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Abstract— Investigation of synchronization phenomena in
networks of coupled nonlinear oscillators plays a pivotal role
in understanding the behavior of biological and mechanical
systems with oscillatory properties. We derive a general suffi-
cient condition for synchronization of a network of nonlinear
oscillators using a nonsmooth Lyapunov function, and we obtain
conditions under which synchronization is guaranteed for a
network of Fitzhugh-Nagumo (FN) oscillators in biologically
relevant model parameter regimes. We incorporate two types
of heterogeneity into our study of FN oscillators: 1) the network
structure is arbitrary and 2) the oscillators have non-identical
external inputs. Understanding the effects of heterogeneities on
synchronization of oscillators with inputs provides a promising
step toward control of key aspects of networked oscillatory
systems.

Index Terms— Complex Networked Systems, Nonlinear Os-
cillators, Synchronization, Lyapunov Analysis

I. INTRODUCTION

Synchronization phenomena in networks of nonlinear os-
cillators have critical implications in biology, communica-
tions, computer science, power networks, and diverse other
disciplines. In biological neuronal networks, synchronization
can be beneficial, allowing for production of complex be-
havior, or detrimental, causing disorders such as Parkinson’s
disease [12] and epilepsy [4]. Understanding the principles
underlying synchronization and related behavior in complex
interconnected oscillatory systems is a necessary first step to-
ward effective control for enhancement of desired dynamics
and suppression of undesired dynamics.

Among multiple existing methods for finding necessary
and sufficient conditions to determine stability of synchro-
nization in nonlinear systems, the master stability function
(MSF) approach establishes a necessary condition for syn-
chronization in systems of oscillators with linear coupling
[16]. Complementary sufficient conditions can be found by
leveraging passivity properties of the oscillators [17] or
by employing approaches based on contraction theory [1],
[21]. However, the majority of synchronization conditions
expressed in terms of a lower bound on network coupling
strength are too loose to accurately describe the emergence
of synchronization. Our approach is to build on the semi-
passivity method described in [17], [23] to provide a tighter
bound on the required coupling strength for synchronization
in biologically relevant model parameter regimes.
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In this paper, we present a new sufficient condition for
synchronization in a network of nonlinear oscillators whose
dynamics can be represented by ordinary differential equa-
tions composed of polynomial functions of the state. This
class of models generalizes well-known oscillator models
including the Van der Pol oscillator, the FitzHugh-Nagumo
(FN) neuronal model [6], [14], and the Hindmarsh-Rose
neuronal model [8]. We consider dynamics that are strictly
semi-passive and use a nonsmooth Lyapunov function [5] to
find a sufficient condition for full synchronization in terms of
a lower bound on coupling strength in an arbitrary network
of oscillators with identical parameters. We apply this result
to compute the bound for a network FN oscillators with
identical external inputs to fully synchronize, and we show it
is a tighter bound than bounds derived from related methods
for relevant parameter regimes.

We then introduce the concepts of input-equivalence [20]
and cluster synchronization [2], [22] to extend the nonsmooth
Lyapunov analysis to networks of FN oscillators with non-
identical external inputs. We calculate the sufficient condition
for synchronization in clusters in a representative system to
illustrate the utility of the nonsmooth Lyapunov method.

An understanding of how and when synchronization oc-
curs promises to be an invaluable tool for informing ex-
perimental studies of oscillator ensembles and a basis for
examining mechanisms for the emergence of abnormal syn-
chronization.

II. NETWORK MODEL

In this paper, we consider a network of n nonlinear
oscillators with identical internal dynamics, and assume they
interact over a connected, undirected graph G. We let xi ∈
RN denote the state of the i-th node, and we define the
underlying dynamics as

ẋi = f(xi) +Bui (1)

for i = 1, . . . , n. Each component of f : RN → RN is
a polynomial function of the state of the oscillator. B ∈
RN×1 captures how the social input ui (due to influence from
neighbors) affects the individual states of the i-th node. We
assume B to be a vector of zeros with a one in its first row,
thereby implying that the social input has a direct impact
on only the first variable1 of the state xi. The dynamics of
an oscillator may also depend on an external input Ii. We
examine the influence of identical and non-identical external
inputs in Sections IV and V, respectively, in the case of
Fitzhugh-Nagumo oscillators.

