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On robustness and leadership in Markov switching consensus networks

Sarah Huiyi Cen, Vaibhav Srivastava, and Naomi Ehrich Leonard

Abstract— We examine the influence of time-varying interac-
tions, which are modeled by a Markov switching graph (MSG),
on noisy multi-agent dynamics. Our focus is on the robustness
of both consensus and leader-follower tracking dynamics in the
presence of stochastic noise, and we derive expressions for the
steady-state covariance of the system’s deviation from consensus
and tracking error, respectively. We use these measures to
quantify individual and group performance as functions of
the interaction graphs and graph switching matrix. We extend
notions of robustness and joint centrality indices for static
graphs to MSGs.

I. INTRODUCTION

Many systems rely on the cooperation of agents, each
performing a task and strategically arranged to collectively
achieve a goal. Such multi-agent systems are ubiquitous
across disciplines from biology to engineering to economics.
Typically, real multi-agent systems operate in noisy environ-
ments, and the interactions among agents vary with time.
For the successful design of such systems, it is imperative
to understand the influences of time-varying interactions and
noise on the individual as well as collective performance.

In this paper, we examine the effects of time-varying
interactions among agents on the robustness of consensus
dynamics and the related leader-follower collective reference
tracking problem in the presence of stochastic noise. We
model the time-varying interactions with a Markov switching
graph (MSG), defined by a set of static graphs and a Markov
chain that describes the transitions among these graphs.

The robustness of consensus problem for static interaction
graphs [1]-[5] has received significant attention. Extending
these results to time-varying graphs (TVG) is challenging
due to the limited analytic tractability of time-varying dy-
namical systems. Consensus dynamics have been studied for
deterministically time-varying graphs [6], [7] and stochasti-
cally time-varying graphs [8]-[10], but these analyses are not
applicable in the presence of noise. For example, a contrac-
tion analysis-based approach cannot be immediately applied
in the presence of stochastic forcing terms. We leverage the
structure of MSGs, a special class of stochastically time-
varying graphs, to understand the robustness properties of
noisy consensus dynamics. The consensus dynamics under
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MSGs have been studied in [8], but to the best of our
knowledge, the influence of noise on the performance of
consensus in MSGs has not been explored.

In the noisy leader-follower collective reference tracking
problem, a set of cooperating agents track a reference signal
despite signal and communication noises. A subset of these
agents, the leaders, have access to the external signal while
the rest, the followers, rely solely on information communi-
cated from their neighbors. This framework has received at-
tention in the context of the optimal leader selection problem,
i.e., the designation of a leader set that optimizes the group
performance [11]-[14]. Leader selection problems have been
studied for TVGs that transition much more slowly than the
consensus dynamics and for stochastic TVGs resulting from
random link failure [14]. We investigate the noisy leader-
follower collective reference tracking problem for MSGs.
Our approach does not require the time-scale separation
between graph and consensus dynamics, and it accounts for
more general stochastic TVGs than in [14].

Our results leverage the theory of continuous-time Markov
jump linear systems (CT MILS) [15] to characterize the
robustness and leadership properties in time-varying multi-
agent networks. Our main contributions are three-fold. First,
we derive measures of system performance for the noisy con-
sensus and noisy leader-follower reference tracking problems
as functions of the graph structures and graph switching
matrix defining the MSG. Second, we show how these
measures can be used to extend notions of robustness and
centrality measures for static graphs to MSGs. Third, we
illustrate how system performance varies and often improves
for the dynamic graph as compared to the static graph.

In Sections II and III, we introduce the two noisy coordi-
nation problems for MSGs and review key concepts for the
CT MILS, respectively. In Section IV, we rigorously analyze
performance under the two coordination problems. In Section
V, we present notions of robustness and centrality measures
for MSGs. We numerically illustrate our results in Section
VI and conclude in Section VII.

