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Abstract

This paper presents Lyapunov functions for proving stability of steady gliding motions for vehicles with hydrodynamic or
aerodynamic forces and moments. Because of lifting forces and moments, system energy cannot be used as a Lyapunov
function candidate. A Lyapunov function is constructed using a conservation law discovered by Lanchester in his classical
work on phugoid-mode dynamics of an airplane. The phugoid-mode dynamics, which are cast here as Hamiltonian dynamics,
correspond to the slow dynamics in a multi-time-scale model of a hydro/aerodynamically forced vehicle in the longitudinal
plane. Singular perturbation theory is used in the proof of stability of gliding motions. As an intermediate step, the simplifying
assumptions of Lanchester are made rigorous. It is further shown how to design stabilizing control laws for gliding motions
using the derived function as a control Lyapunov function and how to compute corresponding regions of attraction.

Key words: Singular perturbation methods; Nonlinear stability; Lyapunov based control; Composite Lyapunov function;
Hamiltonian system; Underwater gliders; Gliders; Phugoid mode.

1 Introduction

Energy usually provides a natural Lyapunov function
candidate for studying the stability of mechanical sys-
tems. Energy-based design methodologies, such as the
method of controlled Lagrangians (Bloch, Leonard &
Marsden 2000) and the method of interconnection and
damping assignment (Ortega, Spong, Gomez-Estern &
Blankenstein 2002), provide systematic procedures for
choosing control laws for mechanical systems such that
the resulting closed-loop dynamics also define a mechan-
ical system. The energy of the closed-loop system serves
as a control Lyapunov function. The gains of the control
law can be adjusted such that the region of attraction
for the closed-loop system is sufficiently large.

The energy-based analysis and control design approach
falls short for steady motions when hydrodynamic or
aerodynamic forces and moments act on the mechanical
system. This is the case for vehicles with lifting surfaces
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such as airplanes, sailplanes and underwater gliders. Our
objective is to provide an analysis and control design
methodology for these kinds of hydro/aerodynamically-
forced systems analogous to the approach for pure me-
chanical systems.

For the purposes of this paper, we refer to hy-
dro/aerodynamically forced vehicles that can sustain
steady gliding motions as gliders. This class includes
airplanes, sailplanes, airships, air gliders and underwa-
ter gliders. It also includes inter-planetary gliding ve-
hicles as proposed in (Morrow, Woolsey & Hangerman
Jr. 2006). We consider the dynamics of gliders restricted
to the longitudinal plane and use a multi-time-scale
model. The slow variables define the translational glider
dynamics and the fast variables define the rotational
dynamics. We use singular perturbation theory (Saberi
& Khalil 1984, Khalil 1987) to derive a composite Lya-
punov function and prove stability of steady glides for
the full dynamics.

A first step in the development is the identification of
the reduced model (slow dynamics) with Lanchester’s
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classical model of the phugoid-mode dynamics of an air-
plane (Lanchester 1908, von Mises 1959). A second and
critical step is our casting of the phugoid-mode dynam-
ics as a Hamiltonian system such that the lift force de-
rives from the Hamiltonian. In this case, the Hamilto-
nian H is not the energy of the aircraft but rather an
integral of motion discovered by Lanchester. We present
this Hamiltonian formulation and use H to construct
the Lyapunov function for proving the stability of the
slow subsystem of glider dynamics. As an intermediate
result, we use singular perturbation theory to make rig-
orous the simplifying assumptions of Lanchester.

In earlier studies on dynamics and control of underwa-
ter gliders (Leonard & Graver 2001, Bhatta & Leonard
2002), linearization was the basis for stability analy-
sis and control design. In this paper we use Lyapunov
functions to prove nonlinear stability of steady glides
and to estimate the corresponding region of attraction.
The Lyapunov function presented in this paper pro-
vides a new means to extend and systematize the un-
derwater glider analysis and design work described in
the earlier papers (Leonard & Graver 2001, Bhatta &
Leonard 2002, Bhatta & Leonard 2004). In this paper
we use our Lyapunov-based approach to design simple
stabilizing controllers for gliders with different control
configurations.

There is a significant literature addressing the track-
ing problem for aircraft using feedback linearization
based methods, including (Tomlin, Lygeros, Benvenuti
& Sastry 1995, Al-Hiddabi & McClamroch 1999). The
non-minimum phase characteristic of controlled aircraft
systems renders the tracking problem challenging and
typically leads to large magnitude control inputs. Large
inputs are usually undesirable in the context of glid-
ers since low-energy control is an essential requirement
of most glider operations. The results of this paper
motivate further work utilizing Lyapunov functions
for tracking certain classes of desired, unsteady glider
trajectories that may be approximated by combining
steady gliding motions. Preliminary results of applying
such a tracking methodology for a conventional take-off
and landing (CTOL) aircraft are presented in (Bhatta
& Leonard 2006).

Although the model and framework in this paper are
applicable to a variety of gliders, our motivating appli-
cation is to autonomous underwater gliders. Underwa-
ter gliders are energy-efficient, buoyancy-driven, winged
submersibles that are of great interest for ocean sam-
pling tasks. For instance, a fleet of underwater gliders
was utilized successfully as a mobile sensor network,
gathering data on physical and biological fields in Mon-
terey Bay, California during August 2003 as part of
the Autonomous Ocean Sampling Network II (AOSN-
II) experiment (Fiorelli, Leonard, Bhatta, Paley, Bach-
mayer & Fratantoni 2006, MBARI 2003) and during Au-
gust 2006 as part of the Adaptive Sampling and Predic-

tion (ASAP) experiment (Princeton University 2006).
The Slocum glider (Webb, Simonetti & Jones 2001), the
Spray glider (Sherman, Davis, Owens & Valdes 2001)
and the Seaglider (Eriksen, Osse, Light, Wen, Lehmann,
Sabin, Ballard & Chiodi 2001) are examples of underwa-
ter gliders that operate autonomously. They can spend
several weeks continuously in the water and travel sev-
eral hundreds of kilometers without the need to recharge
batteries. Slocum and Spray gliders were employed in
the AOSN-II and ASAP experiments.

