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Controlled Lagrangians and the Stabilization of
Mechanical Systems I: The First Matching Theorem

Anthony M. Bloch, Member, IEEE, Naomi Ehrich Leonard, Member, IEEE, and Jerrold E. Marsden

Abstract—We develop a method for the stabilization of mechan-
ical systems with symmetry based on the technique ofcontrolled
Lagrangians. The procedure involves making structured modifi-
cations to the Lagrangian for the uncontrolled system, thereby
constructing the controlled Lagrangian. The Euler–Lagrange
equations derived from the controlled Lagrangian describe the
closed-loop system, where new terms in these equations are identi-
fied with control forces. Since the controlled system is Lagrangian
by construction, energy methods can be used to find control gains
that yield closed-loop stability.

In this paper we usekinetic shapingto preserve symmetry and
only stabilize systems modulo the symmetry group. In the sequel
to this paper (Part II), we extend the technique to includepotential
shaping and we achieve stabilization in the full phase space.

The procedure is demonstrated for several underactuated bal-
ance problems, including the stabilization of an inverted planar
pendulum on a cart moving on a line and an inverted spherical
pendulum on a cart moving in the plane.

Index Terms—Lagrangian mechanics, nonlinear systems, stabi-
lization.

I. INTRODUCTION

I N this paper we develop a constructive approach to the
derivation of stabilizing control laws for Lagrangian me-

chanical systems where the Lagrangian has the form of kinetic
minus potential energy. The method is Liapunov-based and
thus yields large and computable basins of stability, which
become asymptotically stable when dissipative controls are
added. The methods are designed to be effective for the stabi-
lization of balance systems, such as inverted pendula, as well
as for systems with gyroscopic forces such as satellites and
underwater vehicles with internal rotors. These examples are
worked out in this and companion papers.

The guiding principle behind our methodology is to consider
a class of control laws that yield closed-loop dynamics which re-
main in Lagrangian form. This has the advantage that stabiliza-
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tion can be understood in terms of energy. In particular, we can
make use of energy methods which provide a Liapunov function
which gives information on how to choose the control gains to
achieve closed-loop stability. Further, even though work is done
by the control forces, there is a modification of the mechanical
energy of the system that is exactly conserved by the closed-loop
dynamics; one can think of it as a combined energy available to
the mechanism and the control forces. This can be used to show
that, for fixed gains, the control inputs will never need to be-
come large (in time) to achieve stabilization.

Closed-loop dynamics are guaranteed to be Lagrangian
by first choosing the closed-loop Lagrangian from a class
of controlled Lagrangiansthat we will explicitly describe.
The controlled Lagrangian then provides the control law:
the closed-loop dynamics are the Euler–Lagrange equations
derived from the controlled Lagrangian and the new terms that
appear in the dynamic equations are identified with the control
forces. The method ensures that the new terms in the equations
of motion only appear in the desired control directions. The
associated theory provides sufficient (matching) conditions
under which this approach will provide such a control law that
yields a closed-loop system in Lagrangian form.

The approach is motivated by a result in [6] for stabilization
of unstable middle axis rotation of a rigid spacecraft using a
single internal rotor. There, the framework was Hamiltonian and
it was shown that the chosen rotor control law was such that the
closed-loop system was still Hamiltonian. The new Hamiltonian
was a modification of the kinetic energy (Hamiltonian) of the
uncontrolled spacecraft. The energy-Casimir method was used
to choose the control gain and thereby guarantee closed-loop
stability.

The objective of this paper is to demonstrate how the ap-
proach of [6] can be generalized and made algorithmic. We
switch to a Lagrangian framework from a Hamiltonian frame-
work which helps us to systematize the modification of the un-
controlled Lagrangian to get our controlled Lagrangian. The
basic idea behind our approach was introduced in [12] and in
[7] and [8]. We remark, however, that there is no reason that our
procedure cannot be carried out on the Hamiltonian side. This
leads to interesting questions regarding the modified symplectic
structures involved and we shall look at this in a future publica-
tion. The matching conditions derived in this paper are explicit;
for more general, but less explicit conditions, see [2] and [17].

In this paper, we confine ourselves to controlled Lagrangians
that only involve modifications to the kinetic energy of the
system. Thus, our approach is complementary to that of, for
example, [38] and [35]. We can, however, also consider mod-
ifications to the potential energy for stabilization and tracking
purposes and this is done in the sequel to this paper, Part II [5].

0018–9286/00$10.00 © 2000 IEEE
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The results of the present paper create an energy extremum in
thereducedphase space and, accordingly, allow one to deal with
stability modulo the symmetries, that is, stability on a reduced
phase space. This is clearly a limitation, but this problem is ad-
dressed by the introduction of potential shaping, which allows
one to achieve stabilization in the full phase space rather than
simply modulo the symmetry directions. (For early results in
this direction, see [10].) In addition, Part II extends the study of
dissipative controllers to the case of potential shaping and, cor-
respondingly, achieves asymptotic stability in the whole phase
space, not just the reduced space.

In a forthcoming related paper, [11], we consider the appli-
cation of our methods to Euler-Poincaré systems which we il-
lustrate with the problems of stabilization of rotation of a rigid
spacecraft about its unstable intermediate axis using a single in-
ternal rotor and stabilization of the dynamics of an underwater
vehicle.

In this paper we restrict ourselves to a class of systems satis-
fying specialmatching conditions. This class includes balance
systems, such as the inverted planar pendulum on a cart and
the inverted spherical pendulum on a cart in the plane, which
are mechanically flat, i.e., they lack gyroscopic forces. In a fu-
ture paper we analyze a more general class of systems which
includes examples with gyroscopic forces such as the inverted
pendulum on a rotating arm also known as the whirling pen-
dulum (see [9]).

Other relevant work involving energy methods in control and
stabilization includes [25], [39], [21], , [22], [3], and [28]. Re-
lated ideas on mechanical control systems may also be found in
[13], [37], [38], [14], [30], [18], and [19].

