Deep-Sea Research II 56 (2009) 173-187

journal homepage: www.elsevier.com/locate/dsr2

Contents lists available at ScienceDirect

— “‘.5::.“:

Deep-Sea Research II

-

%

Routing strategies for underwater gliders

Russ E. Davis **, Naomi E. Leonard ®, David M. Fratantoni €

2 Scripps Institution of Oceanography, La Jolla, CA 92093-0230, USA

b princeton University, Princeton, NJ 08544, USA

€ Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA

ARTICLE INFO

ABSTRACT

Article history:
Accepted 17 August 2008
Available online 24 September 2008

Keywords:

Autonomous underwater vehicle
Mapping

Routing

Underwater glider

Sampling

Gliders are autonomous underwater vehicles that achieve long operating range by moving at speeds
comparable to those of, or slower than, typical ocean currents. This paper addresses routing gliders to
rapidly reach a specified waypoint or to maximize the ability to map a measured field, both in the
presence of significant currents. For rapid transit in a frozen velocity field, direct minimization of travel
time provides a trajectory “ray” equation. A simpler routing algorithm that requires less information is
also discussed. Two approaches are developed to maximize the mapping ability, as measured by
objective mapping error, of arrays of vehicles. In order to produce data sets that are readily
interpretable, both approaches focus sampling near predetermined “ideal tracks” by measuring
mapping skill only on those tracks, which are laid out with overall mapping skill in mind. One approach
directly selects each vehicle’s headings to maximize instantaneous mapping skill integrated over the
entire array. Because mapping skill decreases when measurements are clustered, this method
automatically coordinates glider arrays to maintain spacing. A simpler method that relies on manual
control for array coordination employs a first-order control loop to balance staying close to the ideal
track and maintaining vehicle speed to maximize mapping skill. While the various techniques discussed
help in dealing with the slow speed of gliders, nothing can keep performance from being degraded
when current speeds are comparable to vehicle speed. This suggests that glider utility could be greatly

enhanced by the ability to operate high speeds for short periods when currents are strong.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Underwater gliders are designed to have long endurance
(months) and to navigate autonomously by periodically surfacing
for GPS fixes and data transmission. Stommel (1989) advanced the
concept and today there are at least three well-tested models
(Davis et al., 2002). The operational consequence of designing for
endurance is low speed (0.2-0.4ms™'), comparable to that of
ocean currents and much lower than that of strong boundary
currents. This severely limits the ability of glider operators to
place observations where they want them and raises the question
about how to route gliders through velocity fields. That is the
topic of this investigation.

The terminology is made clear by considering the simplest case
of a vehicle moving at speed q and heading 0 (reckoned as in the
complex plane, not a compass) through water that has uniform
velocity u with magnitude u and direction w. The vehicle’s
velocity over the ground is U with speed U and direction ¢, here
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called the course over the ground (COG). These velocities are
illustrated in Fig. 1. Let uy = ucos(w—¢) be the current compo-
nent assisting motion along the track and uy = usin(w—¢) be the
current component 90° to the left of the track. Staying on
the desired path requires the cross-track component of vehicle
velocity gsin(0—¢) to cancel the cross-track current uyn. The
heading 0 and speed U made good along the desired path are then

0 = —arcsin(un/q) + ¢, U =1y +qy/1 - (un/ay. (1)

So long as |un| < q the vehicle can stay on the desired track, but the
velocity made good decreases as |uny|—g. A central question
addressed here is about how, in more complex velocity fields, to
route a glider to reach a destination as quickly as possible. For
steady currents the fastest route is given by an equation with
strong parallels to the ray equations for nondispersive wave
propagation.

A second question addressed is about how to route gliders,
operating singly or in groups in a field of significant currents, to
maximize what is learned about a measured field. The reduction
in error variance of objective maps is used to measure the
“skill” of a particular sampling strategy. If mapping skill were
to be the sole criterion, the resulting glider trajectories would be
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Fig. 1. Illustration of the velocities in glider steering. The vehicle’s through-the-
water speed and heading are q and 0, the ocean current u has speed and direction u
and o, and the resultant vehicle velocity over the ground is U with speed and
course U and ¢, respectively. Also shown are the cross-track components of
through-water vehicle velocity qsin(0—¢) and current velocity uy = usin(w—¢)
that cancel to give (1). The current component parallel to the track over the ground
is ugp = ucos(w—g).

so irregular that it would be impossible to interpret them with-
out insertion into a mapping or data assimilation procedure.
Optimizing mapping skill on a network of ideal paths pre-selected
to yield good observational coverage provides an automated
steering procedure for optimizing both interpretability and
mapping skill, including coordinating an array of vehicles.

Vehicle speed is central to both transit between points and
mapping. Movement is important in mapping because mapping
skill, as measured by objective analysis, increases with the
number of uncorrelated observations made within a correlation
time. The faster a vehicle moves, the more uncorrelated measure-
ments it gathers. Because mapping also depends on making
measurements in the right places, there is a tension between
maintaining vehicle velocity to keep samples well separated and
moving along a useful track in the face of currents.

2. Strategies for fast routing

Because gliders are so slow, currents have a first-order impact
on vehicle speed. Here we address strategies to minimize the
time required to navigate between two points through a current
field. The formalism is derived in the same way Fermat’s principle
is used to develop ray-tracing equations for sound or light
propagation (Pierce, 1989). Let the steady water velocity be u(x)
while g and 0 are the glider’s speed through the water and its
heading, respectively. The coordinates of a glider trajectory
are x(4), y(A) where A is an as yet undefined label of position
along the path between endpoints X, and Xp. Finally, let 1/s be the
speed of the vehicle along the path, equal to U in (1) above. The
fastest route from X, to Xp is the path that minimizes the travel
time

B dt B
Ty = d)v—:/ disn, 2
= [Cdigi= [ aisy )

where = (d¢/dL) = \/(dx/d)v)2 + (dy/d)? and ¢ is the arc length.