II. TWO NOISY DISTRIBUTED COORDINATION PROBLEMS
UNDER MARKOV SWITCHING GRAPHS

Consider a system comprising a switching network of m
agents with system state x(t) € R™, where xz;(t) is the
state of agent ¢ at time ¢ > 0. Each agent ¢ sends and
receives information from its set of neighbors N;(t). The
resulting communication topologies make up the undirected,
unweighted time-varying graph G(¢t) = (V,£(¢),Y (¢)) for
the set of nodes V = {1,...,m}, set of edges £(t) C VxV,
and adjacency matrix Y (t) € R™*™. Each graph node
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corresponds to an agent in the network, which contains an
edge (i,7) between nodes ¢ and j at time ¢ if j € N;(¢).
Yi;(t) = 1 if edge (i,7) exists at time ¢ and Y;;(t) = 0,
otherwise. Since G(t) is undirected, (4, j) implies (4,%), and
Y (t) is symmetric. The degree of node i at time ¢ is d;(t) =
>oi1 Yij(t), and D(t) = diag(d:(t),da(t), . . ., dm(t)). The
Laplacian matrix of G(t) at time ¢ is L(t) = D(t) — Y (¢).

We first consider the noisy consensus problem wherein
a set of agents, each with its own opinion z;, attempts
to achieve agreement. Specifically, this analysis studies the
network consensus problem [7] under stochastic noise for
TVGs. The continuous-time dynamics are

dx(t) = —L(t)x(t)dt + FAW (t), (1)

where F is the system noise matrix and dW () is the m-
dimensional standard Wiener process increment. Consensus
is achieved when x = a1,,, where a € R is the agreement
value and 1,,, is the m x 1 vector of all 1’s.

Next, we consider the noisy leader-follower reference
tracking problem, in which the agents seek to track an
external reference signal 6 € R such that x; represents agent
1’s tracking estimate of 6. A subset of agents, called leaders,
directly measure 6, which is affected by noise, and the
remaining agents, called followers, do not directly measure
6. All agents exchange information via noisy communication
with their neighbors. The continuous-time dynamics are

dx(t) = —(L()x(t) + K (x(t) — 01,,))dt + FAW (1), (2)

where the leadership matrix X € R™*™ is a diagonal matrix
with entries {k1,%2,...,km}. If agent i is a leader, then
ki = Kk > 0 such that all leaders share the same gain . If
agent ¢ is a follower, then x; = 0. The cardinality of the
leader set K is given by |K|. Without loss of generality, we
let 6 = 0, reducing the dynamics (2) to

dx(t) = =M (t)x(t)dt + FAW (1), (3)

where M (t) = L(t) + K.

We assess network performance using the following defini-
tions of node and system errors, which apply only to systems
for which the steady-state covariance exists. Define the node
error E; of node ¢ as the steady-state variance of x;:

Ei(Zs(x)) = (Bs(x))iis

where Yi(x) is the steady-state covariance of x. Define the
system error E as the steady-state variance of x:

m

E(Xs(x)) = tr(Ees(x)) = Z E;(Z6s(x)).

We study the two coordination problems (1) and (3) under
the assumption that the system switches between a finite set
of static interaction graphs G = {G1,...,G,} according to
a Markov chain (MC), where G; = (V, &;, ;). The resulting
TVG is known as a Markov switching graph (MSG). Under
a given MSG @, the linear dynamical systems (1) and (3)
are known as Markov jump linear systems (MJLS) [16].
Recall that the total number of possible unweighted graphs

for a given finite node set is also finite. Hence, the set
G is assumed to be finite without loss of generality. Let
S =1{1,...,n} be the graph index set.

Let the graph switching behavior in (1) and (3) be gov-
erned by a continuous-time MC (CTMC). For the graph
set G, the CTMC is specified by the infinitesimal time-
homogeneous generator matrix I' € R™*"™ with elements:

s 1 "
Iy = {qu 77
—Vi,

=17
for i,j € S. Here, v; = }_;cq\;¢ij is the holding rate of
graph G;, and ¢;; > 0 is the transition rate from G; to
G ;. Intuitively, g;; is the rate parameter of an exponential
distribution that determines the probability that the system
in graph G transitions to graph G'; with time [15]. All rows
in I sum to 0, and —I" is a Laplacian matrix.

