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a b s t r a c t

A class of binary decision-making tasks called the two-alternative forced-choice task has been used
extensively in psychology and behavioral economics experiments to investigate human decision making.
The human subject makes a choice between two options at regular time intervals and receives a reward
after each choice; for a variety of reward structures, these experiments showconvergence of the aggregate
behavior to rewards that are often suboptimal. In this paper we present two models of human decision
making: one is the Win-Stay, Lose-Switch (WSLS) model and the other is a deterministic limit of the
popular Drift Diffusion (DD) model. With these models we prove the convergence of human behavior
to the observed aggregate decision making for reward structures with matching points. The analysis is
motivated by human-in-the-loop systems, where humans are often required to make repeated choices
among finite alternatives in response to evolving systemperformancemeasures.Wediscuss application of
the convergence result to the design of human-in-the-loop systems using a map from the human subject
to a human supervisor.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The superior ability of humans to handle the unexpected
and to recognize patterns and extract structure from data
makes human decision making invaluable to the performance
of complex tasks in uncertain, changing environments. However,
without computational aid, human decision makers may be
overwhelmed by the many elements and the multitude of scales
in complex, time-varying systems. This suggests an important
role for automation, where fast, dedicated data processing and
feedback responsiveness can be exploited. Indeed, there has been
much research in the cooperative control of multi-agent robotic
systems for automating cooperative tasks, see e.g., the collections
[1–4]. However, fully automated decision making presents serious
limitations to performance: automating optimal decisions in
complex tasks in uncertain, time-varying settings will typically
require solving intractable, nonlinear, stochastic, optimization
problems. Evenwhen good suboptimal decisions are designed into
robotic decision makers, there will likely remain unanticipated,
and thus poorly addressed, scenarios. Further, attempts to increase
the versatility of the completely automated system can lead to
unverifiable code.
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The problem of integrating the efforts of humans and robots
in demanding tasks has driven the rapidly growing fields of hu-
man–robot interaction and social robotics. For example, in [5] Sim-
mons et al. have developed a framework and tools to coordinate
robotic assembly teams with remote human operators for per-
forming construction and assembly in hazardous environments.
Their approach allows for adjustable autonomy where control of
tasks can change between the human and the robotic team. To con-
serve human expertise, the robot teamoperates autonomously and
only requests help from the human supervisor as needed. Using
a similar notion of sliding autonomy, Kaupp and Makarenko [6]
examine a human–robot communication system for information
exchange in a navigation task. In [7] Steinfeld et al. define com-
mon metrics to evaluate human–robot interaction performance.
Alami et al. [8] propose a robot control architecture that explicitly
considers and manages its interaction with a human. The authors
point out the critical challenge in representing the humans. Trafton
and co-authors directly address this challenge by studying hu-
man–human interaction and then embedding the human behavior
into the robots. For example, Trafton et al. [9] study videotape of
astronauts-in-training performing cooperative assembly tasks and
use the empirical data to inform cognitive models of perspective-
taking. They embed thesemodels into robots to improve their abil-
ity to work collaboratively with humans.
These works make clear that the profitable integration of hu-

man and robot decision-making dynamics should take advantage
of the strengths of human decision makers as well as the strengths
of robotic agents. They also make clear that a major challenge in
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achieving this goal is understanding how humans make decisions
andwhat are their associated strengths andweaknesses. Since psy-
chologists and behavioral scientists explore these very questions,
a central tenet of our approach is to leverage the experimental and
modeling work of psychologists and behavioral scientists on human
decision making. To do this we seek commonality in the kinds of
decisions humans make in complex tasks and the kinds of deci-
sions humans make in psychology experiments. We focus here on
a well-studied class of sequential binary decision making called
the two-alternative forced-choice task [10–15]. In this task, the
human subject in the psychology experiments chooses between
two options at regular time intervals and receives a reward after
each choice that depends on recent past decisions. Interestingly,
these experiments show convergence of the aggregate behavior
to rewards that are often suboptimal. This suboptimal behavior
is of particular interest for what it can tell us about the dynam-
ics of human-in-the-loop systems. Indeed, just like in the two-
alternative forced-choice task, a human in the loop performing a
supervisory task is often required to choose repeatedly between fi-
nite alternatives in response to an update on system performance
that in turn depends on current and past decisions. Examples in-
clude human supervisory control of multiple unmanned aerial
vehicles where the supervisor must decide between attending to
targets and ensuring the safe return of vehicles [16] and human
operator control of air traffic where the operator must decide be-
tween grounding or scheduling vehicles [17].
In this paper, we seek to formally describe the convergence

behavior observed in experiments; the goal is to better understand
the conditions of suboptimal human decision making and to
provide a framework for designing improved human-in-the-loop
systems. We present two models of human decision making in
the two-alternative forced-choice task: the Win-Stay, Lose-Switch
(WSLS) model and the Drift Diffusion (DD) model. With these
models we prove convergence to matching behavior for reward
structures with matching points. Intuitively, this implies that the
decision maker converges to a neighborhood in the decision space
of a decision sequence which results in a reward that stays roughly
constant with each subsequent choice. These convergence results
are consistent with experimental observations [10,18]. A partial
version of our convergence results in the case of WSLS appears
in [19]. We note that Montague and Berns [11] showed that the
matching point is an attracting point in the DD model in the case
that a couple of simplifying assumptions hold. In [20] Vu and
Morgansen perform an analysis of the WSLS model in a related
context using finite state machines.
As one possible application of the convergence results, we

introduce a human-supervised collective robotic foraging problem,
where a group of robots in the field moves around and collects a
distributed resource and a human supervisor repeatedly makes a
decision to assign the role of each of the robots, either to be an
explorer or an exploiter of resource. The human and robotswork as
a team to maximize resource collected: the robots follow efficient,
collaborative exploring and exploiting strategies and the human
tries to make the best allocation decisions.
We review studies of the two-alternative forced-choice task in

Section 2. In Section 3, we present the WSLS and DD decision-
making models. We prove convergence to matching for each of
these models in Section 4. In Section 5 we present, and investigate
with a simulation study, a map from the decision-making task of a
human supervisor of a robotic foraging team to the two-alternative
forced-choice task. We make final remarks in Section 6.

2. Two-alternative force-choice tasks

Real-world decision-making problems are difficult to study
since the reward for a decision usually depends in a nontrivial way
on the decision history. Many studies have considered decision-
reward relationships that are fixed; however, these have a limited
value in addressing problems associated with complex, time-
varying tasks like the ones motivating this paper. Here, we briefly
review a class of decision-making tasks called the two-alternative
forced-choice task, where reward depends on past decisions.
Montague et al. [14,11] introduced a dynamic economic game

with a series of decision-reward relationships that depend on a
subject’s decision history. The human subject is faced with a two-
alternative sequential choice task. Choices of either A or B aremade
sequentially (forced within regular time intervals) and a reward
for each decision is administered directly following the choice.
Without knowing the reward structure, the human subject tries to
maximize the total reward (sum of individual rewards).
Two reward structures frequently considered are the matching

shoulders (Fig. 1(a)) and rising optimum (Fig. 1(b)). As shown in
these figures, the reward fA for choosing A and the reward fB for
choosing B are determined as a function of the proportion y of
times A was chosen in the previous N trials (y = #A’s/N). N = 20
and N = 40 are typical choices in experiments. In Fig. 1(a), if the
subject always chooses A, the reward drops to 0.2. Subsequently, if
B is chosen, the reward jumps up close to 0.9. However, continued
choices of B lead to declining reward. The average reward, plotted
as a dashed line on each figure, is computed as yfA(y)+(1−y)fB(y).
The optimal strategy is the one thatmaximizes the average reward
curve.
Experimental studies show how humans perform at this task