Organization of the Paper:In Section I-A, we describe the
controlled Lagrangian approach to stabilization. In Section I-B,
we apply the approach to stabilization of an inverted pendulum
on a cart. In Section II-A we describe the structure of the gen-
eral class of controlled Lagrangians we consider. In Section II-B
we prove the first matching theorem showing that for certain
kinds of systems with Abelian symmetry groups and with con-
trols applied to these symmetry directions, one can always find
a suitable controlled Lagrangian whose Euler–Lagrange equa-
tions give the desired controlled equations. The proof is con-
structive and shows explicitly how to choose the controlled La-
grangian and identifies the free gain parameters that are needed
to achieve stabilization. The control law itself is derived in Sec-
tion III-A and in Section III-B we give a sufficient condition for
closed-loop stability. This is a stabilizability result in the context
of the controlled Lagrangian approach and it provides a con-
struction for choosing control gains for stability. In Section IV,
we apply the approach to stabilization of inverted pendula, in-
cluding the case of an invertedsphericalpendulum on a cart.
In Section V we show how to modify the control laws to sim-
ulate dissipative effects of the right sort to achieveasymptotic
stability.

Part II [5], extends the results herein to includepotential
shaping and tracking. It is shown that one gets asymptotic
stability in the full phase space and it deals with such examples
as the inverted planar pendulum (and spherical pendulum)
on a cart that moves on an incline. Reference [11] proves a
matching theorem designed specifically for the case of the
Euler–Poincaré equations. This case, not covered by the first

matching theorem, is applied to a spacecraft with an internal
rotor and to the problem of stabilizing an underwater vehicle
using internal rotors. In a further paper we prove a third
matching theorem that includes the preceding as two special
cases and apply it to a whirling pendulum (motivated by [1]).
This is discussed in [9].

A. The Controlled Lagrangian Approach

In this section we describe in broad terms the mathematics, in-
tuition, and calculational procedure for the method of controlled
Lagrangian. This provides a general setting both for the current
paper and related papers as described above.

The controlled Lagrangian approach begins with a mechan-
ical system with an uncontrolled (free) Lagrangian equal to ki-
netic energy minus potential energy. We then modify the ki-
netic energy (given by a metric tensor) to produce a new con-
trolled Lagrangian which describes the dynamics of the con-
trolled closed-loop system. (As mentioned above the method
can be extended to the case of modified potentials and this is
described in the forthcoming Part II of this paper.)

The Setting:Suppose our system has configuration space
and that a Lie group acts freely and properly on. It is useful
to keep in mind the case in which with acting
only on the second factor by acting on the left by group multi-
plication.

For example, for the inverted planar pendulum on a cart
(which we consider in detail in Section I-B),
with , the group of reals under addition (corresponding
to translations of the cart), while for a rigid spacecraft with a
rotor (which we treat in a companion paper), ,
where now the group is , corresponding to rotations of
the rotor.

Our goal will be to control the variables lying in theshape
space (in the case in which , then )
using controls which act directly on the variables lying in. We
assume that the Lagrangian is invariant under the action ofon

, where the action is on the factor alone. In many specific
examples, such as those given below, the invariance is equiva-
lent to the Lagrangian being cyclic in the-variables. Accord-
ingly, this produces a conservation law for the free system. Our
construction will preserve the invariance of the Lagrangian, thus
providing us with acontrolledconservation law.

The essence of the modification of the Lagrangian involves
changing the metric tensor that defines the kinetic energy
of the system .

Our method relies on a special decomposition of the tangent
spaces to the configuration manifold and a subsequent “con-
trolled” modification of this split. We can describe this as fol-
lows.

Horizontal and Vertical Spaces:The tangent space to can
be split into a sum of horizontal and vertical parts defined as
follows: for each tangent vector to at a point , we
can write a unique decomposition

(1.1)

such that the vertical part is tangent to the orbits of the-action
and where the horizontal part is the metric orthogonal to the
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vertical space; that is, it is uniquely defined by requiring the
identity

(1.2)

where and are arbitrary tangent vectors toat the point
. This choice of horizontal space coincides with that given

by themechanical connection—see, for example, [31]. One can
think intuitively of this decomposition of vectors as a decom-
position into a piece in the symmetry, or group direction (the
vertical piece) and one in the shape, or internal direction (the
horizontal piece). For example, in a vibrating molecule, this
would correspond to a decomposition into rotational and vibra-
tional modes. However, it is important to realize that even when

, while the vertical space consists of vectors with
a zero first component, the horizontal spaceneed notconsist of
vectors with a zero second component. In examples, deviations
from this are important and correspond to the interaction of the
dynamics of the shape and group variables.

The Controlled Lagrangian:For the kinetic energy of
our controlled Lagrangian, we use a modified version of
the right-hand side of (1.2). The potential energy remains
unchanged. The modification consists of three ingredients:

1) a different choice of horizontal space denoted ;
2) a change of the metric acting on horizontal vec-

tors;
3) a change of the metric acting on vertical vectors.

To explain these changes in detail, we will need a little more
notation. First of all, we let denote the infinitesimal generator
corresponding to a Lie algebra element , where is the Lie
algebra of (see [31] or [32, Ch. 9] for the relevant elementary
definitions and properties of Lie groups and group actions). This
may be thought of intuitively as infinitesimal group motions of
the system. Thus, for each is a vector field on the
configuration manifold and its value at a point is
denoted .

Definition 1.1: Let be a Lie-algebra-valued horizontal one
form on ; that is, a one form with values in the Lie algebra

of that annihilates vertical vectors. This means that for
all vertical vectors , the infinitesimal generator corre-
sponding to is the zero vector field on . The -hori-
zontal spaceat consists of tangent vectors toat of the
form , which also defines

, the -horizontal projection. The -vertical projec-
tion operatoris defined by .

Notice that from these definitions and (1.1), we have

(1.3)

just as we did with absent. In fact, this new horizontal subspace
can be regarded as defining a new connection, the-connection.
The horizontal space itself, which by abuse of notation, we also
write as just Hor or of course depends onalso, but the
vertical space does not—it is the tangent to the group orbit. On
the other hand, theprojectionmap does depend
on .

Definition 1.2: Given and , we define thecontrolled
Lagrangianto be the following Lagrangian which has the form
of a modified kinetic energy minus the potential energy

(1.4)

where is the potential energy.
The equations corresponding to this Lagrangian will be our

closed-loop equations. The new terms appearing in those equa-
tions corresponding to the directly controlled variables are in-
terpreted as control inputs. The modifications to the Lagrangian
are chosen so that no new terms appear in the equations cor-
responding to the variables that are not directly controlled. We
refer to this process as “matching.” This matching problem will
be studied in detail in subsequent sections.