Let A,, be the (n — 1)-dimensional probability simplex
in R™. Then, for the CTMC with the generator matrix I,
w(t) € A, is the probability distribution over G at time
t. Specifically, m;(t) is the probability that G(¢t) = G;, and
S mi(t) = 1. From [15], m(t) = € 7 (0).

We study the two coordination problems under the follow-
ing assumptions for the MSG:

Assumption 1: The underlying CTMC is ergodic. ]
Assumption 2: Every graph in the set G is unweighted,
undirected, and connected. O

Under Assumption 1, the CTMC has a unique stationary
distribution 7ss such that lim;_, o, 7w(t) = . Ergodicity
implies that I'T has exactly one eigenvalue at 0 with the
right eigenvector 7y (i.e., mss = e mss) and all others
in the left half-plane. Assumption 2 can be relaxed under
certain conditions, but for clarity of exposition, we keep it.

III. PRELIMINARIES ON MARKOV JUMP LINEAR SYSTEMS
Consider the following CT MIJLS:

dx(t) = —Z(t)x(t)dt + FAW (1), )

where Z(t) € R™*™ corresponds to the network graph at
time ¢ of the MSG with generator matrix I'. Let Z(t) = Z;
whenever G(t) = G;. We now solve for the dynamics of the
mean and second moment of x(¢) evolving according to (4).

For the following proposition, let p(t) = E[x(¢)] represent
the mean. The contribution of graph G; € G to the mean is
wi(t) = Ex(O)Z(G(t) = G)] such that u(t) = S0, i (),
where Z(-) is the indicator function. Vertically stacking the
means for all graphs gives the vector:

v(t) =[O 27, e )]

Similarly, let the second moment C(t) = E[x(¢)x(t)"].
The contribution of graph G; € G to the second moment
is C'(t) = E[x(t)x(t)"Z(G(t) = G;)] such that C(t) =
S CU(t). Vertically stacking the vectorized second mo-
ments for all graphs gives the vector:

ct)=[c'®)", e, ....e" )],

where ci(t) = vec(C%(t)) and vec(-) is the vectorization
operator. For the remaining analysis, let Q = FF', N =



diag, (Z;) —T'T ®1,,, and M = diag,,(Z; & Z;) —T" ®1,,2,
where ® and @ are the Kronecker product and sum operators,
respectively, and diag,, (A4;) is the block-diagonal matrix with
entries {A1, Ao, ..., Ay}

Proposition 1: The following statements hold for the CT
MIJLS (4) with an MSG satisfying Assumptions 1 and 2:

(i) The dynamics of the mean term v(t) are

o(t) = —Nv(b); (5)
(ii) The dynamics of the second moment term c(t) are
¢(t) = —Mec(t) + (t) ® vec(Q). (6)
Proof: This result is standard in MJLS literature. See,
for example, [16], [17, Proposition 3.5]. |

IV. PERFORMANCE OF DISTRIBUTED COORDINATION
UNDER MARKOV SWITCHING GRAPHS

In this section, we study and interpret the performance of
the two noisy coordination problems described in Section II
under MSGs. Let hg; = vec(I,,2) " and hg,, = 1] ®hg .
Furthermore, let hiy, = vec(Q% ,))" and hi = 1] ®
hé\f,l’ where QF , is the m? x m? matrix containing all zeros
except at element (7, ¢), which takes the value 1. Then, hg ,c
is the trace of second moment E[xx'], and hy ¢ is its
diagonal element (7,7) corresponding to node i. At steady
state, these expressions are the contributions of the second
moment to the system and node errors, respectively.