with specific reward structures. A great number of experiments
consider the matching shoulders and rising optimum tasks and
these experiments have shown that human subjects tend, on
average, to adopt choice sequences y that bring them close to
the matching point of the reward curves (intersection of reward
curves) [10,18,14,11]. Herrnstein [10,18] explains that this is
reasonable since near the matching point the reward for choosing
A or B is about the same. However, this implies that humans
do not necessarily converge on the optimal strategy, since the
matching point does not necessarily correspond to the optimal
average reward. In Fig. 1(a), the optimal reward is to the right of
the matching point. In Fig. 1(b), the optimal strategy corresponds
to choosing option A every time. The reward at the matching point
is significantly suboptimal and to reach the optimum the subject
may first have to endure very low rewards.
To model the two-alternative forced-choice task we define the

following notation. Let x1(t) ∈ {A, B} denote the decision for the
binary choice A or B at time t and let xi(t) = x1(t − i + 1),
i = 2, . . . ,N , denote the N − 1 most recent decisions of the finite
past. Equivalently, we have
xi(t + 1) = xi−1(t), i = 2, . . . ,N, t = 0, 1, 2, . . . . (1)
Let y denote the proportion of choice A in the last N decisions, i.e.,

y(t) =
1
N

N∑
i=1

δiA(t) (2)

where

δiA(t) =
{
1 if xi(t) = A
0 if xi(t) = B.

Note that y can only take values from a finite setY ofN+1 discrete
values:
Y = {j/N, j = 0, 1, . . . ,N}.
The reward at time t is given by

r(t) =
{
fA(y(t)) if x1(t) = A
fB(y(t)) if x1(t) = B.

(3)

Thus, the two-alternative forced-choice task can be modeled
as an N-dimensional, discrete-time dynamical system, described
completely by Eqs. (1)–(3) where xi(t), 1 ≤ i ≤ N , is the state of
the system and y(t) is the output of the system.
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(a) Matching shoulders. (b) Rising optimum.

Fig. 1. Reward curves. The dotted line depicts fA , the reward for choice A. The solid line depicts fB , the reward for choice B. The dashed line is the average value of the reward.
Each is plotted against the proportion of choice Amade in the last N decisions.
3. Decision-making models

Thematching tendency in humans and animals was first identi-
fied by Herrnstein [10,18], whose relatedwork has been influential
in the quantitative analysis of behavior andmathematical psychol-
ogy. However, few mathematically provable results on matching
behavior have been obtained and reported. This is, in part, due to
the difficulty in modeling the dynamics of human and animal de-
cision making. Several models have been proposed to describe the
dynamics of human decision making, and in this paper we analyze
two of them. One is theWin-Stay, Lose-Switch (WSLS) model, also
known asWin-Stay, Lose-Shift, which has been used in psychology,
game theory, statistics andmachine learning [21,22]. The other is a
deterministic limit of a popular stochastic reinforcement learning
model, called the Drift Diffusion (DD)model, whichwas introduced
by Egelman et al. [14] and further studied in [11,12]. It should be
noted that many of the other models which have been proposed
are, in fact, equivalent to the DD model [23].

3.1. WSLS model

The subject’s decision dynamics may be affected by all the
decisions and rewards in the last N trials. In fact, a goal of the
studies of two-alternative forced-choice tasks is to determine
the decision-making mechanism through experiment and use
behavioral and neurobiological arguments to justify the likelihood
of the mechanism. The WSLS model assumes that decisions are
made with information from the rewards of the previous two
choices only and that a switch in choice ismadewhen a decrease in
reward is experienced. That is, the subject repeats the choice from
time t at time t + 1 if the reward at time t is greater than or equal
to that at time t−1; otherwise, the opposite choice is used at time
t + 1:

x1(t + 1) =
{
x1(t) if r(t) ≥ r(t − 1);
x̄1(t) otherwise, t = 1, 2, 3, . . . (4)

where ·̄ denotes the ‘‘not’’ operator; i.e., if x1(t) = A (x1(t) = B),
then x̄1(t) = B (x̄1(t) = A).

3.2. A deterministic limit of the DD model

In the context of multi-choice decision-making dynamics, a
one-dimensional drift diffusion process can be described by a
stochastic differential equation [24,15,25]:

dz = αdt + σdW , z(0) = 0 (5)

where z represents the accumulated evidence in favor of one
choice of interest, α is the drift rate representing the signal
intensity of the stimulus acting on z and σdW is a Wiener process
with standard deviation σ which is the diffusion rate representing
the effect of white noise. Now consider the two-alternative forced-
choice task with choices A and B. The drift rate α, as described
in [14,12], is determined by a subject’s anticipated rewards for a
decision of A or B, denoted ωA and ωB.
Take z to be the accumulated evidence for choice A less the

accumulated evidence for choice B. Then on each trial a choice is
made when z(t) first crosses the predetermined thresholds±ν. In
which case, if ν is crossed choice A is made and if −ν is crossed
choice B is made. For such drift diffusion processes, as pointed out
in [15], it can be computed using tools developed in [23] that the
probability of choosing A is

pA(t) =
1

1+ e−µ(ωA(t)−ωB(t))
(6)

whereµ is determined by the threshold-to-drift ratio ν
α
, and ωA −

ωB is determined by the signal-to-noise ratio α
σ
.

To gain insight into the mechanics of the DD model, we choose
a specific set of relevant parameters. Specifically, we study the
deterministic limit of the decision rule (6) deduced from the DD
model by letting µ in (6) go to infinity. Then at time t > 0, the
subject chooses A if ωA(t) > ωB(t) and B if ωA(t) < ωB(t). In the
event that ωA = ωB, we assume that humans are of an explorative
nature, and thus the subject uses the opposite of the last choice. To
summarize,

x1(t) =

{A if ωA(t) > ωB(t)
B if ωA(t) < ωB(t)
x̄1(t − 1) if ωA(t) = ωB(t)

t = 1, 2, 3, . . . (7)

where as in (4), ·̄ denotes the ‘‘not’’ operator.
We are now leftwithmodelling the transition of the anticipated

rewardsωA andωB. Using data collected in neurobiological studies
of the role of dopamine neurons in coding for reward prediction
error [26], and guided by temporal difference learning theory [27],
the following difference equations have been proposed to describe
the update of ωA and ωB. Let Z(t) ∈ {A, B} be the choice made at
time t , then

ωZ(t)(t + 1) = (1− λ)ωZ(t)(t)+ λr(t) (8)

ωZ̄(t)(t + 1) = ωZ̄(t)(t) t = 0, 1, 2, . . . (9)

where r(t) is the reward at time t . Here, λ ∈ [0, 1] is called the
learning rate, which reflects how the anticipated reward of choice
Z(t) at t + 1 is affected by its value at t .
In the update model (8) and (9), referred to as the standard

model in the sequel, when a choice of Z is made the value
of ωZ̄ remains unchanged because without memory no reward
information for Z̄ is available. A more sophisticated update model,
called the eligibility trace model, is constructed in [12]. It takes
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into account the effect of memory by updating both ωA and ωB
continually. The eligibility trace can be interpreted as a description
of howpsychological perception of information refreshes or decays
in response towhether or not an external stimulus is enforced. The
eligibility traces (as presented in [12]) denoted by φA(t) and φB(t)
for choices A and B respectively, evolve according to

φZ(t)(t + 1) = 1+ φZ(t)(t)e−
1
τ (10)

φZ̄(t)(t + 1) = φZ̄(t)(t)e
−
1
τ (11)

with initial values φA(0) = φB(0), where τ > 0 is a parameter that
determines the decaying effects of memories.
With the eligibility traces included, ωA and ωB are updated

according to
ωA(t + 1) = ωA(t)+ λ[r(t)− ωZ(t)(t)]φA(t) (12)

