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Abstract— We present an approach to control design for
a mobile sensor network tasked with sampling a scalar field
and providing optimal space-time measurements. The coverage
metric is derived from the mapping error in objective analysis
(OA), an assimilation scheme that provides a linear statistical
estimation of a sampled field. OA mapping error is an example
of a consumable density field: the error decreases dynamically
at locations where agents move and sample. OA mapping error
is also a regenerating density field if the sampled field is
time-varying: error increases over time as measurement value
decays. The resulting optimal coverage problem presents a chal-
lenge to traditional coverage methods. We prove a symmetric
dynamic coverage solution that exploits the symmetry of the
domain and yields symmetry-preserving coordinated motion
of mobile sensors. Our results apply to symmetric sampling
regions that are non-convex and non-simply connected.

I. INTRODUCTION

A mobile sensor network used to observe a scalar field

over a finite region can be made most efficient if it is

designed for optimal measurement coverage. If the field

varies spatially and temporally, sensing agents should be

dynamically distributed in space and time to match the spatial

and temporal scales of the field. This can be formulated as

the problem of designing motion control laws for the agents

that maximize information in the data collected.

Inspired by ocean sampling field experiments in Monterey

Bay CA [1], we examine a coverage problem in which

information derives from the classic objective analysis (OA)

mapping error. OA is linear statistical estimation based on

specified field statistics, and the mapping error provides

a measure of the residual uncertainty in the model [2].

Since reduced uncertainty, equivalent to increased entropic

information, implies better measurement coverage, the OA

mapping error provides a useful density field for determining

the coverage metric [2], [3].

In this context, optimal coverage is achieved by seeking

maximum reduction of the residual OA mapping error; this

problem is particularly challenging because mapping error

changes with the spatial dynamics of the sensing agents.

Indeed, error decreases near the locations where agents take

measurements, reflecting the new information acquired, but

as time passes, the relevance of past measurements decreases

and the error increases.

Coverage for static density fields has been studied for

convex and non-convex domains; see, e.g., [4]–[8]. In [8]

convergence is proved in the case of slowly time-varying,
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nonuniform density fields. Related problems include control

of a mobile sensor network in a noisy, possibly time-varying

field for minimum-error spatial estimation [9], [10] and

cooperative exploration of features [11]. In [12] agents are

deployed in a distributed way in order to maximize the

probability of event detection. The authors of [13] study the

distributed implementation of maximizing joint entropy in

measurements. However, none of these methods have been

designed to specifically address a spatial-temporal density

field that changes in response to the motion of the agents.

In this paper we propose a coverage strategy for a density

field defined by OA mapping error in the case that the

sampled field is time-varying. The approach, based on greedy

search, exploits symmetry in the sampling region and yields

symmetric coverage patterns of mobile agents. We show how

the symmetry group that defines the spatial configuration of

the mobile sensors relates to the symmetry of the region, and

we prove that the search strategy preserves the symmetry

of the spatial configuration. The method does not require a

convex or simply connected sampling region; we illustrate

with simulation examples.

In Section II, we review OA mapping error. We de-

fine the sensor network system and the coverage goals in

Section III. In Section IV we show that a well-known

coverage solution for static problems does not address the

coverage problem for minimizing OA mapping error. We

present our symmetry-based approach in Section V and prove

invariance of symmetry in the spatial distribution of agents.

We discuss performance and robustness issues in Section VI.

In Section VII we discuss future directions.

II. OA MAPPING ERROR

In this section we review the method of objective analysis

(OA); for further details see [2].

OA models a scalar sampling field observed at a point x

and a time t as a random process T (x, t). It is assumed that

a priori information about this process is available, namely

the mean value T and the covariance B of fluctuations about

the mean:

B (x, t, x′, t′) = E
[(

T (x, t) − T (x, t)
)

×
(

T (x′, t′) − T (x′, t′)
)]

. (1)

OA is a linear estimator; it provides an estimate for the field

as a linear combination of the discrete set of measurements

obtained up to time t as

T̂ (x, t) = T (x, t)+

P
∑

k=1

ηk (x, t)
(

Mk − T (xk, tk)
)

, (2)
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where P is the number of measurements, Mk is the k-th

measurement, which is taken at location xk at time instant

tk, and ηk are coefficients that minimize the least square

error of the estimate:

A (x, t, x, t) = E

[(

T (x, t) − T̂ (x, t)
)

×
(

T (x, t) − T̂ (x, t)
)]

. (3)

An important aspect of OA is that the residual error

A (x, t, x, t) depends on the location and time of the

measurements but not on the measured quantity (nor on T̄ ).

