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On the Trajectories and Coordination of Steered Particles with
Time-Periodic Speed Profiles

Daniel T. Swain, Naomi Ehrich Leonard

Abstract— Motivated by observations of fish and possibilities
for mobile robotics, we study collective motion of networks of
agents that move with periodically time-varying speed. Each
agent is modeled as a particle with constant turning rate
and time-periodic speed profile at steady state. Expressions
are derived for the trajectories of such particles, emphasizing
the variation from the constant-speed circular orbit. We show
that trajectories remain bounded if the speed profile contains
no frequency content at the turning rate. Steering and speed
control laws are derived that stabilize a rich family of collective
motion patterns of a many-particle system about a common
center point, where headings and speed phases are coordinated.

I. INTRODUCTION

It has proved useful in the study of collective motion and
coordinated control to model individual agents as steered
particles in the plane with constant speed or velocity con-
straints. Such a model yields a relatively simple framework
for design and analysis of coordinating control laws. This
model has been readily adopted in practice because it can be
used to capture the group-level interconnection and motion
coordination dynamics central to organizing a variety of
mobile robotic networks, including autonomous underwater
vehicles [1] and aerial vehicles [2]. Work by Vicsek [3] may
be seen as a historical precedent with an array of analytic
work that followed, including [4], [5]. The steered particle
model has also been utilized in the study of biological
collective motion, for example in the schooling of fish [6].

In this paper we consider a steered particle model that
is augmented with a periodically time-varying speed. We
extend and make more precise results presented in [7]; there
we considered trajectories and coordination of agents with
purely sinusoidal time-varying speed motivated by obser-
vations of fish that exhibit coordinated behavior involving
speed modulation. Our continued investigation is motivated
both by further inquiry of the observed fish behavior and by
the promising possibilities for application of modulation in
the particle model to mobile robotic networks. In [8] benefits
of speed modulation to connectivity and consensus dynamics
are discussed. In [9], [10] heading is modulated to obtain a
degree of small-time local controllability.

In the patterns stabilized in this paper, particles regularly
vary their position within the group while maintaining an
overall formation shape. This enables a network of mobile
sensors to obtain spatially-separated samples consistently
over time. In particular, every agent repeatedly rotates its
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position within the group so that it is on the “inside”, “out-
side”, “front”, and “back” of the formation, thereby providing
a level of redundancy to the sampling process and possibly
benefiting estimation applications [1]. Likewise, it may be
advantageous in the context of fish schools for individual
fish to regularly exchange roles or vary position within the
school’s spatial domain. We note also that collisions are
avoided in the steady-state patterns for agents that are small
in size relative to the scale of the formation.

In this paper we describe the steady-state trajectories of
steered particles with time-periodic speed profiles and sys-
tematically derive control laws to stabilize formations of N
identical agents. We generalize to allow some heterogeneity
among agents. Our control laws stabilize the motion of
the particles about a common “center” (a notion we make
precise) with coordinated headings and speeds. The steady-
state headings and speeds correspond to critical points of
potential functions defined over the torus TN . The approach
follows that of [11] applied to an augmented model that
allows for periodic speed variation.

In Section II we describe the model and notation. We
describe the resulting open-loop trajectories in Section III.
In Section IV we derive steering and speed feedback control
laws to stabilize a large class of motion patterns.

II. STEERED PARTICLE MODEL WITH PERIODIC
SPEED

We consider N unit-mass particles moving in the plane,
which we identify with the complex plane; that is, C ∼ R2.
The position of particle k is rk ∈ C, its heading with respect
to the real axis is θk ∈ S1. Particle k is assumed to have
speed αk(t) = 1 + vk(t) where vk : R → (−1, 1). The
dynamics are given by

ṙk = (1 + vk(t)) eiθk (1)

θ̇k = ω + uk, (2)

where ω is a constant turning rate and uk is a steering control
that is zero at steady state.

Although it is not strictly required for several of the results
in this paper, we will generally consider vk to be a 2π-
periodic and zero-mean function of a time-varying speed
phase φk ∈ S1. When this is the case, we may write vk(φk),
such that vk(φk) = vk(φk + 2π). The speed phase dynamics
are given by

φ̇k = Ω + gk, (3)

where Ω is a constant describing the intrinsic rate of change
of the speed phase and gk is a speed phase control that is



zero at steady state. We refer to ω and Ω as the natural
frequencies of heading and speed phase, respectively.