A. Noisy consensus under MSGs

Let NV, and M. be the system matrices in (5) and (6) after
specializing Proposition 1 to the CT MIJLS (1).

Lemma 1: For the noisy consensus dynamics (1), under
Assumptions 1 and 2, both A/, and M, have exactly one
eigenvalue at 0 each; all others lie in the right half-plane.

Proof: When specializing Proposition 1 to (1), Z; = L;,
and (4) reduces to (1). Consequently, N, = diag,, (L;) .
I,, and M, = diag,,(L; ® L;) —T " ®1,,2. We seek to show
that N,J and M/ are effectively the Laplacian matrices of
two large connected graphs that contain nm and nm? nodes,
respectively, and each has exactly one eigenvalue at 0.

For N.!, diag, (L;) is the Laplacian of a disconnected
graph with n clusters, each of which is a connected sub-
graph of m nodes, as required. Therefore, the null space of
diag, (L;) is spanned by vectors of the form a® 1,, for any
a € R™. Because I' describes an ergodic CTMC, —I" ® I,,,
is the Laplacian of a connected graph, and the null space of
—I' ® I,,, is spanned by vectors of the form 1,, ® b for any
b € R™. The sum of two Laplacians is also a Laplacian.
Furthermore, by Lemma 3.5 in [8], for two Laplacian matri-
ces A and B, Null(A+B) = Null(A) N Null(B). Therefore,
Null(AN,T) is the intersection of the space spanned by a®1,,
and 1,, ® b, which is the space spanned by 1,,,. Since the
eigenvalues of a Laplacian are either at O or lie strictly in
the right half-plane [18] and the nullity of N, is 1, the
transpose N, which shares its eigenvalues, has exactly one
eigenvalue at 0. It can be verified that the corresponding right
eigenvector is g ® 1.

Similarly, it can be shown that M, has the unique right
eigenvector 7y ® 1,,2 corresponding to the eigenvalue 0. W
Due to the eigenvalues of N, and M, at 0, the second
moment of x in (1) diverges. However, the diverging part
corresponds to the fully correlated component of agents’
states and therefore does not contribute to the deviation from
consensus. Borrowing terminology from [19], we label the
subspace of R™ spanned by 1,,, the consensus subspace and
its orthogonal complement the disagreement subspace. We
show that as with the static graph [1], the second moment of
x in (1) projected onto the disagreement subspace achieves a
bounded steady-state value and measures the distance from
consensus for the calculation of the system and node errors.
For the following propositions, let x* € R™~! represent
the orthogonal projection of x onto the (m — 1)-dimensional
disagreement subspace 1. We pick V € R(™~1x™ guch
that its rows form the orthonormal basis of 1;- and let V =
ViV =1- %1,,11;;. Then, as in [1], let x* = Vx and
x =V x* suchthatx = 11,1} x+x. The vector X € R™
is the component of x orthogonal to the consensus subspace;
we refer to it as the disagreement vector. Note that 1,,, is the
right eigenvector of L(t) associated with the eigenvalue 0.
From (1), the disagreement dynamics are

dx(t) = —L(t)X(t)dt + VEAW (t). )

Mimicking the notation in Section III, let i(t) = E[x(t)],
pi(t) = E[x(t)Z(G(t) = G;)] for each i € S, and v(t) =
@), ...,m"(#)"]". Let C(t), C(t) and &(t), the second
moment terms of X, be defined analogously.

Proposition 2: For the disagreement dynamics (7), under
Assumptions 1 and 2, the following statements hold:

(i) the steady-state mean disagreement vector is zero, i.e.,

Vg = OTLTYH (8)

where 0,,,,, is the nm x 1 vector of all zeros;
(i1) the steady-state second moment of the disagreement
vector is

Css = M (1 @ vec(VQV)), 9)

where M, = diag, (L; ® L;) —T'" ® L2, and M is
its pseudoinverse.

