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Abstract— In this paper we demonstrate a distributed cover-
age control method for a network of mobile agents moving
in one dimension along a scalar information density field.
The method requires each agent to take a finite number of
measurements of the density field in the interval between its
two neighbors and calculate its next position in order to drive
the network nearer to the configuration for optimal coverage.
We derive several results relating to the equilibrium properties
of the sensor network and the convergence properties near fixed
points. We illustrate with simulations of the algorithm.

I. INTRODUCTION

As technological advances have improved the capabilities,
reliability and cost of robotic sensing platforms, their po-
tential for deployment in autonomous, cooperative networks
has gained significant attention. The emergent capabilities
of mobile sensor networks promise to revolutionize complex
tasks such as surveillance, exploration and environmental
monitoring. However, development of high-level capabilities
requires solutions to lower-level problems such as formation
control and coverage control, and these solutions should be
distributed, adaptive to changing environments and robust to
uncertainty and changes in network topology.

The present work focuses on coverage control, where the
goal is to optimally locate the nodes, or agents, of the
network to maximize the amount of information extracted
from the environment or the likelihood of detection of an
event of interest. More formally, for a domain with some
measurable information density field, which could be a data
stream from the environment or a measure of the probability
of event occurence, the agents in the network seek to locate
themselves to minimize a global coverage metric, which
is determined by sensing capabilities and the goals of the
network designer. If the information density field is uniform
across the domain, optimal coverage is realized by a uniform
spacing of agents, whereas for a nonuniform field, agents
should be closer together in regions of high information
density and spread out in regions of low information density.

In [1], [2] a distributed uniform coverage control law
is developed which makes use of Voronoi partitions and
gradient descent laws. The nonuniform case is treated in part
by using density-dependent gradient descent laws with the
Voronoi partitions computed for the uniform case. Coverage
with communication constraints is treated in [3], [4]. The
nonuniform coverage control problem is addressed in [5]; a
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density-dependent distance metric is defined that stretches
and shrinks subregions of high and low density, respectively,
and this determines Voronoi partitions of the nonuniform
density field. A cartogram transformation is used to compute
these partitions, and optimal nonuniform coverage is proved
in the case of a static or slowly time-varying density field.
When the density field is defined by mapping uncertainty, it
changes with every measurement taken; nonuniform cover-
age for this reactively changing field is treated in the case
of symmetric domains in [6].

To compute Voronoi partitions for a nonuniform density
field in [5], agents use some global knowledge of the
cartogram transformation. This is relaxed in the case of
nonuniform coverage control in one dimension in [7] where
two distributed nonuniform coverage algorithms are derived.
In the first algorithm, each agent measures only the distance
to its neighbors and the local density field; the control law
drives the agents to their optimal coverage positions in a
number of time steps that is quadratic in the number of agents
N . The second algorithm requires greater agent capability
but yields a convergence rate that is linear in N .

We derive a distributed, nonuniform coverage control law
in one dimension that is a modification of the first algorithm
of [7] with relaxed computational and sensing requirements:
the agents do not measure local density but rather they take
only a few local, scalar measurements of the density field.
By recasting the problem as a nonlinear fixed point problem
we make use of several results from numerical analysis that
give insight into conditions under which a solution is unique,
the rate at which the agents converge to their equilibrium
positions and how far these positions are from optimal.

In Section II we summarize the first algorithm of [7]. We
derive our modified distributed nonuniform coverage algo-
rithm in Section III. In Section IV we derive several analytic
results on existence and uniqueness of solutions, bounds on
the transient dynamics, and equilibrium characteristics of the
network. We illustrate with simulations in Section V.

II. BACKGROUND

We define our sensor network to consist of N mobile
agents located on the interval [−1, 1] of the real line. At dis-
crete time step t the agents have positions x(t)

1 , x
(t)
2 , . . . , x

(t)
N .

We assume that the labeling of agents from 1 to N matches
their order along the line from left to right, with an agent’s
neighbors being the agents immediately to its left and right.
By convention x(t)

0 and x(t)
N+1 are the stationary boundaries

−1 and 1 respectively. An agent’s sensing region is defined
to be the interval between its two neighbors (or its neighbor
and neighboring boundary for agents 1 and N ).



