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Nonuniform Line Coverage From Noisy Scalar Measurements
Peter Davison, Naomi Ehrich Leonard, Alex Olshevsky, and Michael Schwemmer

Abstract—We study the problem of distributed coverage control
in a network of mobile agents arranged on a line. The goal is to
design distributed dynamics for the agents to achieve optimal cov-
erage positions with respect to a scalar density field that measures
the relative importance of each point on the line. Unlike previous
work, which implicitly assumed the agents know this density field,
we only assume that each agent can access noisy samples of the
field at points close to its current location. We provide a simple
randomized protocol wherein every agent samples the scalar field
at three nearby points at each step and which guarantees conver-
gence to the optimal positions. We further analyze the convergence
time of this protocol and show that, under suitable assumptions,
the squared distance to the optimal coverage configuration decays
as O(1/t) with the number of iterations t, where the constant
scales polynomially with the number of agents n. We illustrate
these results with simulations.

Index Terms—Decentralized control, networked control
systems.

I. INTRODUCTION

As technological advances have improved the capabilities, relia-
bility, and cost of robotic sensing platforms, their potential for de-
ployment in autonomous, cooperative networks has gained significant
attention. The emergent capabilities of mobile sensor networks
promise to revolutionize complex tasks such as surveillance, explo-
ration and environmental monitoring. However, development of high-
level capabilities requires solutions to lower-level problems such as
formation control and coverage control, and these solutions should be
distributed, adaptive to changing environments, and robust to uncer-
tainty and changes in network topology.

The present work focuses on coverage control, where the goal is
to optimally locate the nodes, or agents, to maximize the so-called
coverage metric, which measures the largest distance from a point
in a domain of interest to the closest node. The coverage problem
may be thought of in terms of interception time: the optimal coverage
locations in a domain minimize the largest “response time” from the
node locations to a point in the domain.
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The coverage problem often involves distances which differ from
the ordinary Euclidean metric by a weight factor which puts a heavier
weight on some regions relative to others; in this case, the problem is
referred to as the nonuniform coverage control problem, whereas if the
distances are Euclidean then it is standard to refer to the problem as the
uniform coverage problem. The weight factor of each point is usually
referred to as the density field. Intuitively, one may think of minimizing
interception time in a terrain of varying roughness, where different
regions of the terrain take longer to traverse compared to others. In a
nonuniform field, agents should be closer together in regions of higher
density and more spread out in regions of lower density.

We will consider a particular case of the nonuniform coverage
problem when the agents are arranged on a line. Our interest in the
line coverage problem is motivated by two distinct considerations.

First, the line coverage problem is the natural model for the “border
patrol” problem, wherein we must position n nodes on a curve in R

2

such that the line distance from any point on the line to the closest node
is minimized. After a reparametrization of the curve, this is exactly the
line coverage problem. In this context, the curve usually represents a
physical border; the n nodes will usually be autonomous vehicles; the
distance metric being optimized is the largest interception time from
any point on the border to the closest vehicle; and the density of a
location represents difficulty of travel, determined by the roughness of
the terrain in that location.

The terrain roughness can be measured by each vehicle at its current
location using a laser stripe generator (see [21]). Correspondingly, we
seek an adaptive protocol by means of which n vehicles can explore the
border and optimally position themselves without knowing the terrain
roughness in advance. Since the optimal position will depend on the
terrain roughness at all points on the border, any protocol for this
problem will need to ensure that the vehicles do not neglect any part of
the border in their sampling. Consequently, we will study algorithms
wherein each vehicle repeatedly samples the terrain density in the
region of the border closer to it than to other agents (thus ensuring
no part of the border is neglected) and, based on these samples and the
positions of its neighbors, moves to a new location.

A related application is adaptive sampling applications in two and
three dimensions. There is often one dimension where nonuniformity
dominates and a protocol is needed for coverage in the dominant di-
rection; e.g., in the ocean autonomous vehicles measuring temperature
would use the protocol to optimally position themselves along the
thermocline in the vertical water column.

Secondly, the general coverage control problem has been the subject
of much recent interest within the control community; we refer the
reader to the recent papers [1]–[7], [9]–[16] [17], [19], [20] and the
references therein. The nonuniform line coverage problem is the one-
dimensional version of the general coverage control problem, and
consequently, it provides a simplified setting to make advances in
addressing outstanding questions in coverage control.

