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Abstract Social animals can gather information by observ-
ing the other members of their groups. Strategies for gather-
ing this type of social information have many components.
In particular, an animal can vary the number of other ani-
mals it observes. European starlings (Sturnus vulgaris) in
flight pay attention to a number of neighbors that allows
the flock to reach consensus quickly and robustly. The birds
may do this because being in such a flock confers benefits
on its members, or the birds may use the strategy that is indi-
vidually beneficial without regard for the flock’s structure.
To understand when individual-level optimization results
in a group-level optimum, we develop a model of animals
gathering social information about environmental cues,
where the cue can be about either predators or resources,
and we analyze two processes through which the number of
neighbors changes over time. We then identify the number of
neighbors the birds use when the two dynamics reach equi-
librium. First, we find that the equilibrium number of neigh-
bors is much lower when the birds are learning about the
presence of resources rather than predators. Second, when
the information is about the presence of predators, we find
that the equilibrium number of neighbors increases as the
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information becomes more widespread. Third, we find that
an optimization process converges on strategies that allow
the flock to reach consensus when the information is about
the presence of abundant resources, but not when it is about
the presence of scarce resources or predators.
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Information · Robustness · Social

Introduction

In animal social groups, what is best for the group is not
always what is best for any given animal. One of the chal-
lenges of evolutionary theory is to understand when and
why an animal contributes to the good of its social group
when that behavior is costly. The persistence of cooperation,
for instance, is puzzling when an individual has an incen-
tive to avoid paying the costs associated with cooperative
behavior. The use of social information in animal groups is
another such puzzle. If a group can reach consensus about
where to go and what to do at any particular moment, its
members can experience safety in numbers (Landeau and
Terborgh 1986; Molvar and Bowyer 1994) and greater for-
aging efficiency (Sullivan 1984; Berger 1978; Pitcher et al.
1982), among other benefits. However, reaching consensus
may require that each animal sacrifice its own ability to
explore or to move in its preferred direction. In this paper,
we build and analyze a mathematical model of a group
of animals using social information to study how the con-
flict between the group’s ability to reach consensus and the
individuals’ efforts to learn about the environment can be
reconciled.

Animals observe their surroundings and use that direct
personal information to decide where to go next. Animals
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in groups can also use the inadvertent social information
(sensu, Dall et al. 2005; Danchin et al. 2004) produced
by the movement of their peers when making these deci-
sions. Animals have been shown to be influenced by the
movements of their group-mates in species of many taxo-
nomic groups, including fish (Katz et al. 2011; Strandburg-
Peshkin et al. 2013), birds (Bialek et al. 2012; Bialek
et al. 2014; Cavagna et al. 2009; Porter and Sealy 1982;
Weimerskirch et al. 2010), bats (Dechmann et al. 2009),
and primates (Strandburg-Peshkin et al. 2015). Groups of
animals responding to each other’s behavior can produce
spectacular collective dynamics, like the well-known exam-
ples of starling murmurations and sardine schools. Infor-
mation about both the location of food (Porter and Sealy
1982; Strandburg-Peshkin et al. 2013; Weimerskirch et al.
2010) and the presence of predators (Attanasi et al. 2014;
Powell 1974; Rosenthal et al. 2015) can spread through
such groups, even when only a few members have direct
personal information. If the members of a population are all
gathering inadvertent social information from their peers,
an animals’s strategy for choosing whom to learn from can
also affect the animals who learn from it. This makes social-
information use interesting from an evolutionary perspec-
tive because, rather than there being a universally optimal
strategy, the optimal strategy depends on the social context
set by what the rest of the group is doing.

In large schools of fish and flocks of birds, there are
probably simple rules, based on spatial proximity, that deter-
mine from whom an animal gathers information. An animal
might only pay attention to others within some distance
of itself (within a “metric” neighborhood around itself), it
might pay attention to a fixed number of animals (within
a “topological” neighborhood), or it might use a combina-
tion of these strategies, for example by paying attention to
a fixed number of animals provided they are within some
distance. Scientists have used the alignment or correlation
between the velocities of animals in moving groups to study
which of these rules, if either, determine to whom an ani-
mal pays attention. A metric rule successfully describes
the schooling dynamics of golden shiners (Notemigonus
crysoleucas) (Katz et al. 2011), although taking the visual
field into account improves predictions of how information
spreads across schools of these fish (Strandburg-Peshkin
et al. 2013). Surf scoters (Melanitta perspicillata) also seem
to flock using metric rules (Lukeman et al. 2010). Flocks of
European starlings (Sturnus vulgaris) have been described
using both metric (Bode et al. 2010) and topological rules
(Ballerini et al. 2008; Bialek et al. 2012). Among scientists
using topological rules to describe starling flocks, Ballerini
et al. (2008) found that starlings pay attention to their six or
seven nearest neighbors, while Bialek et al. (2012) argued
that ten is the maximum-likelihood estimate of the number
of neighbors the birds use.

If a topological rule determines how starlings gather
information, the number of neighbors to which a bird pays
attention affects the information it gathers. It also affects
the flock’s ability to reach consensus. Two measures of this
ability have been applied to data collected from starling
flocks in flight. One, called H2 robustness, describes how
close to consensus the birds in a flock can stay, despite
errors and noise. Young et al. (2013) used the positions of
starlings in several flocks to construct interaction networks
using various numbers of nearest neighbors. They found
that the networks constructed using seven nearest neigh-
bors had the highest robustness, which matches the number
Ballerini et al. (2008) argued the birds are actually using.
The other measure of a flock’s ability to reach consensus
is its correlation length, a concept borrowed from statisti-
cal mechanics. Roughly, the correlation length of a flock is
the distance at which birds’ opinions are uncorrelated. The
correlation length of starling flocks scales linearly with the
number of birds in the flock, which suggests that the flocks
are close to criticality (Cavagna et al. 2009; Bialek et al.
2014). Criticality can enable a system to respond optimally
to changes in the environment: not so slowly as to never
respond, nor so quickly as to be unstable (Bak et al. 1988).
This is another piece of evidence that starlings construct
interaction networks with optimal structure.

There are two possible explanations for the observations
that flying starlings construct interaction networks that both
maximize robustness and exhibit criticality. The first is that
these group-level properties provide direct benefits to the
birds, and that, through either evolution or some learn-
ing process, the birds acquire strategies that optimize these
properties. The second is that a bird uses the strategy that
optimizes its own ability to gather information from its
peers, and that optimal group-level properties emerge as a
consequence of this individual-level optimization. Here, we
analyze an evolutionary model of social-information use in
starling flocks, in order to study (1) how the evolution of
the number of neighbors the birds pay attention to depends
on whether the birds are trying to gather information about
predators or resources and (2) whether the strategies that
evolve promote or diminish the performance of the flock
as a whole. While starlings surely gather inadvertent social
information while resting and foraging, we focus on their
time spent flying, as this is the behavior that was ana-
lyzed in the studies we summarized above. Our model was
inspired by starling flocks, but it is general enough that
our results should apply to other species in which topolog-
ical rules determine their collective dynamics. While there
are many models of the evolution of social-information use,
few, to our knowledge, compare information about differ-
ent facets of the environment (in our case, predators and
resources). Additionally, while some models of the evolu-
tion of social-information use consider the weight given
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to social information (as opposed to personal information)
(e.g., Pais and Leonard 2014; Shaw and Couzin 2013;
Torney et al. 2015), none to our knowledge consider the
evolution of the number of neighbors in a topological inter-
action network. Finally, our work considers two group-level
properties that have not previously been studied together.

Model

How information about a cue spreads

Each bird has an opinion about the environment, which it
changes based on observations of other members of the
flock. Periodically, an environmental cue appears: there is
either a predator that should be avoided or resources that
should be consumed. This can happen because a preda-
tor approaches the flock, because new resources appear, or
because the flock moves to a new area in which either preda-
tors or resources are present. We assume that the cues appear
relatively rarely compared to the timescale on which the
birds in a flock move and rearrange themselves. The envi-
ronment and the type of cue will affect how many members
of the flock perceive the cue. For example, if the flock is fly-
ing through a dense city and a small hawk approaches, only
a few starlings may notice. On the other hand, if the flock is
flying over an open field covered in corn, all of the birds will
perceive that there is food to be had. The birds that perceive
the cue change their opinions based on the information they
receive, while continuing to pay attention to other birds in
the flock.

Specifically, when a cue appears, we assign all birds a
new position by drawing positions randomly from the unit
square. Each bird has an opinion about the environment that
can take any real value, vi ∈ [0, 1]. (Table 1 lists the vari-
ables used in the text.) A bird’s opinion can be interpreted
as its direction of flight and having an opinion equal to 1
can be interpreted as responding correctly to the cue, i.e.,
flying directly away from a predator or toward resources.
Each bird i observes the ki birds nearest to it, which form
i’s neighborhood Ni . To determine which birds perceive the
cue, we pick a focal bird at random. Then, all birds within
a radius r of the focal bird perceive the cue. If a bird does
not perceive the cue, it changes its opinion to be close to the
average opinion of its neighbors:

dvi

dt
= 1

ki

∑

j∈Ni

(vj − vi).

If a bird perceives the cue, it also changes its opinion to be
close to 1:

dvi

dt
= 1

ki

∑

j∈Ni

(vj − vi) + b(1 − vi),

Table 1 Table of matrices and variables used in the text

A weighted adjacency matrix Aij =
{

1
ki

if j ∈ Ni

0 otherwise

B diagonal cue matrix Bii =
{

b if i perceives cue

0 otherwise

In n × n identity matrix

λ correlation length

L negative of Laplacian w/o cue L = A − I

Ls negative of Laplacian w/ cue Ls = L − B

M interaction matrix

M̄ M rotated away from consensus M̄ = QMQT

M̃ M rotated into consensus basis M̃ = RMRT

P symmetrized version of L Pij =
{

Sij for j �= i

− ∑
k Sik for j = i

Ps symmetrized version of Ls Ps = P − B

Q QT Q projects away from 1 Q ∈ R
(N−1)×N, Q1 = 0

R rotation matrix R ∈ R
N×N , R =

(
Q
1√
N
1T

)

ρ H2 robustness y = Qv, ρ = limt→∞ 1√
E[||y||2]

ρ̄ average ρ

S symmetrized version of A S = 1
2 (A + AT )

v opinion vector

where b is a parameter that describes the importance of the
environmental cue. An example of these opinion dynamics
is shown in Fig. 1.