The covariance between data points is given by

[C]jl = ηδjl + B (xj , tj , xl, tl) , (4)

where η is the measurement noise (given by the physical

characteristic of the sensors) and δij is Kronecker’s delta.

As shown in [14], the error (3) can be written as

A (x, t, x′, t′) = B (x, t, x′, t′)−

P
∑

k=1

P
∑

l=1

[B (x, t, xj , tj)

×
[

C−1
]

jl
B (xl, tl, x′, t′)

]

. (5)

As is typical in ocean modeling [3], we assume that

B (x, t, x′, t′) = σ0e
−

„

‖x−x
′‖

σ

«

2

−

„

|t−t′|
τ

«

2

, (6)

where σ0 denotes the space-time average for the field covari-

ance B, and σ and τ represent its length and time scales,

respectively.

We define the density field that describes the OA mapping

error as ρ(x, t) = A(x, t, x, t). For τ < ∞, the mapping

error is regenerating: if no new measurements are made, then

ρ(x, t) → σ0 as t → ∞. If τ = ∞ the mapping error is not

regenerating: if no new measurements are made in any time

interval I = [t0, t1], then ρ (x, t) is constant for t ∈ I .

III. SAMPLING SYSTEM AND GOALS

Consider a set of N autonomous agents (mobile sensors),

indexed by i = 1, 2, . . . , N , deployed in a bounded region

D ⊂ R
2. As is traditional in the field, we model each agent

i as a first-order system [4], [5], [8], for which its location

pi ∈ D evolves in time as

ṗi = ui (p1, . . . , pN ) , (7)

where ui is the control input for the ith agent. We assume

that all the agents move at the same constant speed.

The coverage goal is to design control laws ui to keep

ρ(x, t) small over space and time, i.e., to control the motion

of the sensors so that the measurements they take minimize

OA mapping error. For sufficiently small τ , the sampled field

changes so fast, it may be appropriate to use static sensors.

However, more generally for finite τ , the sensors will need

to move continuously, because if they come to a static

configuration, error will grow around them and performance

will decline. For infinite τ , the sensors will need to move

continuously until ρ(x, t) is zero over D.

A coverage metric can be derived from ρ(x, t). For

example, entropic information I(t), computed as minus the

log of the average over D of ρ(x, t) at time t, provides one

natural choice of coverage metric [3].

In the next section, we show that an extension of a

static coverage algorithm to the density field ρ(x, t) =
A(x, t, x, t) does not address the problem; indeed, the

coverage algorithm converges to a static configuration. Our

approach, presented in Section V, uses a kind of greedy

search to prevent the sensors from becoming static and

exploits symmetry to ensure that the domain is sufficiently

well covered. We discuss performance with respect to the

entropic information metric I(t) in Section VI.

IV. EXTENSION OF STATIC COVERAGE

In this section we apply the static coverage law of

Cortés et al. [4] to the consumable density field ρ(x, t) =
A(x, t, x, t). The approach in [4] has been successfully

extended to include some time-varying fields, as in [15]. Sub-

stituting in the time-varying density ρ(x, t), the cost function

of [4] to be minimized for optimal coverage becomes

J(t) =

N
∑

i=1

∫

Vi

‖x − pi‖
2
ρ(x, t) dx, (8)

where Vi is the Voronoi region associated to agent i. The

coverage control law of [4] for agent i is given by

ṗi = − (CVi
− pi) , (9)

where CVi
(t) is the centroid of Vi at time t:

CVi
(t) =

1

MVi

∫

Vi

x ρ(x, t) dx, MVi
(t) =

∫

Vi

ρ(x, t) dx.

