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Abstract 

We propose an algorithmic approach to  stabilization 
of Lagrangian systems. The first step involves making 
admissible modifications to  the Lagrangian for the un- 
controlled system, thereby constructing what we call 
the controlled Lagrangian. The Euler-Lagrange equa- 
tions derived from the controlled Lagrangian describe 
the closed-loop system where new terms are identified 
with control forces. Since the controlled system is La- 
grangian by construction, energy methods can be used 
to  find control gains that yield closed-loop stability. 
The procedure is demonstrated for the problem of sta- 
bilization of an inverted pendulum on a cart and for the 
problem of stabilization of rotation of a rigid spacecraft 
about its unstable intermediate axis using a single in- 
ternal rotor. Similar results hold for the dynamics of 
an underwater vehicle. 

1 Introduction 

In this paper we describe an algorithmic approach to  
the derivation of stabilizing control laws for Lagrangian 
systems. The guiding principle is to consider a class 
of control laws that yield closed-loop dynamics that 
remain Lagrangian. The advantage of requiring La- 
grangian closed-loop dynamics is that stabilization can 
be understood in terms of energetics. In particular, 
we can make use of energy methods which automati- 
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cally provide a Lyapunov function for choosing control 
gains and proving closed-loop stability. Further, even 
though work is done by the control forces, there is an 
extension of the mechanical energy of the system that 
is conserved; one can think of it as a combined en- 
ergy available to the mechanism and the control forces. 
This guarantees, for example, that the control inputs 
will never need to become very large to  achieve stabi- 
lization. 

Closed-loop dynamics are guaranteed to  be La- 
grangian by first choosing the closed-loop Lagrangian 
from a class of controlled Lagrangians we shall elucidate. 
The controlled Lagrangian then provides the control 
law: the closed-loop dynamics are the Euler-Lagrange 
equations derived from the controlled Lagrangian and 
the new terms that appear in the dynamic equations are 
identified with the control forces. Rules are imposed in 
choosing the controlled Lagrangian so that new terms 
appear only in desired control directions. 

The approach is motivated by a result in Bloch, Kr- 
ishnaprasad, Marsden and S&nchez de Alvarez [1992] 
for stabilization of unstable middle axis rotation of a 
rigid spacecraft using a single internal rotor. There, 
the framework was Hamiltonian and it was shown that 
the chosen rotor control law was such that the closed- 
loop system was still Hamiltonian. The new Hamilto- 
nian was a modification of the kinetic energy (Hamil- 
tonian) of the uncontrolled spacecraft. The energy- 
Casimir method was used to choose the control gain 
and thereby guarantee closed-loop stability. 

The objective of this paper is to demonstrate how 
the approach of Bloch, Krishnaprasad, Marsden and 
SAnchez de Alvarez [1992] can be generalized and 
made algorithmic. We switch to a Lagrangian frame- 
work from a Hamiltonian framework which helps us to 
systematize the modification of the uncontrolled La- 
grangian to get our controlled Lagrangian. The ba- 
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sic idea behind our approach was introduced in Bloch, 
Marsden and SAnchez de Alvarez [1997]. 

We confine ourselves, in this paper, to controlled 
Lagrangians that only involve modifications to the ki- 
netic energy of the system. One can also consider mod- 
ifications to the potential energy for stabilization and 
tracking purposes. In future work, we intend to incor- 
porate, into our algorithm, modifications to the poten- 
tial energy such as the addition of symmetry-breaking 
potentials along the lines of Leonard [1997b]. Other 
relevant work involving energy methods in control and 
stabilization includes Wang and Krishnaprasad [1992], 
Koditschek [1989], Koditschek and Rimon [1990] and 
Baillieul [1993]. 

This paper is organized as follows. In $2, we de- 
scribe the controlled Lagrangian approach to stabiliza- 
tion. In $3, we apply the approach to stabilization of an 
inverted pendulum on a cart. In $4, we apply the ap- 
proach to stabilization of rotation of a rigid spacecraft 
about its unstable middle axis using a single internal 
rotor. In $ 5 ,  we discuss application to the underwater 
vehicle problem and then give some final remarks. 

