise, W1(θθθ) is positive.

Laplacian Phase Control
Assuming now that G is undirected, the gradient of
W1(θθθ) is

∂W1

∂θk
= 1

2N
〈ieiθk , (L + LT)keiθθθ 〉 = 1

N
〈ieiθk , Lkeiθθθ 〉 ,

where Lk denotes the kth row of the Laplacian matrix. In
the phase model (6), choosing the gradient control

uori
k = K1

N
〈ieiθk , Lkeiθθθ 〉, k = 1, . . . , N , (14)

with K1 �= 0, guarantees that the potential W1(θθθ) evolves
monotonically, since

FIGURE 1 Four types of collective motion obtained with the orientation control (9) and N = 12. The position rk of particle k ∈ {1, . . . , 12} is a
red circle, and the velocity e i θk is a black arrow. The center of mass R is the black circle marked by an x, and the center of mass velocity
Ṙ = pθ is a black arrow. (a) ω0 = 0 and K1 < 0. The phases are synchronized, and the particles travel in a parallel formation. (b) ω0 = 0
and K1 > 0. The phases are balanced, and the center of mass is fixed as the particles travel off along straight lines. (c) ω0 �= 0 and
K1 < 0. The phases are synchronized as each particle travels around a circle. (d) ω0 �= 0 and K1 > 0. The phases are balanced, and the
center of mass is fixed as the particles travel around (different) circles. Only (a) is a relative equilibrium of the model (1), (2).

0 50 100

−50

0

50

100

150

x

y

(a)

−100 0 100

−150

−100

−50

0

50

100

150

x

y

(b)

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

x

y

(c)

0

(d)

−30 −20 −10 0 10 20
−30

−20

−10

10

20

x

y



AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 97

Ẇ1(θθθ) = ∂W1

∂θθθ

T
θ̇θθ = K1

N2

N∑
k =1

〈ieiθk , Lkeiθθθ 〉2 .

The phase model (6) with the gradient control (14) is
equivalent to 

θ̇k = ω0 + K1

N

∑
j∈Nk

sin θkj , (15)

where K1 �= 0. By comparison with (10), we observe that
the system (15) with K1 < 0 is a simplified Kuramoto
model of identical coupled-phase oscillators with limited
interaction. Equation (15) also demonstrates that (14) is a
shape control since it depends only on the relative phases.

The invariance principle shows that the phase model
under the control (14) converges to the largest invariant set
for which Ẇ1(θθθ) = 0, which corresponds to the condition

〈ieiθk , Lkeiθθθ 〉 = 0, k = 1, . . . , N . (16)

The vector eiθ satisfies (16) if and only if θθθ is a stationary
point of the phase potential W1(θθθ) [27]. For example, if eiθθθ

is an eigenvector of L, then θθθ is a stationary point of W1(θθθ)

and an equilibrium of (6). The set of stationary points that
are synchronized corresponds to the eigenvector 1, that is,
θk = θj for all pairs k and j. This set, whose elements are
global minimizers of the phase potential, is not empty for
any connected graph. The set of balanced stationary points
satisfies 1Teiθθθ = 0. A sufficient condition for the existence
of a balanced stationary point is that G is circulant, that is,
the Laplacian is a circulant matrix.

If G is circulant, then L is diagonalized by the dis-
crete Fourier transform matrix F

�= [ fkm] ∈ CN×N , where
fkm = 1/

√
Nei(2π/N)(m−1)(k−1) (see “A Tutorial on Graph

Theory”). The columns of F are (normalized) eigenvec-
tors of L. Therefore, if eiθθθ is an eigenvector of a circu-
lant Laplacian other than 1, then the phasors eiθk form a
symmetric pattern on the unit circle. In the case of the
cyclic graph CN, the edges of the graph form a general-
ized regular polygon [28]. The eigenvectors and corre-
sponding eigenvalues of the Laplacian of CN are shown
in Figure 2.