This paper is arranged as follows. In Section 2 we provide
a Hamiltonian description of the phugoid-mode model
of an aircraft. In Section 3 we present a model describ-
ing underwater glider dynamics and nondimensionalize
the equations of motion. We show how other types of
gliders are special cases of the underwater glider. In
Section 4 we apply singular perturbation theory to re-
duce the glider dynamics to the slow (phugoid-mode)
dynamics. In Section 5 we apply the results of (Saberi
& Khalil 1984, Khalil 1987) to construct a composite
Lyapunov function to prove the stability of gliding for
the full dynamics and estimate the region of attraction
provided by the Lyapunov function. In Section 6 we use
a Lyapunov-based approach to design stabilizing con-
trollers for gliders with different control configurations.
Final remarks are given in Section 7.

2 Phugoid-Mode Model: A Hamiltonian De-
scription

In this section we present an integrable, Hamilto-
nian model of longitudinal aircraft dynamics, called
the phugoid-mode model, studied by Lanchester
(Lanchester 1908, von Mises 1959). The Hamiltonian
function of this model is a main ingredient in the com-
posite Lyapunov function that we construct in Section 5
for proving the stability of glider equilibria.

Lanchester developed a simple model of longitudinal air-
craft dynamics by making the following assumptions:

(1) The thrust of the aircraft exactly cancels the drag.
(2) The small moment of inertia of the aircraft and the

large angle of attack coefficient of the aerodynamic
pitching moment cause the fast convergence of the
angle of attack to a constant value.

Under the above assumptions, the equations describing
Lanchester’s phugoid-mode model of an aircraft are

V̇ = −mg sin γ (1)

γ̇ =
1
mV

(
KV 2 −mg cos γ

)
, (2)

where V , γ are the aircraft speed and flight path angle
respectively,m is the aircraft mass, g is the gravitational
acceleration and K is the constant lift coefficient.
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The energy of the aircraft

E =
1
2
mV 2 +mg

∫ t

0

V (τ) sin(γ(τ))dτ

is conserved, since gravity is a conservative external force
and lift, the only other external force always acts per-
pendicular to the aircraft’s velocity. Lanchester further
observed another conserved quantity

C =
(
V

Ve

)
cos γ − 1

3

(
V

Ve

)3

,

where Ve =
√

mg
K is the equilibrium aircraft speed.

Lanchester noted that the value of C, which depends
on initial conditions, determines the type of trajectory
followed by the aircraft: C = 1/3 corresponds to the
equilibrium steady level flight, 0 < C < 1/3 to wavy
flight paths, C = 0 to a singular trajectory with a sharp
cusp and C < 0 to trajectories with loops.

The phugoid-mode equations (1)-(2) can be writ-
ten as canonical Hamilton’s equations in coordinates
q = V cos γ and p = −V sin γ:

q̇ =
∂H

∂p

ṗ = −∂H
∂q

,

where H = 1
3mK

(
p2 + q2

)3/2 − gq = −gVeC.

The slow subsystem of the glider model, derived in Sec-
tion 4 is identical to the above phugoid-mode model, ex-
cept for the presence of drag. Because of drag, C is not a
conserved quantity for the slow subsystem of the glider
dynamics. However, the stability of its equilibria can be
proved using a variant of C as the Lyapunov function.

3 Underwater Glider Model

In this section we present a mathematical model describ-
ing the longitudinal dynamics of an underwater glider.
The longitudinal plane is an invariant plane for under-
water glider dynamics if we assume that the vehicle is
symmetric about the longitudinal axis and neglect lat-
eral disturbances. This kind of assumption is made often
using slender body theory - see (Gertler & Hagen 1967)
for example. Our model is derived from the more general
model studied in (Leonard & Graver 2001, Graver 2005).

We consider an ellipsoidal rigid body with uniformly
distributed mass, fixed wings and tail. The rigid body
experiences forces due to gravity, lift and drag. It also
experiences a hydrodynamic pitching moment. Since we

Fig. 1. Hydrodynamic forces and moment acting on the un-
derwater glider.

consider the motion of the body underwater we also in-
clude buoyancy and added mass effects.

The motion of an underwater glider is controlled by vary-
ing the total vehicle mass (and therefore its buoyancy)
and by redistributing its internal mass. The internal
mass redistribution is modelled using a point mass that
moves within the rigid body, as described in (Leonard
& Graver 2001). In this paper we fix this movable point
mass at the center of buoyancy (CB) of the vehicle, mak-
ing the CB coincident with the center of gravity (CG)
of the vehicle. In Section 6 we consider a control torque
as a proxy for regulation of internal mass position. We
assume a constant buoyancy for deriving the stability
results but consider buoyancy control in Section 6.

A schematic of the underwater glider is shown in Fig. 1.
We fix a frame on the body with axis e1 along the body
1-axis. The axis e2 lies along the body 2-axis, and points
into the page and e3 lies along the body 3-axis in the
longitudinal plane, perpendicular to e1 with its direction
defined by the right hand rule.

The mass of the vehicle plus the added mass in the body-
1 direction is m1 and the vehicle mass plus added mass
in the body-3 direction is m3. Let ∆m = m3 −m1. We
define m0 to be the “heaviness” of the glider, i.e., the
mass of the glider minus the mass of the displaced fluid.
In the case of aircraft and sailplanes, added mass and
buoyancy are negligible so that m1 = m3 = m0 = m,
where m is the mass of the vehicle. We let J2 be the
moment of inertia plus added moment of inertia about
the axis in the e2 direction, passing through the CG of
the glider. The pitch angle is θ, the glide path angle is γ
and the angle of attack is α, where θ = γ + α.

We model lift L, drag D and a hydrodynamic mo-
ment MDL2 as shown in Fig. 1. Lift acts perpendic-
ular to the velocity and drag always acts in the di-
rection opposite to the velocity. The forces depend
on α and longitudinal speed V of the glider relative
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to the surrounding fluid. Following standard empir-
ical studies on airfoils - discussed in (Abbott & von
Doenhoff 1959, McCormick 1979) for example - we
assume that the lift force varies linearly with α, and
that the drag force has a parabolic dependence on α:
L = (KL0 +KLα)V 2, D =

(
KD0 +KDα

2
)
V 2. The

moment is a function of α, V and the pitch rate of the
glider Ω2: MDL2 = (KM0 +KMα+KqΩ2)V 2. The co-
efficients of lift, drag and moment depend on the shape of
the glider and the design of its wings and tail. They can
be estimated using empirical relations, and fine tuned
by system identification (Graver, Bachmayer, Leonard
& Fratantoni 2003). Typically KL0 is zero or a small
positive number, KL, KD0 and KD are positive, KM

and Kq are negative. KM0 can be positive or negative.