2.1. Rays for nondispersive wave propagation

In sound or light propagation, slowness s is a function of
position x and the variation of travel time 8T resulting from
variations dx(4), dy(4) of the path is

B 0s 0s s [dxddx
STT:A di{n{&6x+@by} +E{EW+

With the conditions 6x = 0 at X4 and X, (3) is easily integrated by
parts to

B 0s 0 [sdx 0s 0 (sdy
ot = [ o [ng = (52) o+ [y~ 7 (37) oo}

(4)

(3)

dyddy
didi ]S

If 2 is taken as the arc length itself, then # =1 and paths that
extremize Ty obey

0 (. dx\ Os 0 (. dy\ 0s
a(ﬁ)-a’ a(ﬁ)-a' )

When 1 is the arc length, dx/d1 = cos¢ and dy/dA = sin ¢, the
degenerate equation (5) becomes

dop -
sa_)\.XVS, (6)

where A is a unit vector parallel to the path.
2.2. Ray equations for fast routes

For a vehicle moving through a current u(x), (1) shows the
vehicle speed to be

1/5(X,§) = uX) - h+ /¢ — [ux) x A2 (7)

Here s depends on position, as it does in (3), and also on the
direction of the path:

¢ = arctan <%) (8a)

which is the COG as in (1). The travel time is still given by (2) but
its variation now includes, within the integral, the term (ds/0¢ )¢
not found in (3). This reflects the effect of COG on vehicle speed.
The variation of ¢ from (8a) is

(dx/d2y? [S(dy/d}.)  dy/da

5 = (dx/dA)% + (dy/d2)?

dx/dz  (dx/dA)? o(dx/ CM)] (8b)

and the variation of Ty is

B
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If, as in the wave propagation case, (9a) is integrated by parts with
Ox = 0 at x4 and Xxp to convert d 6x/d/ to dx, the result is

B Os d /sdx 10sdy
o= [ {5 (7~ wagor)|
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Now taking / to be distance along the path (so 7 = 1) gives the
new “ray” equations

d (dx_Bsdy) _ (3
da\"dl 0d¢di)  \ox/,,
d / dy 0sdx 0s

i (a o) = (&), (10)
Comparison with (5) for sound and light propagation shows that
vehicle speed takes the place of wave propagation speed and the
dependence of the vehicle speed on direction, through ds/0¢, adds

a new term. As in (5), the two equations (10) are degenerate and
can be combined to give

dp d /Os _ N
sd—;t+d—/l<%>xyy_(X><Vs)-z, (11)

where Z is a vertical unit vector. The second equation simply
restates that s is a function of 1.

When wave speed depends only on y, propagation simplifies to
Snell’s law, scos ¢ = so, where s is a constant. This follows from
(5) with ds/ox = 0. For glider motion, a similar relation derives
from (10) when the flow is parallel, say u = Xu(y), so that v =0
and 0s/ox = 0:

s cos ¢ —aa—;sin ¢ =s cos ¢ — susin® ¢
|1 u cos ¢ —K/q, (12a)
g2 — usin® ¢
where
s= L : (12b)

ucos ¢ +1/q?2 — u2sin ¢

The transcendental equation (12) specifies the COG, ¢(u,K), as a
function of local speed and integration constant K, which equals
€OS ¢o, Where ¢g is the COG when u = 0.

Fig. 2 shows the family of solutions to the Snell’s law analogue
(12). Each curve is defined by a different value of K= cos ¢o.
Fig. 2A shows the COG ¢ as a function of u/q for various K. Fig. 2B
shows the vehicle heading 0 for the same trajectories. Given K, a
trajectory can be found using ¢(u) from (12) and integrating
d(x+iy)/d/ = expli¢(u)]. The trajectory for only a few discrete
values of K would connect specified end points so that iteration on
K would be required. It is conceptually and computationally
simpler to directly integrate (11). The main virtue of the Snell’s
law analogue is that it shows how fast routing is determined both
locally, by the relation between ¢ (or 0) and the local velocity, and
also globally, through the dependence of K on the trajectory end
points.

2.3. Examples of fast-route rays

In terms of evolution with distance / along the trajectory, the
ray equation (11) is

d¢ 0Gdx  0Gdy 0Gd¢p Os Os .
S T axdi Sy di wa_acosqﬁ—asmdb. (13)

where G(x,y, ¢) = (0s/0¢), is defined in (9b). To find extremal
paths through the velocity u(x), the velocity field was gridded and
spatial derivatives were computed by finite differences. The
resultant equation for d¢/dA was integrated by a fourth-order
Runge-Kutta routine.

Trajectories through parallel flows are shown in Fig. 3. Position
is normalized by the spatial scale of the velocity field. Trajectories
start from x =0, y =0 and end at various x values along y = 1.
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Fig. 2. (A) Solutions to (12) for parallel flow u(y), where ¢ is the COG (degrees)
from the x-u-axis. Only trajectories in the +x direction are shown. If ¢(u, ¢o) is a
solution, so is —¢(u, ¢o). Each curve is identified by ¢o, the COG when u = 0.
Solutions obey ¢(—u, ¢o) = T—P(u, 1—¢o). Every point along the u/g-axis is a
solution with K = g/(u+q). (B) Vehicle heading 0 vs. u(y) for the solutions of (12)
graphed in (A). Since ¢ = 0 when u = 0, one can connect solutions between the
two plots. The = 90° curve divides solutions with a component of vehicle motion
toward +x (0<90°) from solutions with headings toward —x. Note how, in both
regions, the heading approaches 90° when the current becomes strong and
adverse.

Fig. 3A corresponds to u(y) = 2qexp(—4(2y—1)?) while u(y) =
(3/2)gsin(my) for Fig. 3B. Each trajectory is both a local and a
global extremum of travel time. Also shown are the vehicle
headings 0 leading to the trajectory.

Finding the fastest path between two points is analogous to
solving two-point boundary-condition ordinary differential equa-
tions by repetitively integrating from A using initial conditions
that are adjusted until conditions at B are satisfied. The added
challenge here is that there may be a family of “rays” that obey
(13) and connect X4 and Xg. Each is a local extremum of travel time
but only one is the fastest. The multiplicity of rays connecting two
points complicates the search for initial headings that reach the
desired target but searching over headings, first with an
exhaustive coarse-resolution search and then by repeated inter-
polation, has proven adequate. Fig. 4 shows the three simplest
paths connecting x =y =0 to x =0, y = 1 in the parallel velocity
field u = 2qgsin(my) where q is the vehicle speed. There are
additional, substantially more complicated, longer, and more
time-consuming paths connecting the same points after crossing
y =1 several times, which are not shown.
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Fig. 3. (A) Trajectories from (13) for a vehicle with through-water speed g moving from x = y = 0 across the parallel velocity field u(y)2q exp(—4(y—0.5)?). Velocity vectors
are sketched at x = 1. The short tics equally spaced along each trajectory show the vehicle heading but not speed. (B) As in (A) for the parallel velocity u(y) = (3q/2)sin(wy).