Due to the large amount of related literature, we will only attempt to
survey the works most directly relevant to our problem and approach.
In [5] and [6], a distributed uniform coverage control law is developed
which makes use of Voronoi partitions and gradient descent laws. The
nonuniform case is treated in part by using density-dependent gradient
descent laws with the Voronoi partitions computed for the uniform
case. Coverage with communication constraints is treated in [13], [17].
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The nonuniform coverage control problem is addressed in [11] where a
density-dependent distance metric is defined that stretches and shrinks
subregions of high and low density. A cartogram transformation
(which needs to be known be the agents) is then used to compute the
Voronoi partitions and convergence to optimal nonuniform coverage is
proved in the case of a static or slowly time-varying density field. The
necessity of knowing the cartogram transformation is relaxed in the
case of nonuniform coverage control on the line in [12] where fully
distributed nonuniform coverage protocols are derived. A follow-up
work [7] considers the line coverage problem where only samples of ρ
are available and explores the performance guarantees associated with
some simple strategies. Some recent work [4], [8] considers strategies
for coverage on the line when some proportion of the sensors are
expected to randomly fail.

In this work, our focus is on deriving rigorously correct protocols
for optimal line coverage under the assumption that every node has
access to noisy measurements of the field ρ. This is a considerably
weaker assumption compared to the previous literature (e.g., [5], [6],
[11], [12]) where convergence to optimal coverage was established
with update rules that involved exact computation of integrals of ρ,
thus implicitly assuming that the density is known to all the nodes. Our
main result is a randomized protocol that drives all the agents to the
optimal configuration from only three noisy samples of ρ at each step.
Moreover, we derive upper bounds on the convergence time of our pro-
tocol that scale polynomially with the number of nodes n. We perform
simulations that show the convergence times of our protocol are quite
reasonable, scaling considerably faster than our worst-case bounds.

The paper is structured as follows. In Section II we provide the nec-
essary background to state the problem formally and briefly summarize
our main results. Section III then contains our protocol and a proof of
its convergence and convergence rate. We illustrate these results with
simulations in Section IV.

II. BACKGROUND AND SUMMARY OF OUR RESULTS

We will consider a network of n mobile agents whose locations
are assumed, for simplicity, to lie within the interval [0,1]. We will
denote the positions of these agents, or nodes, at time step t by
x
(t)
1 , x

(t)
2 , · · · , x(t)

n . We adopt the convention that the labeling of agents
from 1 to n matches their initial order at time step 0 along the line from
left to right, i.e., x(0)

1 ≤ x
(0)
2 ≤ · · · ≤ x

(0)
n . We will use x(t)

0 and x
(t)
n+1

to denote 0 and 1 for all t, respectively; this will simplify notation.
The information density field, ρ : R → (0,∞) is assumed to be a

positive differentiable function which is bounded above and bounded
away from zero from below. Following [11], we define the distance
between two points a, b as

dρ(a, b) =

max(a,b)∫
min(a,b)

ρ(z)dz.

Intuitively, this distance function stretches regions of high ρ relative to
regions of lower ρ. Using this notion of distance, the coverage metric
Φ is then the largest distance from any point in the domain [0,1] to the
agent that is nearest to it:

Φ(x1, · · · , xn, ρ) = max
y∈[0,1]

[
min

i=1,···,n
dρ(y, xi)

]
.

The optimum coverage Φ∗ is the minimum of Φ over all possible agent
configurations in the interval [0,1]. It is not hard to see (and was proven
in [12]) that for any ρ satisfying the above assumptions, Φ is mini-
mized at a unique vector x = x∗ among vectors with nondecreasing
entries, i.e., those satisfying x1 ≤ x2 ≤ · · · ≤ xn.

The nonuniform line coverage problem is to design a protocol that
drives all the agents to a configuration achieving coverage Φ∗ Φ∗.
Furthermore, this protocol must be distributed, meaning that each
agent is limited to repeatedly updating its position based only on
the positions of its closest neighbors on the left and right as well as
measurements of the density ρ taken near its location. The special
case when ρ is identically equal to 1 is referred to as the uniform line
coverage problem.