Under the above assumptions the equations of motion
of the underwater glider (derived in (Leonard & Graver
2001)) for V > 0, γ, α ∈ S1 are

V̇ = − 1
m3

(m0g sin γ +D) (3)

−∆m cosα
m1m3

{m0g sin θ − L sinα+D cosα

+(m1 +m3)V Ω2 sinα}

γ̇ =
1

m3V
(−m0g cos γ + L) (4)

− ∆m
m1m3V

{(m0g sin θ − L sinα+D cosα) sinα

+
(
m3 sin2 α−m1 cos2 α

)
V Ω2

}
=: E2

α̇ = Ω2 − E2 (5)

Ω̇2 =
1
J2

{
(KM0 +KMα+KqΩ2)V 2 (6)

+∆mV 2 sinα cosα
}
,

where E2 is the right-hand-side of equation (4).

We note that ocean currents do not feature in our model,
because we only consider the motion of the underwater
glider relative to the ocean currents. The length scales
associated with ocean current dynamics are much larger
compared to those relevant to vehicle dynamics. As a re-
sult, in most applications, it is not necessary to consider
ocean currents explicitly in vehicle dynamics. Ocean cur-
rents will be relevant to navigating the vehicle in the
inertial plane. For this purpose it is sufficient to super-
impose the vehicle relative velocity with the estimated
or measured ocean currents.

A steady glide is an isolated equilibrium of the system
described by equations (3)-(6). The equilibrium angular
velocity is Ω2e = 0, and the equilibrium angle of attack
αe is the solution of the nonlinear equation

KM0 +KMαe + ∆m sinαe cosαe = 0. (7)

The equilibrium values of V and γ for the case of ∆m = 0
are

Ve =

 |m0|g√
K2

De
+K2

Le

 1
2

, γe = arctan
−KDe

/m0

KLe/m0
,

where KDe
= KD0 +KDα

2
e, KLe

= KL0 +KLαe.

4 Singular Perturbation Reduction

In this section we reduce the underwater glider dynamics
presented in Section 3 using singular perturbation the-
ory. We also note the connection between the resulting
slow dynamics and the phugoid-mode of aircraft longi-
tudinal dynamics. For clarity of presentation we derive
our results for the case of underwater gliders with equal
added masses, i.e., ∆m = 0. We note an extension of the
results for the case of unequal added masses at the end
of this section.

First we non-dimensionalize the equations of motion
and shift the equilibrium to the origin. We define V̄ =
V −Ve

Ve
, γ̄ = γ − γe, ᾱ = α − αe, Ω̄2 = Kq

KM
Ω2. We

also define two non-dimensional, small parameters ε1 =(
Kq

KM

)
1
τs

and ε2 = −
(

J2
KqV 2

e

)
1
τs

, where τs = m3
KDe Ve

.
The parameters ε1 and ε2 are small positive numbers for
a typical underwater glider (such as the Slocum (Webb
et al. 2001)) i.e., 0 < ε1 � 1, 0 < ε2 � 1.

We define a non-dimensional time variable tn = t/τs
and rewrite the dynamics (3)-(6) in terms of the non-
dimensional state variables:

dV̄

dtn
= − 1

KDe
V 2

e

(m0g sin(γ̄ + γe) +D) (8)

dγ̄

dtn
=

1
KDe

V 2
e (1 + V̄ )

(−m0g cos(γ̄ + γe) + L) (9)

=: Ē2

ε1
dᾱ

dtn
= Ω̄2 − ε1Ē2 (10)

ε2
dΩ̄2

dtn
= −

(
ᾱ+ Ω̄2

) (
1 + V̄

)2
, (11)

where Ē2 is the right-hand-side of equation (9).

In the above equations

D=
(
KD0 +KD(ᾱ+ αe)2

)
V 2

e

(
1 + V̄

)2

L= (KL0 +KL(ᾱ+ αe))V 2
e

(
1 + V̄

)2
.

We define µ = max{ε1, ε2}, as in (Khalil 1987), and as-
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sume that µ
ε1
, µ

ε2
are O(1). 1 It does not matter whether

ε1 is less than, equal to, or greater than ε2.

In the remainder of this paper we consider the dynamics
represented by equations (8)-(11) in a domain defined as
follows: (x, y, εi) ∈ Bx ×By × [0, ε∗i ], where x := (V̄ , γ̄),
y := (ᾱ, Ω̄2), Bx ∈ R2 is a neighborhood of (V̄ , γ̄) =
(0, 0) such that −1 < V̄min < V̄ < V̄max, −π ≤ γ̄ < π,
and By ∈ R2 is a neighborhood of (ᾱ, Ω̄2) = (0, 0) such
that ᾱmin < ᾱ < ᾱmax.

We rewrite equations (8)-(11) in the compact form

dx

dtn
= f(x, y) (12)

µ
dy

dtn
=Ag(x, y, ε) (13)

where, x =

[
V̄

γ̄

]
y =

[
ᾱ

Ω̄2

]
, ε =

[
ε1

ε2

]
,

A =

[
µ
ε1

0

0 µ
ε2

]
, f =

[
f1

f2

]
g =

[
g1

g2

]
.

4.1 Boundary-Layer Model

The boundary-layer model of the underwater glider is
obtained from equation (13) by setting µ to zero, yet
allowing µ dy

dtn
to be nonzero. This is done by writing

equation (13) using a “stretched” time scale τ = tn

µ :

dy

dτ
= Ag(x, y, 0). (14)

In the boundary-layer model we treat x as a fixed pa-
rameter. The following proposition proves uniform (in
x) exponential stability of the origin for the boundary-
layer model.

Proposition 1 The origin is an exponentially stable
equilibrium of the boundary-layer model (14).

Proof This proposition follows by Theorem 4.10 of
(Khalil 2002) if there is a Lyapunov function Ŵ that
satisfies

(1) q3‖y‖2 ≤ Ŵ (x, y) ≤ q4‖y‖2 for some q3, q4 > 0.
(2) ∂Ŵ

∂y Ag(x, y) ≤ −a2σ
2(y) ≤ −b2‖y‖2 where σ(.) is a

positive definite function on R2, that vanishes only
at y = 0, and a2, b2 are positive constants.