ωB(t + 1) = ωB(t)+ λ[r(t)− ωZ(t)(t)]φB(t) (13)
where the eligibility tracesφA andφB act as time-varyingweighting
factors. When τ is chosen to be small, the update rule in the
eligibility tracemodel (12) and (13) reduces to that in the standard
model (8) and (9).
To analyze the impact of the dynamics of the eligibility traces

on the evolution of ωA and ωB, we discretize the eligibility traces
φA and φB. We set the learning rate λ in (12) and (13) to be its
maximum value (λ = 1) which corresponds to the current reward
having the strongest possible influence on the subject. Then
ωA(t + 1) = ωA(t)+ [r(t)− ωZ(t)(t)]φA(t) (14)

ωB(t + 1) = ωB(t)+ [r(t)− ωZ(t)(t)]φB(t). (15)
We discretize φA and φB as follows. For σ ∈ {A, B}, if σ is the
last choice made, we set the value of φσ to be saturated at one
because the impact of the current reward has been accounted for
by setting λ to be its maximum value. We let φσ decay to zero
once the opposite choice σ̄ has been chosen consecutively. This
corresponds to the situation when, without an external stimulus,
the memory fades quickly. When a switch in choice is made (from
σ at time t−1 to σ̄ at time t), let the freshmemory of the unchosen
alternative,φσ , be a small, positive number ε ∈ (0, 1). ThenφA and
φB take values in {0, ε, 1} and evolve according to

φσ (t) =

{1 if σ = x1(t)
ε if σ = x̄1(t) = x1(t − 1)
0 if σ = x̄1(t) = x̄1(t − 1)

t = 1, 2, 3, . . . . (16)

The resulting model is a deterministic limit of the DD with
eligibility traces.

4. Convergence analysis

In this section, we give a rigorous analysis of the dynamics of
human performance in games with matching shoulders rewards.
It is shown that for both of the human decision-making models,
the proportion y of choice A converges to a neighborhood of
the matching point. It should be noted that convergence also
applies for reward structures that contain the matching shoulders
structure locally (as in the rising optimum example of Fig. 1(b)).
Denote by y∗ the value of y at the matching point, i.e., the

intersection of the two curves fA and fB. We consider the generic
case when
y∗ 6∈ Y, (17)
i.e., y∗ is not an integer multiple of 1/N . In the non-generic case,
when y∗ ∈ Y, a tighter convergence result applies. Let yl denote
the greatest element in Y that is smaller than y∗ and let yu denote
the smallest element inY that is greater than y∗. Let yl

′

= yl−1/N
and yu

′

= yu + 1/N . Define

L , [yl, yu] and L′ , [yl
′

, yu
′

].

So thatL′ is well defined, let 1/N < y∗ < (N − 1)/N and N ≥ 3.
Fig. 2. Points p1, p2, p3 , and p4 used to examine trajectories around the matching
point.

4.1. Convergence of the WSLS model

In this section, we analyze the convergence behavior of the
system (1)–(4). We consider reward curves such that fA decreases
monotonically and fB increases monotonically with an increasing
y, i.e.,

d
dy
fA(y) < 0,

d
dy
fB(y) > 0, ∀y ∈ [0, 1]. (18)

This includes the linear matching shoulders curves of Fig. 1(a) as
well as a more general class of nonlinear reward curves. It also
includes the rising optimumreward curves of Fig. 1(b) locally about
thematching point.Weprove both a local and a global convergence
result to thematching point. The local result is applicable to reward
structures that have a local matching point and satisfy (18) for y
in a neighborhood of y∗. This includes the rising optimum reward
curves of Fig. 1(b). To formally preclude limit cycles about points
other than the matching point it is necessary to require that

1
3
≤ y∗ ≤

2
3
. (19)

The convergence results apply for general N ≥ 6. For lower values
of N the system degenerates and the output y may converge to
0 or 1. The linear curves used in the experiments [11] satisfy
the conditions (17), (18) and (19), so the analysis in this section
provides an analytical understanding of human decision-making
dynamics in two-alternative forced-choice tasks of the same type.

4.1.1. Local convergence
The following result describes the oscillating behavior of y(t)

near y∗.

Theorem 1. For system (1)–(4) satisfying conditions (17)–(19), if
y(t1) ∈ L for some t1 > 0, then y(t) ∈ L′ for all t ≥ t1.

Before we prove Theorem 1, let us first examine a typical
trajectory starting at time t = t1 with y(t1) ∈ L. Consider
the matching shoulders reward structure shown in Fig. 2 as an
example. We bring attention to four points on the reward curves.
As shown in Fig. 2 (which represents one possible configuration of
these four points for general matching shoulders reward curves),
we denote p1 = (yl, fA(yl)), p2 = (yl, fB(yl)), p3 = (yu, fA(yu)) and
p4 = (yu, fB(yu)).
Suppose we are given a set of initial conditions y(t1) = yu,

x1(t1) = A, xN(t1) = B and suppose x1(t1 + 1) = B. Then
y(t1 + 1) = y(t1) = yu and the reward r(t1 + 1) = fB(yu) >
fA(yu) = r(t1). In view of (4), we know that x1(t1 + 2) = B. If
xN(t1 + 1) = A, then y(t1 + 2) = y(t1 + 1) − 1/N = yl and
r(t1 + 2) = fB(yl) < fB(yu) = r(t1 + 1). Again by (4), it must be
true that x1(t1+3) = A. Suppose xN(t+2) = B, then y(t1+3) = yu.
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To track the above system trajectory in Fig. 2 for t1 ≤ t ≤ t1+3,
one can find that the trajectorymoves from p3, to p4, to p2 and back
to p3. Hence, one may conjecture that once y(t) enters L, it will
stay inL. However, this is not the case. Consider a counterexample,
namely in Fig. 2 the system trajectory again starts at p3. However,
let xN(t1) = B and x1(t1 + 1) = A. Then y(t1 + 2) = yu +
1/N 6∈ L. Although L is not an invariant set for y(t), trajectories
of y(t) starting in L will always remain in L′. This is an intuitive
interpretation of Theorem 1.
To prove Theorem 1, we first prove the following four lemmas.

Lemma 1. For system (1)–(4), with conditions (17)–(19) satisfied, if
x1(t1) = A, x1(t1+1) = A and y(t1) < 1 for some t1 ≥ 0, then there
exists 0 ≤ τ ≤ N such that y(t) = y(t1) for t1 ≤ t ≤ t1 + τ and
y(t1 + τ + 1) = y(t1)+ 1/N.

Proof of Lemma 1. If xN(t1) = B, then y(t1+1) = y(t1)+1/N . So
the conclusion holds for τ = 0. On the other hand, if xN(t1) = A,
then y(t1+ 1) = y(t1) and r(t1+ 1) = fA(y(t1+ 1)) = fA(y(t1)) =
r(t1). According to (4), x1(t1+2) = A. In fact the choice of Awill be
repeatedly chosen as long as the value of xN remains A. However,
since y(t1) < 1, there must exist 0 ≤ τ < N such that xN(t) = A
for t1 ≤ t ≤ t1 + τ and xN(t1 + τ + 1) = B. Accordingly, the
conclusion holds. �

One can prove the following lemma, the counterpart to
Lemma 1, with a similar argument.

Lemma 2. For system (1)–(4), with conditions (17)–(19) satisfied, if
x1(t1) = B, x1(t1+ 1) = B and y(t1) > 0 for some t1 ≥ 0, then there
exists 0 ≤ τ ≤ N such that y(t) = y(t1) for t1 ≤ t ≤ t1 + τ and
y(t1 + τ + 1) = y(t1)− 1/N.

Now we further study behavior of the system when its
trajectory is on the left of the matching point y∗.