1In a neuronal oscillator context, the first variable xi
1 is typically

interpreted as the underlying membrane potential.
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We assume the social input ui provides a linear diffusive
coupling between neighbors in the graph G. Let A = [aij ]
with aij ∈ [0, 1] represent the weighted adjacency matrix of
G. We represent the linear diffusive coupling term ui as

ui =
n∑
j=1

γaij(x
j
1 − xi1), (2)

where the parameter γ > 0 is the coupling strength. Next, we
define x1 = [x1

1, x
2
1, . . . , x

n
1 ]T and u = [u1, u2, . . . , un]T to

represent the vectors of first variables of the system states and
social inputs, respectively. The diffusive coupling between
individual oscillators becomes

u = −γ(D −A)x1 = −γLx1, (3)

where D = diag{d1, d2, . . . , dn}, di =
∑n
j=1 aij , and L =

D −A denotes the Laplacian of the underlying graph.
We restrict our analysis to systems where the dynamics are

strictly semi-passive, which allows us to bound the dynamics
of each variable for each oscillator.

Definition 2.1 (Strictly Semi-passive): A dynamical sys-
tem ẋ = f(x) + Bu, y = Cx, x ∈ RN , u,y ∈ Rm is
strictly semi-passive in a region D ⊂ RN if there exists a
nonnegative function V : D → R+ such that D is open,
connected and invariant under the dynamics, V (x) > 0 for
x ∈ D \ {0}, V (0) = 0, and V̇ ≤ yTu − H(x), where
H(x) > 0 when ‖x‖ ≥ r with the radius r being dependent
on the system parameters.

A strictly semi-passive system behaves like a passive
system whenever the system state is sufficiently away from
the origin. As the trajectories of a semi-passive system
eventually return to the ball of radius r around the origin,
the trajectories of the system are ultimately bounded. Fur-
thermore, when a group of n such semi-passive systems are
interconnected by a linear diffusive coupling, the closed-loop
system has ultimately bounded solutions [17], [18]. We let
{β1, β2, . . . , βN} represent the bounds on the state variables
for individual oscillators.

III. NONSMOOTH LYAPUNOV ANALYSIS

In this section, we derive a sufficient condition for syn-
chronization in the class of systems described in Section II.
To do so, we first define the manifold of synchronized states,
and then perform a stability analysis using a nonsmooth
Lyapunov approach. By exploiting the properties of Dini
derivatives of the associated nonsmooth Lyapunov function,
our analysis yields the sufficient condition in terms of
coupling strength and network connectivity.

Definition 3.1 (Complete synchronization manifold):
The complete synchronization manifold S is an algebraic
manifold in the state space of the full system wherein the
states of individual systems are identical:

S =
{
x1, . . . ,xn ∈ RN |xi = xj , ∀ i, j = 1, . . . , n

}
.

Definition 3.2 (Upper Dini derivative [11]): The upper
Dini derivative, also called the upper right hand derivative,

of a real valued function v : R→ R is defined as

D+v(t) = lim sup
h→0+

v(t+ h)− v(t)
h

. (4)

It provides an upper bound for right hand derivatives of v.
Theorem 3.3: Consider the system described in (1) with

a linear diffusive coupling on the first variable (2). Assume
that (1) is strictly semi-passive. Then, whenever the coupling
strength γ and the second smallest eigenvalue of the graph
Laplacian λ2(L) (representing network connectivity) satisfy

γλ2(L) >
N∑
k=1

F1k + h1,

and
N∑
k=1

Fjk + hj < 0 ∀j = 2, . . . , N,

the complete synchronization manifold S is globally asymp-
totically stable, where Fij’s and hi’s are functions of system
parameters.

Proof: Earlier studies [5] have shown the effectiveness
of nonsmooth Lyapunov functions in deriving the critical
coupling strength for a complete graph of Kuramoto oscilla-
tors. Due to our interest in deriving a sufficient condition
for synchronization in terms of a tight lower bound on
the coupling strength we follow a similar philosophy, and
introduce the following Lyapunov function:

V0(x) =
N∑
k=1

max
i,j=1,...,n

(xik − x
j
k). (5)

The Dini derivative of this nonsmooth Lyapunov function
can be expressed as

D+V0(x) =
N∑
k=1

ẋmk

k − ẋlkk , (6)

where mk and lk are defined as

mk = arg max
i=1,...,n

(
xik
)
,

lk = arg min
i=1,...,n

(
xik
)
.

As the dynamics of individual systems are identical, we can
rewrite the Dini derivative as

D+V0(x) =
(
um1 − ul1

)
+

N∑
k=1

(
fk(xmk)− fk(xlk)

)
,

where fk : RN → R represents the k-th component of the
vector-valued function f .

