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Nonuniform Coverage and Cartograms

Francois Lekien and Naomi Ehrich Leonard

Abstract— In this paper, we summarize our investigation
of nonuniform coverage of a planar region by a network of
autonomous, mobile agents. We derive centralized nonuniform
coverage control laws from uniform coverage algorithms using
cartograms, transformations that map nonuniform metrics to
a near Euclidean metric. We also investigate time-varying
coverage metrics and the design of control algorithms to cover
regions with slowly varying, nonuniform metrics. Our results
are applicable to the design of mobile sensor networks, notably
when the coverage metric varies as data is collected such as in
the case of an information metric. The results apply also to the
study of animal groups foraging for food that is nonuniformly
distributed and possibly changing.

I. INTRODUCTION

Sensor networks in space, in the air, on land, and in the
ocean provide the opportunity for unprecedented observa-
tional capability. An important problem in this context is to
determine how best to distribute sensors over a given area
in which the observational field is distributed so that the
likelihood of detecting an event of interest is maximized.
If the probability distribution of the event is uniform over
the area, then the optimal solution is uniform coverage,
i.e., uniform distribution of sensors. On the other hand, if
this probability distribution is nonuniform, then the sensors
should be more (less) densely distributed in subregions with
higher (lower) event probability. Further, if the probability
distribution changes with time, then the nonuniform distri-
bution should likewise change with time.

A related coverage problem derives from the classic objec-
tive analysis (OA) mapping error in problems of sampling
(possibly time-varying) scalar fields [2]. OA is linear sta-
tistical estimation based on specified field statistics, and the
mapping error provides a measure of statistical uncertainty of
the model. Since reduced uncertainty, equivalent to increased
entropic information, implies better measurement coverage,
OA mapping error can be used as a coverage metric [2], [3].

Coverage problems also appear in models of social for-
aging. Backed by observations of animal behavior across
species, biologists model distribution of animals over patchy
resource environments according to a measure of patch
suitability that depends on factors such as resource richness
or conditions for survival [4], [5]. Suitability decreases in
time as animals consume (and animals will abandon patches
where suitability has declined). Coverage studies of chang-
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ing, nonuniform environments may prove useful in helping
to explain how animal groups move and redistribute.

Coverage algorithms for a group of dynamic agents in
uniform fields (or nonuniform but symmetric fields) include
those described in [6]–[9]. Further results are presented in
[9] for a coverage metric defined in terms of the Euclidean
metric with a weighting factor that allows for nonuniformity.
In [6], [9], the methodology makes use of Voronoi cells and
Lloyd descent algorithms.

In this paper we concentrate on planar regions and propose
an approach to coverage control that makes use of existing
algorithms designed for uniform coverage and extends these
to nonuniform metrics. We are particularly interested in
metrics defined in terms of non-Euclidean distance functions
that effectively stretch and shrink space in lower and higher
density regions of a given space. This yields optimal con-
figurations where regions with a high density of resource
or information are patrolled by more agents. Non-Euclidean
distance metrics present challenges to existing techniques.
For example, in the case of [6], [9], computing Voronoi cells
with non-Euclidean metrics is computationally complex. For
each point on a dense grid, one needs to compute the (non-
Euclidean) distance to each agent and find the minimum.

The first step in our method is to compute a nonuniform
change of coordinates on the original compact set with a non-
Euclidean metric that maps to a new compact set with a near
Euclidean metric. Such a map is called a cartogram. Inspired
by the work of Gastner and Newman [10], we compute the
cartogram from a diffusion equation. Gastner and Newman
used cartograms in several applications [11], [12] where it
is sufficient to compute single cartograms. Since we are
interested in computing a series of cartograms for feedback
control, we propose a method to compute cartograms that
vary smoothly as a function of the density distribution.

A uniform control law can be used in the cartogram
space since the metric in this space is almost Euclidean.
The preimage of the control law yields convergent dynamics
in the original space. We prove under certain conditions
that these convergent dynamics optimize the nonuniform
coverage metric. We extend to the time-varying metric case.