2 Controlled Lagrangian Approach 

The controlled Lagrangian approach begins with 
a mechanical system with an uncontrolled (free) La- 
grangian equal to kinetic energy minus potential energy. 
As mentioned above, we modify the kinetic energy to 
produce a new controlled Lagrangian which describes 
the dynamics of the controlled closed-loop system. 

Suppose our system has configuration space Q and 
that, for the purposes of this paper, Q has the form 
S x G, where G is a Lie group. Our goal will be to con- 
trol the variables lying in S using controls which act 
directly on the variables lying in G. We assume that 
the Lagrangian is invariant under the action of G on 
Q, where the action is on the factor G alone. In many 
specific examples, such as t,hose given below, the invari- 
ance is equivalent to the Lagrangian being cyclic in the 
G-variables. Accordingly, this produces a conservation 
law for the free system. Our construction will preserve 
the invariance of the Lagrangian, thus providing us with 
a modified conservation law. 

The essence of the modification of the Lagrangian 
involves changing the metric tensor g(.,  .) that defines 
the kinetic energy $-g(G,i). 

The tangent space to Q can be split into a sum of 
horizontal and vertical parts defined as follows: for each 
tangent vector v, t o  Q at  a point q E Q, we can write 
a unique decomposition 

v, = Hor U, + Ver ‘U,, 

such that the vertical part is tangent to G and where 
the horizontal part is uniquely defined by requiring the 
identity 

g(v,, w,) = g(Hor v, , Hor w,) + g(Ver v,, Ver w,) (2.1) 

where vq and w, are arbitrary tangent vectors. (This 
choice of horizontal space coincides with that given by 
the mechanical connection - see e.g. Marsden [1992].) 
One can think intuitively of this decomposition of vec- 
tors as a decomposition into a piece in the symme- 
try, or group direction (the vertical piece) and one in 
the shape, or internal direction (the horizontal piece). 
For example, in a vibrating molecule, this would cor- 
respond to  a decomposition into rotational and vibra- 
tional modes. 

For the kinetic energy of our controlled Lagrangian, 
we use a modified version of the right hand side of equa- 
tion (2.1). The potential energy remains unchanged. 
The modification consists of three ingredients: i) a dif- 
ferent choice of horizontal space denoted HorTr ii) a 
change g -+ gu of the metric acting on horizontal vec- 
tors and iii) a change g -+ gp of the metric acting on 
vertical vectors. Corresponding to this change, the con- 
trolled Lagrangian takes the form of a modified kinetic 
energy minus the potential energy: 

+ gp(Ver,vq, Ver7w,)l - V ( q )  (2.2) 

where V is the potential energy. 
The equations corresponding to  this Lagrangian are 

our closed-loop equations. The new terms appearing 
in those equation corresponding to the directly con- 
trolled variables are interpreted as control inputs. The 
modifications to the Lagrangian are chosen so that no 
new terms appear in the equations corresponding to the 
variables that are not directly controlled. We refer t o  
this process as “matching”. Further details on the gen- 
eral procedure may be found in Bloch, Marsden and 
SAnchez de Alvarez [1997] and in a forthcoming paper. 

We let (Q denote the infinitesimal generator cor- 
responding to a Lie algebra element ( (see Marsden 
[1992]). This may be thought of intuitively as infinites- 
imal group motions of the system. The new horizon- 
tal space consists of vectors of the form HorTv, = 
Horv, - [T(v)]Q(q) where 7 is a one form that anni- 
hilates vertical vectors. 

In certain examples, including the inverted pendu- 
lum on a cart, we can choose gP = g (i.e., there is no p 
needed) and gu to modify the original metric g only in 
the group directions by a scalar factor U. In this case, 
the controlled Lagrangian takes the form 

L T , o ( ~ )  = L(v + [T(v)lQ(q)) 4- ig([T(v)]Qj [T(v)]Q). 