STABILIZING SPATIAL PATTERNS
We now summarize an approach to stabilizing spatial pat-
terns using PCOD with Laplacian-based controls. A circular

Consider the directed graph G = (N , E) , where

N �= {1, . . . , N} is a set of nodes and E ⊂ N × N is a set of

directed edges. In this setting, node k of G corresponds to parti-

cle k and the ordered pair (j, k) ∈ E corresponds to information

flow from particle j to k . Assume there are no self-loops, which

means (k, k) /∈ E for all k = 1, . . . , N . If (j, k) ∈ E , then j is a

neighbor of k . The set Nk contains all of the neighbors of k ; the

cardinality dk of Nk is the number of neighbors of k , which is the

degree of node k . If j is a neighbor of k , then the (relative) states

of particle j are available for computing control uk . In the case

that j is a neighbor of k if and only if k is a neighbor of j , then G

is undirected. If there is a path that obeys edge direction

between every pair of distinct nodes, then G is strongly connect-

ed. If G is undirected and strongly connected, then we say G is

connected.

There are several matrix representations of a directed graph

G. Let d �= (d1, . . . , dN)T ∈ R
N . The degree matrix D is the posi-

tive-semidefinite matrix D �= diag(d). The adjacency matrix A is

the matrix A = [akj ] ∈ R
N×N , where akj = 1, if j ∈ Nk , and

akj = 0, otherwise. The incidence matrix B is the matrix

B = [bkf ] ∈ R
N×e, where each column of B corresponds to a sin-

gle edge in E , where e is the cardinality of E . Let column

f ∈ {1, . . . , e} correspond to edge (j, k) ∈ E ; in this case,

bkf = 1 = −bj f and all of the remaining entries of column f are

zero. The Laplacian matrix L is defined by L �= D − A. It can be

shown using the Gers̆gorin disc theorem [35, p. 344] that all of

the eigenvalues of L have nonnegative real part. Furthermore, if

G is undirected, then the Laplacian matrix of G is symmetric and

satisfies L = BBT , which means that L is positive semidefinite.

We describe the Laplacians of two undirected graphs. Let KN

denote the complete graph of N nodes, each with degree N − 1.

Let CN denote the undirected cyclic graph of N nodes, which is

a connected graph in which each node has degree 2. Both types

of graphs are circulant, which means that their Laplacian matri-

ces are circulant and symmetric matrices. Circulant matrices

with N ≥ 2 columns are completely defined by their first row;

each remaining row starts with the last entry of the previous row

followed by the first N − 1 entries of the previous row. Let Lk be

the k th row of the graph Laplacian. For the complete graph, we

have L1
�= (N − 1,−1, . . . ,−1) ∈ R

N . For a cyclic graph, we

have L1
�= (2,−1, 0, . . . , 0,−1) ∈ R

N . (See [36] for more exam-

ples of undirected circulant graphs.) Circulant graphs are also

d 0 -regular, meaning d = d 01. We have d 0 = N − 1 for the

graph KN and d 0 = 2 for the graph CN .

By definition, L1 = 0, which implies that zero is an eigenval-

ue of L. If G is strongly connected, then zero as an eigenvalue of

L has multiplicity one [37]. If G is undirected, then L is symmetric

and its (normalized) eigenvectors can be chosen to form an

orthonormal basis. If G is undirected, then G is circulant if L is

symmetric and circulant; in this case, the unitary matrix F ,

whose columns are normalized eigenvectors of L, is the discrete

Fourier transform matrix [38].

A Tutorial on Graph Theory
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formation is a relative equilibrium in which all of the parti-
cles travel around the same circle. Stabilizing formations on
a more general class of closed curves is discussed in [29]. It is
shown below how to use a composite potential to isolate
symmetric patterns of the particles in a circular formation,
where isolate means to create a local basin of attraction that
contains no other solutions in shape space. We assume fixed,
undirected, and connected graphs for orientation and spac-
ing interactions; extensions to time-varying, directed interac-
tions are given in [7].

Circular Formations
Let c

�= (c1, . . . , cN)T ∈ CN , where the circle center ck is
defined by (3) with ω0 �= 0. Particles in a circular formation sat-
isfy the algebraic condition c = c01, where c0 ∈ C. Let L be the
Laplacian of the undirected and connected graph G. We use
the Laplacian quadratic form

S(r, θθθ) � QL(c) = 1
2N

〈c, Lc〉 (17)

to define a spacing potential that is zero in the circular forma-
tion and positive otherwise. The potential S(r, θθθ) is positive
definite and proper in the reduced space of relative circle cen-
ters, which have coordinates ckj � ck − cj. Differentiating (3)
with respect to time along solutions of (1), (2) yields

ċk = eiθk
(

1 − ω−1
0 uk

)
, k = 1, . . . , N . (18)