The flock will eventually reach consensus with every
vi = 1, as long as there is a path in the network from every
node to at least one node that perceives the cue (Pais and
Leonard 2014). In the Appendix A.2, we show that, if bird i

does not perceive the cue, then

vi(t) ≈ vi(0) + bpit
2

2
,

where pi is the proportion of i’s neighbors that perceive the
cue. We assume that all birds have vi(0) = 1

2 when the cue
appears, so, if bird i does not perceive the cue, then

vi(t) ≈ 1

2

(
1 + t2bpi

)
. (1)

It will be useful to write the system of differential
equations more compactly. If

Aij =
{ 1

ki
if j is in Ni

0 otherwise
and Lij =

{
Aij if j �= i

−1 if j = i
,

then L is the negative of the random-walk normalized
Laplacian of the network of interactions. If B is the diago-
nal matrix with Bii = b if i perceives the cue and Bii = 0
otherwise, and Ls = L − B, then Ls can be used to write
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Fig. 1 An example of the opinion dynamics after a cue. In a, we show
a group of N = 10 birds, all of which have two neighbors except for
the bird circled in blue, which has five neighbors. The birds circled in
green perceive the cue. An arrow points from i to j if i pays attention
to j . In b, we show the opinion dynamics, given this adjacency matrix

and the birds that perceive the cue. Birds with similar positions in the
network have similar opinion dynamics, so that some of the birds’ lines
overlap each other. The colors of the nodes in (a) and lines in (b) indi-
cate the opinion of each bird at t = 1, vi(1). Parameters: N = 10,
r = 0.4, b = 1

the system of differential equations in terms of the vector of
opinions v = (v1, . . . , vN)T :

dv

dt
= Lv + B(1 − v) = Lsv + B1,

where 1 = (1, . . . , 1)T .

Fitness

Each bird’s fitness is determined by how well-informed it
is, i.e., how close its opinion is to 1. If the cue is about a
predator, the least well-informed bird will be eaten. If the
cue is about resources, the most well-informed birds will
get to eat. In each case, we assume the critical event—birds
being eaten or getting to eat—occurs one unit of time after
the cue appears.

Since how well-informed a bird is depends on the inter-
action network and on which birds perceive the cue, we
simulate 1000 cues to determine the fitness of each individ-
ual in a flock whose strategies are {k1, . . . , kN }. If the cue
provides information that a predator is present,

P(i survives) = 1 − P(i is eaten)

= 1− # of cues such that i =argminj {vj (1)}
1000

and i’s fitness is proportional to this probability. If the cue
provides information about scarce resources,

P(i gets to eat) = # of cues such that i = argmaxj {vj (1)}
1000

and i’s fitness is proportional to this probability. If the cue
provides information about abundant resources, the proba-
bility that bird i gets to eat is the probability that vi(1) is
one of the four highest opinions over all cues and i’s fitness
is proportional to this probability. (Note that abundant is a
relative term. We consider a flock of size N = 20 so that
only a fifth of the flock gets access to resources. Sensitivity
to the number of birds that are allowed to eat is discussed
in Fig. 11.) Finally, we consider a combination of predation

and access to scarce resources. To do well, a bird must both
survive and get to eat. In this case, i’s fitness is proportional
to P(i survives) × P(i gets to eat). In each of the probabil-
ities defined above, if any set of birds has exactly the same
opinion, then one of them is picked at random to be the one
that is eaten or gets to eat.

In the opinion dynamics we defined above, we assumed
a linear response function: a bird’s direction of flight was
exactly equal to its opinion about the environment. How-
ever, there are other possible response functions. For exam-
ple, if a bird only responds to the cue when its opinion
passes some threshold, its response follows a step function.
Regardless of its specific functional form, any reasonable
response function should be monotonic in the bird’s opin-
ion. Since any monotonic transformation of the flock’s
opinions will preserve the argmin and argmax of the flock,
changing the response function would not affect our defini-
tions of fitness or our results.

Strategy dynamics

The number of neighbors a bird uses may be a geneti-
cally inherited trait or a learned strategy. In either case, the
frequencies of strategies that confer higher fitness should
increase over time, until no bird can improve its fitness
by changing its strategy. These equilibrium strategies are
a reasonable prediction for what we would expect to find
in nature. We use two different methods for analyzing the
dynamics of the number of neighbors the birds use. First,
we identify the evolutionarily stable strategy. The ESS is
the strategy k that no other strategy k′ can invade, where we
assume that a strategy k′ invades a group using k if the fit-
ness of individuals using k′ is higher than the fitness of those
using k. Equivalently, if all members of the group use the
ESS, no individual has an incentive to use another strategy.
Details on how to find the ESS in a finite group are pro-
vided in Appendix A.1. Assuming all members of the group
use the same strategy allows us to exhaustively search over
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all strategies to find the ESS. However, it is a rather strict
constraint. Our second method of optimization allows us to
consider how the birds might optimize their strategies in a
heterogeneous group. Given a random set of initial strate-
gies, we allow each bird to choose the strategy that would
give it the highest fitness, given the rest of the strategies
being used. We repeat this process until the birds reach an
equilibrium set of strategies. We repeat this over many ini-
tial sets of strategies to find average properties of this greedy
optimization process.

Measures of how well the flock reaches consensus

We consider two ways of measuring how well the flock can
reach consensus. The first, H2 robustness, captures how
close the flock’s opinions are to being in consensus. The
second, correlation length, captures how far information can
travel through the flock. When information can travel far
through the flock, it is usually the case that it is easy for
the flock to stay in consensus. However, it can happen that
the flock has a low robustness even though it has a high
correlation length and vice versa.

To define H2 robustness, we have to measure how close
the flock’s opinions are to being in consensus. We therefore
transform the opinion vector v into a vector y whose length
is the amount of “disagreement” in the flock, in the language
of Young et al. (2013). Following Young et al. (2010, 2013),
we define Q ∈ R

(N−1)×N such that each row is normal and
orthogonal to the consensus vector 1. This is equivalent to
finding Q such that QT Q = IN − 1

N
11T and QQT = IN−1

(Young et al. 2010, 2013). If we define y = Qv, then y

is the component of v that is orthogonal to the consensus
vector and ||y|| describes how close the flock’s opinion are
to being in consensus (Young et al. 2010, 2013). This allows
us to define H2 robustness (Bamieh et al. 2012; Young et al.
2010, 2013; Zelazo and Mesbahi 2009):

ρ = lim
t→∞

1
√

E[||y(t)||2] .

If we define the covariance matrix

�yij (t) = E
[
(yi(t) − E[yi(t)])

(
yj (t) − E[yj (t)]

)]

and the steady-state covariance matrix �ss,y = limt→∞ �y

(t) then

ρ = 1
√

T r(�ss,y)
(Young et al. 2010, 2013).

If it is easy for the flock to reach consensus, y will tend to
be small and ρ will be large. Given any set of strategies, we
find the average of ρ over 1000 cues, ρ̄, since ρ depends on
the specific interaction network.

To define correlation length, we find, for each pair of
birds, the correlations between the deviations in their opin-
ions. We now transform v by defining v̄ = ∑

i vi/N and
z = v − v̄1. Note that z = QT Qv = QT y. If we define the
covariance matrix

�zij (t) = E
[
(zi(t) − E[zi(t)])

(
zj (t) − E[zj (t)]

)]

and the steady-state covariance matrix �ss,z = limt→∞ �z

(t), then the steady-state correlation between i’s and j ’s
deviations from average is

Czij = �ss,zij√
�ss,zii�ss,zjj

.

To find the correlation length λ for a given set of strategies,
we find the distances between all pairs of birds and {Czij }
for 1000 cues. In a unit square, the maximum possible dis-
tance between a pair of birds is

√
2. We divide the range

[0, √2] into a number of small bins. For each bin, we find
the average across all cues of the correlations between pairs
of birds whose distance is within the bin. When we plot this
average correlation against the center of each bin, the corre-
lation length λ is the distance at which the correlations cross
0. (Such a distance must exist by Fact A.2.) If birds i and j

are within λ of each other, then the fluctuations in the devi-
ations of their opinions from the flock average will tend to
be positively correlated. An illustration of this calculation is
provided in Fig. 2.

The group-level properties we just defined, ρ and λ, rely
on the steady-state covariance matrices of y and z respec-
tively. To fully define these properties, we must therefore
introduce noise into the system, which we do using the
stochastic differential equations

dv = Mvdt + DdWt,

where M ∈ R
N×N is an interaction matrix, D ∈ R

N×N

is a diagonal matrix, and W is an N-dimensional Wiener
process. Each property will require a different interaction
matrix M and diagonal matrix D. However, regardless of
our specific choice of M and D, as long as 1 is an eigen-
vector of M with eigenvalue 0 and all other eigenvalues of
M have negative real part, we can find the covariance matri-
ces of y and z as follows. Following Young et al. (2010,
2013), we use Ito’s formula to find the stochastic differential
equations that describe y:

dy = QMvdt + QDdWt

= QM (z + v̄1) dt + QDdWt

= QM
(
QT y + v̄1

)
dt + QDdWt

= QMQT ydt + QDdWt since M1 = 0,

= M̄dt + D̄dWt
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Fig. 2 An illustration of how to calculate correlation length. In a, we
show a group of N = 20 birds, each of which has four neighbors. The
bird circled in green perceives the cue. The color of each node indi-
cates the opinion of the corresponding bird at t = 1. An arrow points
from i to j if i pays attention to j . In b, we show the steady state cor-
relation between each pair of birds in this network. In c, we show how
we find the correlation length of a flock (in this case, one in which
each bird has four neighbors). The black points show the correlation

between each pair of birds as a function of the distance between them,
for the network shown in (a). The red points and line show the average
correlation of pairs of birds whose distance falls within the bins indi-
cated on the x-axis, where the average is taken across 1000 cues. The
horizontal blue line shows correlation equal to 0 and the vertical blue
line shows the distance at which the correlation function crosses 0, i.e.,
the correlation length. Parameters: N = 20, r = 0.2, b = 1

where M̄ = QMQT and D̄ = QD. Therefore, y(t) is
described by a Gaussian probability density, whose covari-
ance matrix �y(t) obeys the differential equations (Arnold
1974)

d�y

dt
= M̄�y + �yM̄ + D̄D̄T .

