
On distributed linear filtering with noisy communication

Anthony J. Savas1, Vaibhav Srivastava2, and Naomi Ehrich Leonard1

Abstract— We consider distributed filtering of a scalar linear
stochastic process under communication corrupted by Gaussian
noise. We investigate how communication noise degrades the
performance of an existing distributed algorithm and develop
a novel algorithm that mitigates these problems. We rigorously
investigate the properties of the new distributed estimator
and discuss optimal tuning of (fixed) gains that minimize the
asymptotic error covariance. We demonstrate the effectiveness
of our algorithm through numerical simulations.

I. INTRODUCTION

Distributed estimation is a problem of fundamental interest
in a variety of problems ranging from robotic networks,
transportation networks, power networks, and synthetic bio-
logical networks. With increasing deployment of networked
multiagent systems the algorithms for distributed estimation
are of increasing importance. Some of the desired features
of these algorithms include scalability, adaptability, and
resilience.

In this paper, we investigate the problem of distributed
filtering in a networked multiagent system of a scalar linear
stochastic process under communication corrupted by Gaus-
sian noise. There is a significant and growing literature on
distributed filtering in networked systems [1], [2], [3], [4],
[5], [6], [7], [8]. Typically, however, these works assume no
communication noise. We design algorithms that are robust
to the communication noise in such networks.

Distributed filtering in a networked multiagent system
is designed to allow each individual agent to improve its
estimate of the state of a dynamical system by sharing mea-
surements or estimates through a communication network.
In consensus-based distributed filtering, agents update their
estimates with measurements or estimates communicated
from others using linear consensus dynamics [9], [10]. Olfati-
Saber [3] considered distributed linear filtering with two con-
sensus dynamics: one for weighted measurements and one
for precision matrices, see [11] for related work. Distributed
linear filtering in continuous time was examined in [4].
Spanos et al. [12] investigated the distributed least-squares
estimation problem using consensus dynamics. Speranzon et
al. [13] studied distributed linear filtering of a noisy time-
varying signal using adaptive time-varying consensus.

In the context of robotic networks, cooperative Kalman
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filtering techniques have been used to explore noisy scalar
fields in the plane [8]. Lynch et al. [14] studied the problem
of information maximization in a scalar uncertain field using
optimal filtering and consensus techniques.

We investigate the problem of consensus-based distributed
filtering under noisy communication. The robustness of con-
sensus dynamics under noisy communication has been stud-
ied in [7], [15] and in the context of decision-making [16],
[17].

The consensus algorithm has its root in the sociology
literature and is the same as the famous DeGroot model [18].
The modification to the consensus protocols that we propose
to mitigate effects of communication noise has similarities
with the DeGroot-Friedkin model in sociology [19]. The
analysis in this paper suggests that the DeGroot-Friedkin
model may have superior robustness properties under noisy
communication.

To address the problem of distributed filtering of a scalar
linear stochastic process under noisy communication, we
build upon the algorithm proposed by Carli et al. in [6]. They
propose an algorithm comprising discrete-time sampling of
the noisy process and a fixed number of consensus rounds
between sampling instances. We develop a new algorithm
that mitigates the effect of communication noise on the
performance of the distributed filter. The major challenge
consensus-based strategies face under noisy communication
is the presence of integrator dynamics in consensus protocols
which aggregate noise over time leading to large variances
and poor estimation performance. Here, we design novel
consensus dynamics that alleviate this problem.

The major contributions of this paper are threefold. First,
we examine the algorithm proposed in [6] for distributed
filtering of a scalar linear stochastic process and show how
the performance of this algorithm degrades under noisy com-
munication. Second, we build upon [6] to develop a novel
algorithm that mitigates the effects of noisy communication.
Third, we rigorously analyze the new algorithm and discuss
methods to tune its parameters to optimize performance.