Using (18), the potential (17) evolves along the solutions of
the particle model (1), (2) according to

Ṡ(r, θθθ) = 1
N

N∑
k =1

〈eiθk , Lkc〉
(

1 − ω−1
0 uk

)
. (19)

We assume controls of the form (5) with, for the
moment, uori

k = 0. Choosing

uspac
k = ω0

K0

N
〈eiθk , Lkc〉, k = 1, . . . , N , (20)

where K0 > 0, and using (5), (19), and (20), we obtain

Ṡ(r, θθθ) = − K0

N2

N∑
k =1

〈eiθk , Lkc〉2 ≤ 0 ,

which guarantees that S(r, θθθ) is nonincreasing. Lyapunov
analysis provides the following global stability result for
Laplacian circular formation control given by [27].

Theorem 2
For the control (5) with uori

k = 0 and uspac
k given in (20),

all of the solutions of the particle model (1), (2) converge
to the set of circular formations with
radius |ω0|−1 and direction of rotation
determined by the sign of ω0 �= 0. 

By the invariance principle, solutions
converge to the largest invariant set for
which Ṡ(r, θθθ) = 0. In this set, θ̇ = ω01
and c = c01. Since the spacing control
(20) is a shape control that preserves the
rotation and translation symmetries of
the particle model, the steady-state posi-
tion of the center of the circular forma-
tion c0 ∈ C depends only on the initial
state of the particles and is fixed. On the
other hand, the center of mass of the
particles is not necessarily fixed.

Synchronized and
Balanced Circular Formations
We show next how to stabilize the cir-
cular formation and, simultaneously,
control the speed of the center of mass.
Assume for now that the orientation
and spacing interaction networks are
identical .  Consider the composite
potential formed by taking a linear
combination of the spacing potential
S(r, θθθ) and the phase potential W1(θθθ),
given by

FIGURE 2 Eigenvectors of the Laplacian L of the cyclic graph C12. If e i θθθ is an eigen-
vector of L, then θθθ is a stationary point of the Laplacian phase potential (12), and θθθ
forms a symmetric pattern on the unit circle. The edges of each graph form general-
ized regular polygons.
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V(r, θθθ) � K0S(r, θθθ) + K1ω
−1
0 W1(θθθ) , (21)

where K0 > 0, K1 �= 0, and ω0 �= 0. We simultaneously sta-
bilize the circular formation and the speed of the center of
mass by choosing the control (5) with uori

k given by (14)
and uspac

k given by (20), that is,

uk = ω0 + K1 − K0

N
〈ieiθk , Lkeiθθθ 〉 + ω0

K0

N
〈eiθk , Lkr〉 . (22)

Taking the time derivative of (21) along the solutions of
(1), (2), and using (12), (17) and (22), we obtain

V̇(r, θθθ) = − 1
N2

N∑
k =1

(K0〈eiθk , Lkc〉 + K1ω
−1
0 〈ieiθk , Lkeiθθθ 〉)2 ≤ 0 .

By the invariance principle, solutions converge to the
largest invariant set for which V̇(r, θθθ) = 0. In this set,
θ̇θθ = ω01, which implies that both c and W1(θθθ) are constant.
Consequently, it can be shown that the set of synchronized
circular formations, characterized by c = c01 and |pθ | = 1,
is locally exponentially stable for K1 < 0. If, in addition to
being connected, G is also circulant, then it can be shown
that the set of balanced circular formations characterized
by c = c01 and pθ = 0 is asymptotically stable for K1 > 0
[27]. These spatial patterns are shown in Figure 3 for a
cyclic graph. Increasing the gain K1 > 0 in Figure 3(c) pro-
duces the balanced (2, N)-pattern, which is the unique con-
figuration that maximizes the potential W1(θ).

Symmetric Circular Formations
Next, we derive phase potentials that isolate symmetric
circular formations, which are circular formations in which
the phase arrangement is a symmetric pattern. Let the pos-
itive integer M be a divisor of N. An (M, N)-pattern is a
symmetric arrangement of N phases consisting of M clus-
ters uniformly spaced around the unit circle, each with
N/M synchronized phases. For any N, there exist at least
two symmetric patterns, namely, the (1, N)-pattern, which
is the synchronized state, and the (N, N)-pattern, which is
the splay state, characterized by N phases uniformly
spaced around the circle. All of the symmetric patterns
other than the synchronized state are balanced.

