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Controlled Lagrangians and the Stabilization of
Mechanical Systems |: The First Matching Theorem

Anthony M. Bloch Member, IEEENaomi Ehrich LeonardViember, IEEEand Jerrold E. Marsden

Abstract—We develop a method for the stabilization of mechan- tion can be understood in terms of energy. In particular, we can
ical systems with symmetry based on the technique afontrolled make use of energy methods which provide a Liapunov function
Lagrangians The procedure involves making structured modifi- \\hich gives information on how to choose the control gains to
cations to the Lagrangian for the uncontrolled system, thereby hi | d-l tability. Eurth th h Kis d
constructing the controlled Lagrangian. The Euler—Lagrange achieve closed-loop stabili Y- ur erj .eve.n oughwork IS pne
equations derived from the controlled Lagrangian describe the by the Control fOI’CGS, there ISa mod|f|ca.t|0n Of the meChar“Cal
closed-loop system, where new terms in these equations are identi-energy of the system that is exactly conserved by the closed-loop
fied with control forces. Since the controlled system is Lagrangian dynamics; one can think of it as a combined energy available to
by construction, energy methods can be used to find control gains e mechanism and the control forces. This can be used to show

that yield closed-loop stability. . . . .
In this paper we usekinetic shapingto preserve symmetry and that, for fixed gains, the control inputs will never need to be-

only stabilize systems modulo the symmetry group. In the sequel COMe large (in time) to achieve stabilization.
to this paper (Part Il), we extend the technique to includepotential Closed-loop dynamics are guaranteed to be Lagrangian
shaping and we achieve stabilization in the full phase space. by first choosing the closed-loop Lagrangian from a class
The procedure is demonstrated for several underactuated bal- of controlled Lagrangiansthat we will explicitly describe.
ance problems, including the stabilization of an inverted planar The controlled Lagrangian then provides the control law:
pendulum on a cart moving on a line and an inverted spherical the closed-loon d : he Euler—L .
pendulum on a cart moving in the plane. . p dynamics are the Eu er-Lagrange equations
derived from the controlled Lagrangian and the new terms that
_ Index Terms—Lagrangian mechanics, nonlinear systems, stabi- gppear in the dynamic equations are identified with the control
lization. forces. The method ensures that the new terms in the equations
of motion only appear in the desired control directions. The
|. INTRODUCTION associated theory provides sufficienhdtching conditions
. ) under which this approach will provide such a control law that
I N thIS ‘paper we _d_e_velop a constructive approaf:h to tl}f‘elds a closed-loop system in Lagrangian form.
derivation of stabilizing control laws for Lagrangian me- The annroach is motivated by a result in [6] for stabilization
chanical systems where the Lagrangian has the form of kinegitnstable middle axis rotation of a rigid spacecraft using a
minus potential energy. The method is Liapunov-based agghgle internal rotor. There, the framework was Hamiltonian and
thus yields large and computable basins of stability, whiGhwas shown that the chosen rotor control law was such that the
become asymptotically stable when dissipative controls af®sed-loop system was still Hamiltonian. The new Hamiltonian
added. The methods are designed to be effective for the stafis a modification of the kinetic energy (Hamiltonian) of the
lization of balance systems, such as inverted pendula, as wgitontrolled spacecraft. The energy-Casimir method was used
as for systems with gyroscopic forces such as satellites andchoose the control gain and thereby guarantee closed-loop
underwater vehicles with internal rotors. These examples atability.
worked out in this and companion papers. The objective of this paper is to demonstrate how the ap-
The guiding principle behind our methodology is to considgaroach of [6] can be generalized and made algorithmic. We
aclass of control laws that yield closed-loop dynamics which rewitch to a Lagrangian framework from a Hamiltonian frame-
main in Lagrangian form. This has the advantage that stabiliasierk which helps us to systematize the modification of the un-
controlled Lagrangian to get our controlled Lagrangian. The
basic idea behind our approach was introduced in [12] and in
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The results of the present paper create an energy extremummatching theorem, is applied to a spacecraft with an internal
thereducedphase space and, accordingly, allow one to deal witbtor and to the problem of stabilizing an underwater vehicle
stability modulo the symmetriethat is, stability on a reducedusing internal rotors. In a further paper we prove a third
phase space. This is clearly a limitation, but this problem is aghatching theorem that includes the preceding as two special

dressed by the introduction of potential shaping, which allowgises and apply it to a whirling pendulum (motivated by [1]).
one to achieve stabilization in the full phase space rather thghis is discussed in [9].

simply modulo the symmetry directions. (For early results in
this direction, see [10].) In addition, Part Il extends the study @f The Controlled Lagrangian Approach
dissipative controllers to the case of potential shaping and, cor-

respondingly, achieves asymptotic stability in the whole phase_l_nth's section We.descrlbe in broad terms the mathematics, in-
space, not just the reduced space. tuition, and calculational procedure for the method of controlled

In a forthcoming related paper, [11], we consider the appﬂf_agrangian. This provides agenerql setting both for the current
cation of our methods to Euler-Poincaré systems which we RapPer and related papers as described above.
lustrate with the problems of stabilization of rotation of a rigid 1h€ controlled Lagrangian approach begins with a mechan-
spacecraft about its unstable intermediate axis using a singleifil System with an uncontrolled (free) Lagrangian equal to ki-
ternal rotor and stabilization of the dynamics of an underwatBgtic energy minus potential energy. We then modify the ki-
vehicle. netic energy (given by a metric tensor) to produce a new con-

In this paper we restrict ourselves to a class of systems saff@lled Lagrangian which describes the dynamics of the con-
fying specialmatching conditions. This class includes baland&olled closed-loop system. (As mentioned above the method
systems, such as the inverted planar pendulum on a cart §38 be extended to the case of modified potentials and this is
the inverted spherical pendulum on a cart in the plane, whiglgscribed in the forthcoming Part Il of this paper.)
are mechanically flat, i.e., they lack gyroscopic forces. In a fu- The Setting: Suppose our system has configuration space
ture paper we analyze a more general class of systems whictdl that a Lie grougr acts freely and properly of. It is useful
includes examples with gyroscopic forces such as the invertedkeep in mind the case in whigh = S x G with G acting
pendulum on a rotating arm also known as the whirling peonly on the second factor by acting on the left by group multi-
dulum (see [9]). plication.

Other relevant work involving energy methods in control and For example, for the inverted planar pendulum on a cart
stabilization includes [25], [39], [21], , [22], [3], and [28]. Re-(which we consider in detail in Section I-B = S! x R
lated ideas on mechanical control systems may also be foungiith G = R, the group of reals under addition (corresponding
[13], [37], [38], [14], [30], [18], and [19]. to translations of the cart), while for a rigid spacecraft with a

Organization of the Paper:ln Section |-A, we describe the rotor (WhICh we treat in a Companion pap@@),: SO(3) X 51,
controlled Lagrangian approach to stabilization. In Section |-a[here now the group & = Sl’ Corresponding to rotations of
we apply the approach to stabilization of an inverted penduluie rotor.
on a cart. In Section II-A we describe the structure of the gen-QOur goal will be to control the variables lying in tishape
eral class of controlled Lagrangians we consider. In Section llgpace /G (in the case in whicli) = S x G, thenQ/G = S)
we prove the first matching theorem showing that for certaifsing controls which act directly on the variables lyinginwe
kinds of systems with Abelian symmetry groups and with corrssume that the Lagrangian is invariant under the actichaf
trols applied to these symmetry directions, one can always figgl where the action is on the fact6r alone. In many specific
a suitable controlled Lagrangian whose Euler-Lagrange eqégamples, such as those given below, the invariance is equiva-
tions give the desired controlled equations. The proof is cognt to the Lagrangian being cyclic in tidvariables. Accord-
structive and shows explicitly how to choose the controlled Langly, this produces a conservation law for the free system. Our
grangian and identifies the free gain parameters that are neegeflstruction will preserve the invariance of the Lagrangian, thus
to achieve stabilization. The control law itself is derived in Segroviding us with acontrolledconservation law.
tion IlI-A and in Section IlI-B we give a sufficient condition for The essence of the modification of the Lagrangian involves
Closed-loop Stability. Thisisa stabilizability resultinthe Conte)@hanging the metric tensg(.7 ) that defines the kinetic energy
of the controlled Lagrangian approach and it provides a cogf the systen(1/2)g(d, §).
struction for choosing control gains for stability. In Section IV, Our method relies on a special decomposition of the tangent
we apply the approach to stabilization of inverted pendula, iBpaces to the configuration manifold and a subsequent “con-
cluding the case of an invertesphericalpendulum on a cart. trolled” modification of this split. We can describe this as fol-
In Section V we show how to modify the control laws to simigws.
ulate dissipative effects of the right sort to achi@symptotic ~ Horizontal and Vertical SpacesThe tangent space t9 can
stability. be split into a sum of horizontal and vertical parts defined as