The information density field, ρ : [−1, 1] → (0,∞), is
a piecewise continuous mapping of the domain over which
the agents move to finite, strictly positive scalar values.
The distance between two points in the domain should be
a function of ρ such that regions of high ρ are stretched
relative to regions of lower ρ. Following [5], [7] we define
the distance between a, b ∈ [−1, 1] as the non-Euclidean
function

dρ(a, b) =
∫ max(a,b)

min(a,b)

ρ(z)dz.

Using this definition of distance, the coverage metric Φ is the
largest distance from any point in the domain to the agent
that is nearest to it:

Φ(x1, . . . , xN , ρ) = max
y∈[−1,1]

[
min

i=1,...,N
dρ(y, xi)

]
.

The optimum coverage Φ∗ is the infimum of Φ over all
possible agent configurations.

In [7] a distributed control law is developed that drives
the coverage to Φ∗ in time that is quadratic in N . In
this framework, which is the starting point of the current
approach, each agent must have knowledge of ρ over its
entire sensing region in order to calculate the α-median of
the region. For a sensing region given by the interval (a, b),
the α-median, mα

ρ (a, b), is the point c ∈ (a, b) such that∫ c

a

ρ(z)dz = α

∫ b

c

ρ(z)dz.

The agents update their positions using the control law

x
(t+1)
1 = m

1/2
ρ (−1, x(t)

2 )

x
(t+1)
k = m1

ρ(x
(t)
k−1, x

(t)
k+1)

x
(t+1)
N = m2

ρ(x
(t)
N−1, 1)

for k = 2, . . . , N − 1, where t is the current time step.
The only additional assumptions are that each agent can
determine whether it is on the boundary of the network or
in the interior and can measure the distance to its neighbors.

The advantages of this algorithm are that it addresses
nonuniformity in ρ without any need for global knowledge
of the density field, and it is completely distributed in the
sense that no information is passed from one agent to an-
other. In addition, convergence is guaranteed for any starting
configuration of the agents and performance (in terms of
the number of time steps needed to reach a certain distance
from optimal coverage) is bounded. There are two major
drawbacks to this approach: i) at each time step each agent
must have full knowledge of the information density in its
sensing interval, and ii) the computational cost of calculating
the α-median are high since there is no general closed form
solution. The objective of the present work is to address these
two drawbacks by introducing a modified coverage control
algorithm for the same problem formulation.

III. CONTROL LAW WITH FINITE
MEASUREMENTS

The primary modifications made in the proposed algorithm
are i) each agent makes a finite number of measurements of
ρ in its sensing region and ii) each agent approximates the
location of the α-median using a simple algorithm. At the
beginning of time step t, agent k measures ρ at its current
location and at M ≥ 1 locations on both its left and its right
so that measurements are spaced evenly in each half of its
sensing region. M is referred to as the measurement number.

Agent k then calculates the distance along the line it
must travel, ∆x(t)

k , in order to approximately reach the
appropriate α-median of its sensing region. The position
update equations then become

x
(t+1)
k = x

(t)
k + ∆x(t)

k (1)

for k = 1, . . . , N . To calculate this change in position, the
agent first uses the measurements made of ρ to approxi-
mate the weighted distance to its neighbors (or neighboring
boundary) using the trapezoid rule. Note that other numerical
integration techniques could be used if desired. Since these
weighted distances are not exact, we denote them with a bar.
Using this method and the simplified notation ρ(x(t)

k ) = ρ
(t)
k

the approximate weighted distances from agent k to its left
and right neighbors respectively are

d̄ρ(x
(t)
k−1, x

(t)
k ) =

hL
2

ρ(t)
k−1 + ρ

(t)
k + 2

M−1∑
j=1

ρ(x(t)
k−1 + jhL)


d̄ρ(x

(t)
k , x

(t)
k+1) =

hR
2

ρ(t)
k + ρ

(t)
k+1 + 2

M−1∑
j=1

ρ(x(t)
k−1 + jhR)


(2)

where hL and hR are the spacings on the line between
measurements on the left and right defined by

hL =
x

(t)
k − x

(t)
k−1

M
, hR =

x
(t)
k+1 − x

(t)
k

M
.