1 f1(δ) = O(f2(δ)) if ∃ positive constants k, c such that
|f1(δ)| ≤ k |f2(δ)| ∀ |δ| < c. (Khalil 2002)

Consider the quadratic Lyapunov function

Ŵ =
1
2
yTCW y =

1
2

[
ᾱ Ω̄2

] [
c1 c3

c3 c2

] [
ᾱ

Ω̄2

]

with c1 = r1 + r1a + r2a, c2 = 1 + r1
r2a and c3 = 1,

where a =
(
1 + V̄

)2, r1 = µ
ε1

, r2 = µ
ε2

. The matrix CW is
positive definite because c1 > 0, c1c2−c23 > 0. We satisfy
condition (1) of with q3 and q4 equal to the minimum
and maximum eigenvalues of CW respectively. We also
have

dŴ

dτ
= −r2a

(
ᾱ2 + Ω̄2

2

)
,

thereby satisfying condition (2) with a2 = r2, σ =(
1 + V̄

) √
ᾱ2 + Ω̄2

2 and b2 = a2

(
1 + V̄min

)2. 2

4.2 Reduced Model

The reduced model of the underwater glider is obtained
from equation (12) by setting µ = 0 and assuming the
boundary-layer model to have reached its equilibrium,
the origin:

dx

dtn
= f(x, 0). (15)

For the reduced model (15) to approximate the evolution
of the corresponding states of the full model (12)-(13), its
equilibrium (the origin) has to be exponentially stable.

Proposition 2 The origin is an exponentially stable
equilibrium point of the reduced model (15).

Proof This proposition follows by Theorem 4.10 of
(Khalil 2002) if there is a Lyapunov function Φ that
satisfies

(1) q1‖x‖2 < Φ(x) < q2‖x‖2 for some q1, q2 > 0.
(2) ∂Φ

∂x f(x, 0) ≤ −a1ψ
2(x) ≤ −b1‖x‖2 where ψ(.) is a

scalar positive-definite function of x that vanishes
only at x = 0, and a1, b1 are positive constants.

We note that the reduced model without the drag term
has the same form as Lanchester’s phugoid-mode model
described in Section 2. We use a variant of the conserved
quantity C as the Lyapunov function for proving the
exponential stability of the reduced model:

Φ =
2
3
− (1 + V̄ ) cos(γ̄) +

1
3

(
1 + V̄

)3
.

We note that Φ = 0 and ∇Φ = 0 only at (0, 0), and
the Hessian of Φ at (0, 0) is positive definite. Using the
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power series expansions of cos γ̄ we satisfy condition (1)
with q1 = min[1 + V̄min

3 ,
(

1+V̄min

2

) (
1− π2

12

)
] and q2 =

max[ 1+V̄max

2 , 1 + V̄max

3 ]. We also have

dΦ
dtn

=−
{(
V̄ (V̄ + 2)

)2 + 4(1 + V̄ )2 sin2
( γ̄

2

)}
≤−e2

(
1 + V̄min

)2 (
V̄ 2 + γ̄2

)
where e =

(
1− π2

24

)
> 0. In the above calculation

we have used KDe
V 2

e = −m0g sin γe, and KLe
V 2

e =
m0g cos γe.

Thus, we satisfy the condition (2) with a1 = 1,

ψ =
√

(V̄ 2 + 2V̄ )2 + 4(1 + V̄ )2 sin2
(

γ̄
2

)
and b1 =

a1e
2
(
1 + V̄min

)2. 2

4.3 Reduction of Dynamics

By Propositions 1 and 2 we meet all conditions and as-
sumptions of Theorem 11.2 of (Khalil 2002). Thus we
are able to reduce the full underwater glider dynamics
to the slow, phugoid-mode dynamics. More precisely we
can conclude the following.

Theorem 3 Let RA
y ⊂ By be the region of attraction

of (14) and Λy be a compact subset of RA
y . Let the set

{‖x‖2 ≤ q5}, where q5 > 0, be a compact subset of Bx.
For each compact set Λx ⊂ {‖x‖2 ≤ ρq5, 0 < ρ < 1}
there is a positive constant µ∗ such that for all (V̄0, γ̄0) ∈
Λx, (ᾱ0, Ω̄2,0) ∈ Λy, 0 < µ < µ∗ and tn ∈ [tn,0,∞),

x(tn, µ)− xr(tn) = O(µ)
y(tn, µ)− ŷ(tn/µ) = O(µ)

where xr(tn) and ŷ(τ) are the solutions of the reduced
(15) and boundary-layer (14) systems, respectively.

Proof This theorem follows by applying Theorem 11.2
of (Khalil 2002) to equations (12)-(13). 2

Remark: Theorem 3 proves that Lanchester’s simplifying
assumptions presented in Section 2 are valid if ε1 and ε2
for the aircraft are sufficiently small.

4.4 Reduction of Dynamics for Unequal Added Masses

Singular perturbation reduction of underwater glider dy-
namics in the case of unequal added masses presents
additional technical difficulties due to presence of Ω2

in the V , γ dynamics (equations (3)-(4)). Recall that

Ω̄2 = Kq

KM
Ω2. As in the case of equal added masses, the

reduced model is derived by setting the states of the
boundary-layer model to their equilibrium values, i.e.
Ω̄2 = 0, ᾱ = 0, and setting µ = 0. But Ω̄2 = 0 and
µ = 0 do not necessarily imply Ω2 = Ω̄2

τsε1
= Ω̄2r1

τsµ = 0.
However, ᾱ = 0 implies Ω2 = γ̇ = 1

τs

dγ̄
dtn

. Thus, the re-
duced model is obtained from equations (3)-(4) by set-
ting Ω2 = 1

τs

dγ̄
dtn

, α = αe and θ = γ̄ + γe + αe and then
solving for dV̄

dtn
and dγ̄

dtn
. The exponential stability of the

equilibria for the boundary-layer and reduced models
can be proven for a small enough ∆m. This allows the
reduction of underwater glider dynamics to the reduced
model, as in the case of equal added masses. The proofs
are omitted for the sake of brevity.