Let Li ∈ R1×n denote the i-th row of the graph Laplacian
L. Then, we have

um1 − ul1 = γ(−Lm1 + Ll1)x1 = (el1 − em1)
>γLx1

where {e1, e2, . . . , en} constitutes the natural basis for Rn.
We can further simplify this expression in terms of the sec-
ond smallest eigenvalue of the graph Laplacian by bounding



the product Lx1 as

(el − em)>γLx1 ≤ γλ2(L)(el − em)>x1

= γλ2(L)(xl11 − x
m1
1 ).

This gives an expression for the derivative in terms of
the internal dynamics and second smallest eigenvalue of the
graph Laplacian:

D+V0(x) =
N∑
k=1

(
fk(xmk)− fk(xlk)

)
+γλ2(L)(xl11 −x

m1
1 ).

Now we perform a change of coordinates, where wk =
xmk

k − xlkk > 0 for all k. Then by separating each function
into a linear term and a higher order term as

fk(xmk) = ak · xmk + gk(xmk),

we have(
fk(xmk)− fk(xlk)

)
= ak ·w + gk(xmk)− gk(xlk).

This allows us to capture the effect of nonlinearities by
putting a bound on gk(xmk)− gk(xlk), and bound the Dini
derivative as

D+V0(w) ≤ 1 ·Fw + 1 · h̃(β1, β2, . . . , βN )w− γλ2(L)w1.

Here, 1 is the vector of all ones, F ∈ RN×N has rows equal
to the ak. The nonlinear behavior is captured by an N ×
N matrix h̃ , diag{h1, h2, . . . , hN}, where the functions
h1, . . . , hN depend on the bounds β1, . . . , βN introduced in
Section II.

By construction, each element of w is positive, so we have
D+V0(w) ≤ 0 whenever

γλ2(L) >
1
w1

(
1 · Fw + 1 · h̃(β1, β2, . . . , βN )w

)
.

We can write this as N separate conditions:

γλ2(L) >
N∑
k=1

F1k + h1 (7)

N∑
k=1

Fjk + hj < 0 ∀j = 2, . . . , N. (8)

Thus, D+V0(w) ≤ 0, and increasing λ2 will not change
this property. So we have found a sufficient condition for
local Lyapunov stability of the equilibrium state w = 0,
which is equivalent to the manifold S. Further, there exists
a real number φ > 0 such that D+V0(w) ≤ −φ‖w‖1.

To show that S is attractive, we consider the following
integral [7]:

V0(w(t))− V0(w(0)) ≤ −
∫ t

0

φ‖w(t)‖1dt

⇒ V0(w(0)) ≥ V0(w(t)) +
∫ t

0

φ‖w(t)‖1dt.

As V0(w(t)) ≥ 0 for all t 6= 0 by construction, taking the
limit t→∞ we have

V0(w(0)) ≥ φ
∫ ∞

0

‖w(t)‖1dt. (9)

So the integral in (9) is less than or equal to V0(w(0))/φ,
which takes a finite value, and the integrand is uniformly
continuous. By Barbalat’s Lemma, w → 0 as t → ∞.
Since xik are bounded for all i and k, this means that S
is attractive if there are trajectories that originate outside
the set. Thus, the complete synchronization manifold S is
globally asymptotically stable.

IV. FITZHUGH-NAGUMO NETWORK WITH IDENTICAL
EXTERNAL INPUTS

The general argument presented in Section III can be
specialized to a particular oscillator model in order to better
understand the bound and to compare it with the bounds from
other methods. Here, we specialize the bound in Theorem 3.3
to find a sufficient condition for synchronization of a network
of FitzHugh-Nagumo (FN) oscillators [6], [14].

The FN model is a two-dimensional reduction of the
four-dimensional Hodgkin-Huxley model of the membrane
potential dynamics of neurons [9]. It is a comparatively
simple model, but captures the distinct quiescent, firing, and
saturated states of the system, which depend on the input into
the model. We choose to analyze the FN model due to this
combination of simplicity and range of possible dynamics.

We consider a network of n FN neuronal oscillators. Each
FN oscillator i = 1, . . . , n has two states (N = 2) with
dynamics modeled as

ẋi1 = xi1 −
xi1

3

3
− xi2 + Ii + ui

ẋi2 = ε(xi1 + a− bxi2).
(10)

The model parameters ε � 1, a and b are all positive and
the same for every oscillator i. The variable xi1 represents
the membrane potential and operates at a faster timescale
than xi2, which is the recovery variable. We consider constant
external inputs Ii that can be independently assigned to each
oscillator in the network.