For the satellite with rotors, one must include the effects 
of p as well; this modification, consistent with (2.2), is 
given in (4.3). We remark in passing that the controlled 
Lagrangian is a modification of the Kaluza-Klein La- 
grangian for a particle in a magnetic field, for example 
(see Marsden and Ratiu [1994]). 

(2.3) 

The general strategy is: 

2357 



1. Start with a mechanical system with a Lagrangian L 
of the form kinetic minus potential energy and a sym- 
metry group G. (In the cart pendulum example below 
the symmetry group is translation in the horizontal di- 
rection). 
2. Write down the equations of motion for the uncon- 
trolled system. 
3. Introduce T ,  IJ and p to get the controlled Lagrangian 

4. Write down the equations of motion corresponding 
to the controlled Lagrangian and read off the control 
law U from the equations in the symmetry variables 
(this will be a conservation law). 
5. Choose r ,  o and p so that the controlled Euler- 
Lagrange equations for the original system (i.e., the 
Euler-Lagrange equations for the Lagrangian L with 
the control) agree with (match) the Euler-Lagrange 
equations for the controlled Lagrangian L7,g,p. Deter- 
mine a feedback law for U by using the Euler-Lagrange 
equations to  eliminate accelerations; then the control 
law becomes a feedback that is configuration and, pos- 
sibly, velocity dependent. 
6 .  The stability of an equilibrium is determined by 
linearization or by the energy-momentum (or energy- 
Casimir- Arnold) method, using any available freedom 
in the choice of r ,  U and p. 

(2.2). 

3 Inverted Pendulum on a Cart 

We now apply the above ideas to  the inverted pen- 
dulum on a cart. (The linearized case of this problem 
was done in Bloch, Marsden and Sdnchez de Alvarez 
119971.) This example shows the effectiveness of the 
method for the stabilization of balance systems. Re- 
lated examples we have in mind are systems like the 
inverted spherical pendulum on a hockey puck (see con- 
clusions) and the bicycle (see, for example, Getz and 
Marsden [1994] and Koon and Marsden [1996]). 

First, we compute the Lagrangian for the cart- 
pendulum system. Let s denote the position of the cart 
on the s-axis and let 6 denote the angle of the pendulum 
with the upright vertical, as in the figure. 

1 =pendulum length 

m = pendulum bob muss t 
M = can muss 

g = acceleration due to gruviry 

Here, the configuration space is Q = G x S = Iw x 
S1 with the first factor being the cart position s, and 
the second factor being the pendulum angle, 6. The 
velocity phase space, TQ has coordinates (s, 8,9,8). 

The velocity of the cart relative to the lab frame is 
S, while the velocity of the pendulum relative to the lab 
frame is the vector 

= (S + I cos 6 8, -1 sin 0 0). (3.1) 

The system kinetic energy is just the sum of the kinetic 
energies of the cart and the pendulum: 

* 1  M + m  mlcos6 ~ ( ( ~ , e , i , o )  = - ( i ,e)  
2 

(3.2) 
The Lagrangian is the kinetic minus potential en- 

ergy, so we get 

L(s ,6 ,9 ,8 )  = K(s ,Q,S ,8)  - V ( Q ) ,  (3.3) 

where the potential energy is V = m g l  cos 0. 
The symmetry group G of the pendulum-cart sys- 

tem is that of translation in the s variable so G = Iw. 
We do not destroy this symmetry when doing stabiliza- 
tion in 6 ;  we would, however, use symmetry breaking 
potentials to track in the variable s if tracking were our 
goal. In this paper we are focusing on stabilizing this 
balance system. 

For convenience we rewrite the Lagrangian as 

1 
2 

L(s,Q,S,0) = - (a82+2~cos6S~+ys2)+Dcos6 ,  (3.4) 

where CY = m l 2 , p  = m l , y  = M + m  and D = -mgl are 
constants. Note that a y  - p2 > 0. 