We use a boldface notation to represent the ordered vector
of the corresponding subscripted quantity, for example,

r =
[
r1 · · · rN

]T ∈ CN

and
θ =

[
θ1 · · · θN

]T ∈ TN .
For complex vectors z1, z2 ∈ CM , M ∈ Z+, we denote z̄1

to be the complex conjugate of z1 and use the inner product
〈z1, z2〉 = Re

{
zT1 z̄2

}
.

The headings and speed phases of the group both evolve on
TN , hence it is convenient to use concepts from the coupled
oscillator literature (e.g. [12], [13]). We briefly review the
key concepts and notation here; for a more complete review
see [14]. Consider a general set of phases ψ ∈ TN . The
complex order parameter pψ is defined by

pψ =
1
N

N∑
k=1

eiψk , (4)

with the property that |pψ|2 = 1 when the phases are
synchronized (ψ1 = ψ2 = . . . = ψN modulo 2π). When
|pψ|2 = 0, we say that the phases are balanced. The splay
state (evenly spaced phases) is a special case of a balanced
arrangement.

The following class of potential functions is useful in the
present context.

Definition 1: (Phase Potentials) Consider the class P of
C2 functions on TN defined such that, for any U ∈ P , 1)
U : TN → [0, Umax] for some scalar Umax > 0, and 2)
〈grad U,1N 〉 = 0 where 1N ∈ RN is the vector of all ones.
We call an element of P a phase potential.

For any U(ψ) ∈ P , when ψ̇k = ψ̇ for each k = 1, . . . , N
and ψ̇ is constant, we have (because 〈grad U,1N 〉 = 0)

d

dt
U(ψ) =

d

dt

∂U

∂ψk
= 0. (5)

III. ANALYSIS OF OPEN-LOOP TRAJECTORIES

Here we derive the trajectories traced out by particles
evolving in the open-loop case with the dynamics (1)-(3),
that is, when uk = gk = 0. The case of ω = 0 results in
straight-line motion, important for translational motion of the
group [14], [8]. In the following we assume that ω 6= 0.

First, we study boundedness of the trajectories and derive
an important condition for the admissible frequency content
of the particle speed profile.

Theorem 1: (Boundedness of Trajectories) The trajectory
of a particle with dynamics described by (1)-(3) with ω 6= 0
and uk = gk = 0 is bounded if vk is a bounded function of
time and ∣∣∣∣∫ ∞

0

vk(τ)eiωτdτ
∣∣∣∣ = |Vk(s)|s=iω (6)

is bounded, where Vk(s) is the Laplace transform of vk(t).
That is, the trajectory is bounded as long as vk has no 2π/ω-
periodic components.

Proof: Note first that when ω = 0 the result is
unbounded straight-line motion. When ω 6= 0, the trajectory
may be found by simply integrating (1), giving

rk = Ck − iω−1eiθk(t) +
∫ t

0

vk(τ)eiθk(τ)dτ (7)

for some constant Ck ∈ C. The magnitude of rk remains
bounded as long as the integral term remains bounded in
magnitude. Because vk is bounded, the integral may only
grow unbounded in the limit t→∞. Substitute the heading,
given by θk(t) = ωt + θk(0), into (7). The magnitude of
the resulting integral is bounded for t → ∞ when (6) is
bounded.

In the case that vk is a periodic function of φk and hence
2π/Ω-periodic in time, we have the following.

Corollary 1: (Boundedness of Trajectories - Periodic
Speed Profile) For the setup of Theorem 1 with vk a 2π-
periodic function of the speed phase φk, the trajectory rk is
bounded if there is no integer ` such that both `Ω = ω and
Vk(`Ω) 6= 0. That is, vk may not contain any harmonics at
the frequency ω.

Proof: This follows immediately from Theorem 1.
It is straightforward to see that constant speed, i.e., vk = 0,

results in a circular trajectory. We describe such a trajectory
by writing

rk = ck +R(θk) (8)

where ck ∈ C is a constant center of the orbit and

R(θk) = −iω−1eiθk (9)

describes a circle of radius ω−1. We extend this decomposi-
tion to account for variations in speed.