Part Il [5], extends the results herein to inclupetential follows: for each tangent vectar, to © at a pointg € Q, we
shaping and trackinglt is shown that one gets asymptoticcan write a unique decomposition

stability in the full phase space and it deals with such examples

as the inverted planar pendulum (and spherical pendulum) vy = Horv, + Ver v, (1.1)

on a cart that moves on an incline. Reference [11] proves a

matching theorem designed specifically for the case of tlsech that the vertical part is tangent to the orbits oftthaction
Euler—Poincaré equations. This case, not covered by the fasid where the horizontal part is the metric orthogonal to the
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vertical space; that is, it is uniquely defined by requiring the Definition 1.2: Giveng., g,, andr, we define theontrolled
identity Lagrangianto be the following Lagrangian which has the form
of a modified kinetic energy minus the potential energy

g(vg, wy) = g(Hor vy, Hor wy) + g(Ver vy, Verw,) (1.2) Ly o, (v) = i[g-(Hor; v, Hor- vy)

+ gp,(Ver. vy, Ver- )] — V(g) (1.4)

wherew, andw, are arbitrary tangent vectors ¢p at the point
q € Q. This choice of horizontal space coincides with that givewhereV is the potential energy.
by themechanical connectiensee, for example, [31]. One can The equations corresponding to this Lagrangian will be our
think intuitively of this decomposition of vectors as a deconlosed-loop equations. The new terms appearing in those equa-
position into a piece in the symmetry, or group direction (théons corresponding to the directly controlled variables are in-
vertical piece) and one in the shape, or internal direction (tk&/preted as control inputs. The modifications to the Lagrangian
horizontal piece). For example, in a vibrating molecule, thi/e chosen so that no new terms appear in the equations cor-
would correspond to a decomposition into rotational and vibrégsponding to the variables that are not directly controlled. We
tional modes. However, it is important to realize that even whégfer to this process as “matching.” This matching problem will
Q = S x G, while the vertical space consists of vectors wite studied in detail in subsequent sections.
a zero first component, the horizontal spaeed notonsist of ~ Another way of expressing what we are doing here is the fol-
vectors with a zero second component. In examples, deviatid@&ing. A principal connection on a bundig¢ — Q/G, may
from this are important and correspond to the interaction of i€ thought of as a Lie-algebra-valued one form and one can ob-
dynamics of the shape and group variables. tain a new connection by adding to it a horizontal one farm

The Controlled Lagrangian:For the kinetic energy of The new horizontal space described in the preceding definition
our controlled Lagrangian, we use a modified version ¢$ exactly of this sort.
the right-hand side of (1.2). The potential energy remainsSpecial Controlled Lagrangiansin this paper we consider

unchanged. The modification consists of three ingredients: controlled Lagrangians in which we takg = g so that (1.4)
describes a controlled Lagrangian of the fafm,,. In certain

examples of interest, including the inverted planar or spherical
pendulum on a cart, we not only can chogse= g (i.e., there is
no g, modification needed), but we can also choose the metric
g- to modify the original metrig; only in the group directions

To explain these changes in detail, we will need a little moigy a scalar factor. As we shall see in Section Il the general
notation. First of all, we lefg denote the infinitesimal generatorformula for the controlled Lagrangian then takes the simplified
corresponding to a Lie algebra elemérg g, whereg isthe Lie form
algebra ofG (see [31] or [32, Ch. 9] for the relevant elementary o
definitions and properties of Lie groups and group actions). Thigw.«(v) = L(v + [7(v)l(a)) + 5 a([r(v)]q, [7(v)]Q)- (1.5)
may be thought of intuitively as infinitesimal group motions of
the system. Thus, for eache g, &g is a vector field on the

1) adifferent choice of horizontal space denakbst;

2) achangg — g, of the metric acting on horizontal vec-
tors;

3) achangg — g, of the metric acting on vertical vectors.

We will develop a formula like this for the more general case
configuration manifoldQ and its value at a poing € Q is of L, 4, (1.4)in Secnc_m IIl-A. For the satellite with rotors, for
example, and for stabilization in the full phase space one must
denotedsq (g). include the effects of, as well; this modification, consistent
Definition 1.1: Let 7 be a Lie-algebra-valued horizontal one o ! '

form on Q; that is, a one form with values in the Lie algebre\lNith (1.4),is given by formula (2.2). Applications of the general

o . . case are discussed in the companion papers mentioned above.
g of GG that annihilates vertical vectors. This means that f . . o .
. L 'e remark in passing that the controlled Lagrangian is a modi-
all vertical vectorsy, the infinitesimal generatdr (v)]g corre- "~ . . : .
. . ' . fication of the Kaluza—Klein Lagrangian for a particle in a mag-
sponding tor(v) € g is the zero vector field o). Ther-hori- o
. netic field, (see, for example, [32]).
zontal spacatq € @ consists of tangent vectorsdpat ¢ of the .
. ) The General Strategyin outline, the general procedure that
form Hor, v = Horvg — [7(v)]o(q), which also defines, — . Lo ST T .
. A . . one goes through to achieve stabilization is given in the fol-
Hor,(v,), the 7-horizontal projection The r-vertical projec- .
. . : lowing steps.
tion operatoris defined byVer, (v,) := Ver(v,) + [7(v)]o(q). . _ .
Notice that from these definitions and (1.1), we have 1) Start with a mechanical system with a Lagrangianf
the form kinetic minus potential energy and a symmetry

group@. (In the pendulum-cart example below the sym-
metry group is translation in the horizontal direction.)
2) Write down the equations of motion for the uncontrolled
just as we did withr absent. In fact, this new horizontal subspace system.
can be regarded as defining a new connectionstbennection 3) Introducer, g, andg, to get the controlled Lagrangian
The horizontal space itself, which by abuse of notation, we also  (1.4).
write as just Hor oHor,. of course depends onalso, but the 4) Write down the equations of motion corresponding to the
vertical space does not—it is the tangent to the group orbit. On  controlled Lagrangian and read off the control lafvom
the other hand, therojectionmapv, — Ver.(v,) does depend the equations in the symmetry variables (this will be a
onr. conservation law).

vy = Hor.(vy) + Ver.(v,) (1.3)
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I = pendulum length
m = pendulum bob mass
M = cart mass

g = acceleration due to gravity

)

Fig. 1. The pendulum on a cart.

5) Chooser, g,, andg, so that the controlled Euler-La-use the nonholonomic energy-momentum techniques of [40] to
grange equations for the original system (i.e., thachieve stabilization.
Euler-Lagrange equations for the Lagrangiawith the The Lagrangian: First, we set up the Lagrangian for the pen-
control) agree with (that is, match) the Euler—Lagranggulum-cart system. Let denote the position of the cart on the
equations for the controlled Lagrangidn. ., ,. Deter- s-axis and letp denote the angle of the pendulum with the up-
mine a feedback law fox by using the Euler—Lagrangeright vertical, as in Fig. 1.
equations to eliminate accelerations; then the control lawThe configuration space for this systemis= S x G =
becomes a feedback that is configuration and, possibs x R, with the first factor being the pendulum angteand
velocity dependent. The general matching theorem ctire second factor being the cart positianThe velocity phase
be used to guide these calculations. space ') has coordinate&p, s, b, 3).
6) The stability of an equilibrium is determined by lineariza- The velocity of the cart relative to the lab framejsvhile the
tion or by the energy-momentum (or, when appropriatgelocity of the pendulum relative to the lab frame is the vector
the energy-Casimir—Arnold) method, using any available r ; C
freedom in the choice of, ¢,, andg,. Upend = (5 + 1 €05 ¢, —sin ). (1.6)
We use this strategy to prove general matching and stabili@ie system kinetic energy is the sum of the kinetic energies of
ability theorems. The matching theorems provide sufficient cothie cart and the pendulum
ditions for successful completion of Steps 1-5 and an explicit . 1 . mi2 mlcos [ ¢
construction of the controlled Lagrangian and the control law. In (¢, s, ¢, 5) = S [¢,3] | cosp MA4m } L} - (@7)
the case that matching is achieved, the stabilizability theorems o I )
provide sufficient conditions for closed-loop stability according N Lagrangian is the kinetic minus potential energy, so we get
to Step 6. Again the theory is constructive, providing an explicit L(¢,s,$,3) = K(¢,5,$,3) — V() (1.8)
choice of control gains for closed-loop stability. )
We must emphasize that in doing concrete examples, it c4Rere the potential energy 18 = mgl cos ¢. _
be quite complicated to go through the preceding procedures! '€ Symmetry grougg: of the pendulum-cart system is that
directly, although we shall do so in the next section for the rel8f translation in thes variable, so = R. We do not destroy
tively simple case of the inverted pendulum on a cart. Using tH¥S Symmetry when doing stabilization ¢ we would, how-

general matching theorems in examples, however, is relativEeT, USe Symmetry-breaking potentials to track in the variable
straightforward. s if tracking were our goal. In this paper we are focusingtat

bilizing this and similar balance systems
For notational convenience we rewrite the Lagrangian as

L(¢,s,¢,3) = 1(ad” + 2B cos ps¢ + v3%) + Dcos ¢ (1.9)
Before developing the theory further, we will give an example

_ 2 _ _ _
to show how the ideas work in a concrete setting and to shdferea = ml*, § = mi, v 5 M +m, andD = —mgl
that the ideas lead to interesting results. are constants. Note thaty — 3° > 0, reflecting the positive

The system we consider is the inverted pendulum on a C‘,ﬂ,{,ﬁfi_niteness of_the mass matrix (i.e., the metric). The momentum
(The linearized case of this problem was considered in [12f_s)njugate topis
This example shows the effectiveness of the method for the sta- oL .

o . Py = — = ¢ + Fcos s
bilization of balance systems. Related examples we will treat )
later are the inverted spherical pendulum on a hockey puck, they the momentum conjugate 4ds
satellite with rotors, the underwater vehicle with internal rotors
and an inverted pendulum on a rotating arm. ps = 8_L = ~5 + Bcos ¢

Other examples that we hope will eventually be amenable to 95
these methods include the bicycle (see, for example, [16] afitle relative equilibrium defined by = 0, ¢ = 0, ands = 0 is

[23]). For thesenonholonomisystems, it is hoped that one canunstable sincéd) < 0.

