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Abstract— This paper describes two measures of per-
formance that can be used to allocate tasks in a multi-
robot foraging problem. These heuristics can be used by a
human supervisor or an automated control algorithm to
adjust the number of robots exploring the environment
versus the number of robots greedily harvesting based
on current knowledge. A numerical simulation study is
presented that offers preliminary support for the usefulness
of these heuristics.

I. INTRODUCTION

A decision-making framework is proposed for allo-
cating tasks to a homogeneous group of robots in an
unexplored environment. It is assumed that every robot
can be assigned to one of two tasks: exploration (large-
scale information gathering) or exploitation (focused
collection of resources). This framework can be applied
to any harvesting task in which the maximum resource
collection rate varies both spatially and over time; for
example, a model problem is positioning mobile solar
panels under changing lighting conditions.

In any problem of this type, there is a nontrivial
question of how to best allocate the robots between
exploration and exploitation. Assigning many robots
to be explorers will increase the number of areas of
interest identified, but will decrease the number of
robots able to exploit these areas and could lead to
redundancy in mapping. Assigning many robots to be
exploiters will increase the collection rate when the
field is well-known, but could be ineffective if the
robots are not able to position themselves intelligently
in their environment.

Optimizing this allocation requires a comprehensive
understanding of the characteristics of the robots and
the field being explored, and it is not clear whether
the robots can make the decision without human aid.
If it is necessary to involve a human supervisor, the
division of labor between the robots and the human
for this allocation task should take into account the
respective strengths of the humans and robots. In this
paper two heuristics are introduced, which can be
calculated by the robots in order to aid a human or
automated supervisor in selecting an allocation. A pre-
liminary simulation study is presented to help assess
the value of these heuristics and to draw insights on
the allocation problem.
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II. LITERATURE REVIEW

Multi-Robot Task Allocation (MRTA) has been in-
vestigated in a variety of settings, but there are few
general strategies since most work has focused on
architectures for specific systems, such as UAVs [1].
Other work on task allocation for exploration has as-
sumed there are a discrete number of known targets
to be investigated [2], which is not applicable for a
continuous, unknown field. There has been some work
to develop a formal framework for studying MRTA
problems [3], with empirical investigation into selecting
dynamic task allocation strategies [4].

Optimal policies for choosing between exploration
and exploitation have been presented for the limited
class of problems in which a single agent chooses
among multiple options with stationary pay-off struc-
tures and agents discount future rewards exponentially.
In this case, the optimal policy can be determined by
computing the Gittins indices for each option, although
this computation may be intractable [5], [6]. Time-
dependent reward structures have been previously in-
vestigated in biological settings, in the field of optimal
foraging theory [6], [7], [8]. Models and optimal solu-
tions have been developed for very simple situations,
such as a single bird exploring two food sources be-
fore choosing one of them [8]. There is, however, no
known general strategy [6]. A new study examines the
dynamics of exploration versus exploitation by teams
of sensor-enabled robots mapping potential fields that
are possibly time-varying [9]. Decisions between search
strategies are made using a mutual information-like
measure with the aim of finding the optimally aggres-
sive exploration strategy.

Possible assessments of performance used by ani-
mals harvesting discrete units of resources have been
proposed, such as time since last encounter of an item
and rate of encounter of items [7]. Measuring the rate
of encounter can be accomplished using Green’s assess-
ment rule, and this rule has been applied in modified
form to human task switching [10]. The appropriate
heuristics and the degree to which the allocation deci-
sion can be performed without human supervision are
still open questions.

In general, systems that actively manage sensors
based on the current (estimated) state of the environ-
ment fall into the category of adaptive sensing. Recently,



these problems have been formalized as corresponding
to a Partially Observable Markov Decision Process
(POMDP), for which optimal actions can be chosen
through Q-function maximization [11]. One proposed
method of approximating the Q-function is to use do-
main knowledge to generate a heuristic ranking of Q-
values for possible actions [11]. The harvesting task is a
generalization of adaptive sensing, since the objective is
not just to measure the environment but also to devote
robots to acting on that information. Although this
difference and the massive state space of our problem
preclude us from using the adaptive sensing POMDP
framework directly, the idea of ranking current deci-
sions based on heuristics is still applicable.