Lemma 3. For system (1)–(4), with conditions (17)–(19) satisfied, if
y(t1) < y∗ and y(t1 + 1) = y(t1)− 1/N > 0 for some t1 ≥ 0, then
there exists 0 ≤ τ ≤ N such that

y(t) = y(t1)− 1/N for t1 ≤ t ≤ t1 + τ (20)

and

y(t1 + τ + 1) = y(t1). (21)

Proof of Lemma 3. We find it convenient to prove this lemma by
labeling the following four points: s1 = (y(t1), fA(y(t1))), s2 =
(y(t1), fB(y(t1))), s3 = (y(t1)−1/N, fA(y(t1)−1/N)), s4 = (y(t1)−
1/N, fB(y(t1)− 1/N)), as shown in Fig. 3.
We denote the reward values at these four points by r|si , i =

1, . . . , 4. Then r(t1) = r|s1 or r|s2 . Since y(t1 + 1) < y(t1), it
must be true that x1(t1 + 1) = B, then r(t1 + 1) = r|s4 . Since
r|s4 < r|s2 < r|s1 , we know x1(t1+ 2) = A. So at t1+ 2, the system
trajectory moves from s4 to either s1 or s3. If the former is true, the
conclusion holds for τ = 2. If the latter is true, since r|s3 > r|s4 , it
follows that x1(t1 + 3) = A. By applying Lemma 1, we know (20)
and (21) hold. �

Similarly, we consider the situation when y(t1) > y∗ and
y(t1 + 1) = y(t1) + 1/N < 1 for some t1 ≥ 0. Denote four
points: r1 = (y(t1), fA(y(t1))), r2 = (y(t1), fB(y(t1))), r3 = (y(t1)+
1/N, fA(y(t1) + 1/N)) and r4 = (y(t1) + 1/N, fB(y(t1) + 1/N)).
Using the fact that r|r3 < r|r1 < r|r2 and a similar argument as
that in the proof of Lemma 3, we can prove the following result.

Lemma 4. For system (1)–(4), with conditions (17)–(19) satisfied, if
y(t1) > y∗ and y(t1 + 1) = y(t1)+ 1/N < 1 for some t1 ≥ 0, then
there exists 0 ≤ τ ≤ N such that

y(t) = y(t1)+ 1/N for t1 ≤ t ≤ t1 + τ (22)
Fig. 3. Points s1, s2, s3, s4, s5 , and s6 used in the proofs of Lemmas 3 and 7.

and

y(t1 + τ + 1) = y(t1). (23)

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. If y(t) ∈ L for all t ≥ t1, then the conclusion
holds trivially. Now suppose this is not true. Let t2 > t1 be the first
time forwhich y(t) 6∈ L. Then it suffices to prove the claim that the
trajectory of y(t) starting at y(t2) stays at y(t2) for a finite time and
then entersL. Note that y(t2) equals either yl − 1/N or yu + 1/N .
Suppose y(t2) = yl − 1/N , then the claim follows directly from
Lemma 3; if on the other hand, y(t2) = yu + 1/N , then the claim
follows directly from Lemma 4. �

4.1.2. Global convergence
Theorem 1 gives the convergence analysis in the neighborhood

L of the matching point y∗. Our next step is to present the global
convergence analysis for the system (1)–(4). It is easy to check
that if the system starts with the initial condition y(0) = 0 and
x1(1) = B or the initial condition y(0) = 1 and x1(1) = A, then
the trajectory of y(t) will stay at its initial location. It will also be
shown that when y∗ < 1

3 or y
∗ > 2

3 , a limit cycle of period three
not containing y∗ may appear. Thus it is necessary that condition
(19) is satisfied, i.e., 13 ≤ y

∗
≤

2
3 . In what follows we show that if

the trajectory of y(t) starts in (0, 1) and conditions (17), (18) and
(19) are satisfied, then the trajectory always entersL after a finite
time.

Proposition 1. For any initial condition of the system (1)–(4)
satisfying 0 < y(0) < 1 with conditions (17)–(19) satisfied, there
is a finite time T > 0 such that y(T ) ∈ L.

To prove Proposition 1, we need to prove the following four
lemmas.

Lemma 5. For system (1)–(4), with conditions (17)–(19) satisfied, if
y(t1) < y∗, y(t1 + 1) = y(t1) and x1(t1 + 1) 6= x1(t1) for some
t1 ≥ 0, then there exists a finite τ > 0 such that

y(t1 + τ) = y(t1)+ 1/N. (24)

Proof of Lemma 5. There are two cases to consider. (a) Suppose
x1(t1 + 1) = A and x1(t1) = B. Since y(t1 + 1) = y(t1) < y∗, we
know r(t1 + 1) = fA(y(t1 + 1)) = fA(y(t1)) > fB(y(t1)) = r(t1),
so x1(t1 + 2) = A. Then the conclusion follows from Lemma 1. (b)
Now suppose instead x1(t1 + 1) = B and x1(t1) = A. Again since
y(t1 + 1) = y(t1) < y∗, we know r(t1 + 1) = fB(y(t1 + 1)) =
fB(y(t1)) < fA(y(t1)) = r(t1), so x1(t1 + 2) = A. As a result, either
y(t1 + 2) = y(t1)+ 1/N or y(t1 + 2) = y(t1 + 1). If the former is
true, then the conclusion holds for τ = 2; if the latter is true, then
the discussion reduces to that in (a). �
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Using a similar argument, one can prove the following lemma,
which is the counterpart to Lemma 5.

Lemma 6. For system (1)–(4), with conditions (17)–(19) satisfied, if
y(t1) > y∗, y(t1 + 1) = y(t1) and x1(t1 + 1) 6= x1(t1) for some
t1 ≥ 0, then there exists a finite τ > 0 such that

y(t1 + τ) = y(t1)− 1/N. (25)

Now we show that the system will approach the matching
point.

Lemma 7. For system (1)–(4), with conditions (17)–(19) satisfied, if
0 < y(t1) < yl and y(t1 + 1) = y(t1) − 1/N for some t1 ≥ 0, then
there exists a finite τ > 0 such that

y(t1 + τ) = y(t1)+ 1/N. (26)

Proof of Lemma 7. Denote the six points s1 = (y(t1), fA(y(t1))),
s2 = (y(t1), fB(y(t1))), s3 = (y(t1) − 1/N, fA(y(t1) − 1/N)), s4 =
(y(t1)−1/N, fB(y(t1)−1/N)), s5 = (y(t1)+1/N, fA(y(t1)+1/N))
and s6 = (y(t1) + 1/N, fB(y(t1) + 1/N)), as shown in Fig. 3. Since
y(t1+ 1) < y(t1), it must be true that x1(t1+ 1) = B. If x1(t1) = A,
we know from t1 to t1 + 1, the system trajectory moves from s1 to
s4. Since r(t1 + 1) = r|s4 < r|s1 = r(t1), we know x1(t1 + 2) = A.
Then at t1 + 2, the trajectory moves to either s1 or s3. We discuss
these two cases separately.
(a) If at t1+2 the trajectorymoves to s1, since r|s1 > r|s4 , it follows
that x1(t1 + 3) = A. In view of Lemma 1, the conclusion holds.
(b) If at t1+2, the trajectorymoves to s3, since r|s3 > r|s4 , we know
x1(t1 + 3) = A. From Lemma 1, there exists a finite time t2 < N
at which the trajectory moves from s3 to s1. Because r|s1 < r|s3 ,
we have x1(t2 + 1) = B. Then at time t2 + 1, the trajectory moves
to either s2 or s4. Now we discuss two sub-cases. (b1) Suppose the
former is true, that the trajectory goes to s2. The conclusion follows
directly from Lemma 5. (b2) Suppose the latter is true, that the
trajectory goes to s4. Because r|s4 < r|s1 , x1(t2 + 2) = A. Then
y(t) will remain strictly less than y(t1) + 1/N if a cycle of s4 →
s3 → s1 → s4 is formed. In fact, from the analysis above, this is the
only potential scenario in case (b2) where y(t) < y(t1) + 1/N for
all t ≥ t1. Were such a cycle to appear, A would be chosen at least
twice as often as B. However, because y(t1) < yl = y∗ − 1/N < 1