Another way of expressing what we are doing here is the fol-
lowing. A principal connection on a bundle , may
be thought of as a Lie-algebra-valued one form and one can ob-
tain a new connection by adding to it a horizontal one form.
The new horizontal space described in the preceding definition
is exactly of this sort.

Special Controlled Lagrangians:In this paper we consider
controlled Lagrangians in which we take so that (1.4)
describes a controlled Lagrangian of the form . In certain
examples of interest, including the inverted planar or spherical
pendulum on a cart, we not only can choose (i.e., there is
no modification needed), but we can also choose the metric

to modify the original metric only in the group directions
by a scalar factor . As we shall see in Section II the general
formula for the controlled Lagrangian then takes the simplified
form

(1.5)

We will develop a formula like this for the more general case
of (1.4) in Section II-A. For the satellite with rotors, for
example, and for stabilization in the full phase space one must
include the effects of as well; this modification, consistent
with (1.4), is given by formula (2.2). Applications of the general
case are discussed in the companion papers mentioned above.
We remark in passing that the controlled Lagrangian is a modi-
fication of the Kaluza–Klein Lagrangian for a particle in a mag-
netic field, (see, for example, [32]).

The General Strategy:In outline, the general procedure that
one goes through to achieve stabilization is given in the fol-
lowing steps.

1) Start with a mechanical system with a Lagrangianof
the form kinetic minus potential energy and a symmetry
group . (In the pendulum-cart example below the sym-
metry group is translation in the horizontal direction.)

2) Write down the equations of motion for the uncontrolled
system.

3) Introduce , , and to get the controlled Lagrangian
(1.4).

4) Write down the equations of motion corresponding to the
controlled Lagrangian and read off the control lawfrom
the equations in the symmetry variables (this will be a
conservation law).
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Fig. 1. The pendulum on a cart.

5) Choose , and so that the controlled Euler–La-
grange equations for the original system (i.e., the
Euler–Lagrange equations for the Lagrangianwith the
control) agree with (that is, match) the Euler–Lagrange
equations for the controlled Lagrangian . Deter-
mine a feedback law for by using the Euler–Lagrange
equations to eliminate accelerations; then the control law
becomes a feedback that is configuration and, possibly,
velocity dependent. The general matching theorem can
be used to guide these calculations.

6) The stability of an equilibrium is determined by lineariza-
tion or by the energy-momentum (or, when appropriate,
the energy-Casimir–Arnold) method, using any available
freedom in the choice of, , and .

We use this strategy to prove general matching and stabiliz-
ability theorems. The matching theorems provide sufficient con-
ditions for successful completion of Steps 1–5 and an explicit
construction of the controlled Lagrangian and the control law. In
the case that matching is achieved, the stabilizability theorems
provide sufficient conditions for closed-loop stability according
to Step 6. Again the theory is constructive, providing an explicit
choice of control gains for closed-loop stability.

We must emphasize that in doing concrete examples, it can
be quite complicated to go through the preceding procedures
directly, although we shall do so in the next section for the rela-
tively simple case of the inverted pendulum on a cart. Using the
general matching theorems in examples, however, is relatively
straightforward.

B. The Inverted Pendulum on a Cart

Before developing the theory further, we will give an example
to show how the ideas work in a concrete setting and to show
that the ideas lead to interesting results.

The system we consider is the inverted pendulum on a cart.
(The linearized case of this problem was considered in [12].)
This example shows the effectiveness of the method for the sta-
bilization of balance systems. Related examples we will treat
later are the inverted spherical pendulum on a hockey puck, the
satellite with rotors, the underwater vehicle with internal rotors
and an inverted pendulum on a rotating arm.

Other examples that we hope will eventually be amenable to
these methods include the bicycle (see, for example, [16] and
[23]). For thesenonholonomicsystems, it is hoped that one can

use the nonholonomic energy-momentum techniques of [40] to
achieve stabilization.

The Lagrangian: First, we set up the Lagrangian for the pen-
dulum-cart system. Let denote the position of the cart on the
-axis and let denote the angle of the pendulum with the up-

right vertical, as in Fig. 1.
The configuration space for this system is

, with the first factor being the pendulum angleand
the second factor being the cart position. The velocity phase
space, has coordinates .

The velocity of the cart relative to the lab frame is, while the
velocity of the pendulum relative to the lab frame is the vector

(1.6)

The system kinetic energy is the sum of the kinetic energies of
the cart and the pendulum

(1.7)

The Lagrangian is the kinetic minus potential energy, so we get

(1.8)

where the potential energy is .
The symmetry group of the pendulum-cart system is that

of translation in the variable, so . We do not destroy
this symmetry when doing stabilization in; we would, how-
ever, use symmetry-breaking potentials to track in the variable

if tracking were our goal. In this paper we are focusing onsta-
bilizing this and similar balance systems.

For notational convenience we rewrite the Lagrangian as

(1.9)

where and
are constants. Note that , reflecting the positive
definiteness of the mass matrix (i.e., the metric). The momentum
conjugate to is

and the momentum conjugate tois

The relative equilibrium defined by and is
unstable since .
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Equations of Motion:The equations of motion for the pen-
dulum-cart system with a control forceacting on the cart (and
no direct forces acting on the pendulum) are, sinceis a cyclic
variable

i.e.,

that is

(1.10)

and

The Controlled Lagrangian:Next, we form the controlled
Lagrangian by modifying only the kinetic energy of the free
pendulum-cart system according to the procedure given in the
preceding section. This involves a nontrivial choice ofand

, but in this case, as we have remarked, it is sufficient to let
.

The most general-invariant horizontal one form is given
by and we choose to modify in the group
direction by a constant scalar factor(in general, need not
be a constant, but it is for the present class of examples). Using
(1.5), we let

(1.11)

Notice that the variable is still cyclic. Following the guide-
lines of the theory, we look for the feedback control by looking
at the change in the conservation law. Associated to the new La-
grangian , we have the conservation law

(1.12)

which we can rewrite in terms of the conjugate momentum
for the uncontrolled Lagrangian as

(1.13)

Thus, we identify the term on the right hand side with thecontrol
forceexerted on the cart.