Definition 2: (Nonconstant Speed Trajectory Decomposi-
tion) The trajectory traced out by a particle under dynamics
(1)-(3) with uk = gk = 0 is described by the decomposition

rk = ck +R(θk) + qk(φk)eiθk , (10)

where R(θk) is defined by (9) and qk is defined so that ck
is a constant of the motion. This requires qk to satisfy the
differential relationship

d

dt
qk + iωqk = vk. (11)

Furthermore, qk0 := qk(φk(0)) is chosen so that∫ ∞
0

qk(t)z̄(t)dt = 0, ∀z(t) ∈ N (L), (12)

where N (L) is the null space of the operator

L : q 7→ q̇ + iωq. (13)

This ensures that qk contains only the particular solution to
(11) and hence R(θk) accounts for the entirety of the motion
resulting from the constant turning rate ω. Within this setting,
we say that ck is the center of the trajectory.

The following allows us to find the value of qk0 that
satisfies Definition 2.



Lemma 1: The initial condition

qk0 = − Vk(s)|s=−iω , (14)

where Vk(s) is the Laplace transform of vk(t), satisfies
Definition 2.

Proof: We have N (L) = span
{
e−iωt

}
and therefore

(12) is satisfied if∫ ∞
0

qk(t)eiωtdt = Qk(s)|s=−iω = 0,

where Qk(s) is the Laplace transform of qk(t). From (11)
we have

sQk(s)− qk0 + iωQk(s) = Vk(s)

and by evaluating at s = −iω we obtain (14).
Note that (11) may be rewritten in steady state as

Ωq′k + iωqk = vk (15)

where q′k = ∂qk

∂φk
.

Consider a complex coordinate frame with origin at ck +
R(θk) and oriented with θk along its positive real axis.
This rotating frame is equivalent to the body-fixed, velocity-
oriented, frame of a particle sharing the same ck and θk as
particle k, but with constant unit speed. The locus of all
points qk(φ) for φ ∈ S1 describes a smooth curve that is
invariant in the rotating constant-speed frame, with the point
qk(φk) being the location of particle k in this frame. One
may view qk as describing a curve in this frame and φk as
parameterizing the location of particle k along this curve.
Fig. 1 illustrates this concept and shows the ellipsoidal locus
of qk for purely sinusoidal speed, which we now derive.

Lemma 2: (Trajectory Resulting from Sinusoidal Speed
Profile) Under the dynamics (1)-(3) with uk = gk = 0,
ω 6= 0, Ω 6= 0, Ω 6= ω, and speed profile described by

vk = µk cos (φk − ϕk) (16)

for constants µk ∈ (0, 1) and ϕk ∈ S1, the trajectory
decomposition described by (10) can be written with either
of the following equivalent forms for qk:

qk =
−Ωv′k + iωvk

Ω2 − ω2
(17)

=µk
Ω sin (φk − ϕk) + iω cos (φk − ϕk)

Ω2 − ω2
(18)

where v′k = ∂vk

∂φk
.

Proof: To to satisfy (11) and (12), we write qk in the
general form of the particular solution as

qk = Ak cosφk +Bk sinφk

for complex constants Ak and Bk. By writing (16) as

vk = µk cosϕk cosφk + µk sinϕk sinφk

it is straightforward to plug into (15), solve for Ak and Bk,
and rewrite in either of the forms above.

We note that (17) matches the result given in [7], in the
case vk = µ cosφk (i.e. ϕk = 0). Also note that qk(0) given
by (17) is equivalent to (14).
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k|
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|Ω2
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k|

eiθk
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ck
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0

Fig. 1. Illustration of the decomposition (10) with sinusoidal speed profile
yielding the solution (17). For this and more general speed profiles it is
useful to consider the coordinate frame located at ck + R(θk) with real
axis in the direction eiθk . In the purely sinusoidal speed case, qk traces out
an ellipse in this frame (as shown).

The solution (17) traces out an ellipse with eccentricity ω
Ω

as φk cycles from 0 to 2π. The ellipse is bounded by the
box defined by

|Re {qk}| ≤
∣∣∣∣ µkΩ
Ω2 − ω2

∣∣∣∣ , |Im {qk}| ≤
∣∣∣∣ µkω

Ω2 − ω2

∣∣∣∣ .
The ratio ω/Ω is of great importance to the shape of the
resulting trajectory. A more extensive analysis is given in
[7].