In section II we review the uniform coverage control
of [6]. We describe the nonuniform coverage problem in
section III. Cartograms are defined in section IV. Gastner and
Newman’s method for computing cartograms is reviewed,
and our new approach to computing smooth cartograms is
presented. In section V we prove our approach to nonuniform
coverage control that makes use of cartograms and extends to
slowly time-varying metrics. We illustrate with an example
in section VI. Final remarks are given in section VII.



II. UNIFORM COVERAGE

In the uniform coverage approach of Cortés and Bullo [6],
n vehicles move in a region D, with a polygonal boundary
∂D. The vehicles obey first-order dynamics:

ẋi = ui(x1, . . . ,xn), (1)

where xi is the position of the ith vehicle and ui is the
control input to the ith vehicle.

The goal is to bring the vehicles, from their initial posi-
tions, to a (static) configuration that maximizes coverage of
the domain. To define maximum coverage, Cortés and Bullo
consider multicenter metric functions such as

Φ(x1,x2, . . . ,xn) = max
x∈D

{
min
i=1···n

d(x,xi)
}
, (2)

where d(x,xi) = ‖x− xi‖ is the Euclidean distance. Given
the position of the n vehicles, computing the metric requires
computing the distance from any point x ∈ D to the
closest vehicle. The metric Φ is equal to the largest of these
distances. As a result, the maximum distance between any
point of the domain and the closest vehicle is always smaller
than or equal to Φ. Intuitively, a smaller Φ implies that the
corresponding array of vehicles xi achieves a better coverage
of the domain D.

Assuming that all of the vehicles have the same constant
speed, Φ is proportional to the maximum time it takes for
a vehicle to reach an arbitrary point of the domain. For
this reason, Cortés and Bullo define optimal coverage as the
minimum of the cost function Φ.

One of the main results of [6] is the development of a
stable procedure to bring the vehicles into a configuration
that minimizes the metric Φ. To this end, the Voronoi cell
of each vehicle is computed repeatedly. The Voronoi cell for
the ith vehicle is a polygonal subset of the domain D that
contains all of the points that are closer to the ith vehicle
than any other vehicle. Each vehicle is then directed to move
toward the circumcenter of its Voronoi cell. Once all the
vehicles reach the circumcenter of their Voronoi cell, the
coverage metric Φ is minimum. Cortés and Bullo show that,
from any initial position where the vehicles are not exactly
on top of each other, their algorithm converges toward the
optimal configuration.

III. NONUNIFORM COVERAGE

We develop an approach that extends optimal coverage
strategies to more general metrics, notably to nonuniform
and time-varying metrics. We are particularly interested in
metrics defined in terms of a (possibly time-varying) distance
function that is non-Euclidean. In the approach of [6], the
region of dominance of an agent might include points that
can be reached more easily by other agents. In this paper, we
consider the dominance region of an agent xi as a defined
region containing all of the points that are closer to xi than
any other agent in the sense of the non-Euclidean metric,
i.e., that can be reached more easily by agent xi than by
any other agent, where ease in reaching a point depends
on the density of resource or information. The dominance

region is still a Voronoi cell, and the nonuniform density is
introduced through the distance function used to compute the
Voronoi cells. The nonuniform distance shrinks along paths
where resources are sparse and increases along paths where
resources are plentiful.

If the density of information ρ : D → R+
0 is not uniform,

then we can define a non-Euclidean distance:

dρ(x,xi) = min
Cxi
x

{∫
Cxi
x

√
ρ dl

}
.

We use
√
ρ to weight the distance integral since, in two

dimensions, multiplying the distances in each direction by√
ρ implies a net volume (or density) change of ρ.
In this paper we assume that the coverage metric Φ is a

functional of a distance function dρ, which depends on the
positions of the agents xi and the domain D, denoted

Φ = (Φ[dρ]) (xi, . . . ,xn;D). (3)

Clearly, one can use any metric Φ that involves only the
Euclidean distance, such as the multicenter function (2),
and make it inhomogeneous by replacing the Euclidean
distance d with the weighted distance dρ. If ρ represents
the density distribution for information or resources, then
optimal coverage solutions correspond to evenly distributed
information or resources to each agent’s dominance region.