The remainder of the paper is organized as follows. In §II,
we formally pose the distributed linear filtering problem. In
§III, we recall the distributed filtering algorithm from [6]
and study its performance under noisy communication. In
§IV, we develop a novel algorithm to provide robustness
to communication noise. We analyze this algorithm and
illustrate in §V, and we conclude in §VI.

II. PROBLEM SETUP

Consider the following scalar linear stochastic process

x(k + 1) = ax(k) + w(k), x(0) = X0, (1)
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for each k ∈ Z≥0, where a ∈ R is a constant, {w(k)}k∈Z≥0

is a sequence of i.i.d. zero-mean Gaussian noise with vari-
ance q ∈ R>0, and X0 is a Gaussian random variable with
mean x0 and variance σ. Suppose a sensor samples this
process at each time k to obtain a noisy measurement

y(k) = x(k) + n(k), for each k ∈ Z≥0, (2)

where {n(k)}k∈Z≥0
is a sequence of i.i.d. zero-mean Gaus-

sian noise with variance r ∈ R>0. The estimation of state
x(k) in (1) using measurements y(k) in (2) is the standard
scalar Kalman filtering problem [20].

We consider the problem of distributed estimation of
the state x(k) using multiple communicating agents. For
simplicity, we assume a = 1 but our analysis is generalizable
to the case a 6= 1. Specifically, we consider the estimation
of the white noise process

x(k + 1) = x(k) + w(k), x(0) = X0. (3)

We consider a multiagent network in which agents can
communicate over a fixed graph G = {V, E}, where V =
{1, . . . , N} is the vertex set, E ∈ V ×V is the edge set, and
N is the total number of agents. We assume that the graph
is undirected and connected in the sense that there exists a
path from each node to every other node. We assume that
each agent i ∈ {1, . . . , N} samples the process (3) at times k
and collects a noisy measurement yi(k) of the process x(k)
defined by

yi(k) = x(k) + ni(k), for each i ∈ {1, . . . , N}, (4)

where {ni(k)}k∈Z≥0
are i.i.d. zero-mean Gaussian noises

with variance r. We further assume the noise sequences ni(k)
are independent for different i ∈ {1, . . . , N}. We can write
(4) in vector form as

y(k) = x(k)1N + n(k), (5)

where y(k) and n(k) are the N -column vectors of yi(k)’s
and ni(k)’s, respectively, and 1N is the N -column vector of
all ones.

We focus on consensus-based dynamics for distributed
estimation [9], [10], [21]. However, in contrast to standard
approaches to this problem we assume that the communi-
cation among agents is noisy. We recall that in consensus
dynamics each agent at each (discrete) time averages its state
with its neighbors in the communication graph [9], [18], [22].
Here we assume that each agent receives a noisy estimate
of the state of each of its neighbors and it uses these noisy
estimates in the consensus dynamics. Let Q be the consensus
matrix, i.e., the matrix of the (convex) weights an agent i
assigns to its neighbor j. Then the consensus dynamics with
noisy communication are

z(l + 1) = Qz(l) + σcu(l), (6)

where z(l) is the vector of states of agents at times l ∈
Z≥0, σ2

c is the variance of the communication noise, and
{u(l)}l∈Z≥0

is the sequence of i.i.d. N -variate zero-mean
Gaussian random vectors with covariance IN , where IN is

the identity matrix of order N . Here for simplicity, we have
assumed that the communication noise for each agent has
the same variance σ2

c .
It is well-known that the matrix Q is row stochastic

and for a connected undirected graph is irreducible, i.e.,
the matrix Q has only one simple eigenvalue at unity and
every other eigenvalue is inside the unit disk [9], [18], [21],
[22]. Moreover, the eigenvalue at unity corresponds to the
eigenvector 1√

N
1N . We assume that Q is doubly stochastic

and denote its eigenvalues as {λ0, ..., λN−1} with λ0 = 1.