B. The Inverted Pendulum on a Cart
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Equations of Motion: The equations of motion for the pen-equation for the controlled cart (1.10) with the control law given
dulum-cart system with a control foreeacting on the cart (and by (1.13). Thep equation for the controlled cart is
no direct forces acting on the pendulum) are, sintea cyclic

2 .
variable <a _Z cos® ¢ — Bk(¢) cos d)) ¢
d 0L 0L v
—_—— = — = 0 32 . / 32
dt 3¢ O + | = cos¢gsing — Beospk’(P) } ¢
d oL !
P T + Dsing = 0. (1.15)
i.e., Comparing (1.14) and (1.15) we see that we require (twice)
%m + Bsin ¢s¢ + Dsing = 0 oY [k(B)]F = —Pk($) cos ¢. (1.16)
. Sinces was assumed to be a constant we set
that is p
%(ad)ﬂscows) + Bsingid+ Dsing =0 (1.10) Rg)=nr " cosd (1.17)
and J J wherer: is a dimensionless constant (o= —1/x).
= ps = — (5 + Bcos pd) = u. The Control Law: Substituting for¢ andk in (1.13) we ob-
dt d tain the desired nonlinear control law
The Controlled Lagrangian:Next, we form the controlled B 12 D
Lagrangian by modifying only the kinetic energy of the free u = ffsin (2(0“7) +cos¢D) (1.18)
pendulum-cart system according to the procedure given in the o — ﬂ (1+ K)cos? ¢

preceding section. This involves a nontrivial choiceroand
g0, but in this case, as we have remarked, it is sufficient to let siapilization: By examining either the energy or the lin-

9 = 9 o _ L earization of the closed-loop system, one can see that the
The most general-invariant horizontal one form is given equilibrium¢ = ¢ = 5 = 0 is stable if

by 7 = k(¢)d¢ and we choose, to modify ¢ in the group

direction by a constant scalar facter(in general,c need not s X B _ M 0 (1.19)
be a constant, but it is for the present class of examples). Using 32 m ' '
(1.5), we let

In summarywe get a stabilizing feedback control law for the
1 1o . s . N2 inverted pendulum provided satisfies(1.19). As mentioned
Lro = 2 (a¢ +28cos §(5 + k)¢ + (5 + k) ) in the introduction, this means stability in the reduced space,
+ 2 k22 + D cos . (1.11) thatis, modulo translations. Concretely, this means that one has
2 stability in the pendulum position, but not in the cart position,
Notice that the variable is still cyclic. Following the guide- even though, as we shall see, with dissipation, one can bring
lines of the theory, we look for the feedback control by lookinghe cart velocity to zero. Our work on potential shaping (Part II;
at the change in the conservation law. Associated to the new Isge also [10]) demonstrates how to obtain stability in the cart
grangianL, ., we have the conservation law position also.
d (0L, d ) . ) A calculation shows that the denominatorois nonzero for
- < = ) == (/3 cos ¢ + (5 + k¢)) =0 (1.12) ¢ satisfyingsin? ¢ < E/F whereE = « — (ory — 82)/82 (E
is positive if the stability condition holds) anld = « + 1. The
which we can rewrite in terms of the conjugate momenjum range of¢ tends to the ranger/2 < ¢ < 7/2 for larges.

for the uncontrolled Lagrangian as The above remark suggests that the region of stability (or at-
d d . traction when damping control is added) is the whole range of

P e Ee (’V/%‘(ff))ff)) : (1.13) nondownward pointing states. In fact, we assert that this method

produces large computable domains of attraction for stabiliza-

Thus, we identify the term on the right hand side withd¢batrol
force exerted on the cart.

Using the controlled Lagrangian and (1.12), ¢hequation is
computed to be

tion.

This approach has advantages becausedone within the
context of mechanic®ne can understand the stabilization in
terms of the effective creation of amverted energy welby the

3? 9 12 “ feedback control. (Our feedback in general creates a maximum
<a B 7 cos™ ¢+ oy (d))) ¢ for balance systems, since for these systems the equilibrium is a

52 ) , ” maximum of the potential energy which we do not modify.) As
+ <7 cos psin¢g + oyk(¢)k (</>)> ¢ discussed in Section V, the system is then robustly stabilized
4 Dsing=0 (1.14) by the addition of appropriate dissipation. Note also that the

linearized feedback is just proportional feedback.
Matching: The next step is to make choices/ofinds so Remark: The matching procedure does not involve the
that (1.14) using the controlled Lagrangian agrees withd¢theactualvalue of the new conserved quantity for the controlled
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system—this is also true for all three of the matching theorems Proof: We begin by manipulating the first (“kinetic

in this paper. The value of the conserved quantity was usedenergy”) term of L., ,, (2.1), using the given proper-

[6] because aymmetry reductiowas performed. ties of g, and the definition of ther-horizontal operator
Hor-(v,) = Hor(vg) — 7(vg)q

Il. THE FIRST MATCHING THEOREM
%[go(HorT vg, Horr v,)]

thér; r?is.s;aﬁ(taiocr;s\évzﬁprove the first of three major matching = g, (Hor(v) — 7(v)q, Hor(v) — 7(v)q)]
; =g. 1
The main goal is to abstract what was happening for the case = 3lg(Hor(v), Hor(v)) + g, (7(v)q, 7(v)e)].
of the inverted planar pendulum and prove a general matchiagtite the second term of (2.1) as
theorem that applies to such examples. We apply the matchmg
result to the more sophisticated case of the investglterical 3 [9,(Very vg, Ver, vg)] = 3[g(Ver, vy, Very vg) +w(v)).
pendulum in Section 1V-B. i
As shown in companion papers, more general results (e.'ép,w write
whereg, # g) are needed for the case of the satellite and the % [g(Ver, v,, Ver, v,)]
underwater vehicle as well as the whirling pendulum. N
IP Lg(Ver(v) +7(0)q, Ver(v) + 7(0)o)]

A. The Structure of.. , , =3 (Ver( ), Ver(v)) 4 g(Ver(v), 7(v)Q)
As we have mentioned, while we needed ahly, for the in- T 9(7(v)q, 7(v)Q)

verted pendulum, we will eventually neéd , , for the satellite = 5 (Vel(U% r(v)) + 9(v, 7(v)Q)

with a rotor, the underwater vehicle, and the inverted pendulum ( (), 7(v)g)

on a rotor arm. _ _ _
In this section we prove a structure theorem fgr,, , that Sinceév = Hor(v) + Ver(v) and the horizontal space ésor-

proves and generalizes (1.5). Recall that this formu|a was Hiogonal to the vertical space. Substituting this last expression

ready helpful in the case of the inverted pendulum; likewise, tiH&io the second term of (2.1) and adding it to the first term gives

formula below will be useful in our first matching theorem and 1 1

in the case of the satellite and the underwater vehicle, etc. 29(v,0) +9(v,7(v)o) + 39(r(v)e, 7(v)e)

We begin by recalling the definition of the controlled La- + 390(7(v)q, T(v)Q) + 3w (v)
grangian which equals
Lro,p(v) = 3[95(Hor; vy, Hor, v,) 390+ 7(0)Q, v + 7(v)Q) + 395(7(v)Q, T(v)Q) + 3w (v).