A. FN Network as a Strictly Semi-passive System

In [17] it was shown that a single FN neuronal oscillator
model with dynamics (10) is strictly semi-passive, and thus
a network of FN oscillators is ultimately bounded. Following
[23], a network of FN oscillators with linear diffusive cou-
pling (2) was shown also to be strictly semi-passive. This
can be done using a non-negative function

VP =
n∑
i=1

(
1
2
xi1

2
+

1
2ε
xi2

2
)
,

which has derivative satisfying

V̇P ≤
n∑
i=1

xi1u
i

︸ ︷︷ ︸
xT

1 u

−
n∑
i=1

(
xi1
3

(
xi1

3 − 3xi1 − 3Ii
)

+ bxi2

(
xi2 −

a

b

))
︸ ︷︷ ︸

H(x1,x2)

.



It follows that if a single FN neuronal oscillator model is
strictly semi-passive, then any network of FN oscillators
connected by the linear diffusive coupling is also a strictly
semi-passive system with ultimately bounded dynamics [23].

B. Synchronization Bound: Nonsmooth Lyapunov Function

In this section we apply the constructive proof of Theo-
rem 3.3 to compute the corresponding sufficient condition for
global asymptotic stability of the complete synchronization
manifold S for a network of FN oscillators with dynamics
(10), identical constant external inputs Ii, and linear diffusive
coupling (2). From Section IV-A, the system is strictly semi-
passive. Following (5), the nonsmooth Lyapunov function is

V (x1,x2) = max
i,j=1,...,n

(xi1 − x
j
1) + max

i,j=1,...,n
(xi2 − x

j
2).

The Dini derivative of this Lyapunov function is
D+V (x1,x2) = ẋm1 − ẋl1 + ẋm2 − ẋl2. When the external
inputs are identical, we can follow the general procedure of
the proof and bound D+V (x1,x2) as follows:

D+V (x1,x2) ≤

(
1 + ε+

β2
1

3

)
(xm1 − xl1)

+ γλ2(L)(xl1 − xm1 )− (1 + bε)(xm2 − xl2).

Here, β1 is the ultimate bound for the x1 variable. Since
each oscillator model has the same parameters, this bound
is the same for each oscillator, independent of its position in
the graph. Since the parameters b and ε are always positive,
xm2 > xl2. Thus, −(1 + bε)(xm2 − xl2) < 0 and the condition
(8) for synchronization is always satisfied.

To satisfy condition (7) we must have

γλ2(L) ≥ 1 + ε+
β2

1

3
= γλ∗m. (11)

This provides a sufficient condition for full synchronization
of a network of FN oscillators with linear diffusive coupling
and identical constant external inputs as a lower bound on the
product of the coupling strength γ and the second smallest
eigenvalue of the graph Laplacian λ2(L).

C. Synchronization Bound: Quadratic Lyapunov Function

In this section we use a quadratic Lyapunov function to
compute a bound on γλ2(L) that is sufficient for synchro-
nization of a network of FN oscillators with linear diffusive
coupling and identical inputs. This approach is an applica-
tion of the procedure outlined in [23]. Earlier studies have
evaluated similar bounds with quadratic Lyapunov functions
for networks of Hindmarsh-Rose neurons [15].

Theorem 4.1: Consider a network of FN oscillators with
dynamics (10), identical constant external inputs, and linear
diffusive coupling (2). Suppose the coupling strength γ and
second smallest eigenvalue of the graph Laplacian λ2(L)
satisfy

γλ2(L) >
(ε− 1)2

4bε
+ 1 +

β2
1

3
= γλ∗s. (12)

Then the complete synchronization manifold S is globally
asymptotically stable.

Proof: Let VQ(w1,w2) = 1
2 (‖w1‖22 + ‖w2‖22) be

a positive-definite Lyapunov function, where w1 and w2

are transformed coordinates that represent the differences
between states in x1 and between states in x2, respectively.

The derivative of VQ(w1,w2) can be computed as

V̇Q(w1,w2) =
1
2
d

dt
‖w1‖22 − bε‖w2‖22 + εw1 ·w2. (13)

Using, ui = −γLx1, w1 · Lw1 ≥ λ2(L)‖w1‖22, and |xi1| ≤
β1, we can write

V̇Q ≤

(
1− γλ2 +

β2
1

3

)
‖w1‖22

+ (1− ε)w1 ·w2 − bε‖w2‖22.