The computation of Voronoi regions is independent of

density ρ, but the control law (9) directs the ith agent to the

density weighted centroid of its Voronoi region. This yields

a static configuration of sensors that can initially reduce

ρ in some locations; however, it falls short of addressing

the coverage problem at hand. As described above, con-

tinuous sensor dynamics are necessary for good coverage

performance. In the next Theorem we prove that in the case

of infinite τ , the agents converge to a static configuration

independent of how much the density field ρ(x, t) has been

reduced.

Theorem 1 Let τ be infinite. The control law (9) drives the

system towards a stable, stationary equilibrium configura-

tion.

Proof: Observe that

dJ

dt
=

∑

i

∂J

∂pi

ṗi +
∂J

∂t

= −2
∑

i

MVi
‖CVi

− pi‖
2

+
∑

j

∫

Vj

‖x − pj‖
2 ∂ρ (x, t)

∂t
dx. (10)
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Since ρ represents a non-regenerative resource, then ∂ρ/∂t ≤
0 everywhere, and thus the integral on the right hand side

of (10) is a non-positive function. The right hand side is

negative unless all the agents are in the centers of their

respective Voronoi regions (in which case, they are not

moving, thus implying ∂ρ/∂t = 0). This implies that

dJ

dt
≤

∑

i

‖CVi
− pi‖

2

∫

Vi

min
x∈Vi

ρ (x, t) dx ≤ 0, (11)

with equality only when each of the agents is at the cen-

troid of its respective Voronoi region. We can thus invoke

LaSalle’s principle for time varying systems (as in [16]), to

conclude that the agents converge to the largest invariant set

(under (9)) that is contained in the kernel of the right-hand

side of (11). This is, the agents converge towards a centroidal

Voronoi tessellation.

For infinite τ , a good coverage solution is one in which

the agents continue to move around and converge to a static

configuration only when there is no more error in the field,

i.e., ρ is close to zero everywhere. Theorem 1 does not

ensure that this will be the case. Indeed, in the simulation

shown in panels (a)-(c) of Figures 1, where τ is infinite,

the agents converge to a static configuration before the OA

mapping error is significantly reduced; i.e., there remain

subregions of very high density ρ. Panel (a) of Figure 1

shows the trajectories of the four agents. Panels (b) and

(c) of Figure 1 show the initial and final density field

ρ(x, t) = A(x, t, x, t), which is plotted as a color map

with white to black representing the range from high to low

values. Panels (d)-(f) of Figure 1 show the same three plots

for a simulation in the case of finite τ . In this case too the

agents converge to a static configuration despite the fact that

OA mapping error is high around them.

V. SYMMETRIC GREEDY COVERAGE

We propose a coverage control law that directs the agents

to move to those locations where ρ(x, t) = A(x, t, x, t)
is large. Given δ > 0 we define y to be δ-close to pi if

‖y − pi‖ = δ. We define p
+

i (t) to be the point that is δ-close

to pi(t) and maximizes the density field ρ (x, t) over all

points x that are δ-close to pi(t). In case there is more than

one point x that satisfies these conditions, the agent chooses

the first location found on a counterclockwise search, starting

from its current direction of motion. The control law we

propose directs each agent i to move at time t to p
+

i (t).
This approach is similar to a gradient control law, with

the difference being that this gradient is not evaluated at

the current location, but rather at positions that are δ-close.

This is necessary since the gradient of ρ is zero when it

is evaluated at the position pi (i.e., pi is a local minimum

for ρ). The control law requires that each agent i knows the

values of ρ in those locations that are δ-close to it.

Like any local greedy algorithm, it is challenging to ensure

global performance. Instead, to enforce coverage that is well

distributed about the domain D, we consider symmetric

spatial distributions of agents. We let D be symmetric with

S(D) its symmetry group1, and we show what correspond-

ing symmetry in the spatial distribution of agents will be

invariant to the greedy control law.

We define a polygon to be D-friendly if its center coincides

with the center O of D. Assume that the agents are originally

deployed in such a way that they describe a D-friendly

regular N -gon. We induce a set of headings on the agents

in such a way that if each agent moves in the direction of

its heading, together they still define a D-friendly regular

N -gon. We call such a set of headings a symmetric set of

headings. The symmetry group of the regular N -gon is the

dihedral group DN .