The momentum conjugate to  s is p, = yi + ,4 cos 68 
and the momentum conjugate to  0 ispe = ab+@cos6i .  

The relative equilibrium defined by 0 = 0,0 = 0 and 
9 = 0 is unstable since D < 0. 

The equations of motion of the cart pendulum sys- 
tem with a control force U acting on the cart (and no 
direct forces acting on the pendulum) are, since s is a 
cyclic variable, 

- U 
d dL 
dt  dB 

d d L  d L  

-- - 

---- - - 0 ,  dt de 86 

a. e.. 
d d 
dt - dt  --p - --(+ + pcosee) = 

d 
-ps t p s i n o d  t D s i n 6  dt 

d --(ab + p cos OS) + p sin 0.48 + D sin 6 

= 

= 0 (3.5) 

Next we form the controlled Lagrangian by modify- 
ing only the kinetic energy of the free pendulum cart 
Lagrangian according to our general formalism. This 
involves a nontrivial choice of r and U ,  but in this case 
it is sufficient to let p be the identity. 

dt  
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The most general s-invariant horizontal one form 7 

is given by T = k(8)dO and ~7 is just a scalar. Using 
(2.3), we let 

1 
2 

L , , ~  := + 2pcose(s + k i ) e  

+ y(s + r ~ e ) ~ )  + c y ~ 2 e 2  + D cos e. (3.6) 2 

Notice that the variable s is still cyclic. Following 
the guidelines of the theory, we look for the feedback 
control by looking at  the change in the conservation 
law. Associated to  the new Lagrangian L,,,, we have 
the conservation law 

which we can rewrite in terms of the conjugate momen- 
tum p ,  for the uncontrolled Lagrangian as 

d d 
-p, dt = U := --(ylC(O)i). d t  

Thus, we identify the term on the right hand side with 
the control force exerted on the cart. 

Still using the controlled Lagrangian, as well as 
(3.7), the 0 equation is computed to  be 

+ D s i n e = O .  (3.9) 

For many examples, such as the the rigid body with 
an internal rotor, it is important here to use the con- 
servation law itself rather than its differentiated form 
to eliminate the group variables (s in this case). The 
resulting system will then depend on the value of the 
constant chosen for the conservation law. 

The next step is t o  make choices of IC and ~7 so 
that the equation (3.9) using the controlled Lagrangian 
agrees with the 8 equation for the controlled cart (3.5) 
with the control law given by equation (3.8). The 0 
equation for the controlled cart is 

+ - cos e sin e + -p cos &’(e) e2 
+ D s i n 8 = 0 .  (3.10) 

Comparing equations (3.9) and (3.10) we see that 

(7 ) 

we require (twice) 

ar[k(e)]2 = -pk (e )  cos e .  (3.11) 

Since U was assumed to  be a constant we set 

k ( e )  = cos e (3.12) 

where n i s  a constant (so cr = -p/rn). 

desired nonlinear control law: 
Then substituting for e and k in (3.8) we obtain the 

u = yn ((sin e)e2 + (cos e)<) , 
where 

1 .  D sin 0 + 4 2  - + ~n cosesine (: ) 
- ($ + pn) cos2 e c =  [ 

By examining the linearization of the closed-loop sys- 
tem, one can see that the equilibrium 0 = 8 = B = 0 is 
stable if 

(3.13) 

In summary, we get a stabilizing feedback control law 
for the inverted pendulum provided n satisfies (3.13). 

A simple calculation shows the denominator of C 
is nonzero for 0 satisfying sin2e < E / F  where E = 
n - ( a y  - P2)/(Py) (which is positive if the stability 
condition holds) and F = n + (Ply). This range of 6 
tends to the range -a12 < 8 < a/2 for large n. 

The above remark indicates that the region of sta- 
bility (or attraction when damping control is added) is 
the whole range of non-downward pointing states. In 
fact, we assert that this method produces large com- 
putable domains of attraction for stabilization. 