To characterize (M, N)-patterns, we generalize the
phase order parameter (7) by defining the mth moment of
the phasor distribution as

pmθ � 1
mN

N∑
k =1

eimθk , (23)

where m is a positive integer. Symmetric (M, N)-patterns
satisfy pmθ = 0 for m = 1, . . . , M − 1, which is balancing
modulo 2π/m, and M|pMθ | = 1, which is synchronization
modulo 2π/M [25].

We stabilize symmetric patterns by designing phase
potentials that are minimized by the desired pattern. Con-
sider the Laplacian phase potential

Wm(θθθ) � QL

(
1
m

eimθθθ
)

= 1
2Nm2 〈eimθθθ , Leimθθθ 〉 ,

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 99

FIGURE 3 Stabilizing the circular formation with and without orienta-
tion control. The spacing and orientation interaction networks are
identical, cyclic graphs. Each figure has N = 12, ω0 = 0.1, and
K0 = Nω0 . (a) K1 < 0; the synchronized circular formation. (b)
K1 = 0; an arbitrary circular formation. (c) K1 > 0; the splay circular
formation. Increasing the gain K1 > 0 in (c) produces the balanced
(2, N)-pattern that maximizes the potential W1(θ).
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where L is the Laplacian of the connected, undirected
graph G. The procedure for stabilizing symmetric patterns
of particles with limited communication is described in [7].
Here we summarize the results for the complete graph,
which represents all-to-all interaction. If G is complete,
then Wm(θθθ) = (N/2) − Um(θθθ), where 

Um(θθθ)
�= N

2
|pmθ |2 (24)

is a natural generalization of the potential U1(θθθ) [25]. The
potential Um(θθθ) reaches its minimum when pmθ = 0 and its
maximum when the phase difference between any two
phases is an integer multiple of 2π/m. All of the remaining
stationary points of Um(θθθ) are isolated saddle points [25].
Note that the minimizers of Um(θθθ) are balanced modulo
2π/m, while the maximizers of Um(θθθ) are synchronized
modulo 2π/m.

As before, we combine the circular formation spacing
potential with a phase potential to drive the particles to the
circular formation in a particular phase arrangement. The
composite potential that isolates an (M, N)-pattern circular
formation is given by

VM,N(r)
�=K0S(r, θθθ) + UM,N(θθθ) ,

where UM,N(θθθ) is defined by (25) below. The six symmet-
ric patterns for N = 12 are shown in Figure 4. The follow-

ing result for stabilization of symmetric circular formations
given in [25] can be proved with Lyapunov analysis.

Theorem 3
Let the positive integer M be a divisor of N. The phase
arrangement θθθ ∈ TN is an (M, N)-pattern if and only if θθθ is
a global minimizer of

UM,N(θθθ)
�=

M∑
m=1

KmUm(θθθ) , (25)

where Km > 0 for m = 1, . . . , M − 1, KM < 0, and Um(θθθ) is
given by (24). Each (M, N)-pattern circular formation of
radius |ω0|−1 is an isolated relative equilibrium of the par-
ticle model (1), (2) and is exponentially stabilized by the
control law (5) with uori

k given by the negative gradient of
(25) and uspac

k given by (20). 

Symmetry Breaking
Up to now, we have used shape controls to preserve the
symmetries that render the particle model invariant to rigid
rotation and translation of all of the particles. For a control
law that is not a shape control, the closed-loop particle
model may not be invariant to rigid rotation or translation
of all of the particles. Such a control, which is motivated by
application to sensor networks, is said to break the rotation
or translation symmetry. In the case of all-to-all interaction,
the particle model is also invariant to permutations of parti-
cle indices. The engineering design of interaction networks

that break the permutation symme-
try is described in [7].

We break the rotational symme-
try by adding a reference phase θ0
that has dynamics θ̇0 = ω0 . In the
closed-loop particle (or phase)
model with orientation control (14),
we couple at least one particle to the
reference phase. Without loss of
generality, we couple the Nth parti-
cle to the reference phase. The
potential W1(θθθ) + 1 − cos(θ0 − θN)

is minimized by θk = θ0 for all
k ∈ {1, . . . , N} . When ω0 �= 0, this
configuration corresponds to a cir-
cular formation in which every par-
ticle’s phase is synchronized with
the reference phase. When ω0 = 0,
this configuration corresponds to
parallel motion in the direction of
the reference phase θ0. Using this
procedure, the collective tracks a
piecewise-linear reference trajectory
shown in Figure 5 [25].