It is easy to see that the optimal coverage configuration is invariant
under any scaling of the density field ρ. We will therefore assume
henceforth, without loss of generality, that the range of ρ is [1, ρmax]
for some finite positive ρmax ≥ 1.

A variety of protocols for the line coverage problems are available
(see [5], [6], [11] and the recent paper [12] focused on the line
coverage problem). However, all of these works implicitly assume that
the agents know ρ exactly because they include integrals of ρ in the
update equations used by each agent. By contrast, in this paper we
instead assume that each agent only has access to noisy samples of ρ.
Specifically, we will assume that every agent can take samples of the
form ρ̂(z) = ρ(z) + w, where w is noise and z is a point between
the measuring agent’s left and right neighbors. We remark that this
assumption may involve some physical travel on the part of each node
at every step; for example, if it chooses to sample ρ at a point outside its
physical sensing radius (but still between its left and right neighbors),
it will need to move closer to that point. The noises w are assumed to
be independent, have zero mean and bounded support, and an upper
bound on this support, which we will denote by M , is known to all
the nodes. Furthermore, we will assume that ρ̂(z) is nonnegative with
probability 1; this occurs, for example, if the noise support is not too
large. Intuitively, since the density ρ(z) represents difficulty of travel
(and is therefore nonnegative) we require noisy estimation of it to
result in nonnegative samples.

Our main contribution in this paper is a protocol for the nonuniform
line coverage problem wherein each node uses only three samples of
the density at each step. Moreover, we obtain precise bounds on the
convergence speed of our protocol under the additional assumption
that every node knows a rough estimate of the total number of nodes in
the network. We will show that the per-node expected square distance
from optimal coverage configuration decays as O(n5/t), where the
constant depends on the quantity ρmax as well as on the support of the
noise distribution M .

III. NONUNIFORM LINE COVERAGE FROM

NOISY SCALAR MEASUREMENTS

We next describe the line coverage protocol we present and analyze
here. We begin with an informal sketch. We will show that optimal
coverage configurations can be characterized as the minima of a
certain Lyapunov function, and the first-order conditions for optimality
prescribe that the ρ-weighted distances between each agent and each of
its two closest neighbors be in a certain proportion. This naturally sug-
gests an algorithm wherein each agent repeatedly moves to put theses
distances in the right proportion. However, without exact knowledge of
ρ, the nodes estimate the current ρ-weighted distances through random
sampling. In particular, each node will sample ρ at three points, one
between itself and its right neighbor, one between itself and its left-
neighbor, and one at its current location. These samples of ρ allow it
to compute an unbiased estimate of where its next location should be
in order to put the two distances into the desired proportion.1

1In line with previous protocols for coverage control which relied on com-
putation of Voronoi partitions (e.g., [5], [6], [11]), this process may be thought
of in terms of each node computing its Voronoi cell (interval) from a few noisy
samples at each stage.
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However, because all the estimates obtained by the nodes in this
way are noisy, we will introduce a stepsize; thus nodes will move only
part-way towards their new positions, and the size of the move at each
step will (slowly) decay to zero with time. Intuitively, the position of
each node is influenced by all previous samples of ρ collected by it and
neighboring nodes, and consequently as time goes on and the node’s
position reflects more and more past samples, the node will need to
move less in response to each new sample.

A. A Formal Statement of the Protocol

At time step t, node k will sample the density ρ at a random
point r(t)k uniformly in the interval [x(t)

k , x
(t)
k+1], i.e., between itself

and its right neighbor; and at a random point l(t)k uniformly in the

interval [x(t)
k−1, x

(t)
k ], i.e, between itself and its left neighbor (recall

our convention that x(t)
0 = 0, x

(t)
n+1 = 1). Finally, node k samples the

density at its own location x
(t)
k . After obtaining these samples node k

proceeds to set2

R
(t)
k = ρ̂

(
r
(t)
k

)(
x
(t)
k+1 − x

(t)
k

)
L

(t)
k = ρ̂

(
l
(t)
k

)(
x
(t)
k − x

(t)
k−1

)
and then to update

x
(t+1)
1 =x

(t)
1 −

α(t)ρ̂
(
x
(t)
1

)
8(ρmax +M)2

(
2L

(t)
1 −R

(t)
1

)

x
(t+1)
k =x

(t)
k −

α(t)ρ̂
(
x
(t)
k

)
8(ρmax +M)2

(
L

(t)
k −R

(t)
k

)
(1)

when k = 2, . . . , n− 1

x(t+1)
n =x(t)

n −
α(t)ρ̂

(
x
(t)
n

)
8(ρmax +M)2

(
L(t)

n − 2R(t)
n

)
(2)

where α(t) is a stepsize which satisfies

0 ≤ α(t) ≤ 1 for all t,
∞∑
t=0

α(t) = +∞,

∞∑
t=0

α2(t) < ∞.