Given an allocation, explorers and exploiters will
need to follow an algorithm for autonomously per-
forming their tasks. Control systems for multi-robot
exploration have been investigated by a number of
researchers [12], [13], [9], [14]. Simple control algo-
rithms are used here as proxies for a more sophisticated
approach.

III. PROBLEM DEFINITION

The approach described in this paper is applicable to
allocation problems with the following features:
• A fixed number N of homogeneous mobile robots

in a spatial domain, each of which can collect re-
sources, make local field measurements, and move
with maximum speed vexploit when harvesting (ex-
ploiting) and vexplore when exploring.

• A scalar field R(r, t) describing the maximum rate
of resource collection at each point in time and
space, with known mean R̄ and covariance

B(r, t, r′, t′) = σ0 exp−
|r−r′ |2

σ2 − |t−t′ |2
τ2 (1)

where σ and τ define the time and length scales
of the covariance.

Note that the field may be negative at some points; thus
R(r, t) is more correctly interpreted as the net resource
collection rate (including costs of running the robot),
which can be negative.

IV. HEURISTIC APPROACH

Given the intractability of exact solutions to the
allocation problem, a simpler approach is to develop
heuristics to allow for approximate comparisons be-
tween alternative allocations. The robots or a human
supervisor can then monitor the value of these heuris-
tics and modify the allocation appropriately. The fol-
lowing sections describe two heuristics that can be
used simultaneously to evaluate the performance of
the robots. The first focuses on the actions of the
explorers, while the second is based on the actions of
the exploiters. Let m(t) be the number of exploiters
at time step t and n(t) = N − m(t) the number of
explorers.

A. Explorer Heuristic

This heuristic makes use of the information metric
defined in [12]. Given a sequence of P measurements Rk
at points (rk, tk), and the field covariance B(r, t, r′, t′),
the a posteriori error is

A(r, t, r′, t′) = B(r, t, r′, t′)−
P

∑
k,l=1

B(r, t, rk, tk)

∗(C−1)kl ∗ B(rl , tl , r′, t′) (2)

where C−1 is the inverse of the covariance for the data
points, the elements of C given by

(C)kl = ñδkl + B(rk, tk, rl , tl) (3)

and n the measurement noise. The entropic information
of the area A of domain D at time step t is defined as

I(t) = − log
(

1
σ0A

∫
drA(r, t, r, t)

)
. (4)

The information I(t) will decrease with time if no new
measurements are made (since the field has a time-scale
τ), so it is not appropriate to measure the information
gained by the explorers as I(t) − I(t − 1) since even
keeping I(t) constant requires continued exploration.
Instead, define the incremental information as

Ĩ(t) = I(t)Data [1:t] − I(t)Data [1:(t−1)] (5)

where I(t)Data [1:T] refers to the information at t given
that measurements are taken over the interval of time
steps from 1 to T. Incremental information is the de-
crease in the current information I(t) that would occur
if the measurements during the previous time step had
not been made. This ensures that Ĩ(t) quantifies the
informational value of the last round of measurements.
This is similar to the concept of information inflow in [9].

The informational heuristic is defined as

Hexplore(t) = Ĩ(t) ∗m(t). (6)

This heuristic defines the value of a current allocation
based on the usefulness of the information collected,
multiplying the incremental information by the number
of robots that can act on that information. Information
has no value in and of itself, and therefore its usefulness
is directly dependent on the number of exploiters that
could potentially be helped. Note that this information
can help all exploiters over the next (approximately) τ
time steps, so the current number of exploiters is only
an estimate of the average number of exploiters helped
per time step.

B. Exploiter Heuristic

Since the current rate of resource collection will be
highly volatile as a function of t even under constant
allocation (due to robot motion and changes in the
field), a more stable estimate is the expected resource
collection over the next τ time steps. Predicting signif-



icantly farther ahead than τ would be uninformative,
since the future values of the field can only be weakly
predicted. The estimated rate of resource collection
over the next τ time steps for a single robot, given the
current location ri and destination di of the robot, is

Fi(ri, di, t) =
1
τ

(R̄ ∗ ||ri − di||
vexploit

+

R̂(di, t) ∗ (τ − ||ri − di||
vexploit

)) (7)

where R̂(r, t) is the estimated rate of resource collection
at point r and current time t computed using

R̂(r, t) = R̄ +
P

∑
k=0

ζk(r, t) ∗ (Rk − R̄). (8)

As in [12] the optimal coefficients ζk(r, t) that minimize
the mean square error with the actual field R(r, t) are

ζk(r, t) =
P

∑
l=1

B(r, t, rl , tl) ∗ (C−1)kl . (9)

The function Fi makes the assumption that resources
are collected at the mean rate en route to the robot’s
current destination, and that resources will be collected
at rate R̂(di, t) in the time between the robot’s arrival
time and τ (where the robot’s arrival time is estimated
by assuming a straight path at maximum speed).