0.5 +

Fig. 4. Multiple travel-time extremum trajectories across the parallel flow u = 2q sin(ny). The central trajectory is the slowest, with a crossing time 1.97L/q. The outer two
trajectories are a symmetric pair with the crossing time 1.72L/q. The plot format is the same as Fig. 3.

When the flow is not parallel, the strategy for rapidly reach-
ing a destination becomes more complex. Fig. 5A shows three
travel-time-extremum paths through an eddy velocity field
between the same two points. The longest path is the fastest
because it follows the flow, while the most direct path,
which is almost directly against current, is the slowest. The
same behavior is seen in Fig. 5B, which shows paths through

the same circular-eddy velocity field that connect different
position pairs. For the initial xo<—0.5 the fastest trajectories
veer to the left to avoid the strongest adverse flow. For
—0.5<x0<0.5 the fastest paths curve to the right to follow the
flow toward the destination. And for x> 0.5 the paths are dented
toward the eddy center to pick up slightly stronger favorable
currents.
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Fig. 5. (A) Paths with local travel-time extrema between (x,y) = (—1,0) and (—%,1) through a circular eddy with tangential velocity profile grexp(—2r?) shown with red
arrows. Blue lines show the vehicle heading at positions equally spaced along the track. The long path to the right, which is aided by the flow near y = 0 and 1, is the fastest
with travel time 1.37L/q. The path to the left has travel time 1.29L/q. The slowest is the intermediate path, directly opposed to the current, with travel time 2.32L/q. (B) The
fastest paths (dark black) and second fastest paths (gray) from various positions on y = 0 to the same x coordinate on y = 1 through the circular eddy in (A).

3. Local steering for fast transit usually unsteady and (even with the best models initialized by
significant bodies of data) poorly known over the time period
The ray equation (11) or (13) provides the fastest routes when of a typical glider transit. Consequently, a more practical but

the current field is steady and known globally. But currents are suboptimal procedure for finding good routes is needed. Two
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problems must be solved: (a) a good route must be selected and
updated and (b) gliders must be steered to follow these paths
using noisy and infrequent velocity measurements. For steering,
only a short-range velocity forecast is needed and when tidal
currents are weak, even a simple persistence forecast based on the
velocity between the last two fixes works well. C. Eriksen (priv.
comm.) reports that using a Kalman filter to assimilate previous
positions and to estimate future velocities is effective in strong
tidal currents. The problem of selecting the route to be followed is
far more difficult.

The structure of optimal trajectories through parallel flows
suggests a way to choose good paths when the flow is neither
steady nor fully known. An optimal trajectory from (13) is
one member of a family of local relations between heading
and current that is selected by the global requirement of reach-
ing a particular destination. The local part provides a general
steering rule for making progress through strong currents: In a
strong adverse current, steer to rapidly cross the current while
making up ground where the currents are weak or favorable. The
trajectories and headings in Fig. 3 exemplify this rule. Where
currents are strong, a heading with a strong cross-stream
component is maintained as the vehicle is blown down current.
When the current is weak or favorable, the vehicle works its
way toward the destination or toward a good path to the
destination. This simple qualitative rule has been used success-
fully when operating in strong western boundary currents and
eddies.

An automated method for rapidly transiting a field of energetic
currents can be developed from the above general steering rule.

Let QD be

0p = — arcsin(iin/q) + ¢,
Uy if lun|<q,

where iiy = . . (14a)
q sign(uy) if Jun|>q.

Here uy is the component of the current perpendicular and to the
left of the track toward the destination. This heading, based on (1),
emphasizes getting to the destination following a straight line
when possible. Because it does not use knowledge of future
currents nor ones anywhere but the present location, the steering
rule 6p can lead to vehicles being trapped while headed into the
current and making little or no forward progress. To complement
0Op, let Oc be the direction 90° to the current that is most nearly
directed toward the destination.

We have tested the steering algorithm to automatically blend
Oc and 0Op:

0= (1- w)0p + wl, (14b)

where w = tanh(a/+/U), U is the component of vehicle velocity
toward the destination associated with the heading 0p as drawn in
Fig. 1, and « is a scalar. The particular form for w is somewhat
arbitrary and selected through experimentation to allow different
o to produce a range of transitions from w = 0, when reasonable
progress is being made toward the destination, to w =1 when
progress is stalled.

Performance of the steering algorithm (14) was determined
by simulating pseudo-random eddy fields and steering through
these fields toward a specified destination. Velocity fields were
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Fig. 6. Cumulative probability functions of transit time through pseudo-random velocity fields using the blended steering algorithm (14) with different values of parameter
o as given by the color code in the legend. All curves are for vehicles with speed q = 5 going from 10 distance units to one distance unit from the destination through an
ensemble of several thousand velocity fields. The rms velocity v’ is given by the numerical labels. Gliders that seek a COG directly to the destination (blue curves, « = 0) are
frequently trapped by adverse currents and have long transit times. Raising o to 107> (green) substantially reduces the incidence of slow transits and increasing o to 0.1

(red) further speeds transit.
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based on a streamfunction with an isotropic, homogeneous,
Gaussian-shaped spatial covariance with an exponential variation
in time. Velocity fields were computed from Fourier series
with pseudo-random amplitudes that were drawn to have the
appropriate wavenumber spectrum and evolved as first-order
Markov processes. The spatial and temporal scales of the
streamfunction covariance were L and T, respectively, and results
are here reported in dimensionless form scaled by these scales.