As shown in Young et al. (2010, 2013), the N − 1 eigen-
values of M̄ are the same as the N −1 non-zero eigenvalues
of M , so all the eigenvalues of M̄ have negative real part.
Therefore, the steady-state covariance matrix �ss,y satisfies
the Lyapunov equation (Young et al. 2010, 2013)

M̄�ss,y + �ss,yM̄ = −D̄D̄T . (2)

(Full statements of these claims are provided in the
Appendix A.2. See also refs. Bamieh et al. 2012; Xiao et al.
2007; Zelazo and Mesbahi 2009.) Since z = QT y, we can
find�ss,z using�ss,z = QT �ss,yQ. Although all the results
we present about group-level properties are in the absence
of an environmental cue, in Appendix A.3, we show how
to find �ss,y when an environmental cue is present. (see
also Fitch and Leonard 2014; Pais and Leonard 2014). To
fully specify these matrices, it remains to specify M and
D, which will depend on the group-level property we are
calculating.

To calculate ρ, we use M = L, as in Young et al. (2013).
By Gershgorin’s circle theorem, all eigenvalues ofL have zero
or negative real part. By definition of L, 1 is an eigenvector

ofLwith eigenvalue 0 and, if the network is connected, there is
only one 0 eigenvalue (Agaev and Chebotarev 2005; Young
et al. 2010). (If the network is not connected, as may happen
when the birds have few neighbors, we set ρ = 0.) We set the
diagonal elements of D equal to {√k1, . . . ,

√
kn}. This is

equivalent to using D = I and subsequently dividing ρ by√
k in the case of a flock whose members all use the same

strategy, as was done in Young et al. (2013). Because of this
normalization, what we call ρ, Young et al. (2013) called
“robustness per neighbor.” With these choices of M and
D, we use Eq. 2 to find the steady-state covariance matrix,
�ss,y .

In statistical mechanics, it is conventional to assume sym-
metric interactions between the components of a system,
here the birds. Therefore, to calculate λ, we symmetrize A

by defining S = 1
2 (A + AT ) and

Pij =
{

Sij if j �= i

− ∑
l Sil if j = i.

If A is symmetric, then S = A and P = L. By definition of
P , 1 is an eigenvector of P with eigenvalue 0 and, if the net-
work is connected, all other eigenvalues have negative real
part, according to theorems in Agaev and Chebotarev (2005)
and Young et al. (2010). We can now useM = P andD = I

in Eq. 2. After using Eq. 2 to find �ss,y , we can calculate
the covariance matrix �ss,z = QT �ss,yQ and then the cor-
relation matrix Cz. (If the network is not connected, we use
the procedure described in Appendix A.4 to find Cz. In this
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case, the correlation between birds in different components
of the network will be 0.)

There is one last group-level property that will be useful
in understanding the social context that determines whether
a strategy is more or less advantageous. For this measure,
we return to the ordinary opinion dynamics when there is no
cue present,

dv

dt
= Lv.

If σ denotes the absolute value of the non-zero eigenvalue of
L closest to 0, then σ is the speed with which the flock con-
verges to consensus (Olfati-Saber and Murray 2004; Young
et al. 2010).

To find the correlation length of starling flocks, Bialek
et al. (2014) wrote down a Boltzmann distribution over
opinion vectors, rather than considering stochastic dynam-
ics leading to a steady-state distribution. In Appendix A.4,
we show how to find the covariance matrix using this
approach and in Appendix A.5, we show that the covariance
matrix found using stochastic dynamics and the Lyapunov
equation (2) is equivalent to that found using the Boltzmann
distribution, as long as the same M and D are used in both
approaches. Figure 7 shows that even if M = L is used in
the Lyapunov equation andM = P is used in the Boltzmann
distribution, the resulting covariance matrices �ss,z are
almost identical.

Results

The ESS number of neighbors depends on the content
of the cue

The ESS number of neighbors depends on which measure of
fitness we use. The ESS number of neighbors when fitness

is based on access to scarce resources or on both access to
scarce resources and predation is always low, while the ESS
number of neighbors when fitness is based on predation is
always high (Fig. 3). There is no ESS when fitness is based
on access to abundant resources.

According to the approximation in Eq. 1, a bird is bet-
ter informed if a higher proportion of its neighbors perceive
the cue. To avoid being eaten, a bird must therefore avoid
having a low proportion of its neighbors perceive the cue.
To get access to scarce resources, on the other hand, a bird
must have a high proportion of its neighbors perceive the
cue as often as possible. To show why different strategies
are needed to attain these different objectives, we consider a
simpler situation in which each bird chooses ki neighbors at
random from the other N − 1 birds, instead of choosing the
closest birds. If Nc birds perceive the cue and i is not one of
these, then the number of i’s neighbors that do perceive the
cue follows a hypergeometric distribution:

P(j of i’s neighbors perceive the cue)=

(
Nc
j

)(
N−1−Nc

ki − j

)

(
N − 1

ki

) .

If pi is the proportion of i’s neighbors that perceive the cue,
it immediately follows that

P

(
pi = j

ki

)
=

(
Nc

j

)(
N − 1 − Nc

ki − j

)

(
N − 1

ki

) . (3)

In the Appendix A.2 and Fig. 8, we show that the mean
value of pi does not depend on ki and that the variance of
pi decreases as a function of ki . Therefore, if two birds use
strategies k1 and k2 with k1 < k2, then their opinions at
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Fig. 3 The ESS number of neighbors is always higher if fitness is
based on predation than if fitness is based on scarce resources or on
both. When selection is due to predation, the (possibly multiple) ESS
strategies increase with the radius of the cue. In a, we show the relative
fitness of an invader as a function of the invader and resident strategies,
where fitness is based on predation and the radius r = 0. The points
indicate the ESS strategies. In b, we show the (possibly multiple) ESS

strategies as a function of the radius of the cue. The green circles show
the ESS when fitness is based on predation, the red squares when fit-
ness is based on access to scarce resources, and the blue diamonds
when fitness is based on both. The squares and diamonds overlap when
the radius is greater than 0. There are no ESS when fitness is based on
access to abundant resources. Parameters: N = 20, b = 1
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the end of many cues will be the same on average, but the
variance of the opinions of the bird using k1 will be higher.
This explains why a high strategy minimizes the probabil-
ity of having a poorly-informed opinion and a low strategy
maximizes the probability of having a well-informed opin-
ion, leading to the ESS number of neighbors we find under
different measures of fitness.

The multiple predation ESS increase as the cue
becomes more widespread

The ESS numbers of neighbors when fitness is based on
avoiding predation exhibit two interesting features: there are
sometimes multiple consecutive ESS and the ESS number
of neighbors increases as the cue becomes more widespread
(Fig. 3). It is somewhat surprising to find, when r = 0 for
example, that the strategy of 14 neighbors is uninvadable by
the strategy of 15 neighbors and also that the strategy of 15
neighbors is uninvadable by the strategy of 14 neighbors.
This is because there is positive frequency dependent selec-
tion. When r = 0, there is only one bird in the flock who
perceives the environmental cue. Consider a bird i who has
14 neighbors and a bird j who has 15 neighbors. Bird j will
be more likely to pay attention to the bird that perceives the
cue, which imposes a cost on i. However, when they both
happen to pay attention to the bird with the cue, then the
proportion of j ’s neighbors with the cue is lower than the
proportion of i’s neighbors with the cue, which imposes a

cost on j . The relative magnitude of these costs depends on
the strategies the rest of the flock is using.

A flock all of whose birds use the same strategy k con-
verges to 1 more quickly as k increases (Fig. 9). In other
words, if most birds in a flock have 14 neighbors, they will
be generally worse-informed than the birds in a flock where
most of the birds have 15 neighbors. Therefore, it is more
costly for j to pay attention to birds without the cue in
a flock most of whose birds have 14 neighbors than in a
flock most of whose birds have 15 neighbors (Fig. 4a). Con-
versely, if i does not pay attention to the bird with the cue,
i’s slow learning rate is much worse than its peers’ learning
rates in a flock where most of the birds have 15 neighbors,
whereas it performs just as well as its peers in a flock where
most of the birds have 14 neighbors (Fig. 4a). Therefore,
whichever strategy the minority of the flock is using cannot
invade, leading to multiple ESS.