This approach has advantages because it is done 
within the context of mechanics; one can understand 
the stabilization in terms of the effective creation of an 
energy well by the feedback control. Note also that the 
linearized feedback is just proportional feedback. 

aY-P2 > o .  r c > -  Pr 

4 Rigid Spacecraft with a Symmetric Rotor 

Following Krishnaprasad [1985] and Bloch, Krish- 
naprasad, Marsden and SBnchez de Alvarez [1992], we 
consider a rigid body with a rotor aligned along the 
third principal axis of the body as in the figure. The 
rotor spins under the influence of a torque U acting on 
the rotor. The configuration space is Q = SO(3) x S’, 
with the first factor being the spacecraft attitude and 
the second factor being the rotor angle. The Lagrangian 
is total kinetic energy of the system, (rigid carrier plus 
rotor), with no potential energy. 

The Lagrangian for this system is 

L = L(xlQq + + I& + 5 3 ( 0 3  + b)’) (4.1) 2 
where I1 > I2 > I 3  are the rigid body moments of 
inertiaJ1 = 5 2  and 5 3  are the rotor moments of inertia, 
s1 = (GI ,  Rz, 0,) is the body angular velocity vector of 
the carrier and a is the relative angle of the rotor. 

The body angular momenta are determined by the 
Legendre transform to be 

rI1 = AIR] 
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IT2 = A 2 0 2  

n 3  = A 3 0 3 + J 3 &  

13 = J 3 ( 0 3  +&),  

A, = I, + J,. The momentum conjugate to  a is 13. 

acting on the rotor are 
The equations of motion with a control torque U 

A1fi1  = A 2 0 2 0 3  - ( A 3 0 3  + J 3 & ) 0 2  

A 2 0 2  = - A 1 0 1 0 3  + ( A 3 0 3  + J 3 & ) 0 1  

A3f i3  + J 3 6  = (A,  - A 2 ) 0 1 0 2  

l3 = U .  ( 4 4  

Now we form the controlled Lagrangian with the 
group direction being the rotor angle. We choose r to 
be the form r 0 3  where r is a constant scalar. In this 
case we select the controlled Lagrangian to  be 

1 
2 

LT,u,P = - (A& + Azo: + 1 3 0 3  

1 
2 

+ - J 3 a r 2 R i .  (4.3) 

Notice that this Lagrangian (written in a body 
frame) depends on all three of 7, p and F. To get the 
control law, we compute the Euler-Lagrange equation 
associated with a. We get 

This can be rewritten in terms of the conjugate mo- 
mentum l 3  for the uncontrolled Lagrangian as 

d d 
-13 = U  := - - ( J 3 r 0 3 ) .  dt d t  (4.5) 

The equations of motion corresponding to L7,0,P are 

II; = 1 3 ~ 3 + p J 3 ( ( l + r ) 0 3 + & ) ( l + r ) + J 3 ~ r ~ R 3 ,  (4.6) 

given as follows. Denoting 

the remaining equations of motion are 

Matching these to  the equations (4.2) with control law 
defined by (4.5) we find that the systems agree provided 
one chooses 0 = -1/r and p = 1/(1 + T ) .  

Defining k by 

-k I 3  r =  -- 
1 - k J 3 ’  

and using the equations to  eliminate accelerations, one 
finds the feedback control law defined above is given by 

U = k ( X 1  - A 2 ) 0 1 0 2 .  

Once one has the problem in Lagrangian and hence 
Hamiltonian form, one can proceed to  use the energy- 
Casimir or energy-momentum method to  determine sta- 
bility. This is often much more computationally effi- 
cient than an analysis of eigenvalues of the linearized 
equations (which, in any case, need not imply nonlinear 
stability in the mechanical case). 