When γλ2(L) = γλ∗s =
(ε− 1)2

4bε
+ 1 +

β2
1

3
, we have

V̇Q ≤ −
(√

bε‖w2‖2 −
|ε− 1|
2
√
bε
‖w1‖2

)2

.

Thus, V̇Q ≤ 0, and increasing γ will not change this property.
So we have found a sufficient condition for Lyapunov
stability of the equilibrium state w1 = w2 = 0 (and thus
the complete synchronization manifold S). Further, there is
some κ such that V̇Q ≤ −κ(‖w1‖22 + ‖w2‖22).

To show that S is attractive, we can evaluate the integral
of V̇Q as we did for the integral of the Dini derivative in the
proof of Theorem 3.3. This completes the proof.

D. Synchronization Bound: Master Stability Function

The Master Stability Function (MSF) approach is com-
monly used to calculate necessary conditions on coupling
for synchronization in oscillator networks [16]. Given a
particular coupling scheme, the MSF approach carries out
a local stability analysis of the linearized dynamics, and
derives a necessary condition for synchronization in terms of
a lower bound on the coupling strength. Following the steps
presented in [16], it can be shown that for an undirected
network of FN oscillators connected with linear diffusive
coupling, this necessary condition can be expressed as

γλ2(L) ≥ 1− bε− β2
1 . (14)

E. Comparison of Bounds

We first compare the different bounds on γλ2(L) com-
puted above for global asymptotic stability of S in the case
of a complete network graph of FN oscillators, i.e., there is
a connection between every pair of oscillators. In this case
the graph Laplacian is

L = (n− 1)In − 1n1Tn ,

and λ2(L) = n.
Our new bound using the nonsmooth Lyapunov function

can be compute from (11) as

γn > 1 + ε+
β2

1

3
,



whereas the bound computed using the quadratic Lyapunov
function is given by

γn >
(ε− 1)2

4bε
+ 1 +

β2
1

3
.

An earlier work [20], used a contraction analysis, and the
corresponding sufficient condition was given as

γn >
1
ε
.

On the other hand, the master stability function based ap-
proach yields the following necessary condition:

γn ≥ 1− bε− β2
1 .

Whenever ε/(1 − ε) < 1/(2
√
b), our new bound from

the nonsmooth analysis is tighter than the bound from the
quadratic Lyapunov function. Additionally, when ε < 3/(3+
3ε + β2

1), our new bound is tighter than the contraction
theory based bound as well. For biologically plausible firing
behavior of an FN oscillator, numerical simulations typically
use b ∈ [0, 1] and small values of ε (≈ 1

12 ), which in
turn tends to result in β1 ≈ 2. In this parameter regime,
our nonsmooth analysis yields a tighter bound compared to
the bounds obtained from earlier approaches based on the
quadratic Lyapunov function and contraction theory.

We next compare the bounds for a general network graph.
In Figure 1 we compare the bound from the nonsmooth
Lyapunov approach with the bound from the quadratic Lya-
punov function approach by ploting the ratio of λ∗m to λ∗s .
The ratio is plotted for ε ∈ [0, 0.3] and b ∈ [0, 1], which
are parameter values commonly used to provide biologically
relevant behavior with the FN model. For these conditions,
λ∗m < λ∗s , and the ratio gets smaller with decreasing ε. This
implies that in these parameter regimes, the bound from our
new nonsmooth approach is tighter than the bound from the
quadratic Lyapunov function approach.

Fig. 1. Bound comparison: Ratio of synchronization conditions for
the nonsmooth and quadratic Lyapunov approaches. For the biologically
relevant parameter ranges plotted, the bound derived from the nonsmooth
approach is always tighter.

Comparing the bound from the nonsmooth Lyapunov
stability analysis, which is sufficient for synchronization,
with the bound from the MSF approach, which is necessary
for synchronization, provides insight into where the bounds
perform well and how we can improve them in further
work [19]. The necessary condition is γλ2 ≥ 1 − bε − β2

1 ,
and the sufficient condition is γλ2 ≥ 1 + ε + β2

1
3 . The

difference between these bounds is ε(1+b)+ 4
3β

2
1 . For models

with a small ε parameter, as are typical, the accuracy of
these bounds is limited by the bound on the dynamics, β2

1 .
This suggests that to get closer to a condition that is both
necessary and sufficient for synchronization, we should use
a method that does not rely on the bound on the dynamics.