To understand why the ESS number of neighbors
increases as the cue becomes more widespread, again con-
sider two birds, i with 18 neighbors and j with 19 neigh-
bors. When the radius of the cue is low and there are few
birds that perceive the cue, i is no less likely to pay atten-
tion to the few perceiving birds and is more likely to have
a higher proportion of its neighbors perceive the cue, so 18
can invade 19 (Fig. 4b). As the radius increases and more
birds perceive the cue, i is now more likely to pay attention
to fewer of the perceiving birds, so that 18 can no longer
invade 19 and 19 becomes an ESS (Fig. 4c).
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Fig. 4 The fitness, due to predation, of a strategy can increase as it
becomes more frequent in the flock. In each panel, we consider a flock
made up of 20 birds, each of which uses one of two strategies, k or
k + 1. The number of birds in the flock with k + 1 neighbors is shown
on the x-axis. We then focus on two birds in the flock, i using k neigh-
bors and j using k + 1 neighbors. In each pair of bars, the red bar
on the left corresponds to i and the blue bar on the right corresponds
to j . The height of the bar indicates the probability that the bird is
eaten; the black line shows probability 0.05 = 1/20. In a, k = 14,
k + 1 = 15, and r = 0 (one bird perceives the cue). When there are
only a few birds using 15 neighbors, j has a high probability of being
eaten because it is likely that too low a proportion of its neighbors per-
ceive the cue, in comparison to the rest of the flock. When there are
many birds using 15 neighbors, i has a high probability of being eaten
because it is more likely than the rest of the flock not to pay attention
to the perceiver. This results in neither strategy being able to invade the

other. In b, k = 18, k + 1 = 19, r = 0 (one bird perceives the cue).
When there are only a few birds using 19 neighbors, j has a high prob-
ability of being eaten because it is likely that too low a proportion of
its neighbors perceive the cue, in comparison to the rest of the flock.
However, regardless of the composition of the flock, i is likely to pay
attention to the perceiver and never has a probability of being eaten
that is greater than chance. This results in 18 being able to invade 19,
but not conversely. In c, k = 18, k + 1 = 19, r = 0.3. When there are
only a few birds using 19 neighbors, j has a high probability of being
eaten because it is likely that too low a proportion of its neighbors per-
ceive the cue, in comparison to the rest of the flock. When there are
many birds using 19 neighbors, i has a high probability of being eaten
because it is likely to pay attention to fewer of the perceivers than the
rest of the flock. This results in neither strategy being able to invade
the other. Parameters: N = 20, b = 1
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The birds construct an optimal network only under
certain selection regimes

When every bird is using the same strategy k, the average
robustness ρ̄ and the correlation length λ are both maxi-
mized at intermediate strategies and minimized at extreme
high or low strategies (Fig. 10). The greedy optimization
process allows us to analyze how the group-level proper-
ties of a heterogeneous flock change as the birds choose
new strategies. The strategies that result from greedy opti-
mization are similar to the ESS under different selection
regimes. When fitness is based on avoiding predation, the
birds choose high strategies, ultimately converging on one
of the ESS for the same parameters (Fig. 5). The conver-
gence to a single strategy can be explained by the positive
frequency dependence of this type of selection: once a

strategy has a slight majority, all birds have an incentive
to adopt it. This leads to moderately high robustness, but
low correlation length. When fitness is based an access to
scarce resources, the birds all choose low strategies. This
leads to both low robustness and low correlation length.
When fitness is based on both access to scarce resources
and predation, a few birds choose low strategies, but the
flock remains quite heterogeneous. The heterogeneity in the
flock keeps the correlation length high, while the robustness
still tends to decrease. When fitness is based on access to
abundant resources, most birds choose strategies of three to
five neighbors, but a few choose high strategies. This is the
selection regime that leads the birds to construct a flock with
both high robustness and high correlation length. We find
similar results when abundant resources means that either
two or ten birds are allowed to eat, rather than four (Fig. 11).

Fig. 5 When the birds choose
the strategies that improve their
own fitness, they settle on
strategies close to the ESS. Only
fitness based on access to
abundant resources leads to both
high robustness and high
correlation length. The upper
row shows results for fitness
based on predation, the second
row shows results for fitness
based on access to scarce
resources, the third row shows
results for fitness based on both
scarce resources and predation,
and the last row shows results
for fitness based on access to
abundant resources. The first
column shows one example of
how the birds’ strategies change
over time. The second column
shows, for various initial
conditions, how the average
robustness, ρ̄, changes over
time, with the black line showing
the average of the 20 gray lines.
The third column shows, for
various initial conditions, how
the correlation length, λ,
changes over time, with the
black line showing the average
of the 20 gray lines. Parameters:
N = 20, b = 1, r = 0.1
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Discussion

Here, we study a simple theoretical model of opinion
dynamics driven by environmental cues with the goals of
(1) understanding how the content of the cue affects the
evolution of social-information gathering strategies and (2)
testing whether evolution acting on individuals’ strategies
can lead to optimal group-level properties. We find that
the content of the environmental cue strongly affects what
number of neighbors a bird should use to gather social infor-
mation, with a cue about predators leading to high numbers
of neighbors and a cue about resources leading to low num-
bers of neighbors. We also find that as information about
predators becomes more widespread, it is advantageous to
pay attention to more neighbors. Only when the cue is about
abundant resources does a greedy optimization process lead
to the flock using strategies that optimize both the robust-
ness with which it can reach consensus and the correlation
length of the flock.

While there is a growing body of work on how statistical
properties of information, like its variance, affect the evo-
lution of information-gathering strategies (e.g., Henrich and
Boyd 1998; King and Cowlishaw 2007; Shaw and Couzin
2013), less work has been done to study the effects of the
content of that information. Our results show that whether
a cue is about predators or resources can have a dramatic
effect on the optimal way of gathering social information.
We find the same effect—high strategies for cues about
predators and low strategies for cues about resources—
when we analyze both the ESS numbers of neighbors and
the numbers of neighbors to which a greedy optimization
process converges. This suggests that our results are robust
to changes in how these strategies are acquired, for exam-
ple if they are genetically inherited or learned. In our model,
there are no costs to using more neighbors. If there were,
we might expect the high ESS number of neighbors under
predation to decrease. However, without costs to higher
strategies, our model allows us to analyze the advantages
and disadvantages of the information-gathering strategies
themselves. While the model was inspired by studies of star-
ling flocks, it should be general enough to apply to any
species in which topological rules determine how animals
gather social information. Our results lead to an interesting
prediction that species whose fitness depends more strongly
on avoiding predation than on having access to resources
might rely more heavily on social information. Testing this
prediction by studying the social interactions in multiple
species will be an avenue for future research.

There are two ways in which we might expect that the
reliability and availability of personal information to affect
the use of social information. On the one hand, it might only
be worthwhile to gather information from other individuals

if they have good personal information about the environ-
ment and if there are many individuals who have such
information. This is what we find in our model when the cue
is about predators: as more birds in the flock receive infor-
mation, it becomes advantageous to pay attention to more
neighbors. Our result is similar to the findings of King and
Cowlishaw (2007), who used a model of majority decision-
making to conclude that individuals did better by pooling
their information only when their personal information was
quite reliable. Increasing the number of animals with per-
sonal information also leads to an increase in the payoff
from using social information in producer-scrounger games
(Giraldeau and Dubois 2008; Rieucau and Giraldeau 2011;
Vickery et al. 1991). As a final example of this type of
reasoning, Giraldeau et al. (2002) argued that using social
information can result in disadvantageous informational
cascades when environmental cues are not entirely reli-
able and animals only have information about their peers’
response to the environment (rather than about the cues their
peers perceive); they further suggest that the use of social
information may be less likely to evolve in these cases.
On the other hand, individuals might be forced to rely on
social information more when they do not have access to
reliable personal information. There are multiple studies
whose authors use some variant of this argument. Henrich
and Boyd (1998) used a quite general theoretical model to
conclude that we should expect social-information use to
evolve when an individual’s perceptions of the environment
are unreliable. Similarly, Shaw and Couzin (2013) studied
a model describing animals that could rely on historical
information, information about current resources, and social
information in order to migrate successfully and found that
animals should evolve higher dependence on social infor-
mation when the environment changes more from year to
year. Whether the reliability and availability of personal
information incentivizes or disincentivizes the use of social
information seems to be quite model-dependent, and in
order to make predictions about any given empirical sys-
tem, we would have to identify carefully which model best
described it.

Finding the ESS number of neighbors led us to iden-
tify an interesting positive frequency-dependent selection.
Specifically, when the environmental cue is about preda-
tors, the strategy being used by the majority sets a social
context that can prevent other strategies from invading. Con-
versely, Torney et al. (2015) found that an individual using
a high amount of social information can do well when that
is the minority strategy. Frequency dependence seems to be
a common property of systems in which animals use social
information (Rieucau and Giraldeau 2011). These findings
highlight the complexities that can arise in studying the evo-
lutionary dynamics of social behaviors when the fitness of a
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strategy depends on the social environment of the individual
using it.

The fact that the costs and benefits of using a partic-
ular strategy to gather social information depends on the
social context means there is no single best strategy, so
heterogeneity in the population can persist. We saw this
when we looked at greedy optimization processes for fit-
ness based on access to abundant resources or based on both
predation and access to scarce resources. Pais and Leonard
(2014) also found that heterogeneity in the weight given to
social information can persist, both when the trait is deter-
mined by adaptive dynamics and when individuals selfishly
change their strategies to improve their own fitness. That
different models of different types of strategies give rise to
heterogeneity suggests that it might be a common feature of
strategies for gathering social information and that we might
expect to see it in natural populations.

Since in our model the content of the environmental cue
affects what strategies should be used to gather social infor-
mation, it also affects whether or not the birds construct
an optimal network. We find that greedy optimization leads
to a flock having either low robustness or low correlation
length or both, except when the birds choose strategies that
maximize their ability to get access to abundant resources.
This agrees with previous findings that selection acting on
individuals’ strategies can lead to situations that are subop-
timal from the group’s perspective (Torney et al. 2015). Our
result shows that the strategies that optimize robustness and
correlation length do not necessarily optimize a bird’s abil-
ity to learn about its environment. However, there may be
other advantages to being in a group that can reach consen-
sus that provide incentives for birds to construct networks
with high robustness. In addition to the number of neighbors
being used, which birds attend to the cue affects how well
the flock can reach consensus and there are well-defined
sets of “leaders” that maximize the flock’s robustness (Fitch
and Leonard 2014). It would be interesting to study whether
there is an evolutionary process by which these individuals
could be incentivized to take on that role.