3 ,
it must be true that the proportion of A in xi(t1), 1 ≤ i ≤ N , is less
than 13 . Thus such a cycle can never happen. So the conclusion also
holds for the sub-case (b2).
If on the other hand, x1(t1) = B, we know from t1 to t1 + 1, the

system trajectory moves from s2 to s4. Since r|s4 < r|s2 , we know
x1(t1 + 2) = A. So at t1 + 2, the trajectory moves to s3 or s1. If the
former is true, the discussion reduces to ruling out the possibility
of forming a cycle of s4 → s3 → s1 → s4 which we have done
in (b2). Otherwise, if the latter is true, since r|s1 > r|s4 , we know
x1(t1 + 3) = A. From Lemma 1 we know there exists a finite time
t3 at which y(t3) = y(t1)+ 1/N , and thus the conclusion holds for
τ = t3 − t1.
Combining the above discussions, we conclude that the proof of
Lemma 7 is complete. �

Using Lemmas 2, 6 and a similar argument as in the proof
of Lemma 7, one can prove the following lemma which is the
counterpart to Lemma 7.

Lemma 8. For system (1)–(4), with conditions (17)–(19) satisfied, if
yu < y(t1) < 1 and y(t1 + 1) = y(t1)+ 1/N for some t1 ≥ 0, then
there exists a finite τ > 0 such that

y(t1 + τ) = y(t1)− 1/N. (27)

Now we are in a position to prove Proposition 1.
Proof of Proposition 1. For any 0 < y(0) < 1, either y(1) =
y(0) + 1/N , or y(1) = y(0), or y(1) = y(0) − 1/N . We will
discuss these three possibilities in each of two cases. First consider
the case where y(0) < yl. If y(1) = y(0) − 1/N , according
to Lemma 7, there is a finite time t1 for which y(t1) > y(0). If
y(1) = y(0) and x1(1) 6= x1(0), according to Lemma 5, there
is a finite time t2 for which y(t2) > y(0). If y(1) = y(0) and
x(1) = x(0) = A, according to Lemma 1, there is a finite time t3 for
which y(t3) > y(0). If y(1) = y(0) and x(1) = x(0) = B, according
to Lemma 2, there is a finite time t̄4 for which y(t̄4−1) = y(0) and
y(t̄4) = y(t̄4−1)−1/N . Then according to Lemma7, there is a finite
time t4 for which y(t4) > y(0). So for all possibilities of y(1) there
is always a finite time t̄ ∈ {1, t1, t2, t3, t4} for which y(t̄) > y(0).
Using this argument repeatedly, we know that there exists a finite
time T1 at which y(T1) = yl ∈ L. Now consider the other case
where y(0) > yu, then using similar arguments, one can check that
there exists a finite time T2 for which y(T2) = yu ∈ L. Hence, we
have proven the existence of T which lies in the set {T1, T2}. �

Combining the conclusions in Theorem 1 and Proposition 1, we
have proven the following theorem, which describes the global
convergence property of y(t).

Theorem 2. For any initial condition of the system (1)–(4) satisfying
0 < y(0) < 1with conditions (17)–(19) satisfied, there exists a finite
time T > 0 such that for any t ≥ T , y(t) ∈ L′.

4.2. Convergence of the DD model

In this section we prove convergence of y(t) in the DD model
with eligibility trace for matching shoulders reward structures.
All results in this subsection apply to the system (1)–(3), (7) and
(14)–(16). As in the analysis for the WSLS model, we consider the
general case (17) when y∗ 6∈ Y. Also like the analysis for the WSLS
model, the results generalize to nonlinear curves; however, for
clarity of presentation we specialize to intersecting linear reward
curves defined by

fA(y) = kAy+ cA
fB(y) = kBy+ cB (28)

where kA < 0, kB > 0 and cA, cB > 0.
We first look at the case when the subject does not switch

choice at a given time t0.

Lemma 9. For any t0 > 0, if y(t0 − 1) < 1 and x1(t0 − 1) =
x1(t0) = A, then there exists a finite t1 ≥ t0 such that x1(t) = A for
all t0 ≤ t ≤ t1 and y(t1) = y(t0 − 1)+ 1/N.

Proof of Lemma 9. If xN(t0−1) = B, then y(t0) = y(t0−1)+1/N
and so the conclusion holds for t1 = t0. If on the other hand
xN(t0 − 1) = A, then y(t0) = y(t0 − 1). From (16) we know that
φA(t0 − 1) = φA(t0) = 1 and φB(t0) = 0. Then it follows from (14)
that ωA(t0 + 1) = r(t0) = fA(y(t0)) = fA(y(t0 − 1)) = ωA(t0) and
from (15) that ωB(t0 + 1) = ωB(t0). Since x1(t0 − 1) = x1(t0) = A,
from (7) it must be true that ωA(t0) > ωB(t0). Thus we know
ωA(t0+1) > ωB(t0+1), so again from (7),wehave x1(t0+1) = A. In
fact, the choice of A will be repeatedly chosen as long as the value
of xN remains A. However, since y(t0 − 1) < 1, there must exist
t1 ≤ t0 + N such that xN(t1 − 1) = B and then for the same t1, we
have x1(t) = A for all t0 ≤ t ≤ t1, and y(t1) = y(t0−1)+1/N . �

Using a similar argument, one can prove the following lemma
which is the counterpart to Lemma 9.

Lemma 10. For any t0 ≥ 0, if y(t0 − 1) > 0 and x1(t0 − 1) =
x1(t0) = B, then there exists a finite t1 ≥ t0 such that x1(t) = B for
all t0 ≤ t ≤ t1, and y(t1) = y(t0 − 1)− 1/N.
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Lemmas 9 and 10 imply that if Z ∈ {A, B} is repeatedly chosen,
then the anticipated reward for choice Z decreases as a result of
the change in y while the anticipated reward for the alternative
Z̄ stays the same because the eligibility trace φZ̄ remains zero.
Hence, a switch of choices is likely to happen after a finite time.
Now we look at the case when the subject switches choice at time
t0 > 0, namely x1(t0) = x̄1(t0 − 1). Then from (16), we have
φx1(t0−1)(t0) = ε; correspondingly from update rules (14) and (15),
wehaveωx1(t0−1)(t0+1) = ωx1(t0−1)(t0)+ε(r(t0)−ωx̄1(t0−1)(t0)) =
ωx1(t0−1)(t0) + ε(ωx̄1(t0−1)(t0 + 1) − ωx̄1(t0−1)(t0)). Hence, the
magnitude of ε is critical in updating the value of the anticipated
reward when a switch of choices happens. It should be pointed out
that in Section 3, to be consistent with the exponential decay rate
for eligibility trace in [12], we have made an assumption that ε is
a small number. This assumption can be stated by restricting the
upper bound for the convex combination of points on the fA and fB
lines.

Assumption 1 (Restricted Convex Combination). For y ∈ Y,

(1− ε)min{fA(y), fB(y)} + εmax{fA(y), fB(y)} < fA(y∗) = fB(y∗).

The following result states that under certain circumstances
the subjects will not immediately follow a switch of choice with
another switch of choice.

Lemma 11. Suppose Assumption 1 is satisfied. For any t0 > 0, if
x1(t0) = A, x1(t0 − 1) = B and y(t0 − 1) < y∗, then there exists a
finite t1 ≥ t0 such that x1(t) = A for all t0 ≤ t ≤ t1, and y(t1) > y∗.