We remark that choosing the stepsize α(t) = 1/tp for any exponent
p ∈ (1/2, 1] satisfies all three of these conditions. Finally, we will refer
to this protocol as the randomized scalar coverage protocol.

B. Main Result

The main result of this paper is the following theorem.

Theorem 1: The positions x(t) = (x
(t)
1 , . . . , x

(t)
n )

T
converge to the

unique minimizer configuration x∗ = (x∗
1, . . . , x

∗
n)

T of the coverage
metric Φ with probability one. Moreover, if every node knows an
upper bound U on the total number of nodes n and chooses the
stepsize α(t) = 8U2(ρmax +M)2/(8U2(ρmax +M)2 + t) then we
will have the expected error bound

E
[
1

n

∥∥x(t)−x∗
∥∥2

2

]
≤ 16nU4(ρmax+M)4 (4ρ2max + 2‖ρ′‖∞ρmax)

8U2(ρmax+M)2+t

where ‖ρ′‖∞ = supz∈[0,1] |ρ′(z)|.
Under the assumption that every node approximately knows the

total number of nodes, e.g., if we have n ≤ U ≤ 2n, an implication
of this theorem is that we need to wait O(n5/ε) iterations until the
average square error E[ 1

n
‖x(t) − x∗‖22] is below ε in expectation,

where the constant within the O-notation depends on the density ρ

2Recall our notation: ρ̂(z) is ρ(z) plus a zero-mean random variable with
support in [−M,M ], and all these random variables are jointly independent.

and the noise support M . Thus, the main result of this paper is that
this decay is linear in the number of iterations t and the constant in
front of this decay scales polynomially with the number of nodes n.

C. Proofs

We will shortly turn to the proof of Theorem 1. Before doing
so, however, we need to demonstrate something more basic: that the
protocol preserves the ordering of the agents i.e., that x(t)

1 ≤ x
(t)
2 ≤

· · · ≤ x
(t)
n for all t. If this were not the case, our protocol would not

be truly distributed: since the next position of node k is affected by the
positions of nodes k − 1 and k + 1 at each step, it is crucial that these
three nodes continue to be each other’s closest neighbors.

Proposition 2: Under the randomized scalar coverage protocol, we
have that with probability 1

0 = x
(t)
0 ≤ x

(t)
1 ≤ x

(t)
2 ≤ · · · ≤ x(t)

n ≤ x
(t)
n+1 = 1

for all integers t.
Proof of Proposition 2: By assumption the statement is true at

time t = 0, and we prove it by induction. Suppose that the statement
holds at time t and consider node i. As a consequence of the update
rule (2) and the fact that R(t)

i , L
(t)
i ≥ 0, we have

x
(t+1)
i − x

(t)
i ≤ α(t)

8(ρmax +M)
2R

(t)
i

ρ̂
(
x
(t)
i

)
ρmax +M

≤ Ri(t)

4(ρmax +M)

≤
x
(t)
i+1 − x

(t)
i

4
.

A similar argument establishes that

x
(t+1)
i − x

(t)
i ≥ 1

4

(
x
(t)
i−1 − x

(t)
i

)
and these two inequalities imply the proposition. �

Now that we have established that the protocol remains distributed
by preserving the ordering of the nodes, we turn to the proof of
Theorem 1. First we will argue that the optimal coverage point is
the minimum of a certain Lyapunov function; this is Lemma 3 below,
which defines a function Q(x1, . . . , xn) minimized at optimal cover-
age. Next, we bound how much Q(x1, . . . , xn) decreases at each step.
This appears to be difficult to do directly. However, relying on the key
idea that Q becomes convex after a position-dependent stretching of
the coordinate space, we will prove a number of inequalities which will
allow us to argue that Q decreases at every step by a certain fraction of
the full distance to the optimal value.