Our model is not directly comparable to the empirical
starling flocks to which these measures have been applied
because we consider many fewer birds than are found in
most real groups and we use random positions rather than
empirically-derived positions. Additionally, since we only
considered one group size (N = 20), we could not repro-
duce the linear scaling of correlation length with group size
that has been used to argue that starling flocks are near
criticality (Bialek et al. 2014; Cavagna et al. 2009). How-
ever, our observation that robustness first increases and then
decreases with the number of neighbors agrees qualitatively
with empirical observations (Young et al. 2013), suggesting
a coarse agreement between our findings and real starling

flocks. In both our model and the empirical measurements,
this non-monotonic behavior occurs because, even though
adding more neighbors tends to make the interaction net-
work more dense and improve how well the flock can
reach consensus, eventually these improvements are out-
weighed by the decreases caused by dividing by the square
root of k. Another important difference between our model
and real starling flocks is that we only consider two-
dimensional space. In real flocks, robustness decreases as
the flock becomes “flatter” and closer to two-dimensional
(Young et al. 2013), so the number of dimensions the birds
have access to matters. However, we expect that the gen-
eral patterns we observe would hold in a three-dimensional
model.

We intentionally built a simple model in order to ana-
lyze the consequences of a small number of assumptions
and parameters. Bialek et al. (2014) modeled the opinions of
birds about where to fly using a three-dimensional opinion
vector, but Young et al. (2013) used a scalar opinion, a sim-
plifying assumption we also used. We expect that our results
would be similar were we to use three-dimensional opin-
ions. While the question of whether real birds use metric
or topological interaction neighborhoods is still unresolved,
we chose to use topological neighborhoods in order to make
our results comparable to the empirical observations of
Bialek et al. (2014) and Young et al. (2013). Rather than
finding the evolutionary equilibrium number of neighbors,
we could find the evolutionary equilibrium range of interac-
tion, and we expect that our results about the effects of the
content of information and the response to how widespread
the cue is should be similar in such a model. While we
allow the birds to move between cues, a major simplify-
ing assumption is that the interaction network is static while
the cue is present. This is a reasonable assumption if the
fitness consequences of the cue occur so quickly after the
cue appears that the birds do not have time to move enough
to change their interaction network. Even if the interaction
network were changing as the birds respond to the cue, we
would expect similar results since the numbers of neighbors
should similarly affect each new interaction network. Cou-
pling our model of opinion dynamics and cues with rules for
how the birds move through space would be an interesting
extension.

By analyzing a simple model of opinion dynamics in
flocking birds, we make novel predictions about how the
content of information affects the evolutionary equilibria
of strategies for its use and we find that these strategies
would only lead to optimal group-level properties when the
information was about certain facets of the environment.
This makes the observations that starling flocks have high
robustness and are near criticality all the more remarkable.
Our results also provide insight into how to incentivize
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individuals to interact with each other in such a way that
they reach a stable consensus, if such an outcome is desir-
able.
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Appendix A

A.1 ESS in finite populations

In this section, we explain how to find the evolutionarily sta-
ble strategy in a finite population. In an infinite population,
a strategy is evolutionarily stable if the fitness of an indi-
vidual using any other initially rare strategy is lower than
the fitness of an individual using the focal strategy (Nowak
2006). In other words, a strategy is an ESS if, once all mem-
bers of a population use it, no other strategy can invade. In
a population of finite size N , stochastic events could lead
to a strategy spreading through the population (reaching
fixation) or going extinct, despite differences in individu-
als’ fitnesses Nowak (2006). Therefore, a little more care is
needed to define and find an ESS in finite populations.

To define an ESS in a finite population Nowak (2006)
considers a Moran process on a finite population: at each
timestep, an individual is chosen to die at random and an
individual is chosen to reproduce with a probability propor-
tional to its fitness. In a population of size N , if there are
N−n “resident” individuals using strategy k and n “mutant”
individuals using strategy k′, we will write fn for the fitness
of the mutants and gn for the fitness of the residents, follow-
ing Nowak (2006). In the Moran process, the probability of
increasing from n to n + 1 individuals using k′ is

pn,n+1 = nfn

nfn + (N − n)gn

N − n

N
,

the probability of decreasing from n to n − 1 individuals
using k′ is

pn,n−1 = (N − n)gn

nfn + (N − n)gn

n

N
,

and probability of the number of individuals using k′
remaining at n is

pn,n = 1 − pn,n+1 − pn,n−1.

Using these transition probabilities, Nowak (2006) then
derives the probability of k′ reaching fixation when the
population starts with one individual using k′ and the rest
using k:

pk′,k = 1

1 + ∑N−1
�=1

∏�
n=1

gn

fn

. (4)

If the two strategies have equal fitness, so that fn = gn for
all n, then the probability of k′ reaching fixation is 1/N .
This gives us a neutral baseline to which we can compare
the probability of a rare strategy reaching fixation.

As described above, a strategy is an ESS in an infinite
population if no other strategy can invade when initially
rare, which would happen if the fitness of the invader were
greater than the fitness of the resident. We can now supple-
ment this condition to define an ESS in a finite population.
Specifically, according to Nowak (2006), a strategy k is
an ESS if, for all other strategies k′, both of the following
conditions hold:

1. Selection opposes k′ invading k ⇐⇒ f1 < g1 and
2. Selection opposes k′ replacing k ⇐⇒ pk′,k < 1/N .

In our model, the strategies we consider are the number of
neighbors to which a bird pays attention, which can range
from 1 to N − 1. To find the ESS strategy, for each pair
of strategies, invader k′ and resident k, and for each n =
1, . . . , N − 1, we consider a flock in which n individuals
use strategy k′ and N −n individuals use strategy k. We find
the fitness for each individual using the procedure described
in the main text. We then define fn as the average fitness of
the individuals using k′ and gn as the average fitness of the
individuals using k. Equation 4 allows us to calculate the
probability of strategy k′ reaching fixation in a population
using k, pk′,k . Using f1, g1, and pk′,k , we can finally check
the conditions for k being an ESS strategy. In Fig. 6, we
illustrate how we find the ESS number of neighbors when
fitness is based on predation.

A.2 Mathematical background

In this section, we give the full statements of claims that are
used in the text and other sections of the Appendix, and we
provide proofs that are original to this paper or references to
proofs of widely known theorems.

Claim 1 If v ∈ C
N is an eigenvalue of Ls with eigenvalue

λ, then
∑

i perceivers |vi |2
∑N

i=1 |vi |2
≥ |λ| − 2

b
.

Proof By Gershgorin’s circle theorem, if ρ(L) = maxi

{|λi | s.t. λi is an eigenvector of L} is the spectral radius of
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Fig. 6 A strategy is evolutionarily stable if selection opposes any
other strategy invading it and selection opposes any other strategy
replacing it. A mutant strategy k′ can invade the resident strategy k

if the fitness of the only individual in the population using it, f1, is
greater than the fitness of the individuals using the resident strategy,
g1. A mutant strategy k′ can replace the resident strategy k if the prob-
ability of k′ reaching fixation is greater than chance, 1/N = 0.05.

Here, we consider the strategy of the number of neighbors to have,
where fitness depends on the probability of surviving predation. In a,
we show the relative fitness, f1/g1. In b, we show the probability of
reaching fixation, pk′,k . The four dots in each panel indicate the four
ESS. Parameters: N = 20, b = 1, r = 0

L, then ρ(L) ≤ 2. If v ∈ C
N is an eigenvector of Ls with

eigenvalue λ,

v∗Lsv = λv∗v,where v∗ is the conjugate

transpose of v

⇒ |v∗Lsv| = |λ| · |v∗v|
⇒ |v∗Lv − v∗Bv| ≥ |λ| · |v∗v|

⇒ |v∗Lv| + |v∗Bv| ≥ λ| · |v∗v| by the triangle
inequality

⇒ ρ(L)|v∗v| + |v∗Bv| ≥ λ| · |v∗v|
⇒ 2|v∗v| + |v∗Bv| ≥ |λ| · |v∗v|
⇒ b

∑

i perceivers

v̄ivi ≥ (|λ| − 2)
∑

i

v̄ivi , where v̄i is

the complex conjugate of vi

⇒
∑

i perceivers |vi |2
∑N

i=1 |vi |2
≥ |λ| − 2

b

Claim 2 Suppose v(t) ∈ R
N satisfies the differential equa-

tions v̇ = Xv + c, where X ∈ R
N×N and c ∈ R

N .
Suppose all of the eigenvalues of X are non-zero and have
small absolute value. If V is the matrix whose columns are
eigenvectors of X and � is the matrix with the eigenval-
ues of X along the diagonal, we can approximate v(t) ≈
v0+V (tI+ t2

2 �)V −1c. In the case thatX = Ls and c = B1,
for i that do not perceive the cue,

vi(t) ≈ vi(0) + t2b

2

∑

perceivers j

Lij .

Proof We first write v(t) = exp(tX)v0 + exp(tX)
∫ t

0
exp(−sX)cds. If X has no 0 eigenvalues,

v(t) = V exp(t�)V −1v0 + V �−1 (exp(t�) − I ) V −1c

If h(x) = exp(tx), then h(x) ≈ 1 for x close to 0. If g(x) =
1
x
(exp(tx) − 1), then g(x) ≈ t + t2

2 x for x close to 0. Thus,
if the eigenvalues of X are close to 0, we find that

v(t) ≈ V IV −1v0 + V

(
tI + t2

2
�

)
V −1c

= v0 + tc + t2

2
Xc.

If we use X = Ls and c = B1, we find

v(t) ≈ v0 + tB1 + t2

2
LsB1.

For birds that do not perceive the cue, this gives

vi(t) ≈ vi(0) + t2b

2

∑

perceivers j

Lij .

By Claim A.2, if v ∈ C
N is an eigenvector of Ls with eigen-

value λ that has a large absolute value, then the elements of
v corresponding to birds that do not perceive the cue will be
small. Therefore, even if there are eigenvalues ofLs far from
0, our approximation holds for elements of v corresponding
to birds that do not perceive the cue.

Claim 3 If there are N − 1 objects, exactly Nc of which
are “successes”, if k objects are drawn at random without
replacement, and if p is the proportion of draws that are
successes, then for j = 0, . . . , k,

P

(
p = j

k

)
=

(
Nc

j

) (
N − 1 − Nc

k − j

)

(
N − 1

k

) .