5 Composite Lyapunov Function for Proving
Gliding Stability

Stability of the boundary-layer and reduced models
guarantees the local stability of the equilibrium of the
full dynamics. Furthermore we can construct a compos-
ite Lyapunov function for the full dynamics using the
methods of (Saberi & Khalil 1984, Khalil 1987). The
Lyapunov function allows us to calculate estimates of
the region of attraction for the equilibrium of the full
glider dynamics.

Theorem 4 The origin of the singularly perturbed sys-
tem (12)-(13) is an asymptotically stable equilibrium
point for sufficiently small εi. Moreover,

ν = (1− d)
{

2
3
− (1 + V̄ ) cos(γ̄) +

1
3

(
1 + V̄

)3
}

+
d

2

[{
r1 +

(
1 + V̄

)2 (r1 + r2)
}
ᾱ2

+

{
1 +

r1

r2
(
1 + V̄

)2

}
Ω̄2

2 + 2ᾱΩ̄2

]
, (16)

where 0 < d < 1, is a Lyapunov function candidate for
proving the asymptotic stability of the the origin of (12)-
(13).

Proof Note that the origin is the unique equilibrium
of (12)-(13) in the neighborhood Bx × By, and ybe = 0
is the unique equilibrium for the boundary-layer system
(14). Suppose Propositions 1 and 2 hold. Then, the proof
follows from Theorem 1 of (Khalil 1987) if the following
inteconnection conditions hold:

(1) ∂Φ
∂x [f(x, y)− f(x, 0)] ≤ β1ψ(x)σ(y) + µγ1ψ

2(x)
(2) ∂Ŵ

∂y A [g(x, y, ε)− g(x, y, 0)]

≤ µ
(
γ
′

2σ
2(y) + β

′

2ψ(x)σ(y)
)
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(3)
∣∣∣∂Ŵ

∂x f(x, y)
∣∣∣ ≤ γ

′′

2 σ
2(y) + β

′′

2 ψ(x)σ(y)

where β1, β
′

2, β
′′

2 , γ1, γ
′

2, γ
′′

2 are nonnegative con-
stants. The derivation of the coefficients in the in-
terconnection conditions, satisfied for the underwater
glider model with equal added masses, is outlined in
Appendix A.

Thus, the origin is an asymptotically stable equilibrium
of (12)-(13) for all 0 < εi < min{µ∗, ε∗i } where µ∗ =

a1a2
a1γ2+a2γ1+β1β2

, β2 = β
′

2 + β
′′

2 , γ2 = γ
′

2 + γ
′′

2 . For ev-
ery 0 < d < 1, ν given by equation (16) is a Lya-
punov function for all 0 < εi < min{µd, ε

∗
i }, where

µd = a1a2
a1γ2+a2γ1+

1
4(1−d)d

[(1−d)β1+dβ2]
2 . 2

Note that the proof of Theorem 4 makes explicit the
bound on ε1 over which the origin is asymptotically sta-
ble and the Lyapunov function ν proves stability.

5.1 Region of Attraction

Following (Saberi & Khalil 1984), if LR = {
(
V̄ , γ̄

)
∈

Bx |Φ ≤ v0} is in the region of attraction of the reduced
system and LB = {

(
V̄ , γ̄, ᾱ, Ω̄2

)
∈ Bx×By |Ŵ ≤ w0} is

in the region of attraction of the boundary-layer system,
then d = v0

v0+w0
yields the largest estimate of the region

of attraction, L∗, provided by the Lyapunov function ν:

L∗ =
{(
V̄ , γ̄, ᾱ, Ω̄2

)
∈ Bx ×By

∣∣∣∣ ν ≤ v0w0

v0 + w0

}
.

6 Lyapunov-Based Control Design

In this section we provide three examples of designing
control for vehicles with lift and drag, using the Lya-
punov functions presented in this paper.

6.1 Pure Torque Control for a Glider With Equal Added
Masses

We consider a winged underwater vehicle with equal
added masses, equipped with pitching moment control.
The pitching moment control can be realized by the mo-
tion of an internal mass or by the use of an elevator.
Both control methods induce additional dynamics that
we ignore here. We model the pitching moment control
as a pure torque. In Subsection 6.3 we consider pitching
moment control using an elevator and include additional
dynamics due to moment-to-force coupling.

The corresponding equations of motion of the vehicle are

V̇ =− 1
m3

(m0g sin γ +D)

γ̇ =
1
m3

(−m0g cos γ + L)

α̇= Ω2 −
1
m3

(−m0g cos γ + L)

Ω̇2 =
1
J2

(KM0 +KMα+KqΩ2)V 2 + u.

We can choose u to modify the closed-loop equilibrium
angle of attack αe and parameters ε1, ε2 in order to
change the equilibrium speed Ve and flight path angle γe.
We recall from Section 3 that αe affects both Ve and γe.
Thus, we cannot change Ve and γe independently using
pure torque control. However, we can choose u such that
we reach a desired closed-loop Ve or γe as well as set
the region of attraction of the resulting steady glide to
desired limits. If we set

u =
1
J2

(KM0u +KMuα+KquΩ2)V 2 (17)

we achieve the following parameters for the closed-loop
system: αe = KM0+KM0u

KM+KMu
, ε1 = m3

KDe Ve

(Kq+Kqu)
(KM+KMu) and

ε2 = m3
KDe V 3

e

J2
(Kq+Kqu) , where Ve denotes the closed-loop

equilibrium speed. Clearly we can select control gains
Kqu andKMu to obtain small enough ε1 and ε2. We note
that µ = max{ε1, ε2} directly affects the size of the re-
gion of attraction. A smaller µ provides a larger region of
attraction. We also note that we can select control gain
KM0u after selectingKMu andKqu to achieve any desir-
able closed-loop αe, which is determined by the desired
Ve or αe.

In order to simplify the adjustment of closed-loop region
of attraction we can choose the control gains such that
ε1/ε2 remains unaffected. This can be done by imposing
the following constraint between KMu and Kqu;

(Kq +Kqu)2

(KM +KMu)
V 2

e =
K2

q

KM
V 2

e,ol, (18)

where Ve,ol is the open-loop equilibrium speed. This con-
straint ensures invariance of r1 and r2 to changes in the
control gains. This way µd, which is a function of r1 and
r2, also remains unaffected by the control gains and will
depend only on Bx and By that are determined by the
desired region of attraction. Then, given a desired region
of attraction, we can select Kqu and KMu (bounded by
the constraint given by equation (18)) such that µ < µd.