The exploiter heuristic Hexploit is defined as

Hexploit =
m

∑
i=1

Fi(ri, di, t). (10)

Consider the following simplifying assumptions: each
explorer i makes exactly one measurement Ni every
τ time steps (simultaneously); N1, . . . , Nn are inde-
pendent, identically distributed random variables with
normal distribution (unit mean and variance); the m
exploiters can move instantly, and can all occupy the
same point without interfering with one another; the
rate of resource collection is constant over every τ
time steps after the measurements are made. In this
condition, all of the exploiters will harvest at the best
location discovered, so the expected rate of resource
collection after all the measurements are made is

Hexploit = E[max{N1, N2, ...Nn}] ∗m. (11)

The expectation can be calculated:

P[max{N1, N2, ...Nn} ∈ dk]

=
d
dk

P[max{N1, N2, ...Nn} < k]

=
d
dk

P[N1 < k & N2 < k & ... & Nn < k]

=
d
dk

(Φ(k))n

= n(Φ(k))n−1N(k) (12)

Fig. 1. A theoretical approximation of Hexploit as a function of
the number of exploiter robots (5 robots total). The decrease in the
expected maximum of the explorer measurements is offset by the
number of exploiters able to harvest at the maximum.

where Φ(k) is the cdf for a normal distribution. The
heuristic is therefore

Hexploit =
[∫ ∞

−∞
dk ∗ k ∗ n(Φ(k))n−1N(k)

]
∗m. (13)

When n = 0, then expected rate of resource collection
by the exploiters is simply m since the mean of the field
is 1. The expected collection rate is graphed in Figure
1 as a function of m, for n + m = 5.

V. SIMULATION DESIGN

In order to run a full simulation of a task allo-
cation scenario, automatic planning algorithms were
implemented to direct the motion of the individual
exploiters and explorers in a planar domain D. The
same estimation technique is used, as for the exploiter
heuristic above, to locally direct the exploiters:

arg max
di∈D

{
R̄ ∗ ||ri − di||

vexploit
+ R̂(di, t) ∗ (τ − ||ri − di||

vexploit
)

}
(14)

A similar formula was used to choose the explorer
destinations, treating explorers as consumers of error:

arg max
di∈D:||ri−di ||>vexplore

A(di, t) ∗ (τA −
||ri − di||

vexplore
) (15)

where parameter τA defines an effective maximum
search radius. The condition that explorers must set
destinations at least vexplore away forces them to always
move at their maximum speed; the search area for
explorer destinations is limited to an annulus. It is also
desirable that the explorers not set destinations near the
edges of the domain, since measurements made there
provide less entropic information (as the circle of radius
σ is partially outside the domain) and could only find
spatially small peaks (which would only fit one or two
exploiters at best). Therefore, explorers do not consider
destinations within a distance σ of the domain limits.

For both algorithms, the destinations are computed
sequentially and no robot is allowed to choose a des-



Constant Name Symbol Value
Domain Side Length l 50
Number of Robots N 5
Robot Radius r 3
Exploiter Speed vexploit 5
Explorer Speed vexplore 6
Measurement Noise ñ .1
Covariance Scaling σ0 1
Field Mean R̄ 1
Field Length Scale σ 10
Field Time Scale τ 10

TABLE I
SIMULATION PARAMETERS

tination within radius r of a destination chosen by
another robot. Although collisions are not enforced
in the simulation, forcing the destinations to be non-
overlapping allows the simulation to incorporate some
element of inter-robot interference. Note that this sim-
ple sequential algorithm can cause inefficiencies due
to the order in which robots choose destinations; a
more advanced scheme would allow robots to trade
destinations if it would be to their mutual benefit.