In [9], Cortés et al. design coverage control algorithms for
a density-dependent metric defined, as a function of a given
array of agents x1,x2, . . . ,xn, by

Φ(x1,x2, . . . ,xn) =
∫
D
min
i

{
f(d(x,xi)) ρ(x)

}
dx,

where d is the Euclidean distance function, f is a nonde-
creasing function and ρ is the distribution density function.
Because the metric depends on d, the cost function can be
rewritten as

Φ(x1,x2, . . . ,xn) =
n∑
i=1

∫
Vi

f(d(x,xi)) ρ(x) dx,

where the Voronoi cells Vi are defined also by the Euclidean
distance function as

Vi =
{
x ∈ D

∣∣∣ d(x,xi) ≤ d(x,xj) ∀j 6= i
}
.

As shown in [9], this means that the cost function can be seen
as the contribution of n dominance regions Vi, each of which
is the Voronoi cell of an agent. Although this metric yields
coverage solutions that are nonuniform, the information or
resource will nonetheless not be equally distributed among
corresponding dominance regions.

In this paper, we are interested in cost functions of the
form (3). Indeed, a metric based on a nonuniform distance dρ
is more closely related to information gathering and sensing
array optimization. One such problem is the detection of
acoustic signals. In this case,

√
ρ represents the nonuniform

refractive index of the environment. The objective is to place
the sensors in such a way that they can detect sources any-
where. In other words, one needs to minimize the weighted
distance dρ between any point in the domain and the agents.



Another typical problem consists in increasing the ability
of the array on an uneven terrain. This situation is typical
for mine hunting arrays in a standby mode; the optimal
configuration minimizes the time that it would take to send
one of the agents to a newly detected mine. In this case, the
square root of ρ(x) represents the roughness of the terrain,
the infinitesimal time it takes to cross an infinitesimal path
located in x. The goal is to position the agents in such a way
that any point of the domain can be reached by one of the
agents in minimum time. The optimal solution corresponds
to the minimum of the cost function in (3), where dρ(x,y)
is the minimum travel time between points x and y.

A similar practical situation can arise in the deployment
of salesmen across a city with various speed zones. To
respond to a call in as little time as possible, the salesmen
make detours and avoid areas with low speed limits. In
this example, the density ρ is the square of the speed limit
and the minimum of the cost function in (3) corresponds
to an initial distribution of salesmen that minimizes the
maximum response time to an arbitrary point in the city. The
residual value of the cost function at the minimum gives the
maximum time that the first customer has to wait before a
salesman arrives on site.

In this paper, we assume that a particular cost function of
the form (3) has been selected and that there exists a stable
algorithm that brings a group of vehicles to the minimum
of Φ for the Euclidean distance. We provide a methodology
to modify this algorithm when the non-Euclidean distance
(e.g., terrain roughness, acoustic refraction) is used.

IV. CARTOGRAMS

Our approach to deriving coverage control strategies for
nonuniform and time-varying metrics is to find a standard
method to modify a control law defined for the Euclidean
metric in such a way that it remains stable and converges to
the minimum of the nonuniform metric. The method that we
develop is based on a nonuniform change of coordinates that
transforms the domain D with the non-Euclidean distance
into another compact set D′ where the distance is Euclidean
or near Euclidean. Such transformations are commonly re-
ferred to as “cartograms” in computer graphics.

To motivate the notion of cartogram, consider how poorly
census and election results are represented using standard ge-
ographical projections; such data are better plotted on maps
in which the sizes of geographic regions such as countries
or provinces appear in proportion to their population (as
opposed to the geographical area). Such maps, which are
cartograms, transform the physical space D into a fictitious
space D′ where the area element A is proportional to a
nonuniform density ρ : D → R+

0 .
Definition 1 (cartogram): Given a compact domain D ⊂

R2 and a density function ρ : D → R+
0 , a cartogram is a

C1 (continuous everywhere and with continuous derivatives
almost everywhere) mapping φ : D → D′ : x→ φ(x) such
that

det
(
∂φ

∂x

)
= ρ.