Using the controlled Lagrangian and (1.12), theequation is
computed to be

(1.14)

Matching: The next step is to make choices ofand so
that (1.14) using the controlled Lagrangian agrees with the

equation for the controlled cart (1.10) with the control law given
by (1.13). The equation for the controlled cart is

(1.15)

Comparing (1.14) and (1.15) we see that we require (twice)

(1.16)

Since was assumed to be a constant we set

(1.17)

where is a dimensionless constant (so ).
The Control Law: Substituting for and in (1.13) we ob-

tain the desired nonlinear control law

(1.18)

Stabilization: By examining either the energy or the lin-
earization of the closed-loop system, one can see that the
equilibrium is stable if

(1.19)

In summary,we get a stabilizing feedback control law for the
inverted pendulum provided satisfies(1.19). As mentioned
in the introduction, this means stability in the reduced space,
that is, modulo translations. Concretely, this means that one has
stability in the pendulum position, but not in the cart position,
even though, as we shall see, with dissipation, one can bring
the cart velocity to zero. Our work on potential shaping (Part II;
see also [10]) demonstrates how to obtain stability in the cart
position also.

A calculation shows that the denominator ofis nonzero for
satisfying where (

is positive if the stability condition holds) and . The
range of tends to the range for large .

The above remark suggests that the region of stability (or at-
traction when damping control is added) is the whole range of
nondownward pointing states. In fact, we assert that this method
produces large computable domains of attraction for stabiliza-
tion.

This approach has advantages becauseit is done within the
context of mechanics; one can understand the stabilization in
terms of the effective creation of aninverted energy wellby the
feedback control. (Our feedback in general creates a maximum
for balance systems, since for these systems the equilibrium is a
maximum of the potential energy which we do not modify.) As
discussed in Section V, the system is then robustly stabilized
by the addition of appropriate dissipation. Note also that the
linearized feedback is just proportional feedback.

Remark: The matching procedure does not involve the
actualvalueof the new conserved quantity for the controlled
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system—this is also true for all three of the matching theorems
in this paper. The value of the conserved quantity was used in
[6] because asymmetry reductionwas performed.

II. THE FIRST MATCHING THEOREM

In this section, we prove the first of three major matching
theorems: the case of .

The main goal is to abstract what was happening for the case
of the inverted planar pendulum and prove a general matching
theorem that applies to such examples. We apply the matching
result to the more sophisticated case of the invertedspherical
pendulum in Section IV-B.

As shown in companion papers, more general results (e.g.,
where ) are needed for the case of the satellite and the
underwater vehicle as well as the whirling pendulum.

A. The Structure of

As we have mentioned, while we needed only for the in-
verted pendulum, we will eventually need for the satellite
with a rotor, the underwater vehicle, and the inverted pendulum
on a rotor arm.

In this section we prove a structure theorem for that
proves and generalizes (1.5). Recall that this formula was al-
ready helpful in the case of the inverted pendulum; likewise, the
formula below will be useful in our first matching theorem and
in the case of the satellite and the underwater vehicle, etc.

We begin by recalling the definition of the controlled La-
grangian

(2.1)

and we make the following assumptions on the metric(these
assumptions are also appropriate for the case of that we
considered earlier).

1) on Hor.
2) Hor and Ver are orthogonal for .

Keep in mind that Hor denotes the horizontal space for the given
uncontrolled system and that denotes the horizontal space
as modified by the one form. Note also that the new metrics
and will modify on Ver, the vertical space (or group direc-
tions), which is independent of any modification due to. On
the other hand, also recall that thevertical projection operator

does depend on.
Theorem 2.1:We have the following formula:

(2.2)

where and where .
Note that if (so that ) and if is a scalar times
in the group directions, then this formula reduces to (1.5).

Proof: We begin by manipulating the first (“kinetic
energy”) term of , (2.1), using the given proper-
ties of and the definition of the -horizontal operator

Write the second term of (2.1) as

Now write

since and the horizontal space is-or-
thogonal to the vertical space. Substituting this last expression
into the second term of (2.1) and adding it to the first term gives

which equals

Subtracting the potential gives the desired expression.

B. The First Matching Theorem

Introduction: Motivated by the inverted planar pendulum on
a cart, in this section we prove the first matching theorem for
mechanical systems such as the inverted pendulum for which
we can take . The group associated with the control di-
rections will be assumed to be Abelian. We illustrate this case in
Section IV with inverted pendula, including the inverted spher-
ical pendulum on a two-dimensional “cart.”

Roughly speaking, the class of systems covered by the first
matching theorem are those whose control forces are in the di-
rection of an Abelian symmetry group (such as the translation
direction for the pendulum on a cart), whose inertial properties
are independent of the internal configuration of the system (such
as the total translational inertia of the cart pendulum system
is independent of the angle of the pendulum) and whose gy-
roscopic structure satisfies a certain symmetry condition. The
exact hypotheses are spelled out in Assumptions M-1–M-3 dis-
cussed hereunder.

All of the matching theorems are constructive; they showex-
plicitly how to pick the controlled Lagrangian to achieve the de-
sired matching in a way that generalizes the example of the in-
verted planar pendulum on a cart.

The Controlled Lagrangian Identity:Let Hor be the hori-
zontal space for the given kinetic energy metric as explained
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earlier, let be a horizontal one form, and let be the new
horizontal space as explained earlier. Define according to
Definition 1.2. Theorem 2.1 for our controlled Lagrangian says
that

where on the vertical space. For this section, we
choose , so and we get

(2.3)

This formula will be extremely useful for the first matching
theorem, which we shall perform using a coordinate calculation.

Notation: Locally, we write coordinates for as
where are coordinates on the shape space

and where are coordinates for the
Abelian group . For the uncontrolled system, the variables

will be cyclic coordinates in the classical sense. We write
the given Lagrangian in these coordinates (with the summation
convention in force) as

(2.4)

The Conserved Quantity:The conserved quantity, that is, the
momentum conjugate to the cyclic variablefor the preceding
Lagrangian, is given by

(2.5)

The Controlled Euler–Lagrange Equations:The equations
of motion for the control system where the controlsact in
the directions are the controlled Euler–Lagrange equations

(2.6)

Coordinate Formulas for the Horizontal and Vertical Projec-
tions: We now embark on the development of coordinate for-
mulas for the controlled Lagrangian. To do this, we first develop
coordinate formulas for the horizontal and vertical projections.