Proof of Lemma 11. From (16) we know that φA(t0) = 1 and
φB(t0) = ε. So from (14) and (15), it follows that

ωB(t0) = r(t0 − 1) = fB(y(t0 − 1)), (29)
ωA(t0 + 1) = r(t0) = fA(y(t0)), (30)

and

ωB(t0 + 1) = ωB(t0)+ ε(r(t0)− ωA(t0))
= ωB(t0)+ ε(fA(y(t0))− ωA(t0)). (31)

Since x1(t0) = A, from (7) it must be true that ωA(t0) ≥ ωB(t0).
Combining with (31), we have

ωB(t0 + 1) ≤ ωB(t0)+ ε(fA(y(t0))− ωB(t0))
= (1− ε)ωB(t0)+ εfA(y(t0)).

Substituting (29), we have

ωB(t0 + 1) ≤ (1− ε)fB(y(t0 − 1))+ εfA(y(t0)).

Since x1(t0) = A and x1(t0 − 1) = B, we know y(t0) = y(t0 − 1)
or y(t0) = y(t0 − 1) + 1/N . Since y(t0 − 1) < y∗, it must be
true that either y(t0) = yu or y(t0) ≤ yl. We consider these two
cases separately. Case (a): y(t0) = yu. Set t1 = t0, then y(t1) > y∗
holds trivially. Case (b): y(t0) ≤ yl. Then fA(y∗) < fA(y(t0)) ≤
fA(y(t0 − 1)). Also,

ωB(t0 + 1) ≤ (1− ε)fB(y(t0 − 1))+ εfA(y(t0 − 1)) < fA(y∗),

where the last inequality follows from Assumption 1. Combining
these with (30) we know that

x1(t0 + 1) = A (32)

and consequently φA(t0 + 1) = 1 and φB(t0 + 1) = 0. In fact,
A will be repeatedly chosen, φA and φB will remain one and zero
respectively until some finite time t1 > t0 for which ωA(t1) =
r(t1) = fA(y(t1)) is less than or equal to ωB(t0 + 1) or y(t1) = 1.
Since ωB(t0 + 1) < fA(y∗), it follows that y(t1) > y∗. So we have
proved the conclusion for case (b) and the proof is complete. �
Using a similar argument, one can prove the following lemma
which is the counterpart to Lemma 11.

Lemma 12. Suppose Assumption 1 is satisfied. For any t0 > 0, if
x1(t0) = B, x1(t0 − 1) = A and y(t0 − 1) > y∗, then there exists a
finite t1 ≥ t0 such that x1(t) = B for all t0 ≤ t ≤ t1, and y(t1) < y∗.

As simulations and reported experiments indicate, the deter-
ministic DD model fits subjects’ behavior only when ε is bounded
away from zero. Hence, we make the following assumption:

Assumption 2 (Bounded ε). The positive number ε is bounded
below, satisfying

ε ≥ max

{
−kA/N

fA(yl
′
)− fB(yl

′
)
,

kB/N
fB(yu

′
)− fA(yu

′
)
,

fA(yu
′

)− fB(yl
′

)

fA(yl)− fB(yl)
,
fB(yl

′

)− fA(yu
′

)

fB(yu)− fA(yu)

}
.

One consequence of Assumption 2 is that in certain scenarios, we
can estimate the increment of the anticipated rewards.

Lemma 13. Suppose Assumption 2 is satisfied. For any t0 > 0, if
y(t0) < yl

′

, x1(t0 − 1) = x1(t0) = B and x1(t0 + 1) = A, then
ωB(t0 + 2) ≥ ωB(t0 + 1)− kA/N.

Proof of Lemma 13. Since x1(t0−1) = x1(t0) = B and x1(t0+1) =
A, it follows that

ωB(t0 + 1) ≤ ωA(t0 + 1) = ωA(t0) < ωB(t0) (33)

where

ωB(t0 + 1) = fB(y(t0)) < fB(y(t0 − 1)) = ωB(t0). (34)

Then

ωB(t0 + 2) = ωB(t0 + 1)+ ε (ωA(t0 + 2)− ωA(t0 + 1))
≥ ωB(t0 + 1)+ ε (ωA(t0 + 2)− ωB(t0))
= ωB(t0 + 1)+ ε (fA(y(t0 + 1))− fB(y(t0 − 1))) .

From x1(t0 − 1) = x1(t0) = B and x1(t0 + 1) = A, we know that
y(t0) = y(t0−1) or y(t0) = y(t0−1)−1/N and y(t0+1) = y(t0) or
y(t0+1) = y(t0)+1/N . Since y(t0) < yl

′

, it follows that y(t0+1) ≤
yl
′

and y(t0 − 1) ≤ yl
′

. Because of the monotonicity of fA and fB, it
follows that ωB(t0 + 2) ≥ ωB(t0 + 1) + ε(fA(yl

′

) − fB(yl
′

)). Using
ε ≥

−kA/N
fA(yl
′
)−fB(yl

′
)
in Assumption 2, we reach the conclusion. �

Following similar steps and using ε ≥
kB/N

fB(yu
′
)−fA(yu

′
)
in

Assumption 2, one can prove the following lemma which is the
counterpart to Lemma 13.

Lemma 14. Suppose Assumption 2 is satisfied. For any t0 > 0, if
y(t0) > yu

′

, x1(t0 − 1) = x1(t0) = A and x1(t0 + 1) = B, then
ωA(t0 + 2) ≥ ωA(t0 + 1)+ kB/N.

It is critical to examine the time instances at which the subject
makes a switch from one choice to another. Thus let T denote
the set of time instances for which t > 0 is in T if and only if
x1(t) 6= x1(t − 1). We are also interested in studying some subsets
of T . Define TA , {t : t ∈ T , x1(t) = A, y(t − 1) < y∗} and
TB , {t : t ∈ T , x1(t) = B, y(t − 1) > y∗}.
As in the analysis of the WSLS model, we consider xi(0), i =

1, . . . ,N , where 0 < y(0) < 1. Then ωx1(0)(1) = r(0) =
fx1(0)(y(0)) is determined correspondingly. To simplify the analysis
and rule out degenerate cases, we make the following assumption
about the value of ωx̄1(0)(1).
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Assumption 3 (Bounded ωx̄1(0)(1)). Let 0 < y(0) < 1 and
ωx1(0)(1) = fx1(0)(y(0)). The initial value ωx̄1(0)(1) satisfies

ωx̄1(0)(1) < ωx1(0)(1), (35)

ωx̄1(0)(1) < fA(y
∗), (36)

and

ωx̄1(0)(1) > max{fA(1), fB(0), fA(1)

+ (kB + kA)/N, fB(0)− (kB + kA)/N}. (37)

Now we are ready to study how the DD model with the
eligibility trace evolves with time.

Lemma 15. Suppose all the Assumptions 1–3 are satisfied. Then,

T = TA ∪ TB.

Proof of Lemma 15. From (35)we know that x1(1) = x1(0) and in
fact x1(0) will be repeatedly chosen until the reward for choosing
x1(0) is belowωx̄1(0)(1). Such a switch will always happen because
of (37). Let t0 denote the time at which such a switch happens, i.e.,
x1(t0 − 1) = x1(0) and x1(t0) = x̄1(0). In view of (36), we know
that y(t0− 1) < y∗ if x1(0) = B and y(t0− 1) > y∗ if x1(0) = A. So
t0 ∈ TA if x1(0) = B and t0 ∈ TB if x1(0) = A, and thus t0 ∈ TA ∪ TB.
By inspection, if y(t0 − 1) ∈ L, then either Lemma 9 or Lemma 10
is applicable to t0; if on the other hand, y(t0 − 1) 6∈ L, then either
Lemma 11 or Lemma 12 is applicable to t0. This implies that x1(t0)
will be repeatedly chosen such that the time of the next switch
t1 ≥ t0 satisfies t1 ∈ Tx̄1(t0) ⊂ TA ∪ TB. Further, Lemmas 9–12
can be applied again to t1. Then, by induction, we know all time
instances for which a switch happens belong to TA ∪ TB. �

As becomes apparent later, when the DD model with the
eligibility trace converges, the values of y∗, kA and kB affect the
range of the interval containing y∗ to which y(t) converges. In this
paper, we are interested in the sufficient conditions under which
such an interval isL′.
Assumption 4 is concerned with the relative positions of points

on the reward lines fA and fB corresponding to values of y inL′.