V. FITZHUGH-NAGUMO NETWORK WITH
NON-IDENTICAL EXTERNAL INPUTS

When the external inputs Ii to individual FN oscillators
in a network are not the same, the network separates into
synchronized clusters, i.e. groups of oscillators with identical
behavior, depending both on the distribution of external
inputs and on the network structure [2], [22]. Oscillators must
be input-equivalent in order for synchronization to occur
[20]. Here, we use the notion of input-equivalence to extend
our analysis to networks of nonlinear oscillators with non-
identical constant external inputs Ii.

Definition 5.1 (Input-equivalence): Two FN oscillators i
and j are input-equivalent if

Ii + ui(t) = Ij + uj(t) ∀t.

A. Nonsmooth Lyapunov Analysis

We now extend our result from Section IV to a network
of FN oscillators with non-identical inputs. We provide a
sufficient condition under which each of a set of oscillators
that are input-equivalent will synchronize as a cluster.

Corollary 5.2: Consider a network of FN oscillators with
dynamics (10), non-identical constant external inputs, and
linear diffusive coupling (2). Suppose that the oscillators can
be partitioned into C distinct sets Ck, k = 1, . . . , C such that
all pairs in each set are input-equivalent [20]. Let Lk be the
Laplacian of the subgraph for the oscillators in Ck. Define
the cluster synchronization manifold as

SC = {x1, . . . ,xn ∈ R2 : xi = xj , ∀ i, j ∈ Ck, ∀k}.

SC is globally asymptotically stable if for all k

γλ2(Lk) > 1 + ε+
β2

1,k

3
.

Proof: By input-equivalence, we treat each set of
FN oscillators separately. Since the internal dynamics of
each oscillator are identical, we can use the result from
Theorem 3.3 for FN oscillators as in (11) for each set Ck.

Example 5.3 (Cluster Synchronized Graph): We illustrate
our result by considering a network of FN oscillators in-
teracting over the undirected graph in Figure 2, which can
be partitioned into three (C = 3) input-equivalent sets: (1)
a cycle graph Cm, (2) a complete graph Km, and (3) a
single central node connected to every element in both Km

and Cm. We simulate such a system with m = 50, and
external input 0 to elements in Cm, external input 0.1 to
the central node, and external input 0.4 to elements in Km.
When b = 0.8, ε = 0.08, and γ = 0.1 for all connections, we
observe the dynamics represented in Figure 3. All oscillators
in the complete graph synchronize, while those in the cycle
graph do not. We calculate the second smallest eigenvalues
of the graph Laplacians for each subgraph, and find that



Fig. 2. Graph used in the example illustrated in the case m = 4.

for the complete graph λ2(LK) = 50, while for the cycle
graph λ2(LC) = 0.0158. Since the oscillator parameters are
homogeneous, β1,k ≈ 2 for both Cm and Km. Thus, the
sufficient condition for synchronization is λ∗m = 2.41 for
each subgraph: λ2(LK) is above the synchronization bound,
while λ2(LC) is far below. In this example, we have used the
synchronization condition as a guideline to design a system
that exhibits different types of dynamic behavior.

Fig. 3. Dynamics of cluster synchronization: The x1 and x2 dynamics
for 101 FN oscillators arranged according to the graph structure depicted in
Figure 2 with m = 50. Cluster synchronization is apparent in one cluster
(the complete graph in orange-red), but the other input-equivalent cluster
(the cycle graph in yellow-gold) does not synchronize. These results are
consistent with the bounds from Corollary 5.2.

CONCLUSION

We have used a nonsmooth Lyapunov function to de-
termine new sufficient conditions for synchronization in
networks of nonlinear oscillators. This function was pre-
viously used to find tight bounds for synchronization in
a complete graph of Kuramoto oscillators. We provide a
general framework and a specialization to the FN model
that illustrates its effectiveness. The bounds reported for
the FN model improve on previously reported bounds as
well as the bound we calculate in this work using an
alternative method [20], [23]. Finding sufficient conditions
for synchronization in systems with nonlinear coupling, time
delays, and heterogeneous node dynamics has been explored
using the quadratic Lyapunov and contraction analyses in
[3], [10], [13]. We expect that these bounds may also be
improved with nonsmooth Lyapunov functions.
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