Next the agent finds the weighted distance that it must
travel to the right, ∆dρ, such that

d̄ρ(x
(t)
k−1, x

(t)
k ) + ∆dρ = α(d̄ρ(x

(t)
k , x

(t)
k+1)−∆dρ). (3)

In order to translate this approximate change in weighted
distance to a change in position along the real line, the
agent interpolates ρ to order zero using the measurement
available at its current position. With this approximation we
have ∆dρ ≈ ρ(x(t)

k )∆x(t)
k , which we can then substitute into

Eq (3) and solve to get

∆x(t)
k =

αd̄ρ(x
(t)
k , x

(t)
k+1)− d̄ρ(x(t)

k−1, x
(t)
k )

(1 + α)ρ(x(t)
k )

. (4)

This gives a relatively simple expression for the position
update equation (1); the value of α depends on whether or
not agent k is a boundary agent, x(t)

0 = −1 and x(t)
N+1 = 1.



If after several time steps, ∆x(t)
k = 0, agent k will have

stopped moving and is said to be in equilibrium. If ∆x(t)
k = 0

∀k = 1, . . . , N then the network is said to be in equilibrium.
It is important to note that no information is carried from

one time step to the next and that the algorithm remains
distributed since the actions of each agent depend only on
the relative positions of its neighbors and not on information
passed from one agent to another. The designer can choose
M and a deployment that determines the agents’ initial
positions, x(0)

k . There are a number of other combinations
of distance estimation methods and interpolation schemes to
find the approximate α-median that could have been cho-
sen; the methods chosen here makes performance analysis
tractable as we will show in the next section.

IV. PERFORMANCE ANALYSIS

To make the statement of the problem more compact let
x(t) be the vector of agent positions at time step t:

x(t) =
[
x

(t)
1 x

(t)
2 . . . x

(t)
N

]T
.

Let the update equation for agent k from one time step to
the next be represented by the nonlinear map gk:

x
(t+1)
k = gk(x(t)) = x

(t)
k + ∆x(t)

k .

To describe the time update for all agents as a single
equation, let G : RN → RN be the vector of gk’s:

x(t+1) = G(x(t)) =
[
g1(x(t)) . . . gN (x(t))

]T
. (5)

The coverage problem is a nonlinear fixed point problem:
the solution is the agent positions x∗ such that x∗ = G(x∗).
We call x∗ a fixed point or an equilibrium configuration.

A. Equilibrium Behavior

In [7] equilibrium existence and uniqueness is guaranteed,
and the equilibrium is the agent configuration that yields
optimal coverage. For the current study of agents making
finite measurements, uniqueness of a fixed point is not
guaranteed, and in general a fixed point will not be the agent
configuration for optimal coverage. Sufficient conditions for
the existence of at least one fixed point for a single agent in
an interval (a, b) is given in the following theorem.

Theorem 1: If α > 0 and ρ(z) is continuous and strictly
positive for z ∈ [a, b], then there exists at least one point
x∗ ∈ (a, b) such that d̄ρ(a, x∗) = αd̄ρ(x∗, b).

Proof: Define the function R(x) = αd̄ρ(x, b)−d̄ρ(a, x)
for x ∈ [a, b]. Since d̄ρ is made up of continuous functions,
both terms in R(x) are continuous, which means that R(x)
itself is continuous. From the expression for d̄ρ we know
d̄ρ(a, b) > 0 and d̄ρ(a, a) = d̄ρ(b, b) = 0 so R(a) > 0 and
R(b) < 0. By the Intermediate Value Theorem there must
exist at least one x∗ ∈ (a, b) such that R(x∗) = 0, which
implies that d̄ρ(a, x∗) = αd̄ρ(x∗, b).
Generalizing this result for a single agent on an arbitrary
interval (a, b) to the entire network over the whole domain
is trivial, since we need only replace the boundaries a and
b with the positions of neighboring agents or boundaries to

see that each agent has an equilibrium position in the interval
regardless of the position of its neighbors.