Proof: Recall that X = Vx. Therefore, i = V'
and ¢ = (V ® V)c'. Specializing Proposition 1(i) to (7)
gives v(t) = —N.v(t). Then, from the proof for Lemma
1, NV, has exactly one eigenvalue at 0 with the eigenvector
e @ 1, and all others in the right half-plane. Now, recall
that x = (I, — 21,1, )x. Since any component of x along
the direction 1,, is removed to get X, by its definition, & has
no component along mg ® 1, with two consequences. First,
the eigenvalue at O is irrelevant, and v has a steady-state
solution. Second, as all other eigenvalues lie strictly in the
right half-plane, the steady-state solution must be Vg, = 0,1, -

Similarly, specializing Proposition 1(ii) to (7) gives ¢(t) =
—M.c(t) +m(t) @ vec(VQV). It can be shown analogously
to N, that M, has exactly one eigenvalue at 0 with the
eigenvector g ® 1,,2 that is unrelated to the evolution of



c. It can also be shown that all other eigenvalues of M, lie
strictly in the right half-plane, meaning that ¢(¢) has a steady-
state solution. At steady state, Css = 0,,,,,2 and 7(t) = 7,
from which we solve for Cg. |

This result implies that the steady-state second moment of
the disagreement vector is in fact the steady-state covariance.
That is, the system and i-th node errors of (1) computed on
the disagreement space are hg ,, €5 and h}'\,,néss, respectively.

B. Noisy leader-follower reference tracking under MSGs

Let NV, and My, be the system matrices in (5) and (6)
after specializing Proposition 1 to the CT MILS (3).

Lemma 2: For the noisy leader-follower reference track-
ing dynamics (3), under Assumptions 1 and 2, all eigenvalues
of matrices A}, and M, lie strictly in the right half-plane.

Proof: When specializing Proposition 1 to the CT

MILS 3), Z; = L; + K = M;, and (4) reduces to (3).
Consequently, N}, = diag, (M;) — ' I, and M, =
diag,, (M; ® M;) — I'" ®1,,2. It follows that N}, = N, +
I, ® K. From Lemma 1, N, is a Laplacian matrix with
the one-dimensional null space 1,,,,,. Thus, N}, is a diagonal
perturbation of AV, and has all eigenvalues strictly in the right
half-plane as long as |K| > 0. Analogously, all eigenvalues
of My, also lie strictly in the right half-plane. [ ]

Thus, in contrast to the noisy consensus problem, the noisy
leader-follower reference tracking problem does not require
the separation of consensus and disagreement subspaces
since the presence of leaders removes the eigenvalue at 0
from N}, and M. For the following proposition, let the
specialization of v(t) and c(t) in (5) and (6) to the CT MJLS
(3) be ©(t) and €(t), respectively.

Proposition 3: For the leader-follower reference tracking
dynamics (3) with |K| > 0 and under Assumptions 1 and 2,
the following statements hold:

(i) the steady-state mean of the state vector is zero, i.e.,

(10)

ﬁss = Onm;
(i) the steady-state second moment of the state vector is
s = M, (g @ vec(Q)), (11)

where My, = diag, (M; ® M;) — T ®1,,2.

Proof: For the CT MILS (3), all eigenvalues of N}
lie strictly in the right half-plane, meaning that (¢) has
a steady-state solution. Since (t) = Ny (t) from Propo-
sition 1 and i/(t) = 0,,, at steady state, it must be true
that gy = 0,,,. Similarly, since the eigenvalues of My
also lie strictly in the right half-plane, there exists a steady-
state solution for ¢(t). At steady state, ¢(t) = 0,2 and
7(t) = mg, from which we solve for Cg. [ |

As in Section IV-A, only the steady-state second moment
is needed to determine the system and i-th node errors of
(3), which are given by hg & and hﬁ\,’néss, respectively.