For a vector , and suppressing the base point
in the notation, its horizontal and vertical projections

are verified to be

(2.7)

where, as is standard practice, denotes the inverse of the
matrix . Notice that , as it should.

These formulas can also be obtained systematically using the
formulas for the mechanical connection in terms of the locked
inertia tensor, as in, for example, [31]. (In the present context,
the locked inertia tensor is the tensor .)

The -Horizontal and Vertical Projections:We shall write
the given horizontal one form in coordinates as
Thus

(2.8)

The corresponding -horizontal and vertical operators are
checked to be

(2.9)

Coordinate Formula for : We shall first develop a useful
coordinate formula for . We write down the coordinate form
of the definition followed by the coordinate form of the identity
given in Theorem 2.1.

First of all, we write down the coordinate formula for
using the definition, namely (2.1) with , along with the
preceding coordinate formulas for the horizontal and vertical
projections to get

(2.10)

Remark on Notation:We use the notation for the com-
ponents of and, later on, shall likewise use notation for
the components of .

Returning to the preceding calculation, (2.3) gives

(2.11)

The equivalence of these two formulas may also be checked by
a direct calculation in this case.

The Controlled Conserved Quantity:From (2.10) or (2.11),
and (2.4), we find that the associatedcontrolled conserved quan-
tity is given by

(2.12)

We can also write this as

(2.13)

Matching Euler–Lagrange Expressions:The -Euler–La-
grange equations for the controlled Lagrangian, which are
equivalent to the controlled conservation law, will be used in
Section III-B to determine the control law, consistent with the
fact that this is the direction in which we are assuming we have
control actuation.
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Thus, our first job is to make sure that the-Euler–Lagrange
equations for and for agree. To do this, we let

(2.14)

denote the -component of the Euler–Lagrange expression for
our controlled Lagrangian .

Assume that the Euler–Lagrange equations forhold. We
want to see under what matching conditions they also hold for

. From (2.11), and subtracting the Euler–Lagrange expres-
sion for (this expression is zero by assumption) from that for

, we have

(2.15)

in which the partial derivatives with respect todenoteslot
derivatives, where summation over repeated indexes is under-
stood and where . We are assuming that the
variables are cyclic for the controlled Lagrangian. Corre-
spondingly, we are assuming thatdepends only on in this
calculation and those that follow.

Using (2.4), we have

(2.16)

and

(2.17)

where we again use commas to denote partial differentiation
of the components of the metric tensor (mass matrix) and;
again, these are functions only of —and not of since the

variables are assumed cyclic.
Using (2.16) in the first line and (2.17) in the second line of

(2.15), the Euler–Lagrange expression simplifies as
follows:

(2.18)

Using the controlled conservation law (2.12) in the third and
fourth lines, this becomes

(2.19)

Since is cyclic for the controlled Lagrangian, the controlled
conserved quantity is actually conserved. Thus, the above ex-
pression becomes

(2.20)

Some Assumptions:Now we are ready to introduce some
crucial assumptions that are designed to make the preceding
Euler–Lagrange expression vanish. The first of these is the fol-
lowing.

Assumption M-1: .
This condition says, roughly speaking, thatare chosen to

be the components of the “mechanical connection” formed out
of and . Of course, the condition can be equivalently written
as

(2.21)

With Assumption M-1, the above expression becomes

(2.22)

Using the controlled conserved quantity we get

(2.23)
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and hence the preceding expression for becomes

(2.24)

Using the Assumption M-1 again to eliminatein the first line,
we get

(2.25)

Now we are ready to state our second two assumptions.
Assumption M-2: .
Assumption M-3: .
The following theorem gives sufficient conditions for

matching.
Theorem 2.2 (First Matching Theorem):Under Assumptions

M-1–M-3, the Euler–Lagrange equations for the controlled
Lagrangian given by (2.3) coincide with the controlled
Euler–Lagrange equations (2.6).

Simplified Matching Assumptions:Consider the following:

1) for a constant (this defines );
2) is independent of (a condition on the metric

tensor);
3) (this defines );
4) (a second condition on the metric).
If these hold, then all three of M-1–M-3 hold, so we have

matching. The second and fourth of the Simplified Matching
Assumptions imply that the mechanical connection for
the given system is flat, i.e., systems that satisfy the Simplified
Matching Assumptions lack gyroscopic forces. Thein this
case is a free variable and can be interpreted as the control gain.
These simplified conditions hold for the case of the inverted
pendulum on a cart discussed in Section I-B.

As we have mentioned, this theorem is generalized to incor-
porate the terms in companion papers, so that we will find a
more general matching theorem.

The following remark illustrates that care must be taken in
relating the controlled to the uncontrolled case: if one sets
equal to the identity in the first simplified matching assumption,
the -horizontal and -vertical projections (2.9) do not reduce to
the uncontrolled projections (2.7), but to the trivial projections.
Rather, to recover the original projections, the one formshould
be taken to be trivial.

III. T HE CONTROL LAW AND STABILIZATION

Now that we have achieved matching in the Euler–Lagrange
equations for the shape variables, we can proceed to determine
the control law and then conditions under which stabilization is
achieved. We continue to restrict to the case in which .

A. Determination of the Control Law

The control law is determined from the difference between
the Euler–Lagrange equations for the controlled and the un-
controlled Lagrangians. In our case we have arranged to not
break the symmetry, and so we may determine the control law
from the difference between the two conservation laws.