Similarly,  suppose that  the
position of a reference beacon in

FIGURE 4 Symmetric circular formations with all-to-all interaction and N = 12. The patterns
correspond to M = 1, 2, 3, 4, 6, and 12 evenly spaced clusters with ω0 = K0 = 0.1, Km > 0
for m = 1, . . . , M − 1, and KM < 0.The top left is the synchronized circular formation, while
the bottom right is the splay circular formation.
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the complex plane is denoted by c0 ∈ C. Then the qua-
dratic form 1/(2N)‖c − c01‖2 is zero if and only if ck = c0
for all k ∈ {1, . . . , N}, which corresponds to each particle
traveling around a circle that is centered at the beacon
c0 . The spacing control that forces this potential to
monotonically decrease fixes the center of the circular
formation to c0. We illustrate this procedure in Figure 6
for the particle model with a constant-drift vector field,
that is, ṙk = eiθk + fk , where fk ∈ C. If each particle is
assigned a different beacon, we obtain a form of collec-
tive motion that is well suited for broad area coverage
by a mobile sensor network [8].

BIOLOGICAL COLLECTIVES: MODEL, 
SIMULATIONS, AND OBSERVATIONS
In this section, we use PCOD to model schooling behavior
in fish, and show that, under slow variation of a parameter
related to fish interaction, the collective exhibits sharp
transitions between different types of motion. We also use
PCOD to analyze real fish trajectory data (see “Analysis of
Fish Data”). Here, we describe a behavior model in which
the fish move at constant speed following several steering
behaviors; see, for example, [19]. Although we study fish
in this article, the behavior model also applies to other
grouping organisms.

We assume that the response of each fish to its neigh-
bors depends on its relative position and relative phase
projected onto a horizontal plane. The perceptual range,
which defines the sensory neighborhood of each fish, is
represented by the union of three concentric zones. These
zones correspond to three possible responses to a sensed
fish, namely, repulsion, orientation, and attraction. We also
assume that the directed sensing capability of each fish
generates a blind spot directly behind it. We illustrate
these zones and the corresponding behavior in Figure 7.

Collective Behavior Model
As in the simple particle model, let rk ∈ C and θk ∈ S1 be
the position and direction of motion of the kth fish. Let
ρrep, ρori, and ρatt define the zone boundaries in Figure 7.
For example, the orientation zone of the kth fish is con-
tained in the annulus {r | ρrep ≤ |r − rk| ≤ ρori}. The angu-
lar width of the blind spot behind the kth fish is denoted
by αk. In this setting, we use graph theory to describe the
time-varying interaction networks generated by the three
zones. Note that the interaction networks may be directed
due to the blind spot and may be unconnected due to the
limited size of the perceptual range. In the case of a

FIGURE 5 Collective trajectory tracking in a parallel formation with
N = 12. The control (14) tracks a piecewise-linear reference trajec-
tory with N = 12, ω0 = 0, and K1 < 0. The sequence of reference
phases is π/8, −3π/8, π/8, and −3π/8.
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FIGURE 6 Stabilizing the synchronized circular formation in a drift
vector field fk . The parameter values are fk = −0.1, N = 12,
ω0 = K0 = 0.1, and K1 > 0. (a) No beacon; the collective travels in
the direction of the vector field. (b) Beacon at c0 = 10; the collective
orbits a fixed center.
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We describe a framework called particles with coupled oscillator dynamics,

which extends coupled oscillator dynamics to include spatial dynamics. 
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directed network, the edges represent information flow orig-
inating from the sensed fish. We denote by N (l)

k the set of
fish sensed by the kth fish in zone l ∈ {rep, ori, att}. We also
make the simplifying assumptions that the fish have unit
mass, travel at unit speed, and maneuver only by steering.