Our method for computing cartograms, inspired by the
approach of Gastner and Newman [10], is presented in this
section. Given a domain D and a density function ρ, there
are infinitely many possible cartograms. As stated in [10], the
objective is to minimize the distortion of the original figure.
A perfect cartogram would not introduce any deformation
and would satisfy

∂φ

∂x
=
√
ρ I,

where I is the identity matrix. Clearly, such a cartogram does
not exist for most density functions ρ. Nevertheless, we seek
to reduce the distortion and to minimize maxx

∥∥∂φ
∂x −

√
ρ I
∥∥,

where ‖ · ‖ is any norm on the space of 2× 2 matrices.
Definition 2 (perfect cartogram): For a given density

function ρ, a perfect cartogram, if it exists, is a cartogram
such that

∥∥∂φ
∂x −

√
ρ I
∥∥ = 0.

Definition 3 (ideal cartogram): For a given density func-
tion ρ, an ideal cartogram is given by

Argmin
φ

(
max

x

∥∥∥∥∂φ∂x −√ρ I
∥∥∥∥) .

A. Cartograms with fixed boundaries

Gastner and Newman [10] showed how to construct a
cartogram using a diffusion equation. Their work has shown
that, among all known methods to compute cartograms,
the diffusion method introduces very little distortion and
produces maps that are the closest to the perfect diagonal
form

√
ρ I.

To describe the method of [10], we first address the case in
which, for a given ρ, the normal component of ∇ρ along the
boundary ∂D vanishes. In this case, there exists a cartogram
φ : D → D′, where D′ = D. To show the existence of
the cartogram and to determine a method to compute it, we
imagine that the domain D is filled with a fluid whose initial
density is given by ρ. As time evolves, the gradient of the
density creates motion and the density of the fluid tends to
homogenize. Let us consider the density c(x, t) at point x
and time t. It satisfies the diffusion equation

∂c

∂t
= ν∆c ,

where the initial condition is c(x, 0) = ρ(x), the boundary
condition is ∂c

∂n = 0, and ν > 0 is arbitrary. For t → +∞,
the density c tends to a constant distribution c∞ and, at any
time t and at any position x, we have c(x, t) > 0. As a
result, we can define a velocity field:

v(x, t) = −ν ∇c
c

(x, t).

Given the initial position x0 at which a particle is released at
time t = 0, the velocity field above determines the position
at any later time t. The flow (i.e., the trajectories) of the
velocity field is a function of time and of the initial position.
We denote by x(t; x0) the unique trajectory that satisfies{

ẋ = v (x(t; x0), t) ,
x(0; x0) = x0.



The domain D is compact; hence the trajectories x are at
least C1 on any finite interval of time [0, t] (see, e.g., [13]). In
this case, however, c is the solution of the diffusion equation
and the magnitude of its gradient decays exponentially with
time while c approaches its average, c∞. As a result, the
velocity field v also decays exponentially in time. This is a
sufficient condition for the trajectories x(t,x0) to be C1 on
the infinite interval t ∈ [0,+∞[. We define

φ(x0) = lim
t→+∞

x(t,x0).

The limit exists, is unique, and is a C1 function of its argu-
ment x0. To check that this transformation is a cartogram, we
need to show that the area element starting in x0 is indeed
scaled by a factor ρ(x0). Recall that Liouville’s theorem
determines how area elements A change along trajectories:

d
dt

lnA
∣∣∣∣
x(t;x0),t

= div (v(x, t)) . (4)

Direct computation shows that

div (v) = −ν
c

∆c+
1
ν
v2.

Note that
d
dt

ln c =
1
c

∂c

∂t
+

v · ∇c
c

= −div (v) .

As a result, Liouville’s equation (4) simplifies to

A(t) = A(0) e−
R t
0

d
dt ln c dt = A(0)

c(x0, 0)
c(x, t)

= A(0)
ρ(x0)
c(x, t)

.