III. A STATE-OF-THE-ART DISTRIBUTED LINEAR FILTER

The estimation problem posed in §II was studied by
Carli et al. [6] and they proposed a two-stage algorithm that
we summarize in this section. We then apply their algorithm
to the setting of noisy communication and observe that it is
no longer stabilizing. This is to be expected since consensus
dynamics have one eigenvalue at unity and consequently
integrate noise. The integrated noise has asymptotically
infinite variance. So any strategy that is designed for noise-
free communication doesn’t immediately extend to noisy
communication.

A. A two-stage distributed linear filter under noise-free
communication

In this section we recall the two-stage distributed linear
filter proposed in [6]. During the first stage, at time k
each agent i computes the estimate of process x(k) given
measurements until time k, i.e., x̂i(k|k), by computing a
convex combination of the predictive estimate of the current
state using observations until time k − 1, i.e., x̂i(k|k − 1)
and the current observation yi(k). Formally, the first stage
updates the state as

x̂(k|k) = (1− `)x̂(k|k − 1) + `y(k), (7)

where x̂(k|k) and x̂(k|k − 1) are vectors of x̂i(k|k) and
x̂i(k|k − 1), respectively, and ` ∈ [0, 1] is the gain. Note
that, unlike the optimal Kalman filter, here the gain ` is
assumed constant. This means that the resulting filter is not
necessarily optimal. However, as shown in [6] this leads to a
bounded variance of estimation error and, hence, the choice
of constant ` is stabilizing.

The second stage comprises m rounds of the consensus
dynamics (6) between two consecutive time instances k and
k+1 using local estimates x̂i(k|k). The consensus dynamics
ensure that the local estimate x̂i(k+1|k) of each agent con-
verges towards the average of the group 1

N

∑N
j=1 x̂j(k|k).

Formally, the second stage is

x̂
(
k +

h

m

∣∣∣k) = Qx̂
(
k +

(h− 1)

m

∣∣∣k), h ∈ {1, . . . ,m},
(8)

Here, a timescale separation between process dynamics and
consensus dynamics is assumed, i.e., the communication and
consensus dynamics are much faster than the process dynam-
ics. Note that at the end of the consensus rounds, update (8)
yields x̂(k+1|k) that can be used with update (7) to compute
x̂(k + 1|k + 1). The distributed linear filtering algorithm is



initialized with x̂(0|−1) = x01N and the estimates at future
times are computed recursively using (7) and (8).

Carli et al. [6] computed the covariance of the estimation
error for the above algorithm and used it to find the optimal
` that minimizes the trace of the asymptotic error covariance
matrix.

The above algorithm is easy to implement and under
noise-free communication is stabilizing, i.e., always leads to
bounded error covariance. In the next section, we investigate
the performance of this algorithm under noisy communica-
tion.

B. Performance under noisy communication

We now consider the two-stage distributed linear filtering
algorithm in §III-A with noisy communication in the con-
sensus dynamics. The first stage of the algorithm remains
identical to update (7). In the second stage the update (8) is
replaced by noisy consensus dynamics

x̂
(
k+

h

m

∣∣∣k) = Qx̂
(
k+

(h− 1)

m

∣∣∣k)+σcu
(
k+

h

m

)
, (9)

where u(k + h/m) is the N -variate zero-mean Gaussian
noise with covariance IN , for each k ∈ Z≥0 and h ∈
{1, . . . ,m}, u(k + h/m) are independent, and σ2

c is the
communication noise variance. The estimation error at time
k is defined by

x̃(k|k − 1) = x(k)1N − x̂(k|k − 1). (10)

We numerically investigate the performance of the two-
stage algorithm described in §III-A under noisy communica-
tion. Consider a set of three agents {1, 2, 3} communicating
over an undirected line graph. Let Q = I3 − εL, where I3
is the identity matrix and ε = 0.4 is a constant.

We examine ten time instances of the process (3), i.e.,
k ∈ {0, ..., 9}, and between each consecutive pair of time
instances we apply m consensus rounds. We illustrate per-
formance for values of m from 0 to 5. We assume the process
noise variance is q = 1 and the measurement noise variance
is r = 25.