Table I summarizes the constants used in the simu-
lation. The domain is a square and τA = τ.

VI. SIMULATION RESULTS

A. Control Algorithms

Although not a central focus of the experiment, the
destination-setting algorithms exhibited very reason-
able behavior in this study. Sample destination deci-
sions for the exploiters and explorers are shown in
Fig. 2 and 3 respectively. At no point during any runs
of the simulation did the algorithms fail to find desti-
nations matching the constraint conditions described.

The paths of the robots generally appear chaotic,
but the special case of exactly one explorer exhibits
an interesting emergent behavior. Whenever the four
exploiters were clumped together and near-stationary,
the explorer would execute ellipses bounded by the
exploiters’ positions and the limits of its search space
(Fig. 4). This connects to previous work in collaborative
sensing, in which explorer performance has been ex-
plicitly optimized over a family of ellipses [12]; the ap-
pearance of ellipses in the present study suggests that
elliptical paths may be roughly equivalent to greedy
error reduction.

B. Heuristic Performance

A plot of the exploiter heuristic during a typical
simulation is shown in Fig. 5. The heuristic is observed
to accomplish the goal of removing noise that could
confuse a (human or automated) supervisor. E.g., at
time step 139, two of the three exploiters are crossing a
resource-poor area to reach a high peak. The resource
collection rate drops sharply, but there is no need for

Fig. 2. A sample exploiter destination decision at a specific time.
The exploiters (black) and destinations (white) are overlaid on the
estimated field R̂. Redder regions correspond to higher values of R̂.
One of the three exploiters is coincident with its destination.

Fig. 3. A sample explorer destination decision at a specific time. The
explorers (black) and destinations (white) are overlaid on the error
map A. Redder regions correspond to larger error.

more exploration since the exploiters already have a
good plan for the next τ time steps; indeed the heuris-
tic does not decrease so significantly. The exploiter
heuristic is much smoother overall than the resource
collection rate; the coefficient of variation (standard
deviation divided by mean) is .282 for the heuristic vs.
.379 for the collection rate (averaged over six 200-time-
step trials, each with a unique and constant allocation).

Note that the exploiter heuristic is not simply a
smoothed or moving-average version of the resource
collection rate. Any smoothing filter would necessarily
introduce lag, making the system slow to respond
to the sharp collection rate increases and decreases
that are typical when finding and losing peaks in the
resource field. As seen in Fig. 5, the exploiter heuristic
tracks these sharp changes nearly exactly, while reject-
ing noise due to temporary conditions. No function
of the collection rate that does not incorporate future
predictions could replicate this intelligent behavior.

Fig. 6 is a plot of the explorer heuristic during a simu-
lation. The heuristic tends to oscillate at high frequency
due to inefficiency in the explorer paths (resulting in
frequent drops in the incremental information) but the
average value of the heuristic is relatively stable. The
heuristic would be passed through a moving-average



Fig. 4. Paths of robots from time step 31 to 74, with the number of
explorers held constant at 1. The mean position of the 4 exploiters
(squares in upper-left) remained approximately constant tracking a
peak, and the lone explorer (circles in bottom-right) executed ellipses
within its planning boundary (dashed line).

Fig. 5. The exploiter heuristic and actual resource collection rate over
200 time steps in a simulation with 3 exploiters and 2 explorers.

filter (shown in the figure) before being reported to
the supervisor. Although this does introduce lag (as
discussed above) this heuristic is not designed to cap-
ture timing information. With a more sophisticated
control algorithm, this heuristic would ideally stay
nearly constant, with explorers on well-defined paths
to reduce error in predictable amounts. The heuristic
could even be used to evaluate proposed exploration
algorithms; those with high, constant values of incre-
mental information are most effective.

C. Comparing Allocations

Six 200-time-step trials were run, each with a differ-
ent (constant) allocation for N = 5 robots. For static
allocations, it was most rewarding to do only local
tracking of peaks. It may be possible to find a set of
parameters for which the all-exploiter case does not
collect the most resources overall, but it is likely (in
agreement with the rough estimation in Fig. 1) that the
best static allocation will always be heavily biased in
favor of the exploiters. The all-exploiter allocation is
not optimal, however, if dynamic allocation is permit-
ted. As demonstrated in Fig. 7, the average resource
collection over all 200 time steps can be higher for a

Fig. 6. The explorer heuristic and the result of smoothing (moving-
average over τ time steps) over 200 time steps in a simulation with
3 exploiters and 2 explorers.