The discussion of this subsection is summarized by the
following corollary:

Corollary 5 The pure torque control law (17) stabilizes
the glider to a closed-loop equilibrium with a desired glider
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speed or a desired flight path angle. Furthermore, the co-
efficients of the control law can be adjusted to provide
desired region of attraction guarantees.

6.2 Buoyancy Control for an Underwater Glider

Underwater gliders are equipped with mechanisms for
changing their buoyancy. In this subsection we use buoy-
ancy control for adjusting the desired equilibrium speed
of the underwater glider.

Given a desired equilibrium speed Ve we determine the
corresponding equilibrium buoyancy m0e as

m0e = ±

√
K2

De
+K2

Le
V 2

e

g
, (19)

where the sign ofm0e is determined by γe.m0e is positive
for negative γe and vice-versa.

The buoyancy control is modelled as follows:

dm̄0

dtn
= u, (20)

where m̄0 = m0−m0e

me
and me is the total equilibrium

mass of the glider. Extensions of our results to more
complex buoyancy control models should be straightfor-
ward.

We choose the control law

u = −Kbm̄0, (21)

Kb a scalar control gain, which is positive.

Equations (3)-(6) (with ∆m = 0) along with equation
(20) describe the (somewhat idealized) dynamics of the
underwater glider with changing buoyancy and equal
added masses. Using the Lyapunov function

νb = ν +
1
2
m̄2

0, (22)

where ν is the composite Lyapunov function derived for
the constant buoyancy case in Section 5, we can prove
the following:

Corollary 6 The control law (21) renders the closed-
loop equilibrium corresponding to a desired glider speed
Ve locally asymptotically stable for all

Kb >
1
2

(
meg

KDeV
2
e

)2

. (23)

A sketch of the proof of the above result follows.

6.2.1 Lyapunov Function for a Buoyancy Controlled
Underwater Glider

Just like for an underwater glider with constant buoy-
ancy, we first non-dimensionalize the equations of mo-
tion such that the desired steady glide corresponds to the
origin. The boundary-layer model is identically equal to
the model represented by equation (14) and the proof of
its stability follows from Proposition 1. The reduced sys-
tem is given by equation (15) along with equation (20).
We consider the Lyapunov function νb given by equation
(22). The derivative of νb is

dνb

dtn
=

dν

dtn
+

1
2
dm̄2

0

dtn
.

We calculate

dν

dtn
=−

(
A2 +B2

)
− mem̄0g

KDeV
2
e

{
A sin (γ̄ + γe)

−B cos (γ̄ + γe)
}
, (24)

where A =
(
1 + V̄

)2− cos γ̄ and B = sin γ̄. We consider
the initial value of |m̄0| to be less than some positive
number η. Then |m̄0(t)| ≤ η ∀ t ≥ 0. We derive

−mem̄0g

KDeV
2
e

{A sin (γ̄ + γe)−B cos (γ̄ + γe)}

≤ megη
√
A2 +B2

KDe
V 2

e

. (25)

We have

1
2
dm̄2

0

dtn
= −Kbm̄

2
0. (26)

Substituting relations (25)-(26) in equation (24) we find

dνb

dtn
≤ meg|m0|

√
A2 +B2

KDe
V 2

e

−
(
A2 +B2

)
−Kb|m0|2.(27)

Since(
meg

KDeV
2
e

)
|m0|

√
A2 +B2 ≤ 1

2
(c2wd|m0|2 +

(
A2 +B2

)
,

where cwd = meg
KDe V 2

e
, we can compute the following from

inequality (27):

dνb

dtn
≤−1

2
(
A2 +B2

)
−

(
Kb −

cwd

2

)
|m0|2.

We note that

A2 +B2 =
{(
V̄ (V̄ + 2)

)2 + 4(1 + V̄ )2 sin2
( γ̄

2

)}
.
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Using relation (16), we can conclude that, ifKb > c2wd/2,
then

dνb

dtn
≤−min

(
e2

(
1 + V̄min

)2
,Kb − (cwd/2)

)
·(

V̄ 2 + γ̄2 + m̄2
0

)
.

Furthermore dνb

dtn
= 0 only at equilibrium. Thus, we can

conclude the exponential stability of the origin of the
reduced system.

The interconnection conditions hold since the vector
field describing our system is bounded. We omit the cal-
culation of the coefficients pertaining to the intercon-
nection conditions for the sake of brevity. We note that
for a given set of underwater glider parameters we can
always choose a small enough Bx and By where the in-
terconnection conditions are satisfied.

Now, invoking the result of Theorem 4 we conclude local
asymptotic stability of the desired equilibrium for the
buoyancy controlled underwater glider.

6.3 Elevator Control for an Underwater Glider in the
Presence of Moment-to-Force Coupling

In this subsection we consider an underwater glider
equipped with buoyancy control as well as an eleva-
tor that controls the pitching moment. The elevator is
modeled as changing the effective angle of attack of the
underwater glider by an amount u2. We also consider
a coupling factor δ that describes an additional force
induced by elevator action. This force is given by δu2V

2

and it acts along the 3-axis of the underwater glider as
shown in Fig. 2. We note that this model of pitching
moment control is similar to the model presented in
(Tomlin et al. 1995, Al-Hiddabi & McClamroch 1999)
for a Conventional Takeoff and Landing Aircraft.

The non-dimensionalized equations of motion describ-
ing the dynamics of the underwater glider having equal
added masses with buoyancy and elevator controls are

dV̄

dtn
= − 1

KDe
V 2

e

{m0g sin(γ̄ + γe) +D

− f sin (ᾱ+ αe)} (28)
dγ̄

dtn
=

1
KDe

V 2
e (1 + V̄ )

{−m0g cos(γ̄ + γe) + L

+ f cos (ᾱ+ αe)} =: Ē
′

2 (29)
dm̄0

dtn
= u1, (30)

ε1
dᾱ

dtn
= Ω̄2 − ε1Ē

′

2 (31)

ε2
dΩ̄2

dtn
= −

(
ᾱ+ Ω̄2 − ū2

) (
1 + V̄

)2
, (32)

Fig. 2. All external forces and moments acting on underwater
glider. Forces D and L are the hydrodynamic lift and drag.
MDL,cl = MDL +KMu2V

2 is the closed-loop hydrodynamic
pitching moment, δu2V

2 is the elevator induced force, and
m0g is the net force due to gravity.

where Ē
′

2 is the right-hand-side of equation (29), f =
δu2V

2
e (1+V̄ )2, ū2 = u2−u2e; u2e being a reference value

of u2. Since we are interested in steady motions we take
u2e to be the equilibrium value of u2. We further note
that in the presence of elevator control the equilibrium
angle of attack is αe = −KM0

KM
+ u2e.