Experimentation showed that the main determinants of the
average speed toward a destination are the frequency and
duration of periods when the vehicle was essentially trapped in
a strong current while trying to follow its steering rule. The
steering rule 60p, which aims the COG directly toward the
destination when possible, is particularly susceptible to trapping.
The second most important determinant of transit time is
behavior near the destination where strong currents can cause
the vehicle to be swept past the destination, particularly if it was
not steering directly toward that point. As a consequence, the
performance of the generalized steering rule (14b) with various
parameters « is different during transit far from the destination
and during the approach phase. The choice o =0, which
corresponds to using only 6p, is the least prone to missing the
destination whereas larger values of o accelerate transit at
distances greater than one unit from the destination.

Fig. 6 shows the statistics of dimensionless transit time for
vehicles going from 10 units to one unit from the destination. The
approach phase has been eliminated because, as noted above, it
behaves rather differently. All curves are for vehicle speed q = 5,
which corresponds to a vehicle being able to cross O(5) eddies
before the velocity field undergoes substantial time variation. This
is a relatively bad situation for trapping, which is the worst when
an eddy changes little in the time it takes a vehicle to cross it.
Fig. 6 shows the cumulative distribution function of transit time,
for various combinations of rms eddy speed v’ and parameters «,
computed by simulating several thousand transits. Each curve
shows the fraction of vehicles making transit in a time less than
the abscissa value. These curves demonstrate that when u'/q>1,
the steering rule 0p is prone to trapping and long transit times. A
small increase of o to 10~> dramatically speeds transit under these
conditions and a further increase to « = 0.1 increases mean transit
speed and reduces the fraction of very slow transits even further.

For transit outside the approach-to-destination phase, the
generalized steering algorithm (14b) with a small but nonzero
value for o outperforms the straight-to-the-destination steering
rule 0p under all conditions examined. When v/, g<O(1), the
effect of o is small because trapping is less serious. But when
u'/q>0(1), and particularly when u'/q is also greater than unity,
a nonzero « leads to heading across the current when forward
progress is slow and, on average, this substantially speeds transit.
Within an eddy scale of the destination, the rule 0p corresponding
to o« = 0 is safer because it minimizes the chance of being swept
past the destination. Because avoiding trapping is the main goal,
the shape of the tanh function used to blend 6c and 6p and use of
/U in its argument are not critical. The simple rule of switching
from Op to Oc when the U is less than some small cutoff works
almost as well.

4. Routing strategies for achieving mapping skill

Gliders are, of course, intended to measure the ocean. Using a
glider or two to maintain time series stations or make repeated
sections does not pose any new problems in sampling. But as
glider use expands to sustained collaborative sampling by fleets of
gliders, it becomes increasingly important to maximize the
information these fleets provide and to minimize the human

attention required to maintain effective sampling arrays. Here we
examine automatic algorithms for routing gliders to maximize
mapping skill in sustained arrays.

4.1. What makes a good mapping array?

Design of data-adaptive sampling arrays involves several
aspects: [A] use of available data and models to define sampling
objectives and performance metrics; [B] use of vehicle perfor-
mance to estimate the range of achievable sampling arrays; [C]
evaluation of performance metrics to determine how well
achievable arrays meet the objectives; and [D] continual updating
of the planned array as new information is gained. The most
sophisticated implementation of data-adaptive sampling is for
energy-containing scales in the atmosphere, where large lateral
scales and proliferated observations make sampling dense, air-
craft make it feasible to sample at planned locations and times,
and skillful numerical models provide both analysis objectives
and metrics for “targeting” observations. Because of these
characteristics, the meteorological emphasis has been on methods
of determining which additional observations will have the
greatest impact on model forecasts (combining [A] and [C]). These
methods include the model adjoint (Bergot and Doerenbecher,
2002), model singular vectors (Buizza and Montani, 1999),
and the ensemble transform Kalman filter (Bishop et al., 2001;
Majumdar et al.,, 2002). All these approaches are dependent
on a notional linearization of the model and are successful
because atmospheric observations are dense enough to make the
models skillful. A focus on aircraft and satellites has made
consideration of array achievability ([B]) and updating ([D])
secondary in importance.

In contrast, in oceans, scales are as short as 15 km and 2 days
(Ramp et al., 2008) and subsurface observations are even more
logistically difficult than atmospheric sampling. Consequently,
oceans are usually too sparsely sampled to accurately initialize or
verify numerical models so that analysis objectives for adaptive
ocean sampling are often broader and less model oriented than in
the atmosphere. For example, in the AOSN-II effort (Curtin and
Bellingham, 2008), data were intended both to be assimilated by
models and to directly characterize the energetic patterns and
processes of variability. Sustained AOSN-II observations mainly
employed repeated sampling over preplanned arrays, but the
associated dialogue between modelers and observers made it
clear that data-adaptive sampling was important to this kind of
effort and that gliders could potentially meet that need.

Relative to meteorology, the slow speed of underwater gliders
fundamentally changes the balance between the four aspects of
adaptive sampling listed above. It makes achieving a planned
sampling array ([B] above) as challenging as planning the array,
and it makes continual updating ([D]) of both sampling targets
and their achievability essential. Leonard et al. (2007) provide
practical approaches for controlling gliders in the face of
unpredictably changing ocean currents. Lermusiaux (2007) de-
scribes two efforts at adaptive sampling in AOSN-II that directly
involve models but circumvent the problem of achieving the
planned sampling array when unpredictable aspects of the ocean
significantly affect the sampling vehicle and/or the places where
observations will be of greatest benefit. That is the topic here.

For our focus on maintaining sampling arrays in the face of
unpredictable ocean variability and currents, objective mapping
(Bretherton et al., 1975) provides a good model-independent
measure of sampling power. On a depth horizon, let r combine
position X and time t, w(r) be the field of interest, and
d, = w(r,)te, be an observation, where ¢ is sampling error from
small-scale variability not included in w. The space-time
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covariance of w is ((ry, 1) and Dy, = C(rp, ')+ €ném > is the data
covariance. The objective analysis estimate W of w is the linear
combination of data that minimizes the mean-square error
S (W —w)?) and its skill (mean-square-error reduction) is

N
S(r,N) = > C(x, 1), C(X, ). (15)

Given ways to find C and D, it is straightforward to calculate the
skill S for any sampling array (the collection of r;,).