+gp(Verrvg, Ver-vg)] = V(g)  (2.1) Subtracting the potential gives the desired expression. m

and we make the following assumptions on the mefsi¢these B. The First Matching Theorem
assumptions are also appropriate for the casé.of that we | roquction: Motivated by the inverted planar pendulum on

considered earlier). a cart, in this section we prove the first matching theorem for
1) g = g, on Hor. mechanical systems such as the inverted pendulum for which
2) Hor and Ver are orthogonal fa,. we can takgy, = ¢g. The group associated with the control di-

Keep in mind that Hor denotes the horizontal space for the givegrtions will be assumed to be Abelian. We illustrate this case in
uncontrolled system and thHbr, denotes the horizontal spaceSection IV with inverted pendula, including the inverted spher-
as modified by the one form. Note also that the new metrigs  ical pendulum on a two-dimensional “cart.”
andg, will modify g on Ver, the vertical space (or group direc- Roughly speaking, the class of systems covered by the first
tions), which is independent of any modification duertdOn matching theorem are those whose control forces are in the di-
the other hand, also recall that thertical projection operator rection of an Abelian symmetry group (such as the translation
direction for the pendulum on a cart), whose inertial properties
Ver, (vg) := Ver(vy) + [7(v)]o(q) are independent of the internal configuration of the system (such
as the total translational inertia of the cart pendulum system
is independent of the angle of the pendulum) and whose gy-
roscopic structure satisfies a certain symmetry condition. The
exact hypotheses are spelled out in Assumptions M-1-M-3 dis-
cussed hereunder.
Lro,p(v) = L(v +7(v)Q) + 39 (7(0)Q: 7(v)@) + 5%(v) All of the matching theorems are constructive; they sleaw
(2.2) plicitly how to pick the controlled Lagrangian to achieve the de-
sired matching in a way that generalizes the example of the in-
wherev € T,Q andwherev(v) = (g,—g)(Ver,.(v), Ver.(v)). verted planar pendulum on a cart.
Note that ifg, = ¢ (so thatw = 0) and ifg, is a scalar times  The Controlled Lagrangian IdentitylLet Hor be the hori-
g in the group directions, then this formula reduces to (1.5). zontal space for the given kinetic energy metric as explained

does depend on.
Theorem 2.1:We have the following formula:
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earlier, letr be a horizontal one form, and [Eor,. be the new  Ther-Horizontal and Vertical ProjectionsWe shall write
horizontal space as explained earlier. Define; , according to the given horizontal one formin coordinates ag® = 75dxz“.
Definition 1.2. Theorem 2.1 for our controlled Lagrangian sayBhus
that

[7(v)lq = (0,752%). (2.8)

The corresponding-horizontal and vertical operators are

wherew = g, — g on the vertical space. For this section, wéhecked to be
choosey, = ¢, sow = 0 and we get

L g p(0) = L(v + 7(0)Q) + 500(1(v)q. 7(0)Q) + sw(v)

Hor, (v) = (%, ="’ gap3® — 722%)

Leo®) = Lo+ 7(0)Q) + 30- (), 7(0)e)- - (2:3) Ver, (v) = (0,6 + g gasi® +720%) . (2.9)

This formula will be extremely useful for the first matching
theorem, which we shall perform using a coordinate calculation.Coordinate Formula fol- ,: We shall first develop a useful
Notation: Locally, we write coordinates fof) as »<,6* coordinate formulafoL. .. We write down the coordinate form
wherez®*, o« = 1,...n are coordinates on the shape spadgf the definition followed by the coordinate form of the identity
Q/G and wheref*, a = 1,...,r are coordinates for the given in Theorem 2.1.
Abelian groupG. For the uncontrolled system, the variables First of all, we write down the coordinate formula fér. .
6% will be cyclic coordinates in the classical sense. We writgsing the definition, namely (2.1) witl, = g, along with the
the given Lagrangian in these coordinates (with the summatipreceding coordinate formulas for the horizontal and vertical

convention in force) as projections to get
L(a",3%,6%) Lry = Loupi®i? + 0400" (— g gapi®™ — 704%)
— %ga,@a’?ai’@ + gaaiaéa + %gabéaéb _ V(.’L’a). (24) + %O—ab (gacgaci_(y + Tgi_(y) (gbdg,8d$'8 + 7_’(3-75'8)

1 Na ac et a o
. _ _ Loa (6 )
The Conserved QuantityThe conserved quantity, that is, the + 29w ( I Gact H Tl

momentum conjugate to the cyclic variaBfefor the preceding % (g’b + ¢"?ggaz” + Tgagﬂ) Vv (2.10)
Lagrangian, is given by ' '

oL o - Remark on Notation:We use the notatios,, for theab com-
Jo = 96 = Jaad® + gart. (2.5) ponents ofg, and, later on, shall likewise use notatipg, for
the ab components of,,.
The Controlled Euler—Lagrange Equation§he equations  Returning to the preceding calculation, (2.3) gives
of motion for the control system where the contralsact in
the#” directions are the controlled Euler—Lagrange equations I

= L(a:a,aa@, §o 4 Tga‘;a) + Logrirhitd?.  (2.12)

d L 9L

dt 0z> Oz~ The equivalence of these two formulas may also be checked by
d oL _ 26 @ direct calculation in this case.
dt 9=~ ° ' The Controlled Conserved Quantitysrom (2.10) or (2.11),

_ ) ) _and(2.4), we find that the associatahtrolled conserved quan-
Coordinate Formulas for the Horizontal and Vertical PrOJecmy is given by

tions: We now embark on the development of coordinate for-

mulas for the controlled Lagrangian. To do this, we first develop . 9L oL .
coordinate formulas for the horizontal and vertical projections. Jo = —Taa = ($a7 i, 6" + Tf;aba)
For a vectorv = (a‘:a,éa), and suppressing the base point 96 96 .
(z*,6%) in the notation, its horizontal and vertical projections = Gaa®” + Gab (9b + T(byifa) . (2.12)

are verified to be

N ) N We can also write this as
Hor(v) = (4%, —g**gapd®)

Ver(v) = (0, 6 + gabg(yba‘:a) (2.7) Jo=Jo+ gapl@®. (2.13)

where, as is standard practigg® denotes the inverse of the Matching Euler—Lagrange Expressiondhe 6°-Euler—La-
matrix g.,. Notice thatv = Hor(v) 4+ Ver(v), as it should. grange equations for the controlled Lagrangian, which are

These formulas can also be obtained systematically using triguivalent to the controlled conservation law, will be used in
formulas for the mechanical connection in terms of the locke®kction 111-B to determine the control law, consistent with the
inertia tensor, as in, for example, [31]. (In the present contexact that this is the direction in which we are assuming we have
the locked inertia tensor is the tendgy = gat.) control actuation.
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Thus, our first job is to make sure that the&-Euler—Lagrange Using the controlled conservation law (2.12) in the third and
equations fo. and forL, , agree. To do this, we let fourth lines, this becomes

d dL., L., i

EL,, 2.14 d - 5 b
( ’ ) dt axa axa ( ) gac(L‘r,O') = % I:gaa’r’@xﬂ] - géb,a-/ré’réxﬂ
denote ther®-component of the Euler—Lagrange expression for 1
our controlled Lagrangiad . . + 3 Gaba (2fgj:'89b + Ta$87§$6>:|
Assume that the Euler—Lagrange equationsZdnold. We d
want to see under what matching conditions they also hold for — ]b'r6 A 7| ]b'r + o—abr@T"x }
L. .. From (2.11), and subtracting the Euler—Lagrange expres- 9 T1 t
sion for L (this expression is zero by assumption) from that for . [ T Tg$6$8:| _ (2.19)
L, ,, we have e
Ex(Lrs) Sincef is cyclic for the controlled Lagrangian, the controlled
d [ 8L aL . conserved quantity is actually conserved. Thus, the above ex-
a -8 6 -6 pa
T a [a (”7 &%, 0% + i ) T i ( 5 )} pression becomes
aL . 8L .
- |:—oz (-T(Svi'évea—i_’rgiﬁ) T g a ($67¢679a> d a8 -5 b3
Ox ’ Ox gac(L‘r,O') = % I:gaa’r’@x’ ] - |:g<5b,a$ 7_’81”
% 5 a -8Y.b 6
+ 2°,2%,0° + TGL ) 75 W 1 .3 .b 8, b6
o6 7 + 5 b, (27537’ A e )
+ i 8_L (a:‘s 0, 6% +Ta.’i7’8) T+ OacT Tc.’Eﬁ - . d
dt |gev \7 7 p ac’p +Jy [Ths = Toa) &+ 7 [oarT§Tai”]
a |1 b:5:0 8 1
axa |: UabT(s Tg.’L' T (215) a |: TabTs 7_ng{£8:| ) (220)
:L.Oé

in which the partial derivatives with respect fodenoteslot

derivatives where summation over repeated indexes is under-Some AssumptiondNow we are ready to introduce some
stood and Whereba = d1//9z~. We are assuming that thecrucial assumptions that are designed to make the preceding
variablesg” are cyc||c for the controlled Lagrangian. CorreEuler—Lagrange expression vanish. The first of these is the fol-
spondingly, we are assuming thgtdepends only or™ in this lowing.