Lemma 2 leads to a straightforward extension allowing us
to describe the steady-state trajectories for almost arbitrary
periodic speed profiles with period 2π/Ω.

Theorem 2: (Trajectory Resulting From General Periodic
Speed Profile) Consider a 2π/Ω−periodic speed profile
which can be represented by the Fourier series

vk =
∞∑
`=1

µk,` cos (`φk − ϕk,`) (19)

for which there is no ` such that both `Ω = ω and µk,` 6= 0.
The trajectory decomposition defined by Definition 2 is given
by (10) with

qk =
∞∑
`=1

µk,`
`Ω sin (`φk − ϕk,`) + iω cos (`φk − ϕk,`)

(`Ω)2 − ω2
.

(20)



Proof: The form of the solution follows as an extension
of Lemma 2 and the linearity of the operator L (13). The
condition on harmonics is required to satisfy Corollary 1.

We may also extend the bounds on qk to the general
periodic case.

Corollary 2: If the periodic speed profile is of bounded
root-mean-square (RMS) value, then the solution (20) is
bounded as follows:

|Re {qk}| ≤vrmsk

 ∞∑
`=1

µk,` 6=0

(
`Ω

(`Ω)2 − ω2

)2


1
2

(21)

|Im {qk}| ≤vrmsk

 ∞∑
`=1

µk,` 6=0

(
ω

(`Ω)2 − ω2

)2


1
2

(22)

where

vrmsk =
(

1
2π

∫ π

−π
vk(φ)dφ

) 1
2

=
∞∑
`=1

µ2
k,`

is the RMS value of vk and the second equality is due to
Parseval’s theorem.

Proof: By assumption, vrmsk is bounded. By the con-
ditions for boundedness of the solution, there is no ` such
that both `Ω = ω and µk,` 6= 0 and therefore the terms
of the infinite sum in (21) are bounded and asymptotically
approach (`Ω)−2. Likewise, the terms in (22) are bounded
and asymptotically approach ω2(`Ω)−4. Hence both sums
converge. The inequalities then follow from the Schwarz
inequality.

Fig. 2 shows a sample speed profile with three randomly
chosen harmonic modes. The shape of qk is described by
superposing a series of ellipses, one corresponding to each
harmonic. The ` = 1 ellipse is centered at the origin, the
` = 2 ellipse is centered about a point on the ` = 1 ellipse
that cycles with frequency Ω, the ` = 3 ellipse is centered
about a point on the ` = 2 ellipse that cycles with frequency
2Ω. In the figure there are only three modes, but in general
this sequence would continue for each `.

IV. COORDINATION OF PARTICLES WITH
PERIODIC SPEED PROFILES

In [14] and [7] the design approach parametrizes the
desired steady-state trajectories of a set of particles and
systematically derives stabilizing control laws to coordi-
nate these trajectories. In [14], a methodology is developed
to systematically stabilize spacing and phase coordination,
where phase refers to the direction of motion of a particle
θk. Phase coordination is achieved with a control term that
corresponds to the gradient of a phase potential with critical
points at the desired relative phase arrangement. Similarly
the spacing control law minimizes a spacing potential; in
the case of circular motion the particles provably converge
to trajectories that share a common circular motion center.
In [7] we proposed, without proof of stability, analogous
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Fig. 2. (a) Periodic speed profile with Ω = π and three randomly
generated harmonic components. (b) The corresponding qk (black curve)
as described by (20), with ω = 0.3π. The gray curves are the individual
ellipses corresponding to the terms in the sum - each superimposed on the
previous - with a blue circle on each indicating the point corresponding to
t = 0. That is, the ` = 1 ellipse is centered at the origin with its t = 0 point
marked with a blue circle, the ` = 2 ellipse is centered about that point an
so on. (c) is a zoomed version of (b). The middle blue circle corresponds
to the point on the ` = 1 ellipse at t = 0, the upper and lower blue circles
similarly corresponding to ` = 2 and ` = 3 respectively.

control laws to stabilize motion patterns with coordination
of spacing, heading (direction of motion) as well as phase
of speed oscillations in the case of sinusoidal speed profiles.
Here we derive and prove such stabilizing control laws for
coordination of particles with general time-periodic speed
profiles; the results specialize to the sinusoidal case studied
in [7].