It is worth emphasizing how vehicle speed impacts mapping.
From (15), the two criteria for a useful set of observations are:
(a) each datum should be well correlated with w in C and (b) the
correlation D,,,, between different data should be small so they are
far from redundant. If the space and time scales are L and T,
respectively, over an O(T) interval a time series adds little
more to skill than a single observation. A vehicle sampling over
a distance of O(L) also gathers the equivalent of another
uncorrelated observation so that over an interval of O(T) a vehicle
moving at the speed U gathers the equivalent of UT/L uncorrelated
observations. If the operational impact of speed on vehicle
endurance is neglected, speed increases the utility of a sampling
platform. We do not consider slowing gliders as a way to improve
mapping.

4.2. General strategies for mapping

Within the context of field studies like AOSN-II, our goal is to
sustain surveillance over a specified area containing several
energetic features for a period of several feature time scales. Our
first approach was to search directly for the achievable array that
maximizes mapping skill integrated over the time and area of
interest. Trial glider trajectories were computed through specific
velocity fields and the position/times of glider samples used to
compute from (15) the mapping skill. A quasi-exhaustive search
was used to select new tracks to increase the space-time
integrated skill. Practicality motivated simplifying the candidate
paths in order to reduce the number of degrees of freedom
in the search. In one method, a grid was established and the
gliders were made to move along rectilinear lines between the
grid points. In another, vehicles were limited to a number of
specific headings separated by several degrees. The results from
the two simplifications applied to arrays of 5-10 vehicles were the
same:

(1) Over periods comparable to the time it takes a vehicle to cross
the region, “optimal” trajectories were sensible (but more
complex than anticipated), well spaced, and gave mapping
skills greater than would be obtained from an equal number of
time series.

(2) For longer time periods the search rapidly becomes compu-
tationally exhausting. For example, if the path of a single
glider consists of M segments with heading resolved to 10°, an
exhaustive search involves 36 (over 10*' for M =20)
evaluations of mapping skill.

(3) Over long time periods the optimal trajectories were extre-
mely complex, irregular, and spread seemingly at random
across the area of interest. If the observations within one
eddy time scale had been dense, this would not matter
because interpolation would be accurate and the field known
well everywhere. Sparse data of this type also would be
useful as input for objective mapping, model assimilation, or
other indirect analyses. But when the sampling is globally
sparse, it would, for example, be impossible to separate time
and space variability, identify time or space scales, or define
characteristic energetic patterns directly from these data the

way one could from time series stations or well-sampled
transects.

The third finding motivates a metric for good arrays not
previously emphasized. Unless measurements are globally dense
or are intended only as input for sophisticated data assimilation
schemes, it is desirable that, in addition to covering the region of
interest, sampling should be dense enough in time and space at
some places that temporal and spatial changes are not confused
so that the data can be interpreted directly. In many cases
repeated straight paths will be the easiest to interpret.

Additionally, the third finding has important consequences for
the definition of good arrays in terms of achievability. Optimal
solutions for the space-time mapping skill necessarily determine
position-time trajectories for all gliders. Along complex irregular
trajectories, the optimal relative glider positions will vary in a
complex way. In the presence of currents, gliders will not be able
to track trajectories perfectly. Even if they are steered close to the
desired path, they will not also be able to match the prescribed
timing of their motion along the path. In fact, if the gliders are
well distributed, some may be aided by the currents and some
hindered by the currents. Feedback can be used to try to correct
for errors in relative positions, but this will become an intractable
problem in the case of complex, irregular trajectories. As a result,
in field sampling, performance may deviate significantly from the
optimal.

Because achieving high temporal and spatial density of
observations requires concentrating globally sparse observations
on relatively simple repeated paths, and because simple paths
allow systematic approaches to coordinated tracking control, we
have investigated a general approach to coordinated adaptive
glider sampling arrays that involves three steps:

(1) Using objective mapping as a guide for density and coverage, a
relatively dense network of sampling paths covering the area
of interest is defined.

(2) Based on new sampling objectives, “ideal paths” are periodi-

cally selected from the network of paths to (a) provide

necessary mapping skill under predicted or climatological
currents and (b) be simple enough that the results can be
analyzed directly.

By suitable control, multiple gliders are steered to stay near

the ideal paths while maintaining spacing and speed so that

sampling skill is maintained. Staying on the ideal path may be
impossible if the current is strong and may degrade mapping
skill if it reduces vehicle speed significantly.

—
w
—

Leonard et al. (2007) describe a similar approach where in step
(2) the ideal paths also define the ideal relative positions along
those paths that maximize mapping skill and step (3) is addressed
with a control algorithm that keeps gliders close to ideal paths
while maintaining the prescribed inter-vehicle spacing. Here we
examine instead control of vehicles using direct feedback of
mapping quality.

A suitable metric for mapping quality over the collection of
ideal paths x = p(4) at time t is the path-integrated skill

S(E,N) = / /. S[p(), £, N]
N
= > Dy [ dACIPU i, TP o (16)

where there are N observations and the integral extends over all
the ideal paths. Maximizing X involves a balance between keeping
vehicles close to the ideal path where skill is measured, keeping
them well spaced, and maintaining vehicle speed. For a single
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Fig. 7. (A) Integrated mapping skill X for a long, straight ideal path and a vehicle
moving at speed q along that path. The field’s covariance is exponential with
length and time scales L and T, respectively, and samples are taken every t = T/15.
Curves from top to bottom correspond to noise-to-signal ratio N = 0, 0.2, 0.5, and
1.0. Skill increases with speed and decreases with N. (B) Integrated skill X on a long
straight path for a vehicle moving at speed q = L/T on a straight sampling path
displaced by dogr from the parallel scoring (ideal) path. L and T are the scales of the
mapped field’s exponential space and time covariance, respectively. Curves from
top to bottom correspond to N = 0, 0.5, 1.0, and 1.5. Skill decreases as N increases.

vehicle moving along a long straight ideal path far from its
ends, mapping skill is focused near and somewhat behind the
vehicle’s instantaneous position and decays away from that point.
Fig. 7 describes the effect of vehicle speed, noise, and off-path
distance on the integrated skill along a single straight ideal path
when the signal covariance is C(Xy,t1,X2,t5) = <a'?>exp(—|X;_Xs|/
L—|t;—t,|/T). Measurement noise variance is N<a?)», and

measurements are made at time interval t = T/15. Fig. 7A shows
how rapidly skill increases with vehicle speed q and decreases
with noise ratio N. Increased speed provides more uncorrelated
data. For comparison, Fig. 7B shows the integrated skill for
straight vehicle tracks that are displaced from the ideal path,
where skill is computed. Not surprisingly, skill decays on the scale
L. While a straight ideal path is oversimplified, Fig. 7 does describe
the characteristic scales involved in the balance between main-
taining a vehicle’s speed and keeping it near the desired track.