Given a desired steady speed and flight path angle we
first calculate the corresponding equilibrium buoyancy
and angle of attack from the translational dynamics
(equations (28)-(29)). Then we choose

u1 =−Km̄0 (33)
u2 = u2e. (34)

Corollary 7 The control law (33)-(34) provides an
asymptotically stable, desired steady glide if the effective
equilibrium drag constant

K
′

De
= KD0 +KDα

2
e − δu2eV

2
e sinαe > 0, (35)

and Kb satisfies the inequality (23).

A sketch of the proof of the above result is given in
Subsection 6.3.1. We note that the condition (35) holds
provided the coupling factor δ is small enough and/or the
elevator control is small enough. For nominal parameter
values (35) holds for a wide range of desired equilibria.

6.3.1 Lyapunov Function for an Underwater Glider
with Buoyancy and Elevator Controls

We note that since u2 = u2e, ū2 = 0. Now, the boundary-
layer model is identically equal to the model represented
by equation (14) and the proof of its stability follows
from Proposition 1.
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The equations describing the reduced model are

dV̄

dtn
=− 1

KDe
V 2

e

{(m̄0 +m0e) g sin (γ̄ + γe)

+ K
′

De

(
1 + V̄

)2
}

dγ̄

dtn
=

1

KDe
V 2

e

(
1 + V̄

)2 {− (m̄0 +m0e) g cos (γ̄ + γe)

+ K
′

Le

(
1 + V̄

)2
}

dm̄0

dtn
=−Kbm̄0,

where K
′

De
= KD0 +KDα

2
e − δu2eV

2
e sinαe and K

′

Le
=

KL0+KLαe+δu2eV
2
e cosαe are the effective drag and lift

coefficients respectively. The above equations are iden-
tical to the equations of the reduced model considered
in Section 6.2.1, except that we now have K

′

De
and K

′

Le

instead of KDe and KLe . Thus, the proof of the sta-
bility of the equilibrium of the reduced system follows.
However, we need to ensure that K

′

De
> 0. Recall that

while non-dimensionalizing the equations of motion in
Section 4 we defined tn = t/τs where τs = m3

KDe Ve
. For

the present problem we use τs = m3

K
′
De

Ve
. We need K

′

De

to be greater than zero so that the non-dimensional time
tn always has the same sign as t. Then stability of the
system with respect to the time variable tn would imply
stability with respect to t. Thus, condition (35) along
with condition (23) ensures the stability of the equilib-
rium of the reduced system.

The interconnection conditions hold since the vector
field describing our system is bounded, as discussed in
Section 6.2.1. Thus we can invoke the result of Theo-
rem 4 to conclude local asymptotic stability of the de-
sired equilibrium for the underwater glider with buoy-
ancy and elevator controls.

6.3.2 Numerical Example

We illustrate the stability of the closed-loop system by
way of a numerical simulation for an underwater glider
with the following parameters: m = m1 −m0 = m3 −
m0 = 28 kg, J2 = 0.1 kgm2, KL0 = 0 N(s/m)2, KL =
300 N(s/m)2, KD0 = 10 N(s/m)2, KD = 100 N(s/m)2,
Kq = −5 Nms(s/m)2, KM0 = 1 Nm(s/m)2, KM = −40
Nm(s/m)2, δ = 0.3. The goal is to stabilize the glider to
an equilibrium speed Ve = 1 m/s and a flight path angle
γe = -45o. This corresponds to an equilibrium angle of
attack αe = 1.93o, buoyancy m0e = 1.460 kg, calculated
using equation (19) and equation (7). The time-scaling
parameters are ε1 = 0.0429, ε2 = 0.0069. Figure 3 shows
the motion of the glider in the longitudinal plane and
the evolution of the system states for 20 s.
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Fig. 3. Elevator control simulation

7 Final Remarks

In this paper we have derived a Lyapunov function to
prove the stability of steady glides for vehicles in air or
the water, subject to aerodynamic forcing. A key ingre-
dient is the conservation law derived by Lanchester in his
original analysis of the aircraft phugoid mode model. We
have also presented a Lyapunov-based approach to de-
rive stabilizing control laws for underwater gliders with
different control configurations. Future work will focus
on extending this approach to vehicles with greater de-
grees of control actuation, as well as utilizing the results
presented here in designing control laws for tracking de-
sired position trajectories.
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A Interconnection Conditions

In this section we calculate the coefficients of the inter-
connection conditions of the proof of Theorem 4 for the
underwater glider model (8)-(11) restricted to (x, y, εi) ∈
Bx × By × [0, ε∗i ], where Bx ∈ R2 is a neighborhood of
(V̄ , γ̄) = (0, 0) such that −1 < V̄min < V̄ < V̄max, −π ≤
γ̄ < π, andBy ∈ R2 is a neighborhood of (ᾱ, Ω̄2) = (0, 0)
such that ᾱmin < ᾱ < ᾱmax.

A.1 Condition (1)

We denote the left hand side of this condition by C1. We
calculate

C1 =
1

KDe

[
KD

{
(ᾱ+ αe)

2 − α2
e

}{(
1 + V̄

)2 − cos(γ̄)
}

+ KLᾱ sin γ̄

] (
1 + V̄

)2

≤ 1
KDe

[
KD

{
(|ᾱ|max + 2|αe|)

(
1 + V̄

)
|ᾱ|

}
×

{(
1 + V̄

) ∣∣∣V̄ 2 + 2V̄ + 2 sin2(
γ̄

2
)
∣∣∣}

+ KL

(
1 + V̄

)
|ᾱ|

∣∣∣(1 + V̄
)
2 sin(

γ̄

2
)
∣∣∣ ]
,(A.1)

where |ᾱ|max = max{−ᾱmin, ᾱmax}. We observe that
0 ≤

(
1 + V̄

)
|ᾱ| ≤

(
1 + V̄

) √
ᾱ2 + Ω̄2

2 = σ. Further-
more, by straightforward computation one can see that(
1 + V̄

) ∣∣V̄ 2 + 2V̄ + 2 sin2( γ̄
2 )

∣∣ ≤ (
1 + (

√
2 + 1)V̄max

)
ψ,

and that
∣∣(1 + V̄

)
2 sin( γ̄

2 )
∣∣ ≤ ψ.