To do this, we start with the relation

(3.1)

and since is conserved, we may write

(3.2)

Our final control law does not depend on accelerations: we
eliminate the accelerations from this expression for the con-
trol by making use of the fact that the Euler–Lagrange equations
for hold (for both and ). Using (2.4), and the fact that

is cyclic, the explicit -Euler–Lagrange equation is

(3.3)

Next, we use the -Euler–Lagrange equation for the controlled
Lagrangian to determine . That is, we simply write out the
conservation law for . Setting the time derivative of from
(2.12) equal to zero, we get

(3.4)

and hence

(3.5)

Substituting (3.5) into (3.3) gives

(3.6)

The control law is now determined by substituting this equation
into (3.2). So far, our derivation is rather general, but we can
simplify things somewhat by using our assumptions. Using M-1
and M-3, (3.6) simplifies to

(3.7)
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Now let

(3.8)

Assume that this matrix is invertible and let denote its in-
verse. Hence

(3.9)

Notice also that under M-3 is skew-symmetric in the
, indexes and hence the first term on the right-hand side of the

control law (3.2) vanishes. Substitution of (3.9) into the control
law gives

(3.10)

One may eliminate if desired by making use of the relation

(3.11)

Under the Simplified Matching Assumptions given after the
First Matching Theorem 2.2, the coefficients of the terms mul-
tiplying vanish and the formula for the control becomes

(3.12)

where

(3.13)

Note that the control law only involves position and velocity
feedback, not acceleration feedback.

Proposition 3.1: Suppose the conditions of Theorem 2.2
hold [i.e., the First Matching Theorem holds with the controlled
Lagrangian defined by (2.3)]. Suppose that defined
by (3.8) is invertible. Then, (3.10) provides the corresponding
feedback control law as a function of positions and velocities
only (i.e., there is no acceleration feedback). Furthermore,
in the case that the Simplified Matching Assumptions hold,
this feedback law simplifies to that given in (3.12) which is
independent of the velocities of the symmetry variables.

The above calculations make intrinsic geometric sense. For
example, and we shall need this remark, the matrix may
be interpreted as the components of the horizontal metric (the

shape space projected metric) for the controlled Lagrangian.
Under Assumption M-1, the formula for the horizontal part of
the metric is given by [see (2.9)]

(3.14)

Intrinsically, the calculation of the horizontal kinetic energy ex-
pression is as follows (see the proof of the first matching the-
orem):

(3.15)

In coordinates

(3.16)

while under Assumption M-1 we have

(3.17)

Adding these gives the following.
Proposition 3.2: The -horizontal kinetic energy is given by

(3.18)

B. Stabilization of Relative Equilibria

Recall that arelative equilibriumfor a mechanical system
with symmetry is a solution of the equations that is simultane-
ously a one-parameter group orbit. When the symmetry groups
are Euclidean groups, examples of these areuniformly rotating
and translating solutions. A general introduction to and basic
facts about relative equilibria can be found in [31].

Since is horizontal, for any Lie algebra element ,
we have . This implies the identity

.
Given a Lagrangian and a Lie algebra element , the

function is called the associatedlocked La-
grangian. Thus, from the identity
noted in the preceding paragraph, we conclude thatand
have the same locked Lagrangian.

It is known that relative equilibria are the critical points of the
locked Lagrangian (see [27, Prop. 2.3] and [39]); this is a gener-
alization of the classical criterion, going back to Routh around
1850, which states thatrelative equilibrium are critical points
of either the amended or augmented potential.1 Intuitively, the
modification of the Lagrangian to the controlled Lagrangian,
while affecting the kinetic energy, does not affect the augmented
potential. Therefore, we conclude the following.

Proposition 3.3: The relative equilibria for and are
the same.

1The amended potential is recalled in (3.19). The augmented potential is given
by a similar formula using generalizedangular velocitiesrather thanangular
momenta.
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One can now use the energy momentum method [36], [31],
especially its Lagrangian formulation [27], [39] to ascertain sta-
bility.

From general considerations, we know that a relative equilib-
rium is a fixed point of the reduced dynamics on shape space.
As such, it must satisfy . To emphasize that this corre-
sponds to an equilibrium value, we shall sometimes write the
equilibrium point as , or in coordinates, . Consequently,
from (2.13), the momentum at a relative equilibrium is the same
for the free and for the controlled system. We call this value,
with components , or if there is danger of confusion, by ,
where the superscriptrefers to theequilibrium value.

Next, we give a criterion for stability of control systems that
are described by a controlled Lagrangian of the form given
by (2.3).

Theorem 3.4:Suppose the conditions of Theorem 2.2 hold
(i.e., the First Matching Theorem holds with the controlled La-
grangian ). A point is a relative equilibrium if and only
if it is a critical point of where is the value of the equilib-
rium momentum and where is theamended potentialdefined
by

(3.19)

Then, the system is stabilized about the given equilibrium if
the second variation of

(3.20)

[as a function of the variables and where is defined in
(3.8)] evaluated at the equilibrium is definite.

Proof: The proof proceeds in a standard way following
the energy-momentum method by showing that is the re-
duced expression for the energy of the system. This calculation
is done for a general Lagrangian in, for example, [31], and is
here applied to using the fact, proved earlier [see (3.18)]
that the horizontal part of the-kinetic energy is, under Assump-
tion M-1, to get the result.

Remarks:

1) In the special case when is constant, the extra term
in the amended potential is a constant and so does not
contribute to the second variation.

2) One has stability modulo the (Abelian) groupin the
unreduced space. (See [29] for more sophisticated appli-
cations in which one gets stability modulo a subgroup.)
Note further that since the equilibrium of interest for a
balance system is a maximum of the potential energy and
we are not modifying the potential here, our controller
will in general lead to a local maximum in the reduced
space. As discussed in Section V the addition of active
dissipation then leads to a robust asymptotically stable
equilibrium.

3) Note that the energy momentum function depends on
the system gains.

4) If the system has an additional symmetry group, then
one can, of course, use the energy momentum method
to study stability of relative equilibria for that group. We
shall see an example of a system with another symmetry

group in the inverted spherical pendulum below. The con-
trolled Euler–Poincaré equations may also be viewed this
way—these are studied in companion papers.

IV. I NVERTED PENDULA

In this section we illustrate the results of the preceding sec-
tions with two examples. In the first subsection, we re-examine
the inverted pendulum on a cart and show that a direct appli-
cation of the matching theorem of Section II and stabilization
theorem of Section III produce the stabilizing control law de-
rived in Section I-B. In the second subsection we show how to
apply these techniques to the case of the inverted spherical pen-
dulum.

A. Reprise of the Inverted Pendulum on a Cart

Recall that the configuration space is where
describes the angleof the pendulum and describes

the position of the cart. When using the general theory, keep
in mind that in the general theory corresponds tohere and
that in the general theory corresponds tohere.