calculation and those that follow. Assumption M-1:78 = —0%g,,.
Using (2.4), we have This condition says, roughly speaking, thgtare chosen to
be the components of the “mechanical connection” formed out
oL .8 o” " . .
—— = gapi’ + gaal (2.16) of g andg,. Of course, the condition can be equivalently written
ar as
and
oL 1 .
= = gu5,a@’0° + gsp,ai’0" OabTh = —Gaa- (2.21)
oz 2770 ’
+ lgab W06 — Vv, (2.17) With Assumption M-1, the above expression becomes
2 ? ?
where we again use commas to denote partial dlfferentlathfl Lrg)
of the components of the metric tensor (mass matrix) &nd
again, these are functions only ef—and not of¢® since the [ Ay v . 5 Yab Q(ZT@x 0° + T“xaﬁé’xb)}
#° variables are assumed cyclic. o T
Using (2.16) in the first line and (2.17) in the second line of +.J, [ ] p0 — |- gabfgfga}%@}
(2.15), the Euler-Lagrange expressi&y(L. ) simplifies as du 2 '
. 1
follows: = | gsp.0d0" gpei® — 5 Jaba (2Tgx89b + ngz'aTga‘:‘S)}
d
En(Lrg) = = [gaarii”] — {géb70£578$'8 . 9 1
dt ' ' + Jp [7(1;76 g ] - 922 |2 g(sbabcg,@ca}éiﬁ’a}
1 89!; 8,.b.:6 * '2
+—ga,b,(y(27$ + 752 T.’L’) 1 o »
;L ’ ’ =73 [Qébﬁagacw @ +gada(27_@$89d +Tg$’87(§ixb>}
. % ( 530 6 4 T@x@) 7l 30 + [ — Tl 2. (2.22)

oL - pa a o a - . .
+ p {ﬁ (xa, %, 0% + 753 )Tf; + O'abfaﬁlix’@} Using the controlled conserved quantity we get

9 |1 b5 ) .
T Oz { TapTy Tad T | . (2.18) gt = g (Jb ~ [gs —l—ngg]a’:‘s) (2.23)
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and hence the preceding expressiondgiL . ) becomes A. Determination of the Control Law
The control law is determined from the difference between
gw(LWi the 6 Euler—Lagrange equations for the controlled and the un-

- _z [gébgﬁ;:gﬂc — 2gad,af§gbdgab — gad’aT’ng] 58  controlled Lagrangians. In our case we ha\(e arranged to not
2 ) ) . s break the symmetry, and so we may determine the control law
a s . .
+o[ras = To0 — 0V Gad,aTs] E°. (2.24)  from the difference between the two conservation laws.

) ) ) S - To do this, we start with the relation
Using the Assumption M-1 again to eliminaten the first line,

we get ja = Ja +gab7'§$"a (31)
£ ) and sinceJ, is conserved, we may write
’ T701 be ac bd ac _db] 50 Uy = 4 J, = 4 J, — ( Tb.l’a) __4 ( Tb.’L'a)
= —= 95698 [0 + 290d,a0 9" = Gad,a0 oY) B°F a= gplaT gplaT gy \Jab - dt Yab

2

~ b LRe I @
+ [l s = h = 0% Gag,are] 7 — (Gab, 57285 + gapTl 538 + garTod®) . (3.2)

_ 1 ae [abd(a n ) — 2gtd ) PO Our final control law does not depend on accelerations: we
2 gj’bgﬂc ad,a T Jad,a 7 9 Joda eliminate the acceleratiois* from this expression for the con-
+ Do s = Th o — 9% Gaa,aTd] &°. (2.25) trol by making use of the fact that the Euler—Lagrange equations

for = hold (for bothL andL- ;). Using (2.4), and the fact that
Now we are ready to state our second two assumptions. 6% is cyclic, the explicitz®*-Euler—Lagrange equation is
Assumption M-2: o—"d(oad o + Gad, a) = 26"%Gud,a-

e 1 -8 - -~vAa
ASSUmptlon M-3: 7' 5 7'(5 « g gad 047—(5 =0. Gag + a8,y — 5 98v,a | T 7+ (gaa,"/ - g"/a,a)x’ye
The following theorem gives sufficient conditions for oV
matChing' PN gab,aeaeb + gaaea = o (33)
Theorem 2.2 (First Matching Theorem)Jnder Assumptions 2 - Ox

M-1-M-3, the Euler-Lagrange equations for the controlletiext, we use thé“-Euler—Lagrange equation for the controlled

LagrangianL, , given by (2.3) coincide with the controlledLagrangian to determing®. That is, we simply write out the

Euler—Lagrange equations (2.6). conservation law for/,. Setting the time derivative of, from
Simplified Matching AssumptionsConsider the following: (2.12) equal to zero, we get

1) o4 = ogq fOr a constant (this definess,,);

o L ) (g(ya,,é + ga,b,(ST(l; + ga,bT(l;7§) -/ta-/té + g(ya,-/i'a
2) gap is independent ofc® (a condition on the metric

tensor); + Gab 60°2° 4+ gap0® + gapTHE* = 0 (3.4)
3) 74 = —(1/0)g* gue (this definesry); and hence
4) gaas = gsa,» (@ second condition on the metric). . da y
If these hold, then all three of M-1-M-3 hold, so we have 0% = —g [(Q(m,é + Gab, 6T + GabTy )37 @
matching. The second and fourth of the Simplified Matching T Guai® +gab769‘ba}5} _ Td ‘o (3.5)

Assumptions imply that the mechanical connecti6ty,,, for
the given system is flat, i.e., systems that satisfy the Simplifi§bstituting (3.5) into (3.3) gives
Matching Assumptions lack gyroscopic forces. Theén this ( )
case is a free variable and can be interpreted as the control gain. Gap = g‘"ﬂ" 949" 920
These simplified conditions hqld for t_he case of the inverted + | Gap~ — lg,ﬁw,a — Guag™®
pendulum on a cart discussed in Section I-B. 2
As we have mentioned, this theorem is generalized to incor-
porate they, terms in companion papers, so that we will find a
more general matching theorem. _ _ db -~ e
The following remark illustrates that care must be taken in " ggaa,,y ] g_w’(y ‘(gﬁg Gob )6
relating the controlled to the uncontrolled case: if one sets - = gab,aeaeb =g

equal to the identity in the first simplified matching assumption 2

ther-horizontal and-vertical projections (2.9) do not reduce toThe control law is now determined by substituting this equation
0 (3.2). So far, our derivation is rather general, but we can

the uncontrolled projections (2.7), but to the trivial prqecnonén
Rather, to recover the original projections, the one fershould  SIMPIify things somewhat by using our assumptions. Using M-1

be taken to be trivial. and M-3, (3.6) simplifies to

b b .8
x (g,ﬁa,w t Gar4Tg t+ gabfa,w) } e

(3.6)

(ga,ﬁ + gad[ada - gda]g,ﬁa)j&'@
IIl. THE CONTROL LAW AND STABILIZATION

da d =8y
. . . + 9aB8,y — 5 98y, — Gadd  GBa,y — GadT, T
Now that we have achieved matching in the Euler—Lagrange T2 v o

equations for the shape variables, we can proceed to determine 4 (g,, » — gva.a — gaag® gap - )i76°
the control law and then conditions under which stabilization is 1 . 1%
achieved. We continue to restrict to the case in whigh= g. — 5 Javal" = -0 (3.7)
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Now let shape space projected metric) for the controlled Lagrangian.
da o Under Assumption M-1, the formula for the horizontal part of
Aap = gap + gaa[o" — 9] gga. (3:8)  the metric is given by [see (2.9)]
Assume that this matrix is invertible and lé&* denote its in- Hor, (v,) = (42, (aab — gab) Gopd®) . (3.14)
verse. Hence
o 1 . 21 s Intrins_,icallly, the calculation of the horizontal kjnetic energy ex-
— A% 9oBy~ 5 Ipv.a—Jadd “98a,y —9adTs,,| ©727  pression is as follows (see the proof of the first matching the-
i . orem):
- Aba (gaa,'y — G~va,a — gadgdbgab,'y) 7 6° 1
5o 1 - s OV Kyor, (vq) := 590 (Hor, vy, Hor, v,)]
+ A% = gap 00967 — A —. (3.9) _1
27 dz> 3[90(Hor(v) — 7(v)q, Hor(v) — m(v)Q)]
Notice also that under M-3,, 572 is skew-symmetric in the = 3[g(Hor(v), Hor(v)) + go(7(v)q, 7(v)@)].
6, «windexes and hence the first term on the right-hand side of the (3.15)
control law (3.2) vanishes. Substitution of (3.9) into the control
law gives In coordinates

Lg(Hox(v), Hor(v))
= 1 00p%0” — Gaag™ g pt®i? + 1 gaag® grpri”
_ 1 P - 8
= 90a9™ 950, _gadfg,v}}x’axw =5 (900 = 9aag™ av0) & (3.16)
while under Assumption M-1 we have

1
b b g6
Uq = — {gab"_’@;\/ - gabT(SA o |:goz,8,'y - 5 98,

b pba db -y e
— garTs A |:_ (gac, = Gvec,o T Gadd  Geb, ) 7 @ o s
L ! 390 (T (V)@ T(0)Q) = 390 (=0 94a) (=07 gep) 437
+ ; Geb, 00" — —g 4 } . (3.10) =10" Gaagpad™i”. (3.17)
x(y
. ] ] ~Adding these gives the following.
One may eliminaté“ if desired by making use of the relation  proposition 3.2: Ther-horizontal kinetic energy is given by

b ab 7 ab by -
0" = 9" Jo = (9" oo +70) & Kror. (V) = 3 Aqpi®d®. (3.18)
=gy — [9?° — 0% gaad®. (3.11)