Let q = 0, 1, 2, . . . denote the qth time step of a discrete-
time model. For k = 1, . . . , N, the fish model is

rk(q + 1) = rk(q) + eiθk(q) ,

θk(q + 1) = θk(q) + Tuk(q) , (26)

where T � 1 is the fish response latency and uk(q) is the
steering behavior. Observe that the fish model (26) is the
forward Euler method approximation to the continuous-
time particle model (1), (2). Given concentric zones of
repulsion, orientation, and attraction, the corresponding
desired behavior vector fields for fish k = 1, . . . , N are
given by [19]

vrep
k (q) = −

∑
j∈N rep

k (q)

r̂kj(q) ,

vori
k (q) = eiθk(q) +

∑
j∈N ori

k (q)

eiθj(q) ,

vatt
k (q) =

∑
j∈N att

k (q)

r̂kj(q) ,

where r̂kj(q)
�= (rkj(q)/|rkj(q)|) and N (l)

k (q) are the neighbors
of fish k in zone l at time q. We represent additional motion

that is uncoupled from the remaining fish by a possibly
random behavior term ωk(q). The steering behavior is

uk(q) = ωk(q) + 〈ieiθk(q), Krepvrep
k (q)

+ Korivori
k (q) + Kattvatt

k (q)〉 , (27)

where the gains satisfy Krep � Kori > 0 and
Krep � Katt > 0. Next, we express these behaviors using
the graph Laplacian and relate them to the particle-model
steering controls.

We can write the steering behavior (27) in terms of the
degree D(l), adjacency A(l), and Laplacian L(l) matrices of
the directed graph in zone l. Dropping the q notation, if the
repulsion zone of the kth fish is empty, we approximate
(27) as

uk = ωk − Kori〈ieiθk , Lori
k eiθθθ 〉 + Katt〈ieiθk , Latt

k r〉 . (28)

Note the resemblance between the steering behavior (28)
and the circular control (22). In place of the constant natur-
al frequency ω0, the fish behavior contains the variable
turning rate ωk . The alignment terms are identical for
K1 − K0 = −KoriN < 0, which represents a behavior that
seeks to align the fish velocities. The spacing terms differ
only by a factor of i, which is a consequence of their differ-
ing motivations as described next.

Let r̃k � d−1
k L(l)

k r = rk − d−1
k

∑
j∈N (l)

k
rj be the vector from

the center of mass of the neighbors of fish k in zone l to the
position of fish k. The circular control of the fish model locally
stabilizes motion of the kth fish perpendicular to r̃k. In con-
trast, both the attraction and repulsion behaviors in the fish
model stabilize motion parallel to r̃k; this motion is appropri-
ate for aggregation with collision avoidance.

Although we focus on circular formations in the next
subsection, we do not claim that the circular motion con-
trol is an accurate model of fish behavior. Rather, stabiliz-
ing the circular formation is an example of activity
consensus, that is, individuals moving around together.
The circular motion activity keeps the center of mass of the
particle group confined to a fixed ball of radius |ω0|−1. Sta-
bilizing parallel motion is another form of activity consen-
sus in which individuals move off together.

Bifurcations of Collective Motion
Simulation studies suggest that fish group behavior can
be influenced merely by selecting the number of influen-
tial neighbors and not by changing the behavior rule

FIGURE 7 Concentric perceptual zones in the fish model (26). These
zones include the attraction zone (ZA), orientation zone (ZO), and
repulsion zone (ZR) [19]. The blind spot, which is behind the fish
between the blue lines, has angular width αk.
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In addition to its application as a design methodology, PCOD can also

be used to model and analyze schooling behavior in fish.
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itself [22]. In this subsection, we study qualitative
changes in collective motion exhibited by solutions of the
particle model that result not from changing the control
law but from varying key parameters such as the number
of neighbors. We call these qualitative changes bifurca-
tions and the corresponding parameters bifurcation para-
meters, although rigorous bifurcation
analysis is not discussed here.

Bifurcations in models of animal
groups is a growing area of research. In
[19], bistability of parallel and circular
motion is demonstrated in a 3D fish
schooling simulation. This bistability gen-
erates hysteresis under slow variation of
the parameter that determines the outer
radius of the orientation zone. Analytical
results that provide evidence of bistability
of parallel and circular motion in the par-
ticle model appear in [30], [31]. If some
individuals in a group have differing pre-
ferred directions, then the group can
bifurcate or split. Simulations suggest that
the percentage of informed animals in a
group necessary to achieve consensus
decreases as the group size increases [32].
Analytical results classifying bifurcations
in the phase model when two subgroups
of identical individuals have different,
preferred directions appears in [33] and,
for heterogeneous groups, in [34]. 