We employ the distributed filtering algorithm (7) and (9)
with convexity parameter ` = 0.25. We performed 200, 000
Monte-Carlo simulations to estimate the trace of the error
covariance matrix. Fig. 1 shows the trace of the error
covariance matrix for k = 4, which can be represented as∑3
i=1 var(x̃i(4|3)), as a function of the number of consensus

rounds m for a range of values of σc. It can be seen that for
large enough values of σc the trace of the error covariance
actually increases as more consensus rounds are performed,
suggesting that the two-stage estimation algorithm in §III-
A is not stabilizing, i.e., the trace of the error covariance
diverges as the number of consensus rounds are increased.

This is not totally unexpected because the consensus
dynamics are inherently non-robust due to the presence of
an eigenvalue of unity. This eigenvalue at unity acts as an
integrator and integrates noise. As we integrate more and
more noise the covariance of the system diverges.
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Fig. 1. Influence of communication noise in consensus dynamics on
error variance across 200,000 Monte Carlo runs for distributed filtering
algorithm (7) and (9) with N = 3, r = 25, and q = 1 for an undirected line
graph. We see that the error variance diverges with the number of consensus
rounds.

IV. A NOVEL TWO-STAGE DISTRIBUTED LINEAR FILTER

As discussed in the previous section, the filter in §III-
A suffers under noisy communication. In this section, we
modify the algorithm of Carli et al. [6] to mitigate the effects
of noisy communication.

We keep the update in the first stage of the algorithm the
same as in (7), i.e.,

x̂(k|k) = (1− `)x̂(k|k − 1) + `y(k), (11)

with x̂(0| − 1) = x01N .
We modify the second stage, i.e., the consensus dynamics,

in the following way. We define z(k|k) = x̂(k|k) for each
k ∈ Z≥0. We update z through m consensus rounds between
consecutive time instances k and k + 1 as follows:

z
(
k+

h

m

∣∣∣k) = Qz
(
k+

(h− 1)

m

∣∣∣k)+σcu
(
k+

h

m

)
+x̂(k|k).

(12)
In (12), each agent i ∈ {1, . . . , N} remembers its estimate
x̂i(k|k) at time k and re-injects it at each consensus round.
Loosely speaking, the intuition for such an update is that
starting from a deterministic initial condition z(k|k) =
x̂(k|k) and after m rounds of consensus the dominating
component of the variance of z(k + 1|k) is mσ2

c (see Fig.
1). By re-injecting x̂(k|k) at each step, we ensure that the
dominating component of the expected value of zi(k+ 1|k)
is m+1

N

∑N
j=1 x̂j(k|k), for each i ∈ {1, . . . , N}. Finally,

if we divide z(k + 1) by (m + 1), the resulting mean
is 1

N

∑N
j=1 x̂j(k|k) and variance is mσ2

c/(m + 1)2 which
goes to 0 as m → +∞. Thus, for large m we recover the
performance of the noise-free algorithm. However, if m is
small noise still degrades performance, so we set the update
x̂(k + 1|k) as the convex sum of x̂(k|k) and z(k + 1|k) as
below

x̂(k + 1|k) = ζx̂(k|k) + (1− ζ)
z(k + 1|k)

m+ 1
, (13)

where ζ ∈ [0, 1] is a constant. ζ trades off the variance of
the two estimators x̂(k|k) and z(k+1|k). Thus, for large m
we can choose ζ close to 0 and for small m we can choose
ζ close to 1.



In contrast to the distributed filtering algorithm in [6]
which has only one tunable parameter `, our algorithm
has two tunable parameters ` and ζ. Similar to [6], these
parameters can be chosen to minimize asymptotic error
covariance of the estimator. Towards this end, we analyze
the error covariance of the new algorithm in the next section.

V. ANALYSIS OF THE NOVEL TWO-STAGE DISTRIBUTED
LINEAR FILTER

In this section we analyze the properties of the novel
distributed linear filter proposed in §IV. We first derive
an expression for the asymptotic error covariance and then
analyze its properties. Our analysis follows similarly to [6].