4.3. Steering by instantaneous mapping skill

To maximize the time integral of X over the period of interest
by adjusting complete vehicle trajectories over this period would
be a demanding computation needing to be repeated whenever
new information comes in. Here we explore a much simpler
approach for routing a collection of M gliders, each following its
own ideal track and asynchronously producing measurements on
the interval 7. The principle is simple: each time a vehicle is ready
for new instructions it is steered toward the position where its
next measurement will add the most to the path-integrated skill ~
of (16), without regard to future observations made by other
vehicles.

Specifically, when glider A surfaces at position, time Xy, t, the
array has made N observations and the integrated skill is X(t,N).
Let S(t +1,N + 1) be the skill at time t+t obtained from those N
data plus that from glider A at its next position Xy.;. V2, the
gradient of hypothetical skill £(t + 7, N + 1) with respect to the
glider’s next position Xy.1, is computed by finite differences of =
between positions around a likely Xn.;. This gradient and the
distance that the glider can make good over time t along various
courses define the heading that maximizes the future skill
3(t+1,N+1). In the absence of currents, VX directs a single
vehicle toward its ideal track but the distance made good over
interval 7 in the face of currents and the spacing from other
vehicles can drive it off the ideal path to maintain speed and/or
spacing.

Behavior of this basic procedure is easily adjusted by
transparent modifications. One modification can be desirable
when the ideal track has segments that intersect at angles more
acute than about 120°. Experimentation shows that trajectories
from the unmodified procedure often reverse direction near such
intersections. The reason is simple. On a straight path, a vehicle is
driven to continue its motion down the ideal path because this
increases skill by making the next measurement poorly correlated
with previous observations. A sharp turn in the ideal path
decreases the rate at which motion down the path decorrelates
new data from old, V5 becomes weak, and a reversed course may
result. This doubling back does not decrease instantaneous path-
integrated skill, but if it leads to vehicles approaching each other
this can be deleterious to future skill or to interpretability. Skill
will be lost when oppositely directed vehicles later come close
and their measurements become partially redundant. When
vehicles on a path are reflecting off each other in the presence
of currents, their motion quickly becomes chaotic and this could
affect interpretability. In other circumstances, particularly when
the path of interest is not closed, doubling back may be a desirable
feature.

The tendency for vehicles to turn back at vertices can be
reduced by adding a “drift bias” vector b pointing toward the next
intersection to the gradient V2 that determines how the vehicle
will move. When this drift bias is adjusted to be much less than a
typical skill gradient but large enough to overcome weak reverse
gradients near the track vertices, vehicles tend to keep moving
forward. This correction can be used to avoid future loss of skill or
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Fig. 8. Path and mapping skill of a vehicle steering to maximize ideal-path skill £ on the rectangular path shown. All variables are normalized by the space and time scales L
and T, respectively, of the mapped field’s exponential covariance. Vehicle speed is ¢ = 2.5 and a current with u = 1.5 flows from left to right. Each arrowhead tip marks the
position of a sample taken at fixed intervals of T = 0.05 with noise/signal ratio N = 0.2. Light, medium, and dark oval contours are the 0.4, 0.6, and 0.8 skill contours at the
time of the last position in each panel. Panel (2) follows (1) immediately. Note how the vehicles are diverted down current at the start of each cross-stream, giving up
closeness to the ideal path to maintain speed and thus optimize mapping ability.
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Fig. 9. Illustration of how the skill-gradient procedure maintains vehicle separation. Two vehicles (black and red) are on the square ideal track shown and their drift biases
encourage counterclockwise motion. Red has speed q = 2.5 while black’s g = 3 causes it to overtake red. The current, mapping-skill contours for the combined array, and
other parameters are as in Fig. 8. Sequentially numbered panels follow each other immediately. In (1), red is slowed by the current, which bunching. In (2), separation
changes little as black approaches the upper-left corner. In (3), black reverses course at the corner to avoid bunching that would degrade mapping skill. In (4), black returns
to its initial direction of motion now well separated from red.
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to increase the ability to directly analyze the data, but only at
some loss of instantaneous skill.

Experimentation shows that the tracks that maximize 3 differ
from tracks of vehicles controlled to stay near the ideal track
mainly when the cross-track current is substantial. Vehicles
controlled to stay on the ideal track tend to point into the current
to stay on the path and consequently slow down. By trading off-
track position for speed, skill can be increased. Fig. 8 shows the
track from a vehicle on a rectangular ideal track in the face of a
current with speed uy = 0.6q. On each cross-stream leg the vehicle
diverts off the ideal-path down current to maintain speed and
mapping skill at the expense of cross-track distance. If current-
induced departures from the ideal path are judged as too large, skill
can be sacrificed to keep the trajectory closer to the ideal track
by directing gliders along V(5 — y€2) + b, where y is a positive
adjustable weight, ¢, is the cross-track displacement, and b the
drift bias. Increasing y draws the vehicle toward the ideal track.

The skill-gradient procedure coordinates multiple vehicles to
maintain spacing because when two vehicles approach each other,
skill decreases as observations become redundant. Eventually, one
vehicle will move off the track or reverse course in order to
increase separation and, thereby, increase mapping skill. This is
shown in Fig. 9, where two vehicles with differing speeds circulate
around a path and bunch up when one overtakes the other. The
trailing vehicle reverses course twice in order to preserve spacing
before continuing pursuit.