We begin now with a series of lemmas executing this plan which
will culminate in the proof of Theorem 1. Our first lemma introduces
the Lyapunov function Q:

Lemma 3: Define

Q(x1, . . . , xn) = 2

⎛
⎝ x1∫

0

ρ(z)dz

⎞
⎠

2

+

⎛
⎝ x2∫

x1

ρ(z)dz

⎞
⎠

2

+ · · ·+

⎛
⎜⎝

xn∫
xn−1

ρ(z)dz

⎞
⎟⎠

2

+ 2

⎛
⎝ 1∫

xn

ρ(z)dz

⎞
⎠

2

.

Then Q(x1, . . . , xn) has a unique global minimizer x∗ =
(x∗

1, x
∗
2, . . . , x

∗
n)

T ; this minimizer x∗ is also a minimizer of Φ
and satisfies 0 ≤ x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n ≤ 1.
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Proof: It is easy to see that Q(x1, . . . , xn) must have a global
minimum, since it is continuous and blows up if at least one of the
variables goes off to infinity. Setting all partial derivatives of Q to zero
and rearranging, we obtain the set of equations

2

x1∫
0

ρ(z)dz =

x2∫
x1

ρ(z)dz

xi∫
xi−1

ρ(z)dz =

xi+1∫
xi

ρ(z)dz for i = 2, . . . , n− 1

xn∫
xn−1

ρ(z)dz =2

1∫
xn

ρ(z)dz. (3)

Any global minimum of Q must satisfy these equations. It is in
Lemma 2 in [12] that these equations have a unique solution which
minimizes Φ, and the proof of that lemma establishes that the entries
of this solution are monotonic and lie in [0,1]. �

For convenience of notation, we will define F to be the function
which maps [0,1] into [0, ρmax] by F (x) =

∫ x

0
ρ(z)dz. Note that

(3) can be conveniently restated in terms of F , e.g., the equality for
i=2, . . . , n−1 in (3) is simply F (xi)−F (xi−1)=F (xi+1)−F (xi).

Next, we will need a technical estimate on the smallest value
assumed by a certain quadratic form on the unit sphere.

Lemma 4:

min
‖x‖2=1

x2
1 + (x2 − x1)

2 + · · ·+ (xn − xn−1)
2 + x2

n ≥ 1

n2
.

Proof: Since ‖x‖2 = 1 we have that at least one component xi

satisfies |xi|≥1/
√
n. Without loss of generality, let us assume xi>0;

else, we can simply replace x with −x. We then have that

1√
n

≤ xi = (x1 − 0) + (x2 − x1) + · · ·+ (xi − xi−1).

Applying Cauchy-Schwarz yields the lemma. �
Next we prove a technical lemma which lower bounds the size of the

gradient of Q at each step as a fraction of the distance to the optimal
value. The proof uses the previous Lemma 4 and proceeds by relying
on a coordinate-depending stretching of the space making Q convex.

Lemma 5:

‖Q′(x)‖22
Q(x)−Q(x∗)

≥ 4

n2
.

Proof: Define

G(y1, . . . , yn) = 2y2
1 + (y2 − y1)

2

+ · · ·+ (yn − yn−1)
2 + 2

⎛
⎝ 1∫

0

ρ(z)dz − yn

⎞
⎠

2

.

Observe that

Q(x1, . . . , xn) = G (F (x1), F (x2), . . . , F (xn)) . (4)

As a consequence of this and Lemma 3, we can conclude that G(y)
has a unique minimum y∗ satisfying y∗

i =
∫ x∗

i

0
ρ(z)dz. The Hessian

of G(y1, . . . , yn) is easily computed; it is

G′′(y) =

⎛
⎜⎜⎜⎜⎜⎝

6 −2 0 0 · · · 0
−2 4 −2 0 · · · 0
0 −2 4 −2 · · · 0
...

...
. . .

. . .
. . .

...
0 0 0 −2 4 −2
0 0 0 0 −2 6

⎞
⎟⎟⎟⎟⎟⎠ .