Uniqueness of a fixed point is less straightforward since,
depending on the location of the measurements, the agents
can find multiple fixed points even if ρ is continuous. We
leave a derivation of uniqueness conditions to future work.

For an agent configuration that has reached a fixed point,
an important question is how far this configuration is from
optimal coverage. Again restricting to a single agent on an
interval (a, b), we define the position for which the coverage
metric over [a, b] is minimized as xopt. The following theo-
rem bounds the distance between the fixed point and xopt.

Theorem 2: Let ρ(z) > 0 be continuous on the interval
[a, b]. Further, let the magnitude of its second derivative be
bounded above by Q and let ρ(z) have no local minima
in (a, b). If there is an agent with measurement number M
located at a fixed point x∗ in (a, b), then the distance to the
optimal position given by xopt = mα

ρ (a, b) is bounded by

|xopt − x∗| ≤
Q

12M2

α(b− x∗)3 + (x∗ − a)3

min[ρ(a), ρ(b)](1 + α)
. (6)

Proof: Optimal coverage occurs when∫ xopt

a

ρ(z)dz = α

∫ b

xopt

ρ(z)dz.

Without loss of generality assume x∗ < xopt, i.e., that the
optimal location is to the right of the fixed point. Then,∫ x∗

a

ρ(z)dz +
∫ xopt

x∗
ρ(z)dz = α

∫ b

x∗
ρ(z)dz − α

∫ xopt

x∗
ρ(z)dz.

The integrals from the boundaries to the fixed point can
be rewritten as the estimated distances plus some error
introduced by using the trapezoid rule:

d̄ρ(a, x∗)+EL+
∫ xopt

x∗
ρ(z)dz = αd̄ρ(x∗, b)+αER−

∫ xopt

x∗
ρ(z)dz.

Rewriting to isolate the remaining integral gives∫ xopt

x∗
ρ(z)dz =

αER − EL
(1 + α)

. (7)

The two error terms have simple bounds given in [8].
Including these bounds and using the triangle inequality we
can bound the left side of Eq (7) as∣∣∣∣ ∫ xopt

x∗
ρ(z)dz

∣∣∣∣ ≤ Q

12M2

α(b− x∗)3 + (x∗ − a)3

1 + α
.

The left side of Eq (7) is bounded below by the minimum
value of ρ on the interval multiplied by the interval length:∣∣∣∣ ∫ xopt

x∗
ρ(z)dz

∣∣∣∣ ≥ ∣∣xopt − x∗∣∣min[ρ(a), ρ(b)].

Combining these two results gives the bound in Eq (6).
Although this theorem does not tell us how far the entire
configuration is from optimal coverage, it does give the
expected result that the more measurements an agent takes,
the closer its equilibrium will be to its optimal location.



B. Transient Dynamics

Since the update equations given in Eq (4) which comprise
G are highly nonlinear, many of the relatively simple analy-
sis techniques for linear iterative systems cannot be applied
to study sensor network convergence. Instead we make use of
the Contraction Mapping Theorem [9] of nonlinear analysis
to derive a bound on the error for a subset of density fields
and initial conditions.

We begin by defining the Jacobian of G as JG ∈ Rn×n,
where the (j, k) element is ∂gj

∂xk
. For the update scheme in Eq

(4), an agent’s updated position depends only on the relative
position of its neighbors, so JG is tridiagonal.

To apply the Contraction Mapping Theorem, the mapping
G must be a contraction mapping on some subset D of the
set of all possible agent configurations. As defined in [10],
in order for G to be a contraction mapping on D, there must
exist a contraction constant K < 1 such that ∀x,y ∈ D

‖Gx−Gy‖ ≤ K‖x− y‖ (8)

where the norm used is free to be chosen. Since (8) is not
useful in the current form, we make use of the result given
in [8] that G is a contraction on D with contraction constant
K ≤ K̄ if for all elements of D we have

‖JG‖ ≤ K̄ < 1. (9)

In summary if some norm of JG is bounded by a constant
less than 1 for some set of configurations, then G is a
contraction over those configurations. Combining this result
with a form of the Contraction Mapping Theorem given
below (proof given in [9]), we can bound the ‘distance’ of
the network from its equilibrium configuration as well as
guarantee uniqueness of this equilibrium.