Under the Simplified Matching Assumptions given after th8. Stabilization of Relative Equilibria
First Matchlng Theorem 2.2, the coefficients of the terms mul- Recall that arelative eqw“bnumfor a mechanical system

tiplying ¢ vanish and the formula for the control becomes  with symmetry is a solution of the equations that is simultane-

1 5o 1 ously a one-parameter group orbit. When the symmetry groups

Ua = {g,aa,w — gsaA [Qa,a,w T 5987 are Euclidean groups, examples of theseumiéormly rotating

1 and translating solutionsA general introduction to and basic
<1 — —) Jadd ggaﬁ} } gl facts about relative equilibria can be found in [31].
Sincer is horizontal, for any Lie algebra elemefite g,
_1 Gsa A% WV (3.12) Wwe haver({g(q)) = 0. This implies the identity.({o(q)) =
o Oz Lo (&0(0))-

where Given a Lagrangiail. and a Lie algebra elemeétite g, the

1 function L¢ (g) := L{{g(g)) is called the associatdocked La-

Aap = 9ap — Gad <1 - —) 9" 9pa- (3.13) grangian Thus, from the identityL(éo(q)) = L. (€0(q))

noted in the preceding paragraph, we conclude thand . - ,
Note that the control law only involves position and velocithave the same locked Lagrangian.
feedback, not acceleration feedback. Itis known that relative equilibria are the critical points of the
Proposition 3.1: Suppose the conditions of Theorem 2.2ocked Lagrangian (see [27, Prop. 2.3] and [39]); this is a gener-
hold [i.e., the First Matching Theorem holds with the controlledlization of the classical criterion, going back to Routh around
LagrangianL. , defined by (2.3)]. Suppose thzl,s defined 1850, which states thaglative equilibrium are critical points
by (3.8) is invertible. Then, (3.10) provides the correspondiraf either the amended or augmented poteritidtuitively, the
feedback control law as a function of positions and velocitiesmodification of the Lagrangian to the controlled Lagrangian,
only (i.e., there is no acceleration feedback). Furthermomghile affecting the kinetic energy, does not affect the augmented
in the case that the Simplified Matching Assumptions holghotential. Therefore, we conclude the following.
this feedback law simplifies to that given in (3.12) which is Proposition 3.3: The relative equilibria foi. and L, , are
independent of the velocities of the symmetry variables. the same.
The above calculations make intrinsic geometric sense. Fo[Th
e amended potential is recalled in (3.19). The augmented potential is given
example, and we shall need this remark, the matiix may 5 similar formula using generalizesgular velocitiesather tharangular
be interpreted as the components of the horizontal metric (thementa
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One can now use the energy momentum method [36], [31], group in the inverted spherical pendulum below. The con-
especially its Lagrangian formulation [27], [39] to ascertain sta-  trolled Euler—Poincaré equations may also be viewed this

bility. way—these are studied in companion papers.
From general considerations, we know that a relative equilib-
rium is a fixed point of the reduced dynamics on shape space. IV. INVERTED PENDULA

As such, it must satisfy* = 0. To emphasize that this corre-

sponds to an equilibrium value, we shall sometimes write tlﬁ%
equilibrium point asz., or in coordinateszS. Consequently,
from (2.13), the momentum at a relative equilibrium is the sa

In this section we illustrate the results of the preceding sec-
ns with two examples. In the first subsection, we re-examine
ni%e inverted pendulum on a cart and show that a direct appli-

) tion of the matching theorem of Section Il and stabilization
for the free and for the controlled system. We call this valye g

with component or if there is danaer of confusion. by theorem of Section Il produce the stabilizing control law de-
P Hlar gerc 0, rived in Section I-B. In the second subsection we show how to
where the superscriptrefers to theequilibrium value

! o o ly these techniques to the case of the inverted spherical pen-
Next, we give a criterion for stability of control systems tha PRl a P P

are described by a controlled Lagrangian of the fdrm, given ulum.

bY_I_(ﬁ-?’)- 3.4:S " dit ¢ Th ooh IdA. Reprise of the Inverted Pendulum on a Cart
eorem 3.4:Suppose the conditions of Theorem 2.2 ho _ _ _ B
(i.e., the First Matching Theorem holds with the controlled La- Recall that the configuration spaceds= 5 x G whereS =

1 i - .
grangianL. ). A pointz2 is a relative equilibrium if and only i desc_r!bes tr;ehanglﬁof\;t\%a pend_ulurrr]]and? - RI dﬁscnbeks
if it is a critical point of v, wherey. is the value of the equilib- the positions of the cart. When using the general theory, keep

rium momentum and whefé, is theamended potentialefined in mind thatz in the general theory corresponds¢gdere and
by that# in the general theory correspondsstbere.

The Lagrangian: The Lagrangian is

RS I R « fBcoso || @
L6 =3[0 3] |y, PO [C] + Dooss
th(;l’k;:g(,):]k:jevsa)ﬁ;(taignnlsofstablllzed about the given eqUIIIb“umvl\f/herea, 3, v, andD are as defined in Section I-B.

Controlled Lagrangian and MatchingWe apply The-
orem 2.2 to get the controlled Lagrangian that matches the
controlled Euler-Lagrange equations (1.10). Siate= R is
one-dimensional, both,;, and o, are scalars. We have that

i . . «w = 7. Leto,, = oy whereos is a dimensionless scalar.

(3.8)] evaluated at the equilibrium is definite. ab = 7+ _

Proof: The proof proceeds in a standard way followingas] INCEGas '? atC(_)rnstart1_t, to,aafsfy M'hz we should also takee
the energy-momentum method by showing th&tis the re- € a constant. To satisfy M-1, we choose
duced expression for the energy of the system. This calculation
is done for a general Lagrangian in, for example, [31], and is
here applied td.., using the fact, proved earlier [see (3.18)),_3 i5 then trivially satisfied, and the controlled Lagrangian
thatthe horizontal part gftheklnetlc energy is, under ASSUMp- o\ ides matching. In fact, the Simplified Matching Assump-
t'olg M-1, l((l/Z)AaW a” to get the result. ®  tions hold. Following (2.2) the controlled Lagrangian is

emarks:

2
1) In the special case whep, is constant, the extra term ;  _ L<¢ $,5— s cos </)</)> + la,y(ﬂ cos </)</>>
in the amended potential is a constant and so does not il s oy 2 oy

Vu(z%) = V(=) + %g“buaub. (3.19)

E, = 1A.5i%" +V, (3.20)

[as a function of the variables® and whered,s is defined in

1
75 = —— fBcos¢.
oy

contribute to the second variation. + Dcos ¢

2) One has stability modulo the (Abelian) groGpin the 1 ,2 B A .
unreduced space. (See [29] for more sophisticated appli- = 5 ap” +20 COS</><S Ty 08 </></>> ¢
cations in which one gets stability modulo a subgroup.)
Note further that since the equilibrium of interest for a . B A\ 182 5
balance system is a maximum of the potential energy and T <3 oy (M)) T3 oy O PP
we are not modifying the potentia] here,_ our controller + Dcos o, 4.1)
will in general lead to a local maximum in the reduced
space. As discussed in Section V the addition of activ¢ote that defining: := —1/0 and substituting fop in (4.1),
dissipation then leads to a robust asymptotically stablee recover the controlled Lagrangian of (1.11), whefé) is

equilibrium. defined by (1.17).
3) Note that the energy momentum functibp depends on  Control Law: Using (3.2), the control law is
the system gains. d /B ) d )
4) If the system has an additional symmetry group, then U= — <— cos ¢</>> = —— (rkfcos ).
one can, of course, use the energy momentum method dt \o dt
to study stability of relative equilibria for that group. WeWe can use the general formula (3.12) to calculate this control
shall see an example of a system with another symmetagv with the acceleration term eliminated.
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A

Fig. 2. The inverted spherical pendulum on a cart.

In this case,—gabvﬁjéa‘:“a‘:é = rfsin¢¢?, the matrix (3.8) Equivalently, using: = —1/0, the relative equilibrium is stable

becomes the scalar if
32 -3 M
A:a—%(l—i—ﬁ)cost) K>CW/T[:E
and which is the stability condition (1.19).
1 .
gmg [(gu,w ~5 Gy = GueTrm — Qucg(:bgub,v> B. The Spherical Pendulum
In this section we consider the controlled spherical pendulum
x V37 + V,H} on a cart in thecy-plane. This generalizes the planar pendulum
5 ) example and provides a highly nontrivial example of matching
— p : pr : and stabilization in the case where we only need a controlled
= (rfcos)|| — cos¢sing + — cos¢sin ) . y 3
v Lagrangian of the fornd. . In this case we have independent

controls that can move the cart in theandy directions.