Assumption 4 (Points inL′).

fB(yl)+ ε(fA(yu)− fB(yu)) ≥ fA(yu
′

), (38)

fA(yu)+ ε(fB(yl)− fA(yl)) ≥ fB(yl
′

). (39)

Proposition 2. Suppose all the Assumptions 1–4 are satisfied. If t0 ∈
T , y(t0 − 1) ∈ L′, then y(t) ∈ L′ for all t ≥ t0.

Proof of Proposition 2. The conclusion can be proved by induc-
tion if we can prove the following fact: There is always a finite
t1 > t0 such that t1 ∈ T and y(t) ∈ L′ for all t0 ≤ t ≤ t1. In
order to prove this fact, we need to consider four cases.

• Case (a): x1(t0) = A and y(t0 − 1) = yl
′

. Then

ωB(t0 + 1) > fB(yl
′

)+ ε
(
fA(y(t0))− fB(yl)

)
≥ fB(yl

′

)+ ε
(
fA(yl)− fB(yl)

)
,

where the first inequality holds since fB(yl) > fB(yl
′

) and the
last inequality holds because fA(y(t0)) ≥ fA(yl). In view of the

inequality ε ≥ fA(yu
′
)−fB(yl

′
)

fA(yl)−fB(yl)
in Assumption 2 and combining

with Lemma 11, we know that there is always a finite t1 > t0
such that t1 ∈ TB and y(t) ∈ L′ for all t0 ≤ t ≤ t1.
• Case (b): x1(t0) = A and y(t0 − 1) = yl. Then

ωB(t0 + 1) ≥ fB(yl)+ ε (fA(y(t0))− ωA(t0))
> fB(yl)+ ε

(
fA(yu)− fB(yu)

)
,

where the first inequality holds because ωA(t0) ≥ ωB(t0)
and the last inequality holds because fA(y(t0)) ≥ fA(yu) and
ωA(t0) = ωA(t0 − 1) < ωB(t0 − 1) = fB(y∗) < fB(yu). Then
in view of (38), we know ωB(t0 + 1) ≥ fA(yu

′

), and so there is
always a finite t1 > t0 such that t1 ∈ TB and y(t) ∈ L′ for all
t0 ≤ t ≤ t1.
• Case (c): x1(t0) = B and y(t0 − 1) = yu. Following similar steps
as in Case (b) and using (39), we know there is always a finite
t1 > t0 such that t1 ∈ TA and y(t) ∈ L′ for all t0 ≤ t ≤ t1.
• Case (d): x1(t0) = B and y(t0 − 1) = yu

′

. Following similar

steps as in (a) and using the inequality ε ≥ fB(yl
′
)−fA(yu

′
)

fB(yu)−fA(yu)
in

Assumption 2 and combining with Lemma 12, we know that
there is always a finite t1 > t0 such that t1 ∈ TA and y(t) ∈ L′

for all t0 ≤ t ≤ t1.

In view of the discussion in Cases (a)–(d), we conclude that the
proof is complete. �

Proposition 3. Suppose all the Assumptions 1–4 are satisfied. There
is always a finite T ∈ T for which y(T − 1) ∈ L′.

Proof of Proposition 3. From (37) in Assumption 3, we know that
x1(0) cannot be repeatedly chosen more than N times, and thus
there is t0 ∈ TA∪TB. If y(t0−1) ∈ L′, then set T = t0 andwe reach
the conclusion. If on the other hand, y(t0 − 1) 6∈ L′, then either
Lemma13 or Lemma14 applies to t0−1.Without loss of generality,
suppose Lemma 13 applies, then ωB(t0 + 1) ≥ ωB(t0) − kA/N . By
(37) ωB(t0 + 1) > fA(1). So, there exists a t1 which is the smallest
element in TB such that t1 > t0. ThenωA(t1) ≥ ωB(t0+1)+kA/N >
ωB(t0). In fact, one can check that switches will continue to exist
and ωx̄1(t) will be a monotonically strictly increasing function until
ωx̄1(t) reaches either fA(y

u′) or fB(yl
′

) at some finite time T ′. Set T to
be the smallest element in T that is greater than T ′, then it must
be true that y(T − 1) ∈ L′. �

Combining Propositions 2 and 3, we have proved the main
result of this section.

Theorem 3. For system (1)–(3), (7), (14)–(17) and (28), if Assump-
tions 1–4 are satisfied, then there exists a finite T > 0, such that
y(t) ∈ L′ for all t ≥ T .

4.3. Discussion

We have proved in Theorems 2 and 3 for the WSLS decision-
making model and the DD decision-making model that the
proportion y of A’s in the moving window of the N most recent
decisions converges to the neighborhood L′ of the matching
point y∗. This means that eventually the decision maker confines
decisions to those corresponding to the four values of y closest
to y∗. However, convergence is more direct for the WSLS decision
maker as compared to the DD decision maker. In the case of the
WSLS decisionmaker, the very first time y reachesL, it will remain
inL′ for all future time. This is because theWSLS makes its greedy
decisions between A and B depending only on the twomost recent
awards. On the other hand, in the case of the DD decision maker, if
the same choice ismade repeatedlywhen y is inL′ (and thus inL),
then y can pass throughL′without getting trapped. It is onlywhen
the decisionmaker switches choicewhile y ∈ L′ that ywill remain
in L′ for all future time. The DD decision maker can persist with
repeated choices even as rewards decrease because the expected
reward for the alternative, which depends on the reward received
the last time the alternative was chosen, can be relatively low.
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In the psychology studies, N is chosen large enough to push the
limits of what humans can remember. N can be interpreted as a
measure of task difficulty since it determines howmany of the past
choices influence the present reward. N controls the resolution of
the reward: reward depends on y, which takes values in the set
Y = {j/N, j = 0, 1, . . . ,N}. The convergence we have shown
is tighter for a larger N , i.e., L and L′ are smaller. Likewise, the
convergence rate is slower for a larger N since it will take more
choices to make the same magnitude change in y. The resolution
also affects the sensitivity of decision making: peaks and dips in
the reward curve of width smaller than 1/N won’t be measured
by the decision maker. For example, in the rising optimum reward
(Fig. 1(b)), a small enough N would enable the decision maker to
‘‘jump over’’ the minimum in the fA curve.

5. Application

As one possible application of the convergence results of
Section 4, we formulate a human-supervised robotic foraging
problem where the human makes sequential binary decisions. To
make the theory applicable, we propose a map from the human-
supervised robotic foraging problem to a two-alternative forced-
choice task. We discuss conditions for such a map that would
justify using results on human decision making to help guide the
design of an integrated human–robot system. We are particularly
interested in leveraging thematching behavior phenomenon since
it is so strongly supported by psychology experiments and is
formally proven in the previous section. However, we expect that
the human supervisor will contribute to the complex foraging
task in a variety of ways for which there may not be extensive
insight nor formal models. Accordingly, we do not aim to use
the existing models of human decision making to replace the
human. The map proposed here is only a first step and we expect
that alternatives will improve and extend our central idea of
identifying and leveraging parallels betweenwhat human subjects
do in psychology experiments and what human operators do
in complex tasks. Our focus is on human-in-the-loop issues;
examples of developed strategies useful for collective foraging
include exploration [28], coverage [29] and gradient climbing [30].
The robotic foraging problem that we are interested in is