Fig. 10 shows how the local skill-gradient procedure coordi-
nates four gliders assigned to adjacent rectangular ideal tracks.
The drift biases encourage opposite rotation on the two adjacent
paths and the symmetric initial positions x = +0.5, y = +1
encourage near collisions as vehicles approach each other on the
common path segment. The figure shows how the skill-gradient
procedure leads to course reversals that avoid or rapidly repair
near collisions and lead to coordination that maintains separation
along both ideal paths.

Virtues of the local-skill-gradient method of coordinating an
array are that it does not require a long-range forecast of currents,
it is conceptually simple and easy to implement, and it
coordinates multiple vehicles on arrays of arbitrary shape.
Changing the array configuration in order to adapt to new
information or goals requires only defining new ideal tracks and
perhaps choosing new bias vectors. The most accurate map is
obtained with zero bias and zero off-track penalty, but these
parameters can be used to simplify behavior and consequently
make the data easier to interpret. It is necessary only to forecast
the advecting currents over the next time step the way any
steering algorithm would. The procedure coordinates arrays of
multiple vehicles to avoid vehicle bunching and balances the
increases in mapping skill coming from proximity to the ideal
track and good vehicle speed. Because the skill gradient estab-
lishes coordination, the inter-vehicle spacing is irregular when
separations are much greater than the correlation scale of mapped
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Fig. 10. [llustration of array coordination by the skill-gradient procedure. Four vehicles begin at x = +0.5, y = + 1. Their drift biases tend to keep black and blue on the left
rectangle in counterclockwise motion while clockwise motion of red and green is encouraged on the right rectangle. Vehicles move with q = 2.5. Everything else is as in
Figs. 8 and 9. In panel (1), proximity to black causes green to reverses its normal direction to maintain spacing. In (2), red and blue continue symmetrically while green
returns to its preferred sense of rotation, now following black. In (3), black and green continue their default motion while red and blue nearly collide, after which red
reverses motion to gain separation. In (4), red reverses direction again to follow blue at an acceptable separation so that all vehicles follow their default motion without

excessive bunching.
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field. While the gaps that develop this way do not affect the track-
integral estimation skill X, a control procedure such as that
described by Leonard et al. (2007), which is based on physical
separation, rather than directly on mapping skill, is more effective
in enforcing uniform spacing of widely separated vehicles.

The intrinsic weakness of the skill-gradient procedure is
reliance on instantaneous skill. Like any local optimization, it
can miss “global” optima that maximize the time integral of skill
while maximizing “local” instantaneous skill at each time.
Further, because skill varies on the correlation scale, the
procedure becomes ineffective if strong currents push vehicles
far from their ideal tracks.

There are also practical limitations. Evaluating the skill integral
3 and its gradients can be slow, but, because computing the
gradient of £ involves arrays that differ at only one point, the
technique in Appendix A dramatically speeds up calculations.
Communication can be a problem if currents cannot be accurately
predicted over two dives. The VX that determines the desired
COG and the steering to achieve that track both depend on
predicting currents over the next dive, and ideally this prediction
would be based on the latest position information. This requires a
glider to wait on the surface after reporting its position until its
optimal heading is computed at a central location where all glider
positions are known. The surface is both dangerous and where
currents are strongest, so extending the surface interval for
calculation and communication delays is undesirable. If currents
can be well predicted over two dives, the delay can be minimized
by computing the steering instruction before a glider surfaces. But
in cases like AOSN-II, where internal tides and fronts decorrelate
velocity in a fraction of a day, there can be a big penalty for basing
predictions on currents measured not over the last dive but over
the one before that. However, AOSN-II gliders were coordinated to
maintain triangular formations using automated steering com-
puted with current predictions two dives old (Fiorelli et al., 2006).
Likewise, in the Adaptive Sampling and Prediction (ASAP) 2006
Monterey Bay field experiment, gliders were coordinated onto
ideal sampling tracks using the automated control algorithm of
Leonard et al. (2007) also with current predictions two dives old.

The V2 procedure has not been field tested and we have only
simulations like those in Figs. 8-10 to motivate further investiga-
tion of the utility, robustness, and tuning of array coordination
procedures based directly on mapping performance. A desirable
extension would incorporate imperfect but still useful forecasts of
currents into the steering rule. Of course, the extension to
performance metrics other than the ideal-path mapping skill »
is straightforward.

5. Local steering for mapping

The trajectory ray equation of Section 2 for fast routing
requires accurate knowledge of the global current field while
the skill-gradient procedure for mapping in Section 4 requires
knowing the positions of all gliders in the array. Both methods are
automatic in the sense that the operator makes no steering
decisions and only alters the control algorithm’s parameters.
However, both procedures depend on communicating substantial
information to gliders. Just as the “local” steering procedure for
rapid transit in Section 3 eliminates the need for global current
information, a simpler steering procedure for mapping that
requires less knowledge and communication and allows more
operator intuition may sometimes be useful. Commonly, gliders
select the heading that gives a track toward the next waypoint
if the estimated current is correct. The appropriate heading is
re-evaluated after each new position and current estimate are
obtained. Here we examine an elaboration of this procedure that

maintains mapping skill along ideal paths. In this mode, a glider
uses its own ocean-velocity estimate and navigation to steer close
to its ideal path while the operator controls the steering-
algorithm parameters. Coordination of multiple vehicles can be
achieved only by operator adjustments like moving waypoints to
maintain vehicle spacing.

In this method of maintaining mapping skill, an off-track glider
steers back toward its ideal track, but slowly enough that speed
and, hence, mapping ability are not seriously impeded. Let x¢ be
the point on the ideal path closest to the vehicle and xs be the
position farther down the path by the distance A. An off-track
glider takes the heading that would, if estimated currents were
accurate, give a track toward the “steering point” Xs. Whenever a
glider gets another fix and velocity estimate, its position along
the track, Xc, is recomputed and advanced by A to find a new
steering point Xs and the vehicle takes the heading 6 toward Xs
given by (1).

A desirable elaboration of this procedure helps keep strong
cross-track currents from bringing the vehicle to a stop while
heading into the flow to get back on track, much the way speed is
preserved in (14). This is done by limiting the difference between
heading 6 and desired COG ¢ according to

10— dI<p, (17)

where f is an adjustable constant.