As in Bloch, Krishnaprasad, Marsden and SBnchez 
de Alvarez [19921, we consider the case in which our 
conserved quantity is equal t o  zero and the equilibrium 
is (0, M, 0) corresponding t o  steady rotation about the 
intermediate axis (unstable for the uncontrolled space- 
craft). The energy-Casimir method then shows that 

Proposition 4.1 For k > 1 - J 3 / A 2 ,  the equilibrium 
(0, M ,  0 )  is nonlinearly stable fo r  the feedback controlled 
system. 

Indeed, we look at H + C  where C = (p(llIIl12). Pick 
cp so that the first variation vanishes: 

One computes that S2(H + C) is negative definite if 
k > 1 - J 3 / A 2  and cp”(i@) < 0, which proves the claim. 

The stabilization that takes place as the gain is in- 
creased can be viewed in terms of a modification of the 
phase portrait of the rigid body: the four heteroclinic 
orbits for the rigid body close up along the “hinge” join- 
ing the two saddle points forming a circle of fixed points 
and then open up along a “hinge” joining two stable 
points, forming a stability island where there were sad- 
dle points previously. 

One of the advantages of the approach in this pa- 
per is that it is systematic, given the class of control 
Lagrangians we have proposed (of course, we are not 
excluding the possibility that other interesting classes 
might be found). For example, with the satellite with 
rotors one can readily deal with variants of the problem 
such as putting the rotor along the short axis instead 
of the long one, or with its axis in some direction other 
than a principal axis direction. 

5 Stabilization of Underwa te r  Vehicle 
Dynamics 

The dynamics of an underwater vehicle provides an- 
other rich example of the methods of the present paper. 
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The techniques proceed somewhat similarly to those for 
the satellite t o  show what explicit gains are needed to 
stabilize an otherwise unstable motion. The underwa- 
ter vehicle example is much richer, however, because 
it interacts with the surrounding fluid for both rota- 
tional and translational motions, whereas the satellite 
stabilization problem deals only with the rotational dy- 
namics. Some of the relative equilibria that are of inter- 
est are discussed in Leonard [1997a] and Leonard and 
Marsden [1997]. 

The bottom line is that stabilization is possible with 
internal rotors and the techniques introduced here pro- 
vide explicit gain inequalities similar to those for the 
satellite. The details of this type of example will be 
given in a forthcoming publication. 
Concluding Remarks. The ideas discussed in this 
paper can be applied to a fairly large class of higher 
dimensional mechanical systems with symmetry. An 
example of this class is the inverted spherical pendu- 
lum on a 2d cart. We will discuss such systems in a 
forthcoming publication. 

As we have also indicated, we expect that the tech- 
niques in this paper can be combined with those of 
Leonard [1997b] who introduced symmetry-breaking 
potentials for purposes of stabilizing relative equilib- 
ria of underwater vehicles. (The potentials can be for 
either rotational or translational symmetry breaking). 
On some level, the two methods can simply be concate- 
nated; if the “balance stability” has been achieved in 
some of the variables (here the carrier angular veloc- 
ity variables), then the symmetry breaking potentials 
can be introduced by additional control forces that do 
not destroy the achieved stability. On a more detailed 
level, the problem is not quite as simple as concate- 
nation, because the control forces that achieve balance 
stability also affect the group directions, but leave some 
directions free (the geometric phase directions, roughly 
speaking). For the underwater vehicle, this effect is 
detailed in Leonard and Marsden [1997]. The present 
framework should allow one to deal with these issues. 

We expect one can extend the techniques for pur- 
poses of tracking by forming a tracking function 7 ( t )  
by taking the function produced by the energy-Casimir 
method, but with the relative equilibrium (which is a 
minimum of the function) replaced by the trajectory 
one wishes to  track. One then computes the total 
time derivative of 7 ( t )  under the influence of control 
forces and requires that these control forces decrease 
T(t);  thus, one is guaranteed to track, perhaps approx- 
imately, its minimum. For a relative equilibrium no 
control forces are needed. This tracking methodology 
is similar to that of Koditschek and Rimon [1990]. 
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