Using the above results in (A.1), we find that C1 ≤
1

KDe

[
KD (|ᾱ|max + 2|αe|)

(
1 + (

√
2 + 1)V̄max

)
+KL

]
σψ

= β1σψ + µγ1ψ
2, with γ1 = 0 and β1 = 1

KDe

[
KL +

KD (|ᾱ|max + 2|αe|)
(
1 + (

√
2 + 1)V̄max

)]
.

A.2 Condition (2)

We denote the left hand side of this condition by C2. We
calculate

C2 =
µ

(
c1ᾱ+ c3Ω̄2

)
KDe

V 2
e

(
1 + V̄

){
m0g cos(γ̄ + γe)

− (KL0 +KL(ᾱ+ αe))V 2
e

(
1 + V̄

)2
}
.

Using the fact that m0g cos γe = KLe
V 2

e , we find

C2 = −p1s1Ω̄2 − p2ᾱΩ̄2 − p3s1ᾱ− p4ᾱ
2,
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where p1 = µ

(1+V̄ )

(
KLe

KDe cos γe

)
, p2 =

µKL(1+V̄ )
KDe

> 0,

p3 = p1

{
r1 + (r1 + r2)

(
1 + V̄

)2
}

, p4 = p2p3
p1

> 0, s1 =(
V̄ 2 + 2V̄

)
cos γe+2 sin γ̄

2 sin
(

γ̄+γe

2

)
. Since the last term

in the expression of C2 is nonpositive, we can write

C2 ≤ |p1||s1|
∣∣Ω̄2

∣∣ + p2 |ᾱ|
∣∣Ω̄2

∣∣ + |p3||s1| |ᾱ| . (A.2)

We closely examine |s1|: |s1| ≤
∣∣(V̄ 2 + 2V̄

)∣∣ +
2

∣∣sin γ̄
2

∣∣ = s11 + s21, where s11 =
∣∣(V̄ 2 + 2V̄

)∣∣ +
2

(
1 + V̄

) ∣∣sin γ̄
2

∣∣ and s21 = −2V̄
∣∣sin γ̄

2

∣∣. We can
easily calculate that s11 ≤

√
2ψ. We have s21 ≤

2
∣∣V̄ ∣∣ ∣∣sin γ̄

2

∣∣ = 1

(1+V̄ ) |V̄ |
∣∣(1 + V̄

)
2 sin γ̄

2

∣∣ ≤ |V̄ |
(1+V̄ )ψ.

Thus, |s1| ≤
√

2ψ + |V̄ |
(1+V̄ )ψ. We also have p2 |ᾱ|

∣∣Ω̄2

∣∣ =

p2

(1+V̄ )
(
1 + V̄

)
|ᾱ|

∣∣Ω̄2

∣∣ ≤ p2

2(1+V̄ )
(
1 + V̄

) [
|ᾱ|2 +

∣∣Ω̄2

∣∣2] =
p2

2(1+V̄ )σ
2. Moreover, |ᾱ| = 1

(1+V̄ )
(
1 + V̄

)√
ᾱ2 ≤

1

(1+V̄ )σ. Similarly
∣∣Ω̄2

∣∣ ≤ 1

(1+V̄ )σ.

Substituting the above results and the expressions for
|p1|, |p3| in (A.2) we get

C2 ≤
µ|KLe

|
KDe

| cos (γe) |

{
√

2 +
|V̄ |(

1 + V̄
)}

×

{
(1 + r1)(
1 + V̄

)2 + r1 + r2

}
σψ +

µKL

2KDe

σ2

≤ µβ
′

2ψσ + µγ
′

2σ
2,

with β
′

2 = |KLe |
KDe | cos(γe)|

{√
2 + |V̄ |max

(1+V̄min)

}
×

{
(1+r1)

(1+V̄min)2 + r1 + r2

}
, γ

′

2 = KL

2KDe
; |V̄ |max =

max{−V̄min, V̄max}.

A.3 Condition (3)

We denote the left hand side of this condition by C3. We
calculate

C3 =

∣∣∣∣∣
{
KD (ᾱ+ 2αe) ᾱV 2

e(
1 + V̄

) +
m0g (sin γ − sin γe)(

1 + V̄
)3

+
KDeV

2
e

(
V̄ 2 + 2V̄

)(
1 + V̄

)3

}
r1Ω̄2

2

r2

−
{
KD (ᾱ+ 2αe) ᾱV 2

e

(
1 + V̄

)2 +KDe
V 2

e

(
V̄ 2 + 2V̄

)
+ m0g (sin γ − sin γe)

} (
1 + V̄

)
(r1 + r2) ᾱ2

∣∣∣∣∣ 1
KDeV

2
e

≤

[{
KD

(
ᾱ2 + 2ᾱαe

)
max

V 2
e(

1 + V̄min

) +
2 |m0g|(

1 + V̄min

)3

}
r1Ω̄2

2

r2

+(r1 + r2)
{
KD

(
ᾱ2 + 2ᾱαe

)
max

V 2
e

(
1 + V̄max

)2

+ 2 |m0g|
} (

1 + V̄max

)
ᾱ2

]
1

KDe
V 2

e

≤ β
′′

2 ψσ + γ
′′

2 σ
2,

with γ
′′

2 = 1
KDe V 2

e
max

[{
2|m0g|

(1+Vmin)3
+

KDe V 2
e (V̄ 2+2V̄ )

(1+V̄min)3

+
KD(ᾱ2+2ᾱαe)

max
V 2

e

(1+V̄min)

}
,

{
2|m0g|+KDeV

2
e

(
V̄ 2 + 2V̄

)
max

+KD

(
ᾱ2 + 2ᾱαe

)
max

(
1 + V̄max

)2
V 2

e

}(
1 + V̄max

)]
and β

′′

2 = 0; (ᾱ2 + 2ᾱαe)max is the maximum value
of (ᾱ2 + 2ᾱαe) in By. In the first inequality of the
above calculation we have made use of the fact that
| sin γ − sin γe| ≤ 2.
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