For t → +∞, the density c becomes constant in space and
we have

det
(
∂φ

∂x0
(x0)

)
= lim
t→+∞

A(t)
A(0)

=
ρ(x0)
c∞

.

B. Cartograms with moving boundaries

The conclusions reached for cartograms with constant
boundaries do not translate immediately to cases where ∂ρ

∂n 6=
0 on the boundary of the domain. In this case, we cannot
apply the method described in the previous section, and
theorems about existence and smoothness of the diffusion
problem, as well as about the advection of the velocity field,
are not applicable either. Gastner and Newman [10] suggest
extending the density to a larger domain where Neumann
boundary conditions are enforced. Given a function ρ : D →
R+

0 , one can select a larger domain D0 ⊃ D and pick an
arbitrary function ρ̂ : D0 → R+

0 such that ρ̂ is identical
to ρ in D. Typically, D0 has an area of 4 or 9 times the
initial domain D. The goal is to design ρ̂ in such a way that
∂ρ̂
∂n = 0 at the edges of the larger domain D0 (see Figure 1).
This permits the computation of the diffusion cartogram
for the large domain D0 with fixed boundaries, followed
by a restriction of the transformation to D to obtain the
cartogram for the initial domain. This procedure is dependent
on the choice of the embedding domain D0. Given D0, it
also depends on how the extended density function ρ̂ is
constructed in D0 \ D.

D

D0\D ∂D

∂D0

∂ρ̂
∂n

=0

ρ̂ = ρ

Fig. 1. Proposed approach: when computing a cartogram for a domain
D that has an arbitrary shape or for which the normal derivative of the
density function ρ does not vanish at the boundary, a large rectangle
D0 ⊃ D is selected. The density ρ is extended outside D by enforcing
Neumann boundary conditions at the boundary of the large rectangle,
requiring continuity of ρ̂ at the edge with D, and setting the Laplacian
of ρ̂ to a constant value outside D. This defines a unique extension ρ̂ which
is continuous and has continuous derivatives almost everywhere.

Gastner and Newman showed the importance of applying
a “neutral buoyancy” condition, which keeps the total area
under consideration constant. To construct ρ̂, they first com-
puted the average density in D. In D0 \D, they filled ρ̂ with
a constant equal to the mean density in D.

For our control design problem, the method above has
an important flaw: ρ̂, the initial condition for the diffusion
problem, is not continuous at the boundary of D. As a result,
existence, uniqueness, and smoothness of the solution of the
diffusion problem are not guaranteed. This is not necessarily
a problem when producing only one cartogram. Our objec-
tive, however, is to produce continuous sequences of maps.
Indeed, we will need the cartogram to vary smoothly when
the density function is changed. For example, transferring
Lyapunov functions from the cartogram space to the physical
plane requires the existence of continuous derivatives.

We propose the following alternative to the method of [10].
Given ρ in the domain of interest D, we compute ∂ρ

∂n at the
boundary of D and the total flux across ∂D. We define the
extended density ρ̂ as follows:
• Inside D, ρ̂(x) = ρ(x).
• Outside D, ρ̂ is the solution of

∆ρ̂ =
−1

Area(D0 \ D)

∫
D
∆ρ(x) dx

=
−1

Area(D0 \ D)

∮
∂D

∂ρ

∂n
dl,

∂ρ̂

∂n

∣∣∣∣
∂D0

= 0, ρ̂|∂D = ρ|∂D.

(5)

The equations above define ρ̂ inside D0 \ D as the solution
of a linear problem with inhomogeneous Neumann boundary
conditions. The Laplacian of ρ̂ is constant in D0 \D, and its
value is set so it compensates exactly the flux through the
inside hole D. Indeed, Green’s equality requires∫

D0

∆ρ̂ dx =
∮
∂D0

∂ρ̂

∂n
dl = 0.