Let RO : [0, 2π) × R
2 → R

2 be a function such that

RO (θ, x) 7→ xθ maps the point x to the point xθ, after a

rotation about O by an angle θ ∈ [0, 2π). We define ρ(x, t)
to be a symmetric density field at time t if there exists a θ so

that ρ (x, t) = ρ (RO (θ, x) , t) for every x in D. In the case

where S (D) = DN and the positions of the agents define a

D-friendly regular N -gon at the initial time, then θ = 2π/N .

We now prove conditions such that for our greedy approach,

the agents induce a D-friendly regular N -gon at every time

t.

Claim 1 Assume that at initial time k = 0, the agents are

deployed inside D in such a way that they define a D-

friendly regular N -gon. Suppose that S(D) = DN . Then

ρ is symmetric at time k = 0.

This follows directly from the definition of the density field

ρ and the initial deployment in a D-friendly regular N -gon.

Claim 2 Suppose that S(D) = DN . Consider the time

instant k > 0. Suppose that at each time instant j ≤ k,

the formation induces both a D-friendly regular N -gon and

a symmetric ρ on D. Then, at time k + 1, the formation

induces both a D-friendly regular N -gon and a symmetric

ρ on D.

Proof: By hypothesis, at some time k, the formation

induces both a D-friendly regular N -gon and a symmetric

ρ with respect to D. For each agent i, let p
+

i be the δ-

close point to pi such that ρ
(

p
+

i , k
)

attains its maximum.

If RO

(

2π/N,p+

i

)

= p
+

i+1
, with p

+

N+1
≡ p

+
1 , then the

formation induces a D-friendly regular N -gon at time k+1,

and by construction ρ is symmetric at time k + 1 on D.

Suppose then, that there is an index i such that

RO

(

2π/N,p+

i

)

6= p
+

i+1
. This means that ρ

(

p
+

i+1
, k

)

>
ρ

(

RO

(

2π/N,p+

i

)

, k
)

= ρ
(

p
+

i , k
)

because of the as-

sumed symmetry at time k. But this implies ρ
(

p
+

i+1
, k

)

=
ρ

(

RO

(

−2π/N, p
+

i+1

)

, k
)

> ρ
(

p
+

i , k
)

. Since RO is an

isometry, then RO

(

−2π/N, p
+

i+1

)

is a δ-close point to pi.

Thus, the last inequality contradicts the definition of p
+

i .

This concludes the proof.

Observe that in Claims 1 and 2, it is essential that S (D) ≡
DN , since this leads to the symmetric behavior of the density

1The group of all isometries under which D is invariant, having compo-
sition as the operation.
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(a) Trajectories of the
agents, τ = ∞.

(b) ρ (x, t) at deploy-
ment, τ = ∞.

(c) ρ (x, t) after the
agents have reached
equilibrium, τ = ∞.

(d) Trajectories of the
agents, finite τ .

(e) ρ (x, t) at deploy-
ment, finite τ .

(f) ρ (x, t) after the
agents have reached
equilibrium, finite τ .

Fig. 1. Evolution of density ρ (x, t) with four agents in a square domain using the coverage control law (9). Panels (a)-(c) illustrate the case for infinite
τ , and panels (d)-(f) illustrate the case for finite τ . In panels (a) and (d), the squares and filled rhombuses represent the initial and final positions of the
agent trajectories, respectively. In both cases (infinite and finite τ ), the agents converge to a stationary equilibrium configuration. The density is plotted
according to a color map with white to black representing the range from high to low values; this convention is used for all subsequent figures.

ρ. The same result can be expected if DN is a subgroup of

S (D). We state this result without proof because of space

limitations.

Theorem 2 Assume that at initial time k = 0, the agents

are deployed inside D in such a way that they define a D-

friendly regular N -gon. Suppose that DN is a subgroup of

S (D). Then, for any time step k ≥ 0, the formation induces

a D-friendly regular N -gon and ρ is symmetric.

We illustrate Theorem 2 by example in the two simulations

shown in Figure 2. The domain D is a circle in the first

example, shown in panels (a)-(c) of Figure 2 and an annulus

in the second example, shown in panels (d)-(f) of Figure 2.