Fig. 7. A comparison of dynamic 4/5 exploiter allocation and static 4
or 5 exploiter allocation. The allocation was manually switched from
5 exploiters to 4 at t = 76 and switched back at t = 153.

dynamic allocation than for any static allocation; the
total resources collected for the 4 exploiter, 5 exploiter,
and dynamic 4/5 exploiter allocations were 1859.3,
1919.3, and 2016.1 respectively. (The speeds in this
experiment were adjusted to vexplore = vexploit = 10 so
that the robots could collect and use information more
efficiently and better illustrate the significant difference
between static and dynamic allocation. Note that, even
with these parameter settings, the best static allocation
is still the all-exploiter allocation.)

These results suggest that a (human or automated)
supervisor determining the best allocation should do
so based on current conditions. That is, in order to make
intelligent dynamic decisions, the supervisor must be
provided with information about the current perfor-
mance of the robots. To make a change in the allocation,
the supervisor could consider the current values of our
heuristics. There are two immediate questions:
1) How can a supervisor directly compare the two heuris-
tics, since they have different units? A scaling factor
λ must be defined so that λ ∗ Hexplore has units of
resources/time step, giving meaning to the relative
values of the heuristics. This value will most likely have
to be determined experimentally, and could be adjusted
to favor exploring or exploiting. It may appear that



Fig. 8. Heuristic values for the 5 exploiter allocation during the
experiment illustrated in Fig. 7.

this has simply brought us back to where we started,
since we are forced to choose a trade-off parameter be-
tween exploring and exploiting. This single parameter,
however, defines the relative values of the heuristics at
all future times, and is therefore much simpler than
attempting to re-evaluate the tradeoff at every time
step. For Fig. 8, λ = 32.6. This value was found to
cause the magnitudes of the heuristics to be equal when
the exploiters were collecting about 1.5 resources/time
step each, i.e., together about 7.5 resources/time step
(a relatively poor collection rate).

2) How should a supervisor make an allocation decision?

• The simplest strategy is to maximize
max(Hexploit, λ ∗ Hexplore); when the exploiters are
performing well, this is equivalent to maximizing
Hexploit, and when the exploiters are performing
poorly, this is equivalent to maximizing Hexplore.

• A more complicated strategy would be to maxi-
mize a linear combination Hexploit + α ∗ λ ∗ Hexplore
(for some constant α), to ensure that neither task
is completely ignored.

• A supervisor could also use an algorithm that only
considers the current allocation. For example, if
Hexploit < λ ∗ Hexplore for a certain number of time
steps, then the supervisor would add an explorer,
and visa versa. For the particular random field
illustrated in Fig. 7, there was a significant advan-
tage to switching an exploiter to be an explorer
sometime between time steps 75 and 100. The
relative values of the heuristics for the constant
all-exploiter allocation during that simulation are
shown in Fig. 8. Notice that if the supervisor had a
rule to add an explorer when Hexploit < λ ∗Hexplore
for the past 2τ (20) time steps, then the allocation
would have been changed to 4 exploiters around
time step 97, a near-optimal decision. Many more
simulations would have to be run to determine if
this algorithm could be effective in general.

VII. FUTURE EXPERIMENTS
More tests must be conducted to determine if the

specific heuristics proposed in this paper are the most
informative for a supervisor tasked with making opti-
mal allocation decisions. Although it has been shown
that these heuristics do capture many of the intuitive
aspects of exploring and exploiting performance, it
has not been shown that the recommendations from
these heuristics yield optimal or near-optimal dynamic
allocation decisions.

A method for determining the scaling parameter λ
should be investigated further. It is unclear which of the
parameters in Table I affect the value of λ, since some
parameters (e.g. vexplore) are already accounted for in
the calculation of Ĩ(t). It also remains to be seen how
sensitive a human supervisor is to the scaling factor;
if he or she is maximizing max(Hexploit, λ ∗ Hexplore),
for example, then the allocation decisions may not be
incredibly sensitive to the choice of scaling.
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