A. Error covariance of the estimator

We define the predictive and posterior errors as

x̃(k + 1|k) = x(k + 1)1N − x̂(k + 1|k),

and x̃(k + 1|k + 1) = x(k + 1)1N − x̂(k + 1|k + 1),
(14)

respectively. Let

P (k + 1|k) = E[x̃(k + 1|k)x̃(k + 1|k)>]

and P (k + 1|k + 1) = E[x̃(k + 1|k + 1)x̃(k + 1|k + 1)>]

be predictive and posterior error covariance matrices. We are
now ready to state the main result of this section.

Theorem 1 (Asymptotic Error Covariance): For the
scalar linear stochastic dynamics (3) and the distributed
linear filtering algorithm with noisy communication defined
by (11), (12) and (13), the following statements hold:

(i) the asymptotic error covariance is

lim
k→∞

P (k|k − 1)

= `2r

∞∑
i=0

(1−`)2iQ†(i+1)(Q†(i+1))>+
q

1− (1− `)2
1N1>N

+

(
1− ζ
m+ 1

)2

σ2
c

∞∑
i=0

(1− `)2i
m−1∑
j=0

Q†iQj(Qj)>(Q†i)>,

(15)

where Q† = ζIN +
(

1−ζ
m+1

)∑m
i=0Q

i;
(ii) the trace of the asymptotic covariance matrix is

tr
(

lim
k→∞

P (k|k − 1)
)

=

`2r + qN +
(1− ζ)2σ2

cm

(m+ 1)2

1− (1− `)2

+ `2r

N−1∑
h=1

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2
1− (1− `)2

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2

+

(
1− ζ
m+ 1

)2

σ2
c

N−1∑
h=1

(
1− |λh|2(m−1)

1− |λh|2

)

1− (1− `)2
∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2
,

(16)

where λ̄h =
∑m
n=0 λ

n
h .

Proof: From (14) and (11) it follows that

x̃(k|k) = (1− `)x̃(k|k − 1)− `n(k). (17)

Then
P (k|k) = (1− `)2P (k|k − 1) + `2rIN . (18)

Further note that (12) can be solved explicitly to obtain

z(k + 1|k) =

m∑
i=0

Qix̂(k|k) + σc

m∑
i=1

Qm−iu
(
k +

i

m

)
.

(19)
Substituting z(k + 1|k) in (13) and using (14), we obtain

x̃(k + 1|k) = Q†x̃(k|k) + w(k + 1)1N

−
(

1− ζ
m+ 1

) m∑
i=1

Qm−iσcu
(
k +

i

m

)
, (20)

where Q† = ζIN +
(

1−ζ
m+1

)∑m
i=0Q

i. It follows that

P (k + 1|k) =Q†P (k|k)(Q†)> + q1N1>N

+

(
1− ζ
m+ 1

)2

σ2
c

m−1∑
i=0

Qi(Qi)>.
(21)

Since Q is row-stochastic with Q1N = 1N , it can be shown
that Q†1N = 1N , i.e., Q† is also row-stochastic. Using row-
stochasticity of Q†, (18) and (21) we obtain

P (k+1|k) = (1− `)2Q†P (k|k−1)(Q†)>+ `2rQ†(Q†)>

+ q1N1>N +

(
1− ζ
m+ 1

)2

σ2
c

m−1∑
i=0

Qi(Qi)>. (22)

We can solve (22) with initial condition P (0|−1) to obtain:

P (k|k − 1) = (1− `)2kQ†kP (0| − 1)(Q†k)>

+ `2r

k−1∑
i=0

(1− `)2iQ†(i+1)(Q†(i+1))>+ q

k−1∑
i=0

(1− `)2i1N1>N

+

(
1− ζ
m+ 1

)2

σ2
c

k−1∑
i=0

(1− `)2i
m−1∑
j=0

Q†iQj(Qj)>(Q†i)>.