The Lagrangian: The Lagrangian is

where , , , and are as defined in Section I-B.
Controlled Lagrangian and Matching:We apply The-

orem 2.2 to get the controlled Lagrangian that matches the
controlled Euler–Lagrange equations (1.10). Since is
one-dimensional, both and are scalars. We have that

. Let where is a dimensionless scalar.
Since is a constant, to satisfy M-2 we should also taketo
be a constant. To satisfy M-1, we choose

M-3 is then trivially satisfied, and the controlled Lagrangian
provides matching. In fact, the Simplified Matching Assump-
tions hold. Following (2.2) the controlled Lagrangian is

(4.1)

Note that defining and substituting for in (4.1),
we recover the controlled Lagrangian of (1.11), where is
defined by (1.17).

Control Law: Using (3.2), the control law is

We can use the general formula (3.12) to calculate this control
law with the acceleration term eliminated.
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Fig. 2. The inverted spherical pendulum on a cart.

In this case, , the matrix (3.8)
becomes the scalar

and

Substituting into the general formula (3.12), we obtain the non-
linear pendulum-cart control law (1.18).

Stabilization: Following Theorem 3.4, the relative equilib-
rium is stable if the second variation of

is definite when evaluated at this equilibrium. This requires that
the matrix

be positive or negative definite. Since , the
matrix will be negative definite if

i.e., if

Equivalently, using , the relative equilibrium is stable
if

which is the stability condition (1.19).

B. The Spherical Pendulum

In this section we consider the controlled spherical pendulum
on a cart in the -plane. This generalizes the planar pendulum
example and provides a highly nontrivial example of matching
and stabilization in the case where we only need a controlled
Lagrangian of the form . In this case we have independent
controls that can move the cart in theand directions.

Consider then a spherical pendulum with bob of masson
a movable base of mass , as in Fig. 2. The base is idealized
to be a point (or a symmetric planar body) as this simplifies the
calculations without affecting the essential dynamics.

The Lagrangian: The free Lagrangian for the spherical pen-
dulum on a cart is

(4.2)

where and are spherical coordinates measured in a frame
with origin fixed on the (point) cart, but with orientation that
remains fixed with respect to inertial space.represents the
deflection from the vertical while represents the angle between
the pendulum and the-axis. The controlled equations are the
Lagrangian equations with control forcesand in the and

equations, respectively. Note that the Lagrangian is cyclic in
and . However, the system is in fact invariant, as one

would expect physically.
Consider the action of on given by

(4.3)
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with induced action on

(4.4)

A computation shows that the Lagrangian is indeed invariant
under this action (thus giving rise to three conservation laws).

However, for the purposes of applying the theory discussed
above we willassumethe symmetry directions are theand
directions ignoring for the moment the additionalsymmetry.
We shall return to this later in this section. The key point here is
that the controls act in theand directions and pick out the part
of the symmetry group to be used in the matching theory. The
remainder of the group is dealt with when doing stabilization.

Controlled Lagrangian and Matching:Note that twice the
kinetic energy for the spherical pendulum on the cart can be
written as shown in (4.5) at the bottom of the page. So, it can
easily be seen that is constant and, in addition, since

holds. We choose , where is a con-
stant, and . Then, Assumptions M-1–M-3
all hold (since the Simplified Matching Assumptions hold) and
we get matching by Theorem 2.2. In this case, we have

Using Theorem 2.1, the controlled Lagrangian is given by the
free Lagrangian with velocity shifts

and with the addition of the term

(4.6)

Control Law: Using (3.2), the control law is

We can use the general formula (3.12) to calculate this con-
trol law with the acceleration terms eliminated. We begin by
computing the matrix (3.8) and find (4.7) at the bottom of the
page. We now compute successively the terms in (3.12). Con-
sider firstly . We have

(4.8)

We next consider the expression

(4.9)

For this yields the expression

(4.10)

(4.5)

(4.7)
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and for we obtain

(4.11)

Finally, we consider the expression . We have

(4.12)

Using (4.7)–(4.12) we obtain the complete control law

(4.13)

(4.14)

Stabilization: We now use Theorem 3.4 to analyze stability
of the pendulum about its upright state, modulo motion in the
plane. We have

(4.15)

Note that this is independent of, reflecting an additional rota-
tional symmetry in this case. Consider the relative equilibrium

. Then, modulo the directions, the second variation
of (4.15) is given by the matrix as shown at the bottom of the
page where .

Setting as in the planar pendulum we thus have
the following criteria for stability.

• If , we require

i.e., .
• If , we need

and

to have the same sign.

Remark: In this analysis, the extra symmetry is simply
ignored, even though it does lead to an additional conserva-
tion law. This is because the straight upright solution is a rela-
tive equilibrium for just the translation group. If we were trying
to stabilize an inverted uniformly rotating equilibrium then we
would have to take this extra symmetry into account. In prin-
ciple this is straightforward.

V. ASYMPTOTIC STABILIZATION

We now undertake to modify our stabilizing control laws to
obtainasymptotic stabilization. This is done, roughly speaking,
by using the controls to simulate dissipation. However, this is
not entirely straightforward, primarily because the energy for
the controlled system we consider has amaximumat the rela-
tive equilibrium in the variables, but the direction is still
a symmetry direction as discussed above. We will use the feed-
back controls to giveactivedissipation. (Note that one can easily
adjust the theory below if the controlled system has a minimum
at the relative equilibrium in the variables.)

A. Theory

To achieve our goal of converting a relative equilibrium that
has been stabilized by the method of controlled Lagrangians
into anasymptoticallystable one, we proceed in the following
step-by-step manner. The general technique here is, at least
philosophically, closely related to that of [1]. Related ideas on
asymptotic stabilization may be found in [15] for example.

1) Start with the original controlled system

(5.1)

2) Choose a relative equilibrium, say for that is to
be stabilized. Let it have momentumand velocity vector
, so that .

3) Break the control into aconservativeand dissipative
piece: , each piece of which will be
defined as we proceed.

4) Assume that the hypotheses of the First Matching The-
orem (2.2) hold and choose
according to the controlled Lagrangian stabilizing tech-
niques developed so far.

5) Rewrite (5.1) with in terms of the
controlled Lagrangian. In fact, one has the following.