We extend the notion of the trajectory center ck in (10)
and define

ck(t) := rk(t)−R(θk(t))− qk(φk(t))eiθk(t) (23)

as the instantaneous center of the trajectory, where qk is
taken to be the solution to (15). We have

ċk = −uk
(
ω−1 + iqk

)
eiθk + gkΩ−1 (vk + iωqk) eiθk ,

and hence ck(t) is constant when uk = gk = 0.
Consider the candidate Lyapunov function

S(r,θ,φ) = κc
1
2
‖Pc‖2+κθU(θ)+κφV (φ)+S0 ≥ 0 (24)

where P = IN×N − 1
N 1TN1N , 1N is the N -vector of ones,

κc > 0, κθ, and κφ are all real constants, U and V are



members of class P , S0 = minθ,φ {κθU(θ) + κφV (φ)} is
a constant that enforces S ≥ 0, and we use the norm induced
by the inner product on CN as defined above. P = PT = P 2

is a projector with kernel 1N and it is useful to note that
Pkx = xk − 1

N

∑N
j=1 xj where Pk is the kth row of P and

x ∈ CN . Thus, Pc = 0 is equivalent to ck = c0 for some
c0 ∈ C and for all k = 1, . . . , N . Note that S is bounded
from below, with the actual bound depending on the signs of
κθ and κφ and possibly the maximum potential values Umax
and Vmax.

The time derivative of S along trajectories of the dynamics
(1)-(3) is given by

Ṡ =
N∑
k=1

(
κc 〈Pkc, ċk〉+ κθ

∂U

∂θk
uk + κφ

∂V

∂φk
gk

)
where we have used the property 〈grad U,1N 〉 =
〈grad V,1N 〉 = 0. Hence, choosing

uk =
(
κcω

−1
〈
Pkc, (1 + iωqk) eiθk

〉− κθ ∂U
∂θk

)
(25)

and

gk = −
(
κcΩ−1

〈
Pkc, (vk + iωqk) eiθk

〉
+ κφ

∂V

∂φk

)
(26)

gives us

Ṡ = −
N∑
k=1

(
u2
k + g2

k

) ≤ 0. (27)

We require the following to prove stability.
Lemma 3: (Positively Invariant Sets) For any p > 0 and

S defined by (24), the set

Wp =
{
Px ∈ CN ,θ ∈ TN ,φ ∈ TN :

x ∈ CN , S(x,θ,φ) ≤ p}
is positively invariant under the dynamics (1)-(3) with con-
trols (25) and (26). Furthermore, Wp is a compact subset of
D =

{
Image P × TN × TN}.

Proof: On Wp we have κc

2 ‖Px‖2 ≤ S(x,θ,φ) ≤ p,
hence Wp is a closed subset of

{
A× TN × TN} ⊂ D where

A =
{
z ∈ Image P : ‖z‖2 ≤ 2p

κc

}
is a compact subset of

Image P . Therefore Wp ⊂ D is compact. (27) gives us
positive invariance.

Lemma 4: (Invariant Sets on Ṡ = 0) Consider the set

Λ =
{

(r,θ,φ) ∈ (CN × TN × TN ) : Ṡ(r,θ,φ) ≡ 0
}
.

Invariant sets on Λ are subsets of

M =
{

(r,θ,φ) ∈ Λ : Pc = 0 and
∂U

∂θk
=

∂V

∂φk
= 0, ∀k

}
.

(28)
On M , θ̇k = ω and φ̇k = Ω for all k.

Proof: By (27), Ṡ ≡ 0 implies uk ≡ gk ≡ 0 and hence
θ̇k = ω, φ̇k = Ω. Therefore ck is a constant for each k and
so is Pkc. Ṡ ≡ 0 also implies d

dtuk ≡ 0. Because θ̇k and φ̇k
are constant, (5) holds and (25) with uk ≡ 0 implies

d

dt

〈
Pkc, (1 + iωqk) eiθk

〉 ≡ 0 (29)

for each k. We have
d

dt

〈
Pkc, (1 + iωqk) eiθk

〉
= 〈Pkc, iωṙk〉 .

Since the velocity ṙk is never zero, for (29) to hold for all t,
we must have Pkc ≡ 0. By (25) and (26) we must therefore
also have

∂U

∂θk
=

∂V

∂φk
= 0.