We will use the standard notation of ei to mean the column vector with
a 1 in the i’th component and zero elsewhere; moreover, we will use
ei,j to denote the vector with a 1 in the i’th component, a −1 in the
j’th component, and zeros elsewhere. Then it is easy to verify that

G′′ = 4e1e
T
1 + 2

n−1∑
i=1

ei,i+1e
T
i,i+1 + 4ene

T
n

so that its smallest eigenvalue satisfies

λmin = min
‖y‖2=1

yTG′′y

= min
‖y‖2=1

4y2
1 + 2

n−1∑
i=1

(yi − yi+1)
2 + 4y2

n≥
2

n2
(5)

where the last inequality follows from Lemma 4. Thus G is a strongly
convex function, and a standard bound on the norm of its gradient
(see Lemma 3 in [18, Ch. 1.4]) is

‖G′(y)‖22
G(y)−G(y∗)

≥ 2λmin.

Further, for any x ∈ R
n choosing y ∈ R

n defined by yi = F (xi), we
have by (4) and our assumption that ρ ≥ 1 everywhere, that

‖Q′(x)‖22
Q(x)−Q(x∗)

≥ ‖G′(y)‖22
G(y)−G(y∗)

.

Putting together the last two inequalities and plugging in the bound on
λmin from (5) we obtain the current lemma. �

Having now established the lower bound on the norm of the gradient
of Q(x), we now proceed to the proof of Theorem 1. We proceed by
arguing that our protocol is a randomized version of gradient descent
on the function Q(x), which can be shown to converge despite the
nonconvexity of Q.

Proof of Theorem 1: We begin by rewriting the update equation
in more convenient form. Specifically, comparing the randomized con-
trol law, namely (2), with the definition of the function Q(x1, . . . , xn),
we observe that we can write

x(t+1) = x(t) − α(t)

16(ρmax +M)2
g(t)

where E[g(t)] = Q′(x(t)) and∥∥g(t)∥∥2

2
=

(
ρ̂
(
x
(t)
1

)(
4L

(t)
1 − 2R

(t)
1

))2

+

n−1∑
i=2

(
ρ̂
(
x
(t)
i

)(
2L

(t)
i − 2R

(t)
i

))2

+
(
ρ̂
(
x(t)
n

) (
2L(t)

n − 4R(t)
n

))2
≤ (ρmax +M)2

n∑
i=1

(
max

(
4L

(t)
i , 4R

(t)
i

))2

≤ 64(ρmax +M)4
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and all the above inequalities hold with probability 1. Next, we observe
that Q is a twice differentiable function, so that we may expand it in a
Taylor series. Since

∂2Q

∂x2
1

(x)= 6ρ2(x1)+ 2ρ′(x1)

⎛
⎝2

x1∫
0

ρ(z)dz −
x2∫

x1

ρ(z)dz

⎞
⎠

∂2Q

∂x2
n

(x)= 6ρ2(xn)+2ρ′(xn)

⎛
⎜⎝

xn∫
xn−1

ρ(z)dz−2

1∫
xn

ρ(z)dz

⎞
⎟⎠

∂2Q

∂x2
i

(x)= 4ρ2(xi)+2ρ′(xi)

⎛
⎜⎝

xi∫
xi−1

ρ(z)dz−

xi+1∫
xi

ρ(z)dz

⎞
⎟⎠

when i = 2, . . . , n− 1

∂2Q

∂xi∂xj

(x) = − 2ρ(xi)ρ(xj) when j ∈ {i− 1, i+ 1}

∂2Q

∂xi∂xj

(x) =0 when j 	∈ {i− 1, i, i+ 1}

by Gershgorin circles, it follows that as long as 0 ≤ x
(t)
1 ≤ · · · ≤

x
(t)
n ≤ 1, the largest eigenvalue of Q′′(x) is never more than 8ρ2max +

4‖ρ′‖∞ρmax in magnitude. Thus as long as both x(t) and x(t+1) have
entries between 0 and 1 and monotonically nondecreasing (note that
by Proposition 2 this holds at every time t), we may bound Q(x(t+1))
via the Taylor expansion with Lagrange remainder form as

Q
(
x(t+1)

)
≤ Q

(
x(t)

)
+∇Q

(
x(t)

)T (
x(t+1) − x(t)

)
+
(
4ρ2max + 2‖ρ′‖∞ρmax

)∥∥x(t+1) − x(t)
∥∥2

2

or

Q
(
x(t+1)

)
≤Q

(
x(t)

)
− α(t)

16(ρmax +M)2

n∑
i=1

[
Q′(x(t)

)]
i
g
(t)
i

+
(4ρ2max + 2‖ρ′‖∞ρmax)α

2(t)

162(ρmax +M)4

∥∥g(t)∥∥2

2
.