The expectation of p is E[p] = Nc
N−1 and the variance of p

is

Var(p) = (N − 1 − k)

k

Nc(N − 1 − Nc)

(N − 1)2(N − 2)
. (5)
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Var(p) decreases as a function of k and is minimized at k =
N − 1, where Var(p) = 0.

Proof The number of successes j follows a hypergeometric
distribution:

P(j successes) =

(
Nc

j

)(
N − 1 − Nc

k − j

)

(
N − 1

k

) .

Since P
(
p = j

k

)
= P(j successes), it is clear that the

probability distribution of p is

P

(
p = j

k

)
=

(
Nc

j

) (
N − 1 − Nc

k − j

)

(
N − 1

k

) .

The expectation of the hypergeometric distribution is k Nc
N−1 ,

so the expectation of p is E[p] = Nc
N−1 . The variance of the

hypergeometric distribution is

Var(# of successes)= (N−1−k)k × Nc(N−1−Nc)

(N−1)2(N−2)

⇒Var(p)= 1

k2
Var(# of successes)= N − 1 − k

k

Nc(N − 1 − Nc)

(N − 1)2(N − 2)

We are considering a flock of size N , Nc of which perceive
the cue, and at least 1 of which does not. If N = 2, then for i

that does not perceive the cue, p is always 1 and Var(p) = 0.
If N > 2, then Nc(N−1−Nc)

(N−1)2(N−2)
≥ 0 since N − 1 ≥ Nc ≥ 1. Let

f (k) = N−1−k
k

. Then

f (k + 1) − f (k) = N − 1 − k − 1

k + 1
− N − 1 − k

k

= (N − 1 − k−1)k − (N−1−k)(k+1)

(k + 1)k

= −k − (N − 1 − k)

(k + 1)k

= −N + 1

(k + 1)k
< 0 since k ≥ 1 and N > 1

This shows that the variance of p decreases as a function of
k and that it is therefore minimized at k = N − 1, at which
Var(p) = (N−1−(N−1))

N−1
Nc(N−1−Nc)

(N−1)2(N−2)
= 0. In Fig. 8, we show

the distribution and variance of p for various values of k

and Nc.

Theorem A.1 Given any positive symmetric matrix Q > 0,
the following statements are equivalent:

1. There exists a unique positive symmetric matrix � that
satisfies the Lyapunov equation X� + �XT = −Q.

2. The system ẏ = Xy is globally asymptotically stable.
3. All eigenvalues of X have negative real part.

Proof Proof available elsewhere (for example in Proposi-
tion 4.2 of Dullerud and Paganini 2000).

Theorem A.2 Consider the stochastic dynamical system,

dy = (Xy + c)dt + YdWt

where X ∈ R
N×N is such that all eigenvalues of A

have negative real part, c ∈ R
N , Y ∈ R

N×N , and
W is an N-dimensional Wiener process. If we define the
expectation vector μ(t) = E[y(t)], the covariance matrix
�(t) = E

[
(y(t) − μ(t)]) (y(t) − μ(t))T

]
, and the steady

state covariance matrix �ss = limt→∞ �(t), then �ss

satisfies the Lyapunov equation

X�ss + �ssX
T = −YYT . (6)

The solution yt is Gaussian if and only if y0 is normally
distributed or constant. In this case, at steady state,

lim
t→∞ yt ∼ N (−X−1c,�ss)

where �ss is the solution to Eq. 6.

Proof This is a combination of Theorems 8.2.6, 8.2.10, and
8.2.12 in Arnold (1974). Note that by Theorem 8.2.6 in
Arnold (1974), we can write the following matrix differen-
tial equation for �(t):

�̇ = X� + �XT + YYT .

In Theorem 8.2.10, Arnold (1974) gives the solution

�ss =
∫ ∞

0
exp(Xs)YY T exp(XT s)ds.

If we plug this solution into Eq. 6,

X�ss + �ssX
T =

∫ ∞

0

(
X exp(Xs)YY T exp(Xt s)

+ exp(Xs)YY T exp(XT s)XT
)

ds

=
∫ ∞

0

d

ds

(
exp(Xs)YY T exp(XT s)

)
ds

=
(
lim

s→∞ exp(Xs)YY T exp(XT s)
)

− YYT

= −YYT only if all the eigenvalues of

values of X have negative real part.

Otherwise, the limit does not exist. In addition to proving
that �ss satisfies the Lyapunov equation, this provides an
explicit formula for �ss.
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Claim A.2 If v̄ = ∑
i vi/N and � = E[(v − v̄1)T (v −

v̄1)T ], then ∑
ij �ij = 0.

Proof
∑

ij

E[(vi − v̄)(vj − v̄)] =
∑

ij

(
E[vivj ] − E[vi v̄]

−E[vj v̄] + E[v̄v̄])

=
∑

ij

E[vivj ] − N
∑

i

E[vi v̄]

−N
∑

j

E[vj v̄] + N2E[v̄v̄]

=
∑

ij

E[vivj ] −
∑

ij

E[vivj ]

−
∑

ij

E[vivj ] +
∑

ij

E[vivj ]

= 0.

Claim A.2 Let M ∈ R
N×N and M̃ ∈ R

(N−1)×(N−1) be the
matrix derived fromM by removing its last row and column.
If we write the inverse of M as

M−1 =
(

A b

cT d

)

where b, c,∈ R
N−1 and d ∈ R, then

M̃−1 = A − 1

d
bcT .

Proof We start with the definition of M−1, following the
exchange at http://math.stackexchange.com/q/208021 (ver-
sion: 2013-12-18):

MM−1 = IN

⇒
(

M̃ ·
· ·

)(
A b

cT d

)
= IN

⇒
(

M̃ ·
· ·

)(
A b

cT d

) (
IN−1 0
− 1

d
cT 1

)
=

(
IN−1 0
− 1

d
cT 1

)

⇒
(

M̃ ·
· ·

)(
A − 1

d
bcT b

cT − d
d
cT d

)
=

(
IN−1 0
− 1

d
cT 1

)

⇒
(

M̃ ·
· ·

)(
A − 1

d
bcT b

0T d

)
=

(
IN−1 0
− 1

d
cT 1

)

⇒ M̃

(
A − 1

d
bcT

)
= IN−1

⇒ M̃−1 = A − 1

d
bcT .

A.3 Calculating covariance matrices
with an environmental cue

In this section, we show how to calculate covariance matri-
ces when an environmental cue is present. In the text, we
considered the noisy opinion dynamics given by

dv = Mv + DdWt,

whereM is a matrix such that 1 is an eigenvector with eigen-
value 0 and all other eigenvalues have negative real part and
D is a diagonal matrix. Following Young et al. (2010) and
Young (2014), we transformed the opinion vector v into a
vector y that captures the component of v orthogonal to the
consensus vector 1, using a matrix Q ∈ R

(N−1)×N such that
each row of Q was normal and orthogonal to 1. Specifically,
we defined v̄ = ∑

i vi/N , y = Qv, and z = v−v̄1 = QT y.
We then showed that y follows the dynamics

dy = QMvdt + QDdWt

= QM(z + v̄1)dt + QDdWt

= QMQT ydt + v̄QM1dt + QDdWt

= QMQT ydt + QDdWt

= M̄ydt + D̄dWt .

where M̄ = QMQT and D̄ = QD. This allowed us to
use the Lyapunov equation, (2), to find �ss,y , as in Bamieh
et al. (2012), Xiao et al. (2007), Young et al. (2010), Young
(2014), and Zelazo and Mesbahi (2009).

Regardless of the choice ofM andD, the stochastic opin-
ion dynamics can incorporate an environmental cue, just as
the deterministic opinion dynamics can. In this case,

dv = (Msv + B1)dt + DdWt

where Ms = M − B. A similar framework is used to study
noisy opinion dynamics with an environmental cue in Fitch
and Leonard (2014) and Pais and Leonard (2014). Now the
dynamics of y follow

dy = Q(Msv + B1)dt + QDdWt

= Q(Ms(z + v̄1) + B1)dt + QDdWt

= (QMsQ
T y − QBv̄1 + QB1)dt + QDdWt since M1 = 0

= (QMsQ
T y + (1 − v̄)QB1)dt + QDdWt

= (M̄sy + (1 − v̄)B̄1)dt + D̄dWt .

In this case, the dynamics still tend to reduce deviations
from consensus, but in a way that depends on v̄. Without
a cue, we could consider the N − 1 dimensional vector
y on its own. With a cue, we need to consider a full N
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dimensional vector that captures both y and v̄. To do this,
we use a full rotation matrix, R ∈ R

N×N such that the first
N − 1 rows of R are given by Q and the last is equal to
1√
N
1T . We now define ȳ = Rv ∈ R

N . Note that y = Qv is

given by y = (ȳ1, . . . , ȳN−1)
T . By Ito’s formula,

dȳ = (RMsv + RB1)dt + RDdWt

= (RMsR
T ȳ + RB1)dt + RDdWt

= (M̃sȳ + B̃1)dt + D̃dWt

where M̃s = RMsR
T , B̃ = RB, and D̃ = RD. If all the

eigenvalues of Ms have negative real part, so too do all the
eigenvalues of M̃s, so that by Theorem A.2, �ss,ȳ satisfies
the Lyapunov equation

M̃s�ss,ȳ + �ss,ȳM̃s = −D̃D̃T .

Pais and Leonard (2014) show that all the eigenvalues of Ms

have negative real part if there is a path in the network from
every node to at least one node that perceives the cue. In the
text, we explain that ifM has more than one zero eigenvalue,
we set ρ equal to 0. We present no results about the covari-
ance in the presence of the cue, but we could use a similar
convention to define ρ in the case when Ms has a 0 eigen-
value. Once we solve this equation to find�ss,ȳ , we can find
�ss,y by taking the first N − 1 rows and columns. We can
then find�ss,z using the transformation�ss,z = QT �ss,yQ.
As before, we can use either M = Ls or M = Ps and
either D with diagonal elements given by {√k1, . . . ,

√
kN }

or D = IN .