Consider then a spherical pendulum with bob of massn
a movable base of madd, as in Fig. 2. The base is idealized
Substituting into the general formula (3.12), we obtain the nogy he a point (or a symmetric planar body) as this simplifies the

X </')2 —|—Dsin</)} .

linear pendulum-cart control law (1.18). _ _ calculations without affecting the essential dynamics.
Stablllzatlon: F0||0W|ng Theorem 3.4, the relative eqUIllb- The Lagrangian: The free Lagrangian for the Spherica| pen-
rium ¢ = ¢ = $ = 0 is stable if the second variation of dulum on a cart is
% <a + /3% cos? </)<i - l)) #* — Dcos ¢ L= %M(azQ + %) + %m(sz + 9% +r2¢% 4 1% sin? ¢6?
oy v

+ 27 cos d)d)(az cos @ + g sin 6)2r sin b0

Li:if:gltr(iaxwhen evaluated at this equilibrium. This requires that X (—d'sinf+ g cos 9)) +mgr(1 — cos ) 4.2)
D 0 where¢ and 6 are spherical coordinates measured in a frame
of 1 1 with origin fixed on the (point) cart, but with orientation that
0 a+p <5 - 5) remains fixed with respect to inertial spagerepresents the
deflection from the vertical whilé represents the angle between
be positive or negative definite. Sind2 = —mgl < 0, the the pendulum and the-axis. The controlled equations are the
matrix will be negative definite if Lagrangian equations with control forces andu,, in thex and
y equations, respectively. Note that the Lagrangian is cyclic in
a+ 3 <i _ 1) <0 2 andy. However, the system is in fastE(2) invariant, as one
g would expect physically.
ie. if Consider the action of E(2) onR? x S! given by
8% — ary (z,y,0) —=(zcosa — ysina + a,

;< g2 xsina +ycosa+b, 0+ «) (4.3)
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with induced action o’SE(2) and with the addition of the term

(i,5,0) — (& cosa — gsina, & sina + geosa + b, 6). % 9o(T(v)@, T(v)Q)

(4.4) 2.2 . .
_ o . _ = 1_mim {((305(7)(3089(/)—sind)sin%)2

A computation shows that the Lagrangian is indeed invariant 2 0(M+m)
under this action (thus giving rise to three conservation laws). + (cos ¢ sin B¢ + sin ¢ cos 99‘)2}

However, for the purposes of applying the theory discussed -
above we willassumehe symmetry directions are theandy _ L mr (COSQ $? + sin? ¢92) _ (4.6)
directions ignoring for the moment the additiosdl symmetry. 2 0(M+m)

We shall return to this later in this section. The key point here is control Law: Using (3.2), the control law is
that the controls act in theandy directions and pick out the part

of thg symmetry group _to be use_d in the ma’_tching thgory. The Up = = (GaaTEE™ + Goy V)
remainder of the group is dealt with when doing stabilization. dt
_Controlled Lagrangian and MatchingNote that twice the _dmr (cos ¢ cos B¢ — sin ¢ sin 66)
kinetic energy for the spherical pendulum on the cart can be dtdff
written as shown in (_4.5) at the bottom of tht_e page. So, it can = (9ywTZE® + gyy V%)
easily be seen that,;, is constant and, in addition, since t
d mr L . .
9 9 = — — (cos ¢ sin B¢ + sin ¢ cos 66).
5 (cospcosf) = 2 (— sin ¢sin ) dt o
9 8¢ We can use the general formula (3.12) to calculate this con-
5 (cos ¢sin @) = a_(sin(/)cos 6) trol law with the acceleration terms eliminated. We begin by

computing the matrix (3.8) and find (4.7) at the bottom of the
Jaa.5 = gsa. NOlDS. We choose,, = og,,, Whereo is a con-  page. We now compute successively the terms in (3.12). Con-
stant, and-? = —(1/6)g*gaq. Then, Assumptions M-1-M-3 sider firstly g, 5 @727, We have
all hold (since the Simplified Matching Assumptions hold) and 3

By
we get matching by Theorem 2.2. In this case, we have JaBy® & ] ] .
. mr = —mr (sind)cos 9(92 + ¢2) + 2cos ¢sin 99(7))
Ty = —— - Cosgcost s
o(M +m) gys,~ dota”z7
. mr . . . . ..
Ty = T oM+ m) (—sin¢sin6) =mr (— sin ¢ sin 9(92 + ¢2) + 2 cos ¢ cos 99(7)) . (4.8)
TS = —% cos ¢siné We next consider the expression
v mr . 1 1 @ . 4.
™ = "o (M 4y SO cost. B, = |:g(y,8,'y — 5 98— <1 - ;) Gadg* g,aa,,w} &7,
Using Theorem 2.1, the controlled Lagrangian is given by the (4.9)

free Lagrangian with velocity shifts Fora = 6 this yields the expression

. . mr L. . ..
T— - m (cosd)cos 0o — smd)sm@@) Be = 2mr sin ¢ cos ¢
- . . 1\ 2m2s2 .

U=y — % (COS ¢ sin 8¢ + sin ¢ cos 99) — <1 — ;) Mm—ifm sin ¢ cos Pl (4.10)

9: T mr?sin? ¢ 0 —mrsin¢sind  mrsin ¢ cos 9

¢ 0 mr? mrcos pcosf  mrcos@sin b ¢ (4.5)

T —mrsin¢sind  mr cos ¢ cos 6 m+ M 0 T '

Y mrsin¢gcos®  mrcos ¢sinb 0 m+ M Y

1 2.2
mr? sin? ¢ — <1 — —) A;n " sin? ¢
App = o/ Mam 4.7)
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and fora = ¢ we obtain Remark: In this analysis, the extr&! symmetry is simply
1 2 9 ignored, even though it does lead to an additional conserva-
By =—mr?sin ¢ cos P0° + <1 - _> m tion law. This is because the straight upright solution is a rela-
o) M+m tive equilibrium for just the translation group. If we were trying
% sin¢cos¢(92 + (/)2) ) (4.11) to stabilize an inverted uniformly rotating equilibrium then we
would have to take this extig symmetry into account. In prin-
Finally, we consider the expressigps A°*V ,,. We have ciple this is straightforward.
Gus A%V o = — ’r’g cos ¢sin ¢ cos § V. ASYMPTOTIC STABILIZATION
2“%“; We now undertake to modify our stabilizing control laws to
9y5 A%V 0 = -9 cospsingsing.  (4.12) obtainasymptotic stabilizatiarThis is done, roughly speaking,
A by using the controls to simulate dissipation. However, this is
Using (4.7)—(4.12) we obtain the complete control law not entirely straightforward, primarily because the energy for
) 3 the controlled system we consider hamaximumat the rela-
—m-r

Uy = sin¢cos€(sin2 ¢9‘2 + (7‘)2 — 9 s </>) (4.13) tive equilibrium in thez, & variables, but thé@ direction is still
,

a symmetry direction as discussed above. We will use the feed-
) ) TR back controls to givactivedissipation. (Note that one can easily
Uy = sin ¢Sln9(Sln P” +¢7 — " cos </)) (4.14)  adjust the theory below if the controlled system has a minimum

cA
8 at the relative equilibrium in the, & variables.)
Stabilization: We now use Theorem 3.4 to analyze stability

of the pendulum about its upright state, modulo motion in th&. Theory
plane. We have

O'A¢¢
_m2 .3

To achieve our goal of converting a relative equilibrium that
1 s has been stabilized by the method of controlled Lagrangians
3 Aapt®@” +V into anasymptoticallystable one, we proceed in the following

m 1—0o . step-by-step manner. The general technique here is, at least
2 2 . . .
{ <1 + <—> cos </)> ¢ philosophically, closely related to that of [1]. Related ideas on

= —my?