Since this problem is compatible, standard results in func-
tional analysis [14], [15] guarantee that the solution is unique
and belongs to the Sobolev space H1, which contains the
functions on D0 that are continuous everywhere and for
which the derivatives are continuous almost everywhere. This
guarantees also that the resulting extended density, ρ̂, can be
used as the initial condition of the diffusion problem and
provides a C1 solution c. The resulting transformation φ(x)
is unique and varies smoothly (i.e., in a C1 fashion) when
the input density ρ is changed.

Gastner and Newman showed how the diffusion problem
on a rectangle can be efficiently solved using the Fourier
transform of c(x, t). This transforms the problem into an
ordinary differential equation where the variables are the
Fourier coefficients [10]. The only difference between our
procedure and that of Gastner and Newman is how the
density ρ is extended from the domain of interest D to the
larger square D0. To solve (5) and obtain ρ̂ on D0\D, we use
the finite element method (see [14], [15]). Since the equations
giving the extended density ρ̂ are linear, the computational
cost is negligible with respect to the time that it would take
to compute the nonlinear boundaries of the Voronoi cells for
the non-Euclidean metric.

V. NONUNIFORM COVERAGE CONTROL

A. Method

Cartograms can be used to extend any algorithm that
minimizes the uniform coverage metric, based on the Eu-
clidean distance, to an algorithm that minimizes a nonuni-
form coverage metric dependent on an arbitrary “weighted”
distance dρ. Indeed, starting from a non-Euclidean distance
dρ, a perfect cartogram gives a transformation y = φ(x)
such that the distance function is Euclidean for y. As a
result, one can apply the uniform coverage algorithm to
the y coordinates and prove convergence in the transformed
space. In Theorem 1 below, we prove conditions under
which convergence to the minimum of the uniform metric in
the transformed space implies convergence to the minimum
of the nonuniform metric in the original domain D. The
control law in the physical space for a system of agents with
dynamics given by (1) can then be recovered as

u = ẋ =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏ.

B. Convergence

Assume that a feedback control law has been designed
and converges to the unique minimum of a cost function
based on the Euclidean distance. We consider a nonuniform
distance dρ and investigate how the control law for the
Euclidean distance behaves in a near perfect cartogram
of ρ. We show that, for C1, strictly positive ρ, the non-
Euclidean cost function has a unique minimum. Furthermore,
the cartogram inverse-mapped feedback control converges
toward this minimum.

Theorem 1 (nonuniform coverage by cartograms):
Consider a C1 cost function (Φ[dρ]) (xi, . . . ,xn;D) that

depends only on the distance dρ(a,b) = minCba
∫
Cba
√
ρ dl

between n agent positions and points in the domain D. We
assume that Φ has a unique, nondegenerate minimum for
the Euclidean distance d1(a,b) = ‖a− b‖. We also assume
that there exists a feedback control law ẋi = vi(x1, . . . ,xn)
that brings the vehicles to the minimum for the Euclidean
distance d1.

Given a density function ρ : D → R+
0 , consider a

cartogram φ : D → φ(D). We consider applying the control
law for the Euclidean distance in the cartogram space; hence

ẏi = vi(y1, . . . ,yn),

where yi = φ(xi). The corresponding dynamics in the
physical space D

ẋi = ui =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏi

yield a convergent sequence. In the neighborhood of a perfect
cartogram, we have the following:

1. There is a unique minimum of (Φ[dρ]) (xi, . . . ,xn,D)
on D.

2. The agents converge to an equilibrium configuration
that tends continuously to the unique minimum as
maxx

∥∥∂φ
∂x −

√
ρ I
∥∥→ 0.

The proof can be found in [1].

C. Space-time optimal coverage

The method developed in this paper is well suited for
time-varying metrics. For example, when the density ρ is a
physical quantity, such as the refractive index, it changes ac-
cording to the fluctuations in the environment (e.g., sources,
sinks, diffusion, advection). The objective analysis (OA)
information map in [3] is an example of a consumable
resource that varies as sensors move around the area to be
covered. The numerical method presented above is aimed at
producing cartograms that depend smoothly on the density
function ρ. In other words, for a density function ρ(x, t) that
is C1 in time, we find a family of cartograms φt : D → D′t
where both the transformation φt and the transformed space
D′t change with time in a C1 fashion.