Proposition 5.1: Using the procedure just outlined, (5.1) is
equivalent to

(5.2)
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The explicit formula for the control law with accelerations elim-
inated is given by

rhs of (3.10) (5.3)

Proof: The strategy is to repeat the derivation of the
matching equations. First of all, notice that the second equation
in the set (5.2) can be equivalently written as

Subtracting this from the equation

shows that the second equation in (5.2) is equivalent to the equa-
tion

which, as in Section III-A determines the control law . The
explicit formula (5.3) is derived following the same steps as in
Section III-A but with the zero on the right-hand side of (3.4)
replaced with .

Now one goes through the computation of the Euler–La-
grange expression given in the proof of the First
Matching Theorem. The critical thing is that in (2.19) one
does not replace the time derivative ofwith zero, but rather
with . All other terms disappear, as in the proof of the
First Matching Theorem, leaving the first equation in (5.2) as
stated.

The Controlled Liapunov Function:The next step in the pro-
cedure is

6) Find a candidate Liapunov function (to be called).
Of course, it is natural to make use of the function that we

employed to give us stability. However, as we shall see, this
function must be modified in a nontrivial way.

Let be the energy function for the controlled Lagrangian
and let be the controlledaugmentedenergy function

defined by

(5.4)

The augmented energy has the property that its restriction to a
level set of the momentum gives the energy function

(5.5)

used in the stability test (this is seen by a direct calculation or
by using facts from the energy-momentum method or Routh re-
duction). Here, is the value of the momentum at equilibrium
and is the amended potential [see (3.19)]. Note that at equi-
librium, the value of is the same as that of ; i.e., .

A direct calculation using (5.2) shows that

and therefore that

This can be rewritten in the following way:

We also note that

Here is a crucial point: as we have seen in the examples, the
function has a maximum in the variableat the relative
equilibrium in question. However, it will typically have a min-
imum in the variable . To create a function with a maximum in
the variables at the equilibrium, we form the
following controlled Liapunov function:

(5.6)

where is a positive constant.
The Time Derivative of : The next step is:

7) Compute the time derivative of and examine its defi-
niteness.

We will compute the time derivative of under the simpli-
fying hypothesis that is independent of . One gets

This leads us to the last step.

8) Define thedissipative control law

(5.7)

where is a positive definite, possibly dependent,
control gain matrix.

Note that the dissipative control law depends linearly on
since does.

We are now ready to formulate our main result on asymptotic
stabilization. We will make the following assumption that is es-
sentially a condition on the nontriviality of the coupling terms

between the control variables and the internal variables
.

AS. Along no trajectory other than relative equilibria of the
original uncontrolled Euler–Lagrange equations for
is a constant.

Theorem 5.2 (Asymptotic Stabilization):Assume that the hy-
potheses of the Stabilization Theorem 3.4 as well as the Sim-
plified Matching Assumptions hold. Assume that the relative
equilibrium is a maximum of given by (3.20). In
addition, assume conditionAS and that the dissipative control
law is chosen as in (5.7). Then the given relative equilibrium is
asymptotically stable modulo the action of the group.

Proof: We have organized things so that the time deriva-
tive of is everywhere nonnegative and it vanishes on the set

defined by

The Invariance Principle (see [4], [26], and [24]) shows that
all trajectories tend to the subset of that is dynamically in-
variant.
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Fig. 3. Asymptotic stabilization of a pendulum starting from a nearly horizontal position.

We claim that the dynamically invariant subset ofconsists
only of equilibria (note that this set is group invariant). Suppose
there is an invariant trajectory in . Then the time derivative
of the above expression along such a trajectory is

and since we have a trajectory in, this implies is a con-
stant along these trajectories. Thus,is also constant. Under
the simplified matching hypotheses, and differ by terms
that are constant along the trajectory, so the conservative con-
trol is also zero. (One can check this directly for the pendulum.)
Thus, the trajectory is a solution of the original Euler–Lagrange
equations for and so by our assumption, this curve must be an
equilibrium point.

We remark that assumptionAS can easily be checked in spe-
cific examples as is done below. Part of this paper examines in
greater depth the theory behind conditions likeAS that guar-
antee that the Invariance Principle holds.

B. Example

We illustrate our control law design by using it to asymptot-
ically stabilize the inverted pendulum on a cart of Sections I-B

and IV-A. The relative equilibrium of interest is and
(where and is the desired momentum).

The explicit control law with dissipation is calculated ac-
cording to (5.3) and (5.7). For the pendulum we have that

and from (5.7)

where and and . Substitution into (5.3)
gives (5.8), shown at the bottom of the page.

We have already shown in Section IV-A that the hypotheses
of Theorem 3.4 hold with the Simplified Matching Assump-
tions, and the relative equilibrium is a maximum of. Condi-
tionASholds since along no trajectories other than relative equi-
libria of the uncontrolled system is
. Thus, by Theorem 5.2 the controldefined by (5.8) makes

the equilibrium of interest asymptotically stable.

(5.8)



BLOCH et al.: CONTROLLED LAGRANGIANS AND THE STABILIZATION OF MECHANICAL SYSTEMS I 2269

Simulation: We demonstrate the control law with a
MATLAB simulation of the pendulum-cart system where

kg, kg, and m. We let the
desired cart velocity be m/s and choose control gains
to be , and . Fig. 3 shows
plots of pendulum angle and velocity and cart position and
velocity for the system subject to our stabilizing controller
with dissipation added. The pendulum starts from a nearly
horizontal position ( rad), showing the large
basin of attraction for the upright pendulum. We have even
given the pendulum an initial positive (downward) velocity of

rad/s. The cart’s initial position is m and
initial velocity is m/s. Note that the cart comes to
rest as desired, but due to the large initial acceleration needed
to bring the pendulum to vertical, the cart drifts far from its
initial position. In Part II, we present the methodology for
adding another term (that breaks symmetry) to the control law
in order to drive the cart position as desired. We also address
more general tracking problems.

At the bottom of Fig. 3 we have included a plot of the con-
trol law and the Liapunov function as functions of time.
The control law has an initial peak to provide the initial large
acceleration. The Liapunov function can be seen to be initially
negative and to strictly increase until it reaches zero at the equi-
librium.
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