This describes the set M .
We may now state the following.
Theorem 3: (Main Stability Theorem) For any initial con-

dition, the dynamics (1)-(3) with controls (25) and (26)
asymptotically converge to the invariant set M of Lemma 4.
Thus, convergence is to trajectories as described by (10) with
a common constant center ck = c0 for some c0 ∈ C, θ̇k = ω,
and φ̇k = Ω for all k = 1, . . . , N . Phase arrangements of the
θk correspond to critical points of U and phase arrangements
of the φk correspond to critical points of V . Furthermore,
maxima of U (V ) are stable if κθ > 0 (κφ > 0) and minima
of U (V ) are stable if κθ < 0 (κφ < 0).

Proof: By (27) the value of S as defined by (24) is
nonincreasing along solutions of the described dynamics.
By Lemma 3 we can find a p so that the initial condi-
tion lives in a positively invariant compact subset Wp of{

ImageP × TN × TN}. By the LaSalle Invariance Princi-
ple all solutions approach the largest invariant set on which
Ṡ = 0. By Lemma 4 this is the set M . The stability of
maxima and minima of U (V ) follows from the sign of the
gradient terms in the control laws.

The above result holds for any phase potentials U and V
in P . One choice of interest is the heading potential

U(θ) =
1
2
|pθ|2 (30)

where pθ is defined by (4) and speed phase potential

V (φ) =
bN

2 c∑
m=1

Km

∣∣∣∣∣ 1
mN

N∑
k=1

eimθk

∣∣∣∣∣
2

. (31)

In [14] it was shown that (30) has local minima only for
synchronized headings, i.e., θk = θ0 for all k = 1, . . . , N and
some θ0 ∈ S1. Also, when Km > 0 for m = 1, . . . , bN2 c−1
and KbN

2 c
< 0, (31) has local minima only when the phases

are in the splay state, i.e., when the N phases are evenly
distributed around S1. Fig. 3 shows two simulation examples
of patterns of five moving particles that were stabilized using
the control laws (25) and (26) with these potentials. Note that
the two patterns shown in Fig. 3(a) and (b) are stabilized
for particle systems with identical speed profiles and control
laws but different frequencies Ω and ω.

Remark 1. The phase potential stabilization relies upon
the condition that θ̇k = ω and φ̇k = Ω for each k =
1, . . . , N at steady state, i.e., we require homogeneous natu-
ral frequencies in heading and speed. By removing U , V ,
or both from the control, we eliminate the need for the
corresponding homogeneity. Therefore, if we do not desire



to stabilize a specific phase arrangement either in heading or
speed, we may allow the individual natural frequencies to be
independent.

Remark 2. In [7] we showed that, for sinusoidal speed,
control for the kth particle can be calculated from relative
heading measurements, its position relative to the center of
mass of the group, and its speed and rate of change of speed
relative to the group average.

V. CONCLUSION

In this paper we derive expressions for the trajectories
of steered particles with periodically time-varying speed and
constant turning rate in steady state. Conditions are given for
boundedness of the trajectories, and bounds on the variation
from a circular orbit are described. We derive control laws to
stabilize systems of such particles to corresponding motion
patterns and provide examples that may be of interest for
multi-agent sampling applications. The results are for all-
to-all communication, although the limited communication
generalizations of [5] should be adaptable to the current
setting. It is of interest to further consider the application
of the results presented here to mobile sampling networks,
both to enable efficient collective sensing in vehicle networks
and to understand the periodic speed variation observed in
fish schools [7].
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(a)

(b)

Fig. 3. Sample patterns generated by five particles with speed profiles of the
form shown in Fig. 2(a). (a) With Ω = π and ω = 0.3π (yielding the same
qk as Fig. 2(b)) (b) With Ω = 0.6π and ω = π. In both figures, the controls
(25) and (26) were used with the heading phase potential U given by (30),
κθ = −0.1, the speed phase potential V given by (31), κφ = 0.1, and
κc = 1, yielding synchronized headings and evenly spaced speed phases
in steady state. In both figures the particle trajectories are shown in light
gray, the qk shape is shown in black, and the particle locations and headings
are indicated by the colored arrows. In (a) the inset magnifies the particle
locations and pattern.