Equations (9) and (11) express the relationship between
performance and graph design. Understanding these results
would reveal how the graph topologies and switching be-
havior, which are encoded in M, affect the MSG’s ability

to propagate information. However, unlike 7ry and @, the
influence of M on the error is difficult to interpret due to the
inverse matrices in (9) and (11). Intuitively, these matrices
contain the most information since it is the inverse operation
that performs the mixing of graphs in G according to I'.

V. ROBUSTNESS AND LEADERSHIP INDICES FOR MSGS

The robustness of a system is measured by its deviation
from the desired result. For consensus, this deviation is
isolated by projecting the system state onto the disagreement
subspace. Proposition 2 shows that for noisy consensus under
MSGs, this disagreement state is a stochastic process that,
in the limit £ — 400, has zero mean and finite covariance.
The component of covariance in consensus subspace is
completely correlated (i.e. spanned by 1,,1,)) and thus
disregarded because it does not contribute to the deviation
from consensus. For the leader-follower reference tracking
problem, robustness indicates the system’s ability to track the
external signal in the presence of noise through the deviation
of the agents’ tracking estimates from the true reference
value. Given a leader set /C, this robustness reflects the ability
of K to drive all agents’ tracking estimates to 6.

As discussed in [1], the trace of the steady-state covariance
(i.e. the system error) measures the mean squared distance of
the system state from consensus and, for a static undirected
graph, corresponds to the Hs norm of (7) [20], [21]. The
system error of (7) under a static graph has been related
to graph resistance (see [21], [22] for directed graphs) and
is widely used to quantify the robustness of consensus. In
a similar spirit, we propose a new notion of robustness of
consensus for MSGs defined by 1/(hg ,Cs) and call it the
system robustness index. Similarly to [23], this can be used to
rank, design, or dynamically rearrange MSG topologies for
better performance. We also introduce the node robustness
index for MSGs defined by 1/(hly , &) for node i.

In the case that agents in the network measure an external
stimulus, the variance of an agent’s state z; about the
correct decision reflects its decision-making accuracy [24]
and figures critically in its speed-accuracy trade-off [25].
Accordingly, the inverse of the steady-state variance of Z; is
called the node certainty index in [24], which showed that,
for a static graph, this index is a monotone function of the
node’s information centrality [26].

For noisy leader-follower reference tracking, the system
error is the mean squared tracking error over all agents. The
tracking performance is largely dictated by the leader nodes,
and the leader selection problem has consequently received
significant attention for static noisy consensus networks
[11]-[14], [27]. For the static graph, [13] shows, firstly,
that under the constraint || = 1, the most information-
central node minimizes the system error when assigned as
the leader and, secondly, that the system error also leads to
the notion of joint centrality for the optimal selection of /C
for |[IC| > 1 and this depends on network resistances. Other
centrality measures are derived from system error for static
consensus networks in [28]. In a similar spirit, we define joint
robustness centrality index of a set of nodes K in MSGs as
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Fig. 1: Noisy consensus dynamics (1) under the MSG with state space
comprising a line graph G1 shown in panel (a) and a ring graph G'2 shown
in panel (b) and defined by the parametrized generator matrix (12). For a
fixed e = 0.5, panels (c) and (d) chart the system and node robustness
indices, respectively, across a range of v1 = q12 and va = g21 values.

the inverse of the system error for (3) with the leader set
K and k — +o0, ie., limg_, 1 1/(hg »Es). The optimal
leader set of (3) maximizes this quantity.

VI. NUMERICAL ILLUSTRATIONS

In this section, we illustrate our results through the sim-
ulations of simple MSGs. Let the agents be independently
affected by noise of the same intensity such that F' = I.