A.4 Calculating covariance matrices
from the Boltzmann distribution

In this section, we describe how to find the covariance
matrix �z using the Boltzmann distribution. Since this
framework requires a symmetric interaction network, we
use the symmetrized matrix P .

First, we consider the Hamiltonian functions giving the
energy of the opinion vector:

H(v) = −vT Pv without the cue and

Hs(v) = −(v − 1)T Ps(v − 1) with the cue.

H is high when the opinions are far from consensus and low
when the opinions are close to consensus. These functions
let us write Boltzmann distributions over the opinion vector
at steady state:

P(v) = 1

Z
exp(−H(v)) without the cue and (7)

Ps(v) = 1

Zs
exp(−Hs(v̄)) with the cue, (8)

where Z = ∫
RN exp(−H(v))dv and Zs = ∫

RN exp
(−Hs(v))dv.

We can then use these distributions to find the covariance
matrix �z. We will first use Eq. 7, which does not include
an environmental cue. If v̄ = ∑

i vi/N , then specifying z

and v̄ is equivalent to specifying v, which lets us find the
probability distribution over z:

P(v) = 1

Z
exp

(
−1

2
(z + v̄1)T (−P)(z + v̄1)

)

= 1

Z
exp

(
−1

2
zT (−P)z

)
since P1 = P T 1 = 0

⇒ P(z) ∝ exp

(
1

2
zT (−P)z

)
.

Since P has a 0 eigenvalue, it is not invertible. However,
z is orthogonal to 1, the eigenvector of P with eigenvalue
0. We can therefore discard the 0 eigenvalue (Bialek et al.
2012). P is diagonalizable since it is symmetric, so if �

is the diagonal matrix with eigenvalues of P and W is the
matrix whose columns are the eigenvectors of P , then P =
W�WT . If λ1 = 0, then let �̃ be the (N − 1) × (N − 1)
diagonal matrix with λ2, . . . , λN along the diagonal and W̃

be W with the first column removed. We can now invert the
non-zero eigenvalues of P and define P † = W̃ �̃−1W̃T .
Finally, the covariance of z is �z = −P † and of y is �y =
−QP †QT . By dividing each entry �zij of the covariance
matrix by

√
�zii�zjj , the covariance matrix can be used to

find the correlation matrix Cz.
In the above, we assumed that P has only one 0 eigen-

value. The topology of the network captured by S is undi-
rected, since wherever there is an edge going one way
there is an edge going the other. In an undirected net-
work, the multiplicity of the 0 eigenvalue of the Laplacian
is equal to the number of connected components (Olfati-
Saber and Murray 2004). Suppose there are m connected
components, C 1, . . . , C m. Then the vector wj defined
by

w
j
i =

{
1 if i ∈ C j

0 otherwise

is an eigenvector of P with eigenvalue 0 (Olfati-Saber and
Murray 2004; Pais and Leonard 2014). If i ∈ C j and

v̄j =
∑

k∈C j vk

# of nodes in C j
,

Author's personal copy



Theor Ecol

instead of defining zi = vi − v̄ we can define zi = vi − v̄j .
Then z is orthogonal to each of the m vectors, wj . This
allows us to discard each of the m eigenvectors with 0
eigenvalue, just as we discarded the single 0 eigenvector
above.

We will now use Eq. 8 to find �z when an environ-
mental cue is present. As before, let v̄ = ∑

i vi/N and
z = v − v̄1.

Ps(v) = 1

Z
exp

(
−1

2
(v − 1)T (−Ps)(v − 1

)

= 1

Z
exp

(
−1

2
(z− (1 − v̄)1)T (−Ps)(z − (1 − v̄)1

)

Since the subspace of z ∈ R
N such that

∑
i zi = 0 is N − 1

dimensional, it will be easier to rotate z into R
N−1. There-

fore, we consider ȳ = Rz. Since
∑

i zi = 0, z · 1 = 0
so that ȳN = 0. Note that if eN = (0, . . . , 0, 1)T , then
R1 = √

NeN so that 1 = √
NRT eN . This allows us to

write

P(v) = 1

Z
exp

(
−1

2
(RT ȳ − (1 − v̄)

√
NRT eN)T (−Ps)

×(RT ȳ − (1 − v̄)
√

NRT eN)

)

= 1

Z
exp

(
−1

2
(ȳ − (1 − v̄)

√
NeN)T (−RPsR

T )

×(ȳ − (1 − v̄)
√

NeN)

)

= 1

Z
exp

(
−1

2
(ȳ + √

Nv̄eN − √
NeN)T (−P̃s)

×(ȳ + √
Nv̄eN − √

NeN)

)

where P̃s = RPsR
T . To find P(ȳ) we can integrate out v̄.

However, to consider this as a probability density function
over ȳ and v̄, we have to consider the determinant of the
transformation from v to ȳ and v̄. Since v̄ = 1/N1T v =
1/

√
NRT

N ·v where RN · is the last row of R, the transfor-

mation can be represented by R̄ =
(

Q

1/
√

NRN ·

)
. The

determinant of this transformation is given by det(R̄) =
1√
N
det(R) = 1√

N
. Therefore, P(ȳ, v̄) = √

NP(v) is the

appropriate density function for ȳ and v̄. Finally, note that

Z =
√

(2π)N det(−P −1
s ). This gives

P(ȳ, v̄) = √
NP(v)

=
√

N

Z
exp

(
−1

2
((v̄ − 1)

√
NeN + ȳ)T (−P̃s)

×((v̄ − 1)
√

NeN + ȳ)

)

⇒ P(ȳ) =
∫

R

P(ȳ, v̄)dv̄

=
√

N

Z
exp

(
−1

2
ȳT (−P̃s)ȳ

)

×
∫

R

exp

(
−1

2

(
−P̃sNNN (v̄ − 1)2 l−(v̄−1)

√
NP̃sN ·ȳ

− (v̄ − 1)
√

NȳT P̃s·N
))

dv̄

=
√

N

Z
exp

(
−1

2
ȳT (−P̃s)ȳ

)

×
∫

R

exp

(
−1

2

(
−P̃sNNN (v̄ − 1)2

− 2(v̄ − 1)
√

NP̃sN ·ȳ
) )

dv̄

since P̃s is symmetric

=
√

N

Z
exp

⎛

⎝−1

2

⎛

⎝ȳT (−P̃s)ȳ −
(

P̃sN ·ȳ√
−P̃sNN

)2
⎞

⎠

⎞

⎠

×
∫

R

exp

(
−1

2

(
−P̃sNNN (v̄ − 1)2 − 2(v̄ − 1)

× √
NP̃sN ·ȳ +

(
P̃sN ·ȳ√
−P̃sNN

)2
⎞

⎠

⎞

⎠ dv̄

=
√

N

Z
exp

(
−1

2

(
ȳT

(
−P̃s + 1

P̃sNN

P̃s·NP̃sN ·
)

ȳ

))

×
∫

R

exp

⎛

⎝−1

2

(√
−P̃sNNN (v̄−1)− P̃sN ·ȳ√

−P̃sNN

)2
⎞

⎠ dv̄

=
√

N

Z
exp

(
−1

2

(
ȳT (−P̃s + 1

P̃sNN

P̃s·N P̃sN ·)ȳ
))

×
∫

R

exp

⎛

⎝−1

2
(−P̃sNN)N

(
v̄−1+ P̃sN ·ȳ

P̃sNN

√
N

)2
⎞

⎠ dv̄

=
√

N

Z
exp

(
−1

2

(
ȳT (−P̃s + 1

P̃sNN

P̃s·N P̃sN ·)ȳ
))

×
√

2π

−P̃sNNN

= 1
√

(2π)N−1 det(−P −1
s )(−P̃sNN)

exp

(
−1

2

(
ȳT (−P̃s + 1

P̃sNN

P̃s·NP̃sN ·)ȳ
))
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Therefore, the covariance of ȳ is �ȳ = (−P̃s + 1
P̃sNN

P̃s·N
P̃sN ·)−1. Then, to rotate back into z we use z = RT ȳ so that

�z = RT

(
−P̃s + 1

P̃sNN

P̃s·NP̃sN ·
)−1

R

⇒ �−1
z = RT

(
−P̃s + 1

P̃sNN

P̃s·NP̃sN ·
)

R

= −RT RPsR
T R + 1

P̃sNN

RT RPsR
T·NR·NPsR

T R

= −Ps + 1

NP̃sNN

Ps11T Ps

= −Ps + 1

NP̃sNN

B11T B

⇒ �z =
(

−Ps + 1

NP̃sNN

B11T B

)−1

Let Nc be the number of birds that perceive the cue. Then,

P̃sNN = − 1

N
1T B1 = −bNc

N
.

Finally, we find that

�z = −
(

Ps + 1

bNc
B11T B

)−1

Note that
(

Ps + 1

bNc
B11T B

)
1 = −B1 + 1

bNc
B11T B1

= −B1 + bNc

bNc
B1 = 0,

so we cannot actually invert the matrix we want to. How-
ever, as above, we can discard the 0 eigenvector(s). This
gives us �z = −(Ps + 1

bNc
B11T B)† and �y = −Q(Ps +

1
bNc

B11T B)†QT . Again, we divide each�zij by
√

�zii�zjj

to find the correlation matrix Cz.
To summarize, by using the Boltzmann distribution, we

find that in the absence of an environmental cue �z = −P †,
and in the presence of a cue, �z = −(Ps + 1

bNc
B11T B)†.

In each case, the correlation matrix is found by Czij =
�zij /�zii�zjj .

A.5 Equivalence of two steady state distributions

In this section, we compare the two approaches, the Lya-
punov equations arising from a set of stochastic differential
equations, described in the text and in Appendix A.3, and
the Boltzmann distribution, described in Appendix A.4.