The symmetry group for both the circle and the annulus

is infinite dimensional. In each example, we have initially

deployed seven agents such that they define a D-friendly

regular heptagon (which has symmetry group D7). Since D7

is a subgroup of the symmetry group of the circle and the

annulus, Theorem 2 implies that for every time k ≥ 0 the

positions of the agents define a D-friendly regular heptagon.

The simulations of Figure 2 illustrate how the results of

Theorem 2 apply in both simply connected and non-simply

connected domains.

Observe that Theorem 2 assumes that the N agents define

a single D-friendly regular polygon (the regular N -gon). The

same result can be expected if the N agents were to define

r D-friendly regular M -gons with rM = N . Suppose the

agents are deployed initially in this way. We induce a set

of headings on the agents such that if each agent moves in

the direction of its heading, together they still define r D-

friendly regular M -gons. We call such a set of headings an r-

symmetric set of headings. We now state the result when the

agents define multiple copies of the regular M -gon. Again,

we state the result without proof because of space limitations.

Theorem 3 Assume that at initial time k = 0, the agents

are deployed inside D in such a way that they define r D-

friendly regular M -gons, with rM = N , and their headings

correspond to an r-symmetric set. Suppose that DM is a

subgroup of S (D). Then, for any time step k ≥ 0, the

formation induces r D-friendly regular M -gons and ρ is

symmetric.

We illustrate Theorem 3 by example in the simulation

shown in Figure 3. The domain D is a six-pointed star with

symmetry group D6. We have initially deployed nine agents

defining a D-friendly regular nonagon, which has symmetry

group D9. D9 is not a subgroup of D6, and hence Theorem 2

does not apply. However, the regular nonagon can be seen

as three D-friendly equilateral triangles, each of which has

symmetry group D3. In the language of Theorem 3, we

have that r = 3 and M = 3 and thus the condition

rM = N = 9 holds. We observe that, although the three

equilateral triangles are preserved for every time k ≥ 0 as

dictated by Theorem 3, they can dilate relative to one another

with time. The simulation of Figure 3 illustrates how the

results of Theorem 3 apply even in non-convex regions.

VI. PERFORMANCE AND ROBUSTNESS

A. Evolution of the performance metric

Entropic information I(t), as defined in Section III, can

be used as a coverage performance metric [3], as it quantifies

the information richness of the data gathered as the agents

move inside D. If we want our coverage approach based on

symmetry groups to be useful, we have to be able to guar-

antee a quantitative advantage with respect to other methods

that could also address this task. Numerical studies in [17] on

performance of OA mapping error coverage with respect to I
for prescribed coordinated motion patterns showed that the

best performance was achieved by formations maintaining

D-friendly regular configurations; although in these studies

there was no discussion of the relation of the particular

motion with the symmetry groups of the sampling domain.

Further, we have made numerical comparisons between our

approach and others. In Figure 4 we show I(t) as a function

of time for our symmetry-based approach and for a greedy

search when the agents define the same D-friendly regular

polygon, but with a random first step, after which they use

our greedy coverage approach. The results in Figure 4 show

that the symmetric approach outperforms the greedy search

with random first step. We are currently working on proving

conditions under which our approach has a performance

advantage.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Density field ρ (x, t) and the heptagon induced by seven agents at three different instants of time inside a circular domain (panels (a)-(c)) and
inside an annulus (panels (d)-(f)). Panels (a) and (d) show the initial deployment and density field in each example. We observe that the coverage algorithm
preserves the D-friendly heptagon and the symmetry of the density field even for the annular domain, which is not simply connected.

(a) (b) (c)

Fig. 3. Density field ρ (x, t) and the three equilateral triangles induced by nine agents at three different instants of time in the six-pointed star domain.
Panel (a) shows the initial deployment and density field, and panels (b) and (c) show subsequent time instants. We observe that the coverage algorithm
preserves the three D-friendly triangles and the symmetry of the density field even for the six-pointed star domain, which is not convex.
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Fig. 4. Entropic information as a function of time for our symmetric
greedy coverage (blue line) and the greedy approach with random first step
(red line) in the case of four agents in a square domain. In each case the
agents are deployed in the same D-friendly square. We observe that the
performance is the same in each case for the first few time steps, but then
the symmetric approach outperforms the approach where the first step is
random for each of the agents.