Here we simulate bifurcations that
occur in fish schools using biologically
realistic parameters in the particle model
(1), (2) with the control (22). We assume
that the interaction networks generated
from perceptual zones may differ for the
spacing and orientation controls. In addi-
tion, these graphs may be directed and
time varying. Analytical results for stabi-
lizing collective motion with directed and
time-varying graphs are the subject of [7]
using results from [18]. The modified
expression of (22) is

uk =ω0 + K1 − K0

N
〈ieiθk , Lori

k eiθθθ 〉

+ ω0
K0

N
〈eiθk , Latt

k r〉 . (29)

Motivated by [19] and [22], one example
of a bifurcation occurs as a result of chang-
ing the outer radius of the orientation zone.
For simplicity, we assume there is no repul-
sion zone and that the inner radius of both

the orientation and attraction zones is zero, that is, the orien-
tation and attraction zones overlap. We choose
ρatt � |ω0|−1. Let the bifurcation parameter ρ = ρori|ω0| be
the ratio of the outer radius of the orientation zone divided
by the radius of the circular motion. The angular width of
the blind spot is αk = 60◦ for all k ∈ {1, . . . , N}. 

FIGURE 8 A bifurcation in the circular formation, which occurs as the outer radius of the
orientation zone (gray patches) increases. The orientation and spacing interaction net-
works are generated from the attraction and orientation zones with ρatt � |ω0|−1 ,
ρori = ρ|ω0|−1, and αk = 60◦ . The control parameters are ω0 = K0 = 0.1. (a) K1 < 0
and (b) K1 > 0. The rows of the figure from top to bottom correspond to
ρ = 2 sin (π/M), with M = 2, M = 8, and M = 12. (a) Increasing the size of the orienta-
tion zone stabilizes fewer, larger synchronized clusters of particles; (b) the particles
cluster in symmetric patterns.
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Under the effect of the spacing control, all of the parti-
cles converge to the circular formation shown in Figure 8.
For K1 < 0, particles in overlapping orientation zones
become synchronized. Increasing the size of the orientation
zone stabilizes fewer, larger synchronized clusters of
particles. This result resembles the bifurcation result of [19]
in the following way. Increasing the size of the orientation
zone switches the distribution of phases from incoherent or
swarm-like to synchronized or parallel. The results differ
because, in our simulations, the particles remain in the cir-
cular formation, while in [19] the particles switch between
swarm-like, circular, and parallel collective motion.

For K1 > 0, the particles cluster into the symmetric pat-
terns appropriate for the size of the orientation zone.
Because positive gain on the alignment control corre-
sponds to anti-synchronization, clusters form in nonover-
lapping orientation zones. We illustrate results for
ρori = ρ|ω0|−1 and, for M = 2, 8, and 12, ρ = 2 sin(π/M),
which correspond to the chord length that separates M
evenly spaced clusters on a circle of unit radius. Note that,
although the clusters are not necessarily equally sized or M
in number, this procedure generates symmetric clusters.

CONCLUSIONS
This article describes PCOD, a cooperative control frame-
work for stabilizing relative equilibria in a model of self-
propelled, steered particles moving in the plane at unit
speed. Relative equilibria correspond either to motion of
all of the particles in the same direction or to motion of all
of the particles around the same circle. Although the
framework applies to time-varying and directed interac-
tion between individuals, we focus here on time-invariant
and undirected interaction, using the Laplacian matrix of
the interaction graph to design a set of decentralized con-
trol laws applicable to mobile sensor networks. Since the
direction of motion of each particle is represented in the
framework by a point on the unit circle, the closed-loop
model has coupled-phase oscillator dynamics.

In addition to its application as a design methodology,
PCOD can also be used to model and analyze schooling
behavior in fish. We illustrate how slow variation of a
parameter that determines the radius of interaction
between fish generates bifurcations in the collective behav-
ior. The utility of PCOD as a modeling tool is further
demonstrated by our analysis of real fish schooling data.
Representing the direction of motion of each fish by a
point on the unit circle enables us to evaluate the synchro-
nization level of a school and reverse engineer interaction
rules that yield the observed schooling pattern. This analy-
sis represents preliminary results from a promising collab-
oration between biologists and engineers studying
collective behavior.

What determines the mechanisms and nature of fish
interaction remains an open question. An additional chal-
lenge in studying grouping behavior in biological collec-

tives is modeling particles moving in three dimensions at
variable speeds. Such models also have potential for
improved sensing in air and sea by cooperative control of
autonomous vehicles.
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