Theorem 3: Suppose that G is a contraction on a set D
with contraction constant K. Then G has a unique fixed
point x∗ ∈ D and for any initial condition x(0) ∈ D the
iteration in Eq (5) converges to x∗. In addition

‖x(t) − x∗‖ ≤ Kt

1−K
‖x(1) − x(0)‖. (10)

It is important to note that the norm in (10) is the same
as the one used to bound the contraction constant in (9).

In the following corollary we apply Theorem 3 to the case
of a network of N = 3 agents with M = 1 on a uniform
information density field given by ρ(z) = 1.

Corollary 1: For a mobile sensor network with N = 3,
M = 1 and a uniform information density field ρ(z) = 1, the
agents converge to their optimal coverage locations from any
initial positions. In addition, the transient error is bounded
by

‖x(t) − x∗‖1 ≤ 3
(

2
3

)t
‖x(1) − x(0)‖1. (11)

Proof: For ρ = 1 the weighted distance between two
points is the same as the Euclidean distance between them.
The Jacobian can be computed directly to be

JG =

 0 1/3 0
1/2 0 1/2
0 1/3 0

 . (12)

The 1-norm of JG in this case is equal to 2/3, independent
of agent positions, which means that G is a contraction for
all agent configurations. Thus, by Theorem 3, the network
converges to the same, unique fixed point for all initial agent
configurations and the error is bounded by (11). In addition,
since the second derivative of ρ is identically zero, Theorem
2 tells us that each agent’s equilibrium position is the same
as its position for optimal coverage.

In general the approach taken above cannot be used to
determine the Jacobian prior to running the simulation since
the elements depend in a nonlinear way on both the agents’
positions and ρ. A simpler alternative to give some insight
into agent convergence is explored in the following theorem.

Theorem 4: Assume that ‖JG(x∗)‖ < 1 for a fixed point
of the update equation x∗ = G(x∗) (i.e., G is a contraction
at its fixed point). Let x(0), the positions of the agents at
t = 0, satisfy ‖x(0)−x∗‖ ≤ δ. Then for δ sufficiently small,
the iterates of x(0) given by Eq (5) will converge to x∗.

Proof: By Theorem 9.3 in [11] we know that a matrix
norm is continuous in the elements of the matrix. Therefore,
if we make the variations in the elements of JG small
enough we can get an arbitrarily small change in the value
of ‖JG‖. In addition, the elements of JG are continuous in
agent positions, so we can adjust the positions to achieve an
arbitrarily small change in JG. Therefore ‖JG‖ is continuous
with respect to agent positions.

By continuity, if ‖JG‖ < 1 at the fixed point, then we can
perturb the agents some small distance away from x∗ so that
‖JG‖ remains less than 1. If we start them at this perturbed
configuration, which is no longer a fixed point, then Theorem
3 tells us that the positions will converge to x∗.

The problem now becomes one of determining when some
norm of the Jacobian is less than 1 at a fixed point, which
greatly simplifies the expression of the Jacobian. The fol-
lowing corollary to Theorem 4 enumerates a subset of linear
information density fields for which a network converges
within some neighborhood of its fixed point configuration.

Corollary 2: For a linear information density field of
the form ρ(z) = Az + B, a mobile sensor network with
measurement number M = 1 following the position update
law in Eq (1) will converge to its fixed point for all initial
configurations arbitrarily close to its fixed point if

B >
1 +
√

2
2
|A|.