B. Asymmetric regions

Our approach restricts to domains for which S (D) is

non-trivial; this includes most of the domains on which

coverage algorithms are typically tested (square or rect-

angular domains). However, it is of interest to consider

extending to asymmetric domains; this requires asking if it is

possible to modify the approach to deal with domains D with

S (D) = I , the identity transformation. Although there exists

a diffeomorphism T : D → D
1, that sends an asymmetric

domain D to the unit disk D
1, in order for our approach to

be applicable under this diffeomorphism, we also need for

the induced density ρ̃ in D
1 to be symmetric. Otherwise,

solving the problem in D
1 and then mapping back to the

original D would not be sufficient since, in general, this

diffeomorphism is not an isometry and thus would change

the isotropic properties of B. One of the alternatives we are

currently studying includes the use of some special agents

that are dedicated to taking measurements near the boundary

of an asymmetric D in such a way that the rest of the

agents need only address coverage in the remaining interior

symmetric region.

It is also possible that the domain will be only slightly

perturbed from an idealized symmetric region. It is a topic

of future work to investigate how robust our approach is to

small perturbations from a symmetric domain.

C. Asymmetric initial conditions

We have assumed symmetric initial positions for the

agents that induce D-friendly regular polygons. To make this

practical we consider that a feedback control law be used

to move the agents from an arbitrary initial deployment to

the desired initial symmetric location. Then the density field

ρ (x, t) can be initialized, and the coverage algorithm can

be initiated. In this way the symmetry of ρ is not affected

by previous measurements and the spatial distribution of the

agents would thus evolve as described by our theory.

With this approach we cannot expect that the agents will

attain the desired initial configuration exactly. It is thus

reasonable to ask if there exists a neighborhood of the
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family of desirable initial positions (and headings) such that

the greedy search starting from any configuration in this

neighborhood yields a collective behavior that is close to

the one that evolves from a desired set of initial conditions.

This is related to the question in the previous section on the

robustness of our approach to a domain that is only slightly

asymmetric.

Simulation results have shown that the entropic infor-

mation is very similar when the perturbation to the initial

condition is small (for instance, a difference in the relative

headings of the agents bounded by ±π/20). This suggest that

the family of desired initial conditions has a neighborhood

around it to which the solution of our symmetric coverage

algorithm is robust. It is a topic of future work to fully

characterize the restrictions of such variations.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a symmetric approach for the challeng-

ing problem of designing motion control laws for a group

of mobile agents covering a scalar density field defined by

OA mapping error. This density field varies in both time

and space as the agents move inside the sampling domain;

error decreases at locations recently sampled and error grows

back as the value of the measurements decay. We first show

that the application of the static coverage approach of [4]

does not address this type of problem: the agents converge

to a static equilibrium configuration and do not continue to

visit high density regions. This motivates our derivation of

an alternative approach.

The approach we propose uses greedy search to respond to

the changing density in the domain D and exploits symmetry

in the domain to enable a symmetric coverage pattern that

provides well distributed coverage. We prove the nature of

the symmetric coverage and show through simulation that the

agents keep moving in response to the changing density. Our

approach applies to domains that are non-convex as well as to

domains that are non-simply connected. Simulations suggest

that the performance, as measured by entropic information in

measurements collected, is relatively high for our symmetric

approach.

In future work, we will investigate conditions that guar-

antee optimal coverage. We will also prove robustness of

the method to asymmetries in the domain and in the initial

configuration of the agents. The greedy search is a local

decision by each agent – each agent only needs to know

density locally. However, currently the computation of the

density field, i.e., the OA mapping error, is centralized. We

are exploring alternatives to compute a distributed approx-

imation of the OA mapping error using the fact that the

correlation between the value of the field at different points

in the domain decreases with distance, i.e., the mapping

error local to an agent will depend most on information

on measurements taken local to that agent. Preliminary

simulation results are supportive of the correctness of this

approach.
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