(23)

Taking the limit k → +∞ and using the geometric series
summation formula, we establish (i).

The second statement follows using model decomposition
of Q and the result that

tr
(
Q†im(Q†im)>

)
=

N−1∑
h=0

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2im . (24)

Note that the steady-state error covariance (16) is bounded
and hence our distributed estimation algorithm is stabilizing
in the mean squared sense. Our algorithm is not necessarily
optimal since it assumes convex weights ` and ζ to be
constant. However, given our algorithm, we can choose
optimal parameters ` and ζ as we discuss in the next section.
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Fig. 2. Optimal ` and ζ as a function of consensus rounds m and σc with
N = 3, r = 25, and q = 1 for an undirected line graph.

B. Tuning parameters ` and ζ

The algorithm defined in §IV requires two parameters `
and ζ to be tuned. For a given graph structure (fixed Q and
N ), given process, measurement and communication vari-
ance (fixed r, q, and σc), and a given number of consensus
rounds (fixed m), we choose these parameters to minimize
the asymptotic error covariance (16). In the following, let
J(`, ζ) = tr

(
limk→∞ P (k|k − 1)

)
.

When determining the optimal (`, ζ) which minimize J ,
we note a special case for m = 0. In this case of no
consensus the modified algorithm will only involve (11)
and (13). Inspecting (13) we see that the only appropriate
formulation would have ζ = 1. With ζ = 1 and m = 0

we see that (16) simplifies to J |m=0 = (`2r+q)N
1−(1−`)2 . We then

minimize J |m=0 using fmincon in MATLAB to solve for
the optimal `. Likewise, for m > 0 we can use fmincon
to solve for the optimal ` and ζ which minimize J.

The trends of optimal ` and ζ as a function of number
of consensus rounds m and σc are shown in Fig. 2. Note
that optimal ` increases with m, while ζ does not follow a
monotonic trend. The initial trend of ζ is attributed to the
transient consensus dynamics. As the number of consensus
rounds increases, the value ζ goes to zero as discussed in
§IV.

C. Numerical Simulations

We numerically investigate the performance of the modi-
fied estimation algorithm developed in §IV. We consider an
undirected line graph with N = 3 nodes. We choose the same
parameters as in Fig. 1 and again choose as our performance
metric

∑3
i=1 var(x̃i(4|3)). For each value of m and σc we

use the optimal ` and ζ in the algorithm as determined in
§V-B. Fig. 3 shows for the modified estimation algorithm
the summed error variance metric versus the number of
consensus rounds m, with the color of the lines designating
the value of σc in (12). Comparing with Fig. 1, we see that
the error variance no longer increases in an unbounded way
as more consensus rounds are performed. Rather, the trend in
error variance versus consensus rounds is much closer to the
monotonically decreasing trend one expects in a distributed
filter without communication noise. Even for larger values
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Fig. 3. Influence of communication noise in consensus dynamics on
error variance across 200,000 Monte Carlo runs for the distributed filtering
algorithm defined in §IV with N = 3, r = 25, and q = 1 for an undirected
line graph. Even as σc increases the error variance no longer diverges as
more consensus rounds are performed.

of σc we see the error variance decreases with additional
consensus rounds, which is how an effective estimation
algorithm should perform. Note the slight difference in scale
between the vertical axes in Figs. 1 and 3.

VI. CONCLUSIONS

In this paper we studied consensus-based distributed lin-
ear filtering under noisy communication. We investigated
how noisy communication affects the performance of the
distributed filtering algorithm proposed in [6]. We showed
that under noisy communication the error covariance of the
estimator obtained using this algorithm diverges. We mod-
ified the algorithm from [6] to develop a novel distributed
filtering algorithm that achieves a bounded asymptotic error
covariance under noisy communication. We discussed how
the parameters of this new algorithm can be tuned.

Future directions include examining the convexity of the
asymptotic error covariance with respect to algorithm pa-
rameters, extending to vector-valued dynamical processes,
and exploring the influence of the network graph on the
performance.
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