Proof: We proceed by showing that the condition above
implies that the∞-norm of the Jacobian at the fixed point is
less than 1. We define the notation xk = x

(t)
k , ρk = ρ(xk),

d̄L = d̄ρ(xk−1, xk), d̄R = d̄ρ(xk, xk+1), ∆L = xk − xk−1

and ∆R = xk+1 − xk. We compute

∂gk
∂xk

= 1 +

[
α∂d̄R

∂xk
− ∂d̄L

∂xk

]
ρk −

[
αd̄R − d̄L

]
ρ′k

(1 + α)ρ2
k

, (13)

∂gk
∂xk−1

=
−1

(1 + α)ρk
∂d̄L
∂xk−1

, (14)

∂gk
∂xk+1

=
α

(1 + α)ρk
∂d̄R
∂xk+1

. (15)



The derivative terms in Eqs (13)-(15) with the simplification
M = 1 are

∂d̄L
∂xk

=
d̄L
∆L

+
∆L

2
ρ′k (16)

∂d̄L
∂xk−1

= − d̄L
∆L

+
∆L

2
ρ′k−1 (17)

∂d̄R
∂xk

= − d̄R
∆R

+
∆R

2
ρ′k (18)

∂d̄R
∂xk+1

=
d̄R
∆R

+
∆R

2
ρ′k+1. (19)

The ∞-norm can be written as the maximum over k of the
sum of Eqs (13)-(15). At a fixed point, by definition αd̄R =
d̄L, so the second term in the numerator of Eq (13) is zero.
For a linear function we can write the value of ρ at xk+1

and xk−1 as ρk+1 = ρk + A∆R and ρk−1 = ρk − A∆L

respectively.
Substituting these forms into the distance equations (2)

with M = 1, we can rewrite Eqs (13)-(15) as

∂gk
∂xk

= 0

∂gk
∂xk−1

=
1

1 + α

ρk−1

ρk
∂gk
∂xk+1

=
α

1 + α

ρk+1

ρk
.

We can then sum these equations to calculate the row sum
of JG for each value of k:

1
3
ρk+1

ρk
, k = 1 (20)

ρk−1 + ρk+1

2ρk
, k = 2, . . . , N (21)

1
3
ρk−1

ρk
, k = N. (22)

The maximum of terms (20)-(22) is ‖JG‖∞, which we want
to show is less than 1. We note that (21) must always be less
than 1 because ρk−1+ρk+1

2 is the average of ρk−1 and ρk+1,
and ρk will always be closer to the larger of the two values
at equilibrium, and therefore greater than the average.

For the case that A > 0, ρN > ρN−1, so (22) will always
be less than 1. The condition for (20) to be less than 1 can
be written as ρ1 − 1

3ρ2 > 0. Since ρk = Axk + B we can
again rewrite this condition as

Ax1 +B − 1
3

[Ax2 +B] > 0. (23)

At equilibrium (which is the same as optimal for linear ρ)
we know that the weighted distance from the boundary to
agent 1 is half the weighted distance from agent 1 to agent
2. This is the same as writing

1
3

∫ x2

−1

ρ(z)dz =
∫ x1

−1

ρ(z)dz.

We can evaluate this integral and rearrange terms to find

Ax1+B− 1
3

[Ax2+B]=
2
3

[B −A]+
A2

3B
+
A2

2B

(
x2

2

3
− x2

1

)
.

Fig. 1. Parameters: ρ(z)=1, N=3, M=1, x(0)=[−0.9 − 0.8 − 0.7]T .
The left plot shows the trajectory of the three agents as solid lines and the
optimal coverage locations as dashed lines. The position of each agent is
given on the y-axis, with the time step given on the x-axis. The right plot
shows the error relative to the fixed point configuration at each time step
as log ‖x(t) − x∗‖1 along with the bound given by Corollary 1.

Note that the right side of this equation is minimized when
x2 = 0 and x1 = −1 and that the left side of this equation
is the same as the left side of our rewritten condition (23).
This means that we can again rewrite (23) as

B −A− A2

4B
> 0. (24)

By multiplying (24) by B, we can factor the left side into
(B − 1+

√
2

2 A)(B − 1−
√

2
2 A). For A > 0, the second term

will always be positive as long as B > 0 (which is required
for ρ to be strictly positive). This means that if B > 1+

√
2

2 A
then ‖JG‖∞ < 1 for A > 0.

Performing the same analysis for the case that A < 0,
we find that the bound is B > − 1+

√
2

2 A. These two bounds
combine to form the general bound

B >
1 +
√

2
2
|A|. (25)

Therefore, according to Theorem 4, whenever (25) is satisfied
for a linear information density field, a network with M = 1
will converge to its fixed point for initial configurations in a
neighborhood of the fixed point.