Taking expectations and using Lemma 5

E
[
Q
(
x(t+1)

)
−Q(x∗)|x(t)

]
≤
(
1− α(t)

4n2(ρmax +M)2

)

×
(
Q
(
x(t)

)
−Q(x∗)

)
+

(4ρ2max + 2‖ρ′‖∞ρmax)α
2(t)

4
.

By Lemma 10 of [18, Ch. 1.4] it follows that Q(x(t))−Q(x∗)
approaches zero with probability 1, which by the uniqueness of the
minimizer x∗ implies that x(t) → x∗ with probability 1. Now under
the additional assumption that every node knows an upper bound U
and chooses the stepsize of α(t) = 8U2(ρmax +M)2/(8U2(ρmax +
M)2 + t), we have that

E
[
Q
(
x(t+1)

)
−Q(x∗)

]
≤
(
1− 2

8U2(ρmax +M)2 + t

)
E
[
Q
(
x(t)

)
−Q(x∗)

]
+

16U4(ρmax +M)4 (4ρ2max + 2‖ρ′‖∞ρmax)

(8U2(ρmax +M)2 + t)2
.

We now claim that for all t ≥ 0, we have that

E
[
Q
(
x(t)

)
−Q(x∗)

]
≤ 16U4(ρmax +M)4 (4ρ2max + 2‖ρ′‖∞ρmax)

8U2(ρmax +M)2 + t
.

We prove this claim by induction. Indeed, at t = 0, since the initial
positions are in the interval [0,1], it is immediate that Q(x(0)) ≤
2ρ2max, which proves the statement at t = 0. Now suppose that the
inequality holds at time t. For simplicity of notation, let us adopt
the shorthands C = 16U4(ρmax +M)4(4ρ2max + 2‖ρ′‖∞ρmax) and
U ′ = 8U2(ρmax +M)2. We then have that

E
[
Q(x(t+1)−Q(x∗)

]
≤

(
1− 2

U ′ + t

)
E
[
Q
(
x(t)

)
−Q(x∗)

]

+
C

(U ′ + t)2

≤
(
1− 2

U ′+ t

)
C

(U ′+ t)
+

C

(U ′ + t)2

≤C

(
1

U ′ + t
− 1

(U ′ + t)2

)

≤ C

(U ′ + t+ 1)

which proves the claim. Finally, we show this implies the theorem.
Observe that G(y)−G(y∗) ≥ (1/n2)‖y − y∗‖22 due to the fact that
λmin(G

′′(y)) ≥ 2/n2 from (5). Thus

Q(x)−Q(x∗) ≥ 1

n2
‖F (x)− F (x∗)‖22 ≥ 1

n2
‖x− x∗‖22

where the last step follows from the fact that ρ ≥ 1. �

IV. SIMULATIONS

We briefly report on a simulation intended to gauge the practical
convergence time of our protocol. Fig. 1 shows simulation for a system
of 20 nodes for two starting points: one chosen uniformly at random
and one which initially places all the nodes at one corner. All noises
are uniform in [−1/2,1/2]. In both cases, the density is uniform,
which allows convergence to the optimal configuration to be “read
off’ from the graph by watching the spacings equalize. We chose the
stepsize α(t) by setting α(t) = 1 for the first half of the iterations and
setting α(t) = 1/

√
t for the latter half; this decays more slowly as

compared to the stepsize we used to obtain Theorem 1 but appears to
be advantageous for a network of 20 nodes executing several thousand
iterations.

Our simulations confirm our theoretical convergence results. Fur-
thermore, they suggest that our error bounds are conservative; indeed,
the system of twenty nodes reaches close to the optimal configuration
after thousands of iterations, while the upper bounds of Theorem 1
are several orders of magnitude larger. An open question is to obtain
improved theoretical guarantees that better match the faster speed we
observe.
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Fig. 1. Positions of the nodes as a function of iteration number for a network of 20 nodes. On the left, the starting positions are uniformly random in [0,1], while
on the right, all nodes begin with xi(0) = 1.
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