First, we examine the noisy consensus dynamics (1) under
MSGs with the state space G = {G1, G2} comprising the
line and ring graphs in Figs. 1(a)-(b) and the generator matrix

I=¢ {—fhz q12 ] ’

12
421 —q21 (12)

where ¢;; = v;. Recall that I'’s off-diagonal elements g;;
scale with the MSG’s propensity to switch from G; to
G;. Accordingly, € controls the network’s overall rate of
graph switching. We fix ¢ = 0.5 and study the system
and node robustness indices as functions of ¢;2 = v; and
g21 = vo in Fig. 1(c)-(d). Fig. 1 illustrates that, in general,
the MSG benefits from spending more time in the more
connected topology. In this case, the performance improves
when the MSG lingers in the ring topology (low g21) and/or
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Fig. 2: Noisy consensus dynamics (1) under the MSG with state space
comprising G1,G2 and G3 shown in panels (a), (b), and (c), respectively,
and defined by the parametrized generator matrix (13) with vo = 0.1. Panels
(d) and (e) chart the system and node robustness indices, respectively, across
a range of v1 and e values.

transitions to the ring more frequently (high q12). Fig. 1(c)
also suggests that if ¢ is sufficiently high compared to ¢o1,
the performance only improves marginally for rising ¢jo,
which reveals that lengthening the time the system spends as
a ring has diminishing returns. Fig. 1(d) demonstrates that
the nodes do not benefit equally from the addition of edge
(1,5). In addition, the robustness curve of node 3 shows that,
for this MSG, only the shortest paths between nodes affects
success as node 3 does not benefit from additional longer
routes to previously accessible nodes (e.g. the extra path 3-
4-5-1 in the ring does not improve node 3’s robustness since
the shorter path 3-2-1 already exists in the line).

Second, we investigate the noisy consensus dynamics (1)
under G comprising graphs G1, G2, G3, shown in Figs. 2(a),
(b), (c), respectively, and the generator matrix

—q12  q12 0
F'=e| g —2q5 q25 |,
0 g3z —q32

13)

where we set 12 = ¢32 and vy = 2¢g2; = 0.1. This system
cannot transition directly between GG; and G'3. Unlike in the
previous case, this MSG comprises three equally connected
topologies that would individually produce identical system
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Fig. 3: Two topologies of a five-node MSG.

errors. We illustrate the system and node robustness indices
as functions of v; = ¢12 and € in Figs. 2(d)-(e). The system
robustness curves in Fig. 2(d) are concave and contain finite
non-zero global maxima, which indicates that, unlike in the
simpler line-ring case, the optimal MSG prefers to switch
between graphs in order to balance the information flow
across the nodes. Fig. 2(e) shows three revealing facts. First,
some nodes gain from increasing qio while others worsen,
which causes the maxima in system robustness. Second, node
3 clearly does best with increasing ¢;. Interestingly, node
2 also benefits from spending more time in G5 despite its
central placement in G3, suggesting that obtaining a highly
central position is less crucial than avoiding the least central
ones. Finally, as € increases, the robustness indices rise,
meaning that, for the same stationary distribution, perfor-
mance improves when switching occurs more often.

Lastly, we study the noisy leader-follower reference track-
ing problem (3) in the case of a single leader. Consider the
MSG comprising the two graphs in Fig. 3 and defined by
the generator matrix (12) with ¢12 = ¢21 = 1. Then, for
Kk = 400, any € > 0, and || = 1, the nodes listed in
order of decreasing robustness centrality index (i.e. leader
potential) are 1-3-4-5-2. Interestingly, this is the same as the
list of nodes in order of decreasing node robustness index for
the noisy consensus problem (1) under the same MSG when
€ = 10, but it differs for ¢ = 1, in which case, the ordered
list by decreasing node robustness index is 3-1-4-5-2.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined the noisy distributed consensus
and noisy leader-follower reference tracking problems under
Markov switching graphs. We derived measures for the
robustness of consensus and the joint robustness centrality of
a leader set for MSGs. Through examples, we gained insights
into the effects of the network’s structure and switching
behavior on system performance. Two compelling branches
of future work are the decoding and characterizing of M
and the development of efficient algorithms for the optimal
leader selection under MSGs. In addition, the restrictions on
our analysis can be relaxed, allowing for directed, weighted,
and/or disconnected graphs.
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