2 M . S .
+:Z 1 asymptotic stabilization may be found in [15] for example.
+ <1 + Mm <T> sin? </)> 92} 1) Start with the original controlled system
— mgr(1 — cos b). (4.15) 4 9L oL _
dt 0z® Oz®
Note that this is independent 6f reflecting an additional rota- d 9L 51
tional symmetry in this case. Consider the relative equilibrium dt 9pa Ya- (5-1)

¢ = ¢ = 0. Then, modulo thé directions, the second variation

o ) 2) Choose a relative equilibrium, say= z. for L thatis to
of (4.15) is given by the matrix as shown at the bottom of the ) g =

be stabilized. Let it have momentyirand velocity vector

page wherd = L. £, s0 thate® = g .
i = - in the planar pendulum we thus have ; ; facinati
Settingo = —1/x as in the p p 3) Break the control into aonservativeand dissipative
the following criteria for stability. pieceiu, = u® + vdi=s each piece of which will be
 If 1 = 0, we require defined as we proceed.
m 4) Assume that the hypotheses of the First Matching The-
<1 - (rk+ 1)) <0 orem (2.2) hold and choos&°™ = —(d/dt)(ga,755%)
M +m according to the controlled Lagrangian stabilizing tech-
e,k > M/m. niques developed so far. .
o If 1 > 0, we need 5) Rewrite (5.1) withu, = u°® + ud** in terms of the
controlled Lagrangian. In fact, one has the following.
<1 - (k+ 1)) Proposition 5.1: Using the procedure just outlined, (5.1) is
4 M +m equivalent to
an
m d L., OL., b diss
.2 2 . —_ - - =T,U
mr? ( (5 +1) ) 2 —mgr & 0pc | oan et
M4+m d oL
7,0 _  _diss
to have the same sign. dt gge e - (5-2)

1—0o
214 1 0
(1 (50))
0 mr? m -9 2 _mgr
M+m o K g
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The explicit formula for the control law with accelerations elimThis can be rewritten in the following way:

inated is given by d ,
_Ef _ abudiss j _ _ e
b 48 de diss diss dt T =9 U b= Mo~ Gab ;
g = (rhs of (3.10) + gus7s A gaag™“us™ + u5**.  (5.3)
We also note that
Proof: The strategy is to repeat the derivation of the d -
matching equations. First of all, notice that the second equation 77 Bn = 0" e gan

in the set (5.2) can be equivalently written as . _ . .
Here is a crucial point: as we have seen in the examples, the
d

L) = udies, function Eﬁyo has a maximum in the variableat the relative
dt 7" @ equilibrium in question. However, it will typically have a min-
Subtracting this from the equation imum in the variablé. To create a function with a maximum in
the variablegz*, 2%, 0% — &%) at the equilibrium, we form the
d Ty = uSom 4 qdiss following controlled Liapunov functian

dt
shows that the second equation in (5.2) is equivalent to the equa- Vi = By = 37" (J“ B ““) (Jb B m’) (5.6)
tion where) is a positive constant.
d . The Time Derivative of,: The next step is:
o= (Ja=da) 7) Compute the time derivative 6f, and examine its defi-

niteness.
We will compute the time derivative df,, under the simpli-
ing hypothesis thag*® is independent of~. One gets

which, as in Section llI-A determines the control lagf™. The
explicit formula (5.3) is derived following the same steps as |
Section IlI-A but with the zero on the right-hand side of (3.4

replaced withudiss. Dy, = grbydissg e ) gl diss (JN - )
Now one goes through the computation of the Euler—La-  dt * 0 ‘o 9o g ta T T
grange expressiod (L. ) given in the proof of the First = — gy diss ()\ [jb - Nb:| —|—gabj;a),

Matching Theorem. The critical thing is that in (2.19) one

does not replace the time derivative.Afwith zero, but rather This leads us to the last step.

with «!*. All other terms disappear, as in the proof of the 8) Define thedissipative control law

First Matching Theorem, leaving the first equation in (5.2) as diss b ~ o

stated. - ug™ = —c, ()\ [Jb — lib} + Gar® ) (5.7)
The Controlled Liapunov FunctionThe next step in the pro-

cedure is control gain matrix.

6) Find a candidate Liapunov function (to be callgg). Note that the dissipative control law depends linearlyé8n
Of course, it is natural to make use of the function that WEnce.j

: i fince J, does.

employed to give us stability. However, as we shall see, thiSyyg are now ready to formulate our main result on asymptotic

function must be modified in a nontrivial way. . stabilization. We will make the following assumption that is es-
Let -, be the energy function for the controlled Lagrangia@eyially a condition on the nontriviality of the coupling terms

§ i . . -
L, and letE: , be the controlledugmentegnergy function | “peanyveen the control variabléé and the internal variables

wherec? is a positive definite, possibly® dependent,

defined by .
ES, =E,, — Jpel. (5.4) AS. Alpr)g no trajectory other than relative equilipria of the
’ ’ original uncontrolled Euler-Lagrange equations for
The augmented energy has the property that its restriction to a IS gao@® @ constant.
level set of the momentum gives the energy function Theorem 5.2 (Asymptotic StabilizationA\ssume that the hy-
L e potheses of the Stabilization Theorem 3.4 as well as the Sim-
B, = 3 Aapa®a” + V), (5.5) plified Matching Assumptions hold. Assume that the relative

used in the stability test (this is seen by a direct calculation Sgu@li_briumare, Ze =0 is_z_;\maximum oty giv_en_by (3‘20)' In
by using facts from the energy-momentum method or Routh r%c_idmon, assume conditioRS and that the dissipative control

duction). Herey, is the value of the momentum at equilibriunJaW is chosen as in (5.7). Then the given relative equilibrium is

andV, is the amended potential [see (3.19)]. Note that at eqlﬂgymptotically stable modu'lo the "?‘C“O” of the group. .
librium, the value of/, is the same as that of,; i.e., /i = 1. Proof: We have organized things so that the time deriva-

A direct calculation using (5.2) shows that tive of V,, is everywhere nonnegative and it vanishes on the set

M defined by
i E = U,diss (9” =+ a’.’ii(y) diss b 7 -
gt 7T = e Ta u,™ = —c, ()\ [Jb — lib} + gab T ) =0.
and therefore that The Invariance Principle (see [4], [26], and [24]) shows that

d . diss (1ha oa o all trajectories tend to the subset.bf that is dynamically in-
" B, =ug ([9 =& +Tam ) . variant.
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Fig. 3. Asymptotic stabilization of a pendulum starting from a nearly horizontal position.

We claim that the dynamically invariant subset'efconsists and IV-A. The relative equilibrium of interestis= ¢ = 0 and
only of equilibria (note that this set is group invariant). Suppose= ¢ (where¢ = ./ andy is the desired momentum).
there is an invariant trajectory in. Then the time derivative  The explicit control law with dissipation is calculated ac-

of the above expression along such a trajectory is cording to (5.3) and (5.7). For the pendulum we have that
. d g’
_cg <)\uzhss + % (gabi'a)> =0 b pd de, di di ‘T 7 COSQ (/) di
gabTO A agadg CUCISS _"_ uaISS — /32 N 155
and since we have a trajectory, this impliesgaq i is a con- - (1+r)cos? ¢

stant along these trajectories. Thug,is also constant. Under

the simplified matching hypotheseg, and.J, differ by terms and from (5.7)

that are constant along the trajectory, so the conservative Copiss — _(\(.J — 1) + Bcos )

trol is also zero. (One can check this directly for the pendulum.) ; . .- ;

Thus, the trajectory is a solution of the original Euler—Lagrange (A(Bcos ¢ + 75 + rf o a4 . 1) + Beos¢e)

equations fol. and so by our assumption, this curve mustbean = —¢((AMx + 1) + 1) cos ¢ + Ay(s — &)

equilibrium point. _ _ ~ ™ whereX > 0andc > 0 andu = ~¢. Substitution into (5.3)
We remark that assumptiks can easily be checked in spejyes (5.8), shown at the bottom of the page.

cific examples as is done below. Part of this paper examines inye have already shown in Section IV-A that the hypotheses

greater depth the theory behind conditions I8 that guar- of Theorem 3.4 hold with the Simplified Matching Assump-

=—c

antee that the Invariance Principle holds. tions, and the relative equilibrium is a maximumigf. Condi-
tion AS holds since along no trajectories other than relative equi-
B. Example libria of the uncontrolled system i&/dt(/3 cos ) = uc™ =

We illustrate our control law design by using it to asymptotd. Thus, by Theorem 5.2 the contreldefined by (5.8) makes
ically stabilize the inverted pendulum on a cart of Sections I-Bie equilibrium of interest asymptotically stable.

2

k3 sin ¢p(ad? + cos pD) — c<a - % cos? d)) (()\(Iﬁl +1) +1)Bcos pd + My(s — 5))

a—g(l—i—ﬁ)cos?d)

(5.8)

U =
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Simulation: We demonstrate the control law with a [11]
MATLAB simulation of the pendulum-cart system where
m = 0.14 kg, M = 0.44 kg, andl = 0.215 m. We let the
desired cart velocity bé = 0 m/s and choose control gains
to bex = 135(M/m), A = 0.01, andc = 50. Fig. 3 shows
plots of pendulum angle and velocity and cart position and3l
velocity for the system subject to our stabilizing controller
with dissipation added. The pendulum starts from a nearly
horizontal position$(0) = /2 — 0.2 rad), showing the large [14]
basin of attraction for the upright pendulum. We have even
given the pendulum an initial positive (downward) velocity of [15]
¢(0) = 0.1 rad/s. The cart’s initial position is(0) = 0 m and
initial velocity is 5(0) = —3 m/s. Note that the cart comes to [16]
rest as desired, but due to the large initial acceleration needed
to bring the pendulum to vertical, the cart drifts far from its 17
initial position. In Part I, we present the methodology for
adding another term (that breaks symmetry) to the control lavus]
in order to drive the cart position as desired. We also address
more general tracking problems. [19]

At the bottom of Fig. 3 we have included a plot of the con-xq]
trol law « and the Liapunov functioft,, as functions of time. [21]
The control law has an initial peak to provide the initial large
acceleration. The Liapunov function can be seen to be initiall;t

(12]

) o . [22]
negative and to strictly increase until it reaches zero at the equi-

librium. [23]
[24]
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