The two approaches can be used with and without an
environmental cue and the resulting covariance matrices
�y are summarized in Table 2. The interaction networks
described in L, arising from topological neighborhoods, are
typically not symmetric. Since the Boltzmann distribution
requires a symmetric interaction matrix, the Lyapunov equa-
tion method is a bit more general. Below, we show that
if the same symmetric interaction matrix is used in both
approaches, we find the same covariance matrices up to a
factor of 2. According to Theorem A.2, if dv = Mvdt +
DdWt , then the probability densities of v, y = Qv, and
z = QT y are given by Gaussian distributions. Since the
Boltzmann distribution is a Gaussian distribution, it makes
sense that the steady state distribution from the stochas-
tic dynamics and the Boltzmann distribution should be the
same. In Fig. 7, we show that even if we use different
interaction matrices, the two approaches give very similar
covariance matrices. The slight differences in Fig. 7 are due
to the fact that L and P are slightly different, since L is not
symmetric.

Since the Boltzmann distribution requires a symmetric
interaction matrix, in the following we will only consider
the interaction matrix P . We start by considering the case
without an environmental cue. As we showed in the main
text, if dv = Pvdt + dWt , then �ss,y satisfies the equation

P̄�ss,y + �ss,y P̄ = −QQT ,

where P̄ = QPQT . If, on the other hand, we start with the
Boltzmann distribution, we find that �z = −P † and, since
y = Qz, �y = −QP †QT .

Claim 1 If �∗
y = −QP †QT and �y satisfies the equation

P̄�y + �yP̄ = −QQT , then �y = 1
2�

∗
y .

Proof We begin by using �∗
y in the Lyapunov equation:

P̄�∗
y + �∗

y P̄ = QPQT (−QP †QT ) + (−QP †QT )QP T

= −QP

(
IN − 1

N
11T

)
P †QT

−QP †
(

IN − 1

N
11T

)
P T

= −QPP †QT − QP †P T QT since P1 = 0

= −Q

(
IN − 1

N
11T

)
QT

−Q

(
IN − 1

N
11T

)
QT
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= −QQT − QQT since Q1 = 0

= −2QQT

Thus, 1
2�

∗
y satisfies the Lyapunov equation. Since

Theorem A.1 tells us that the solution is unique, �y = 1
2�

∗
y .

We can now consider the case when there is an envi-
ronmental cue. In Appendix A.3, we used Theorem A.2
to conclude that, if dv = (Psv + B1)dt + dWt , then the
covariance of the full vector ȳ = Rv, �ss,ȳ , satisfies the
equation

P̃�ss,ȳ + �ss,ȳ P̃ = −I,

where P̃ = RPRT . If, on the other hand, we start with the
Boltzmann distribution P(v) ∝ exp(− 1

2 (v − 1)(−Ps)(v −
1)), we find that �z = −(Ps + 1

bNc
B11T B)† where Nc is

the number of birds that perceive the cue.

Claim A.2 Let �∗
z = −(Ps + 1

bNc
B11T B)† and �∗

y =
Q�∗

z QT . If �ȳ satisfies the Lyapunov equation P̃s�ȳ +
�ȳP̃s = −I and �y is given by the first N − 1 rows and
columns of �ȳ , then �y = 1

2�
∗
y .

Proof It is clear that − 1
2 P̃

−1
s satisfies the Lyapunov equa-

tion. By Theorem A.1 the solution to the Lyapunov equa-
tion is unique, so �ȳ = − 1

2 P̃
−1
s . Equivalently, we can

write

�−1
ȳ = −2P̃s = −2RPsR

T .

In order to use Claim A.2, we will write �−1
ȳ as

−2RPsR
T = −2

(
QPsQ

T 1√
N

QPs1
1√
N
1T PsQ

T 1
N
1T Ps1

)

since the last row of R is
1√
N
1T

= −2

(
QPsQ

T − 1√
N

QB1

− 1√
N
1T BQT − 1

N
1T B1

)

since Ps = P − B and P1 = 0

= −2

(
QPsQ

T − 1√
N

QB1

− 1√
N
1T BQT − bNc

N

)

Now, by Claim A.2, since �y is given by the first N − 1
rows and columns of �ȳ ,

�−1
y = −2

(
QPsQ

T + N

bNc

1

N
QB11T BQT

)

= −2Q

(
Ps + 1

bNc
B11T B

)
QT .

Since Q and QT are not square, they are not invertible;
nor is Ps + 1

bNc
B11T B, so it takes some care to find

�y from �−1
y . Let M = − 1

2Q
(
Ps + 1

bNc
B11T B

)†
QT .

Then

�−1
y M =

(
−2Q

(
Ps + 1

bNc
B11T B

)
QT

)

×
(

−1

2
Q

(
Ps + 1

bNc
B11T B

)†

QT

)

= Q

(
Ps+ 1

bNc
B11T B

)
QT Q

(
Ps+ 1

bNc
B11T B

)†

QT

= Q

(
Ps + 1

bNc
B11T B

) (
IN − 1

N
11T

)

×
(

Ps + 1

bNc
B11T B

)†

QT

= Q

(
Ps

(
IN − 1

N
11T

)
+ 1

bNc
B11T B

×
(

IN − 1

N
11T

)) (
Ps + 1

bNc
B11T B

)†

QT

= Q

(
Ps − 1

N
B11T + 1

bNc
B11T B

− 1

N

1

bNc
B11T B11T

) (
Ps + 1

bNc
B11T B

)†

QT

since P1 = 0

= Q

(
Ps − 1

N
B11T + 1

bNc
B11T B

− 1

N

bNc

bNc
B11T

) (
Ps + 1

bNc
B11T B

)†

QT

= Q

(
Ps + 1

bNc
B11T B

) (
Ps + 1

bNc
B11T B

)†

QT

= Q(IN − 1

N
11T )QT

= QQT since Q1 = 0
= IN−1.

Finally,we can conclude that�y = − 1
2Q(Ps+ 1

bNc
B11T B)†

QT = 1
2Q�∗

z QT = 1
2�

∗
y .
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Fig. 7 Example covariance matrices. We determine L and P by dis-
tributing the birds randomly in the unit square and having each pay
attention to its 4 nearest neighbors. In awe show the covariance matrix
1
2QT �yQwhere�y is the solution to the Lyapunov equation (2) using

L. In b we show the covariance matrix �z = −P †. This shows that
�z ≈ 1

2QT �yQ. In c we show the correlation matrix C found by
normalizing the entries of �z
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Fig. 8 If a fixed number of birds perceive the cue and birds choose
neighbors randomly, the probability of a proportion of neighbors that
perceive the cue follows Eq. 3. In a and b we show the probability of
having a given proportion of neighbors for different strategies k. In a,

Nc = 1. In b, Nc = 10. In c, we show the variance of the proportion of
neighbors that perceive the cue, as given in Eq. 5, as a function of the
number of neighbors, for Nc = 1 and Nc = 10. Parameters: N = 20

A.6 Supplemental figures and tables
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Fig. 9 Speed of convergence increases with number of neighbors. Here
we show the average speed of convergence σ over 1000 cues, where
all birds use the strategy indicated on the x-axis. Parameters: N = 20
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Fig. 10 Both robustness and correlation length are maximized at inter-
mediate numbers of neighbors. In a, we show the average robustness,
ρ̄, from 1000 cues, where all birds use the strategy indicated on the

x-axis. In b, we show the correlation length, λ, found using the correla-
tion matrices from 1000 cues, where all birds use the strategy indicated
on the x-axis. Parameters: N = 20
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Table 2 The table shows how
to calculate the steady state
covariance matrix �y

Without cue With cue

Stochastic dynamics P̄�y + �yP̄ = −QQT P̃s�ȳ + �ȳP̃s = −IN , �y = (�ȳ)N−1
i,j=1

Boltzmann �y = −QP †QT �y = −Q(Ps + 1
bNc

B11T B)†QT

The probability density of the opinion vector can come from analyzing the stochastic dynamics, dv =
Pdt + dWt without a cue and dv = (Ps + B1)dt + dWt with a cue, or from analyzing the Boltzmann
distributions, P(v) ∝ exp(− 1

2vT (−P)v) without a cue and P(v) ∝ exp(− 1
2 (v − 1)T (−Ps)(v − 1)) with a

cue. For any matrix M , M̄ = QMQT , M̃ = RMRT , and M† is the inverse of M with the 0 eigenvector and
eigenvalue removed

0 10 20 30
0.09

0.1

0.11

0.12

Timesteps

M
ea

n 
ro

bu
st

ne
ss

0 10 20 30
0.2

0.3

0.4

Timesteps

C
or

re
la

tio
n 

le
ng

th

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Number of neighbors

Pr
ob

ab
ili

ty

4

2

10

(c)(b)(a)

Fig. 11 The greedy optimization process is similar for different num-
bers of birds that are allowed to eat. In the main text, we showed results
for fitness based on access to abundant resources, when four birds in
the flock are allowed to eat. Here we show results for when two, four,
or ten birds in the flock are allowed to eat. For each of these cases,
we ran a greedy optimization process with five random initial condi-
tions. In each subplot, red lines indicate that two birds are allowed to
eat, black lines indicate that four birds are allowed to eat, and blue
lines indicate that ten birds are allowed to eat. In a, we show the prob-
ability of a bird ending with each strategy, k = 1, . . . , N − 1, after
30 timesteps, calculated by the number of times a bird ended with
each strategy, divided by 5N . As more birds are allowed to eat, higher

strategies become more probable. In b, we show, for various initial
conditions, how the average robustness, ρ̄, changes over time, with the
darker lines showing the average of the 5 paler lines of the same color.
The average robustness tends to be highest when four birds are allowed
to eat, but in neither of the other two cases does the average robust-
ness decrease as much as when one bird is allowed to eat (i.e. fitness is
based on access to scarce resources, as defined in the main text). In c,
we show, for various initial conditions, how the correlation length, λ,
changes over time, with the darker lines showing the average of the 5
paler lines of the same color. The correlation length tends to be highest
when four birds are allowed to eat, but it is almost as high in the other
two cases. Parameters: N = 20, b = 1, r = 0.1
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