partly motivated by the producer–scrounger (PS) foraging game
that models the behavior of group-foraging animals [31,32]. This
model has been successful in predicting animals’ decisions either
to look for food (produce) or to exploit the food found by other
foragers (scrounge). Two results in the study of the PS game are
especially relevant to the robotic foraging problemof interest. First,
the rewards for producing and scrounging are functions of the
proportion of scroungers in the animal group, and such reward
curves are similar to the matching shoulders curves studied in
Section 4 [31]. Second, scientists in a recent field study have
introduced techniques to manipulate the reward curves in order
to predictably shift the equilibrium of the group decision-making
dynamics [32]. Thismotivating biological study suggests that for an
integrated human–robot team, one may improve decision-making
performance by adaptively changing how the reward is perceived
by the team, e.g., by the robots or by the humans or by the robots
and humans together.
Consider a team of N autonomous robots, foraging in a spatially

distributed field S, that are remotely supervised by a human. Each
robot forages in one of two modes: when exploring the robot
searches for regions of high density of resource andwhen exploiting
it stays put in a high density region and collects resources. The role
of the human supervisor is to make the choice for each individual
robot, sequentially in time (t = 0, 1, 2, . . .), as to whether
it should explore or exploit. After each supervisor decision, the
robot or the group of robots then provides the supervisor with a
measure of performance. For example, after a decision to exploit,
an estimate could be made of the amount of resource to be
collected in the next time period under the assigned foragingmode
allocation. This estimate could be made also after a decision to
explore. Alternatively after a decision to explore, an estimate of
the amount information to be collected in the next time period
might be reported instead. In either case, the estimate represents
the reward for the supervisor’s decision at time t . By reading
robots’ estimations and making sequential decisions, the human
supervisor allocates each of the N robots to foraging modes, one at
a time, with the objective of maximizing total performance. The
human continues to re-assign robots’ foraging modes as long as
necessary; for example, in a changing environment re-allocation
may be critical. We note that in the case that the human operator
gets information on different performance metrics with different
units, e.g., if resource and information are reported for different
operator choices, an important design question is how to scale one
measure of performance relative to the other. The relative scaling
will affect the decision making similarly to the way that modifying
reward curves affects the decision-making dynamics of foraging
animal groups [32].
The role of the human supervisor in this particular robotic

foraging problem is to make a sequence of binary decisions,
analogous to those of the psychology studies. The human-
supervised robot foraging problem, however, is necessarily more
complex than the task presented to the human subject. In
particular, the rewards reported to the human supervisor will
likely depend dynamically on the decision history. A preliminary
numerical study of collectively foraging robots in fields of
continuous, time-varying distribution of resource does show
evidence of reward curves that, at times, have slopes akin to those
near a matching point [33]. In the study, the reward includes
measures of both estimated resource collected and estimated
information collected. The measure of resource collected signals
how well the exploiters are able to collect. The measure of
information signals when explorers are doing a productive job
searching out neglected regions with the expectation of finding
new patches of dense resources. The study shows that growing
numbers of exploiters are useful only up to a point at which their
value drops off because there are not enough explorers to help
direct them to high density patches. Likewise, growing numbers of
explorers are useful only up to a point at which their value drops
off because there are not enough exploiters to collect resource at
the high density patches that have been discovered.
We show here a different, simpler numerical simulation of

collective robot foraging to illustrate a reward curve for a particular
decision sequence and compare it to the reward curves studied
in [12,13]. Consider a planar L×L region S = {(u, v)|u ∈ [0, L], v ∈
[0, L]} with distributed resources. Let the resource distribution
with two big patches be described by the sum of Gaussians

Φ(u, v) = a1e−((u−ū1)
2
+(v−v̄1)

2)/σ 21 + a2e−((u−ū2)
2
+(v−v̄2)

2)/σ 22 (40)

where (ūi, v̄i) is the center of patch i, i = 1, 2, and ai, σi are peak
value and spread for patch i.
The explore and exploit control laws are heuristics and serve as

proxies (for illustration) formore sophisticated foraging behaviors.
Each exploiting robot collects resources at a high rate but does not
move. Each exploring robot moves at a common constant speed
and updates its heading θk(t) as

θk(t + 1) = θk(t)+ αk(t)(ψk(t)− θk(t))
+ (1− αk(t))(θ̂ + kcom(φk(t)− θk(t))), (41)

αk(t) =
{
1 ifΦ(uk(t), vk(t)) > r∗

0 otherwise. (42)
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Fig. 4. Numerical foraging experiments with pre-defined allocation decision sequence. (a) Snapshot of resource field and robots (black circles). The large white circle is the
center of mass of explorers. (b) Reward for choosing A (explorer) averaged over 100 simulations.
θ̂ is a random variable, φk is the direction of the vector from robot
k to the center of mass of all exploring robots, ψk is the direction
of the gradient of the resource at robot k’s location and kcom > 0
is a constant. αk switches value when robot k’s measured resource
exceeds threshold r∗. If αk = 0 exploring is a randomwalk plus an
attraction to the center of mass of explorers; if αk = 1 exploring is
gradient climbing on the resource. The resources collected by robot
k at time t are

ρk(t) =
{
γAr(uk(t), vk(t)) if k an explorer
γBr(uk(t), vk(t)) if k an exploiter (43)

where γA, γB ∈ [0, 1] and γA < γB. A decision on the allocation of
robots to exploring and exploiting is made every T units of time.
After the decision is made at time t , the robots forage and then
report the reward at time t + T as the total resources collected
during the interval [t, t + T ].
Fig. 4 shows the results of simulations with N = 20 robots for a

pre-defined decision sequence. All 20 robots are initially exploiters
located by a random uniform distribution in a disk of radius 0.1 L
about the center of patch 1. Every decision is to choose A, which is
to assign the next robot to be an explorer. That is, y(0) = 0 and
y(kT ) = 0.05k, k = 1, . . . , 20. The simulation was repeated 100
times. Fig. 4(a) shows a snapshot of the resource field and foraging
robots in one run and Fig. 4(b) shows the reward fA averaged over
all 100 runs. The field parameters are L = 1, a1 = 0.5, σ1 =
0.01, a2 = 1.0, and σ2 = 0.2. Exploring robots have speed v =
0.02 and T = 20, γA = 1/2, γB = 3/4, kcom = 0.009 and θ̂ is taken
from a uniform distribution in the interval [−π

6 ,
π
6 ].

The structure of fA in Fig. 4 is similar to that of the rising
optimum reward structure of Fig. 1(b). With few explorers,
increasing the number of explorers means less resource since
explorers abandon patch 1 and search regions that may have
lower resource levels. However, with more explorers, increasing
the number of explorers means greater success at finding the large
resource peak at patch 2. The negative slope in the reward curve
suggests the existence of a matching point, even possibly in the
case of less structured decision sequences.

6. Concluding remarks

In this paper we consider two models for human decision
making in the two-alternative forced-choice task. We provide a
formal analysis of matching behavior, a human response strongly
supported by psychology experiments that often corresponds to
suboptimal decision strategies. We prove convergence to match-
ing for a class of reward curves when the human decision maker is
represented by theWSLSmodel and a deterministic limit of the DD
model. We discuss the differences in the convergence of the WSLS
decisionmaker as compared to the DD decisionmaker. As an appli-
cation, we formulate a framework for a human-supervised robotic
foraging problem, where the human supervisor makes decisions,
based on a report of performance from the robots, that compare
to the kinds of decisions made by the human subject in the psy-
chology experiments, based on a computer generated reward. The
psychology experiments can be viewed as an idealized represen-
tation of the more dynamic human-supervised foraging task.
In ongoing work, we are investigating probabilistic models that

describe human decision-making dynamics. This framework will
be usefulwhen consideringmultiple human decisionmakers along
with the results discussed in [15]. We are also exploring how to
design an integrated human–robot system to our advantage. We
aim to bring to bear the computational power of the robotic system
without replacing the human supervisor. As an example, we have
been studying adaptive laws for the robot feedback that use only
local information but help the human make optimal decisions.
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