For autonomous, nonuniform metrics, we proved unique-
ness of the optimal configuration and convergence to this
position. The algorithm applies well to the case of time-
varying metrics. If the density function changes slowly
enough (in comparison to agent speed) and, at any time
t, the maximum distortion 1√

ρ

∥∥∂φ
∂x −

√
ρ I
∥∥ is sufficiently

small, then convergence can be inferred by our theorem. The
requirement that ρ(t) does not change too fast guarantees
that the cartogram does not change too fast, and, hence,
the boundary φ(D) does not change too fast with respect
to vehicle speed. As a result, the motion of the cartogram
boundary (slow dynamics) and the motion of the vehicles
(fast dynamics) are almost decoupled, and we infer con-
vergence from the fact that vehicles are converging to the
equilibrium on timescales much shorter than the timescale
at which φ(D) changes.



Fig. 2. Cartogram of the unit square. Left panel: Physical domain D with
level sets of density function ρ(x, y) given by (7). Right panel: Cartogram
D′ and image of a Cartesian mesh.

VI. EXAMPLE

As an example, we let D be the unit square and we con-
sider the multicenter coverage metric (2), where we replace
the Euclidean distance d with a non-Euclidean distance dρ:

Φ[dρ](x1,x2, . . . ,xn) = max
x∈D

{
min
i=1···n

dρ(x,xi)
}
. (6)

We set the density function ρ : D → R+
0 to

ρ(x, y) =
3
40

+ e
− (x− 3

4 )2
+(y− 1

4 )2

( 1
10 )2

, (7)

which represents our nonuniform interest in the features
contained inside the unit square. The density ρ is plotted
in the left panel of Figure 2. The lower right quadrant of the
square has a much higher density and must be covered more
densely than the rest of the square. In the analogy with a
group of animals, the peak at

(
3
4 ,

1
4

)
represents a region with

larger food supply. In the analogy with a mine hunting array,
the peak is a region where the agents move more slowly. To
be able to respond anywhere in minimum time, the vehicles
must be closer to each other in the lower right quadrant.

To derive coverage control laws for n = 16 vehicles with
dynamics given by (1), we first perform a cartogram of the
area (see the right panel of Figure 2). The area near the peak
of the Gaussian source is stretched by the transformation and
represents about 30% of the mapped domain D′, while it
accounts for less than 10% of the physical domain D.

We apply the uniform coverage control law of [6] in D′
which guarantees convergence to the optimal configuration in
D′ and, by Theorem 1, convergence to optimal nonuniform
coverage in D. Figure 3 shows the steady-state configuration
of the vehicles in D (left panel) and D′ (right panel). The
optimal configuration segments D′ into sixteen Voronoi cells
of equal area, but, in the physical space, this corresponds
to sixteen (nonpolygonal) regions of unequal area; i.e.,
coverage is increased in the lower right quadrant. Examples
of nonuniform coverage using the cartogram approach in the
case of a slowly time-varying density can be found in [1].

VII. FINAL REMARKS

We investigated the use of cartograms to achieve time-
varying, nonuniform coverage of a spatial domain by a group
of agents. Our method permits generalizing many existing

Fig. 3. Convergence of sixteen vehicles to static nonuniform coverage of
density function ρ(x, y) given by (7). Left panel: Resulting positions of the
vehicles in physical space D. Right panel: Solution in cartogram space D′.

uniform coverage algorithms to nonuniform metrics. It also
provides a simple and fast control law; e.g., as compared to
computing Voronoi cells for a nonuniform metric.

In ongoing work we are investigating extensions of the
proposed approach to a possibly fast changing density such
as statistical uncertainty in a model of a spatial field, which
changes with the motion of the sampling agents. Addition-
ally, a distributed version of the proposed approach may be
possible, provided that each agent computes its own local
diffusion equation. In this case information passed from
neighbors would be used to determine boundary conditions.
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