V. SIMULATIONS

We show here a number of simulations of the coverage
control method developed in Section III. The simulation
shown in Figure 1 illustrates the result given in Corollary
1 for three agents with M = 1 and ρ = 1. The depiction of
the simulation on the left shows the trajectory of the three
agents over 15 time steps and convergence to their optimal
coverage positions. We note that in the optimal configuration
the distance between two neighboring agents is twice the
distance from a boundary agent to the boundary. The rate of
convergence of the network to its fixed point is shown in the
right subfigure as the logarithm of the 1-norm of x(t) − x∗.
The bound derived in Corollary 1 is also shown; the plot
confirms that the contraction constant K is less than ‖JG‖1.

Figure 2 shows simulation results for the linear infor-
mation density field ρ(z) = 2z + 5 with N = 4 and
M = 1 meant to illustrate Theorem 4. The left plot shows



Fig. 2. Parameters: ρ(z)=2z + 5, N=4, M=1. The left plot shows the
2-norm of the Jacobian as a function of δ, which is a metric of the starting
configuration’s distance from the fixed point. The right plot shows a sample
simulation for an initial configuration with δ = 0.3.

the behavior of the 2-norm of the Jacobian with respect to
δ, which is defined by

δ ≥ ‖x(0) − x∗‖∞. (26)

For each value of δ on the x-axis 100, 000 initial config-
urations that satisfied (26) were randomly selected and the
2-norm of the Jacobian at each of those configurations was
calculated. The maximum of those norms is the value plotted
on the y-axis. We can see that at the fixed point (δ = 0), the
Jacobian norm is less than 1. It is clear that the further from
the fixed point the network starts the larger the Jacobian
norm, until at some value of δ the norm exceeds 1. It is
important to note that this does not imply that the network
diverges at initial configurations with δ larger than this cutoff
value, it simply no longer guarantees that the network will
converge. In the case shown here, we can see that initial
configurations quite far from the fixed point are guaranteed
to converge.

On the right plot in Figure 2 the trajectories of the four
agents for a sample initial configuration with δ = 0.3 are
plotted. Due to the non-uniformity of ρ, the agents are no
longer uniformly spaced through the region. Instead they are
more tightly grouped closer to +1 since ρ is higher in that
region.

The simulation shown in Figure 3 illustrates a more
pronounced grouping induced by non-uniformity in the
information density field. The dotted line plotted on the
left is an overlay of ρ(z) showing that it contains two
information ‘peaks’, while the solid and dashed lines are
the familiar agent trajectories and optimal coverage locations
respectively. At time step zero the agents are uniformly
spaced, but after only a few steps they cluster into a group
of 3 and a group of 2 according to the relative sizes of the
information peaks.

VI. CONCLUSIONS

In this paper we have developed, analyzed and imple-
mented a distributed coverage control law for mobile sensor
networks moving in one dimension. The primary advantage
of this control law compared to other distributed coverage
methods is its simplicity in terms of the number of mea-
surements of the information field agents must make and

Fig. 3. Parameters: ρ(z)= 1
2

+ (z + 2)(1 − cos(2πz)), N=4, M=2.
Agents are uniformly spaced at t = 0. Solid lines are agent trajectories with
time step on the lower x-axis and position on the y-axis. The dashed lines
are the optimal coverage positions. The dotted line is an overlay of ρ(z)
showing the dual peak structure, with the scale on the upper x-axis.

the computations they must perform. The primary shortfall
is that convergence of the network to its fixed point is not
guaranteed for arbitrary agent configurations, so behavior of
the control law is unpredictable for a rapidly varying ρ or
an initial configuration far from the fixed point.

Future research into this coverage method should focus
on either gaining a better understanding of the convergence
properties by applying Theorems 3 and 4 to other classes of
ρ or making the control law itself more robust by changing
the interpolation scheme or introducing gain constants to tune
the dynamics. In addition, generalizing the method presented
here to two or more dimensions promises a richer and more
challenging problem.
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