Typical mapping performance of local steering depends on the
scales of the mapped field and eddy velocity, on the rms advecting
velocity, vehicle speed, and the parameters A and f. The trade-offs
involved in selecting the parameters are here described using the
ideal-path-integrated mapping skill 2~ of (16) on a long, straight
ideal track. The path-average skill <~ > was averaged over many
simulations in which vehicles steered through pseudo-random
velocity fields using steering points. Skill was based on isotropic,
homogeneous mapped-field and eddy-streamfunction covar-
iances that were Gaussian in space lag and exponential in time
separation with both fields having the same space and time scales
L and T. Velocity was computed from a streamfunction expressed
as a Fourier series with appropriate wavenumber spectra and
pseudo-random normally distributed amplitudes that evolved as
first-order Markov processes, giving the covariance exponential
temporal variation.

The parameters governing (%) are vehicle speed g and the
rms speed u of the random velocity field. Both are here
nondimensionalized by the eddy time and space scales. Fig. 11
shows how, for fixed A and f3, as the eddy velocity v’ increases the
rms off-track distance y’ increases and the average vehicle velocity
toward the destination decreases. Both of these trends reduce
(X as u increases. The integrated skill begins declining
significantly as v’ exceeds 0.5q and is approximately halved when
u’ reaches q.

The optimal steering length A and off-course limit # depend on
vehicle speed q and rms eddy velocity u. Dependence of
performance on the steering distance A is relatively simple. As
A increases, so does the typical off-track distance (because the
vehicle is less strongly controlled onto the track) but net velocity
to the destination increases (as the vehicle spends less of its
velocity getting back on track). Fig. 12 shows how mapping skill,
which is oppositely influenced by these tendencies, varies with A
for a collection of vehicle speeds and rms eddy velocities. When
u’'>q, integrated skill depends primarily on the ratio v’/q, not the
speeds themselves, and strong control by A<1 gives the best
performance. When v’ <q, the steering distance has little effect on
skill although A <1 is still the best, and performance depends on
both v’ and g individually, not just through u’'/q.

The parameter f§ of (17) keeps vehicles from heading into
cross-track flows and using all their forward velocity trying to get
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Fig. 11. Average along-track velocity (long dash), off-track distance y’ (divided by 10, short dashes), and integrated mapping skill <2 (solid) for local steering on a long,
straight ideal path as a function of rms eddy velocity u’ for three vehicle speeds, g, as color coded in the legend. The steering distance is 4 = 1 and the off-course limit is
f = 60°. Note how rms off-track distance y’ increases with v’ while net velocity and integrated skill decrease. Skill is halved from its no-eddy value near v’ = q.
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Fig. 12. Average integrated skill (2 )» as a function of steering distance A from I

various combinations of vehicle speed and rms eddy velocity. The curves labeled g/

u’' = 0.5 are for (v, q) pairs (1,0.5), (2,1), and (4, 2). The curves labeled q/u’ = 1 are
for pairs (0.5,0.5), (1,1), and (2,2). When u’>gq, off-track displacements are
significant, skill is significantly decreased, and A<1 reduces the degradation.
When g>u’ there is a small benefit to keeping A<1.

Fig. 13. Dependence of the average integrated mapping skill <X> on the off-
course limit 8. For each v/, ¢ combination, curves are shown for A = 0.5 and A = 2.
For u’ > g, limiting the heading to significantly less than 90° from the ideal track

improves performance. But for u’ <g, limiting the off-course heading is deleterious.
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close to the ideal path. Dependence of performance on f is shown
in Fig. 13. For v’ >q the behavior is as expected; f significantly
affects skill and f<60° improves performance because maintain-
ing speed is dominant. When 1’ < g, the loss of control required to
stay near the ideal track caused by small f§ is more important than
the improvement in forward speed and f~90° is optimal.

6. Conclusion

We have addressed the challenge that the slow operating
speed poses to gliders accomplishing two tasks: (a) transit from
point to point as required for operations and (b) sampling a region
over an extended period. Current velocities are often comparable
to vehicle velocities and make both tasks difficult. The problem of
routing for rapid transit through a known frozen velocity field
admits the simple solution discussed in Section 2. This procedure,
which is similar to ray tracing for nondispersive waves, provides a
way to compute optimal transit routes under these restrictions. It
also provides a simple steering rule: in a strong adverse current,
steer to rapidly cross the current while making up ground where the
currents are weak or favorable.

Because current fields are usually unsteady and imperfectly
known, a rapid-transit procedure is needed that accounts for time
variability and limited knowledge of the velocity field. We tested
such a procedure, based on the simple steering rule, in which the
vehicle heads directly to the destination when good progress is
possible and heads across the current when progress is slow. This
procedure is particularly valuable when the velocity field evolves
slowly (when a vehicle can cross a typical eddy in a time short
compared to the temporal eddy scale). In this case, vehicles trying
to head directly to the destination are easily trapped by strong
adverse currents until time variability leads to their release.
A simple steering algorithm that directs vehicles across the
current when forward progress is slow dramatically reduces
trapping and decreases typical transit times.

Routing gliders to maximize sampling power is more compli-
cated. First, a performance metric is needed. Rather than one of
the sophisticated model-based criteria used to target observations
in meteorology, we used objective mapping error to score
mapping accuracy, although this fails to account for the added
information that can be extracted from dynamical laws by data-
assimilating models. Second, there is an intrinsic tension between
maximizing the accuracy metric and retaining an observational
array that allows direct analysis of the data without a complex
analysis method like objective mapping or data-assimilating
models. When observations are too sparse to support accurate
mapping everywhere, directly maximizing global mapping accu-
racy leads to arrays that are irregular and lack the dense sampling
required to, for example, separate spatial variability from
temporal. This tension led to an approach that begins from a set
of “ideal tracks” whose occupation at a normal operating speed
provides good sampling coverage and, at the same time, provides
data that can be interpreted directly. In real time, a subset of these
tracks is selected to meet an adaptive sampling requirement and
vehicles are operated, in the face of currents, on this subset of
tracks.

Scoring performance with the mapping skill integrated over all
ideal paths encourages vehicles to stay close to these paths while
maintaining speed and spacing, all of which increase mapping
skill on the ideal tracks. Two approaches were taken to
maintaining path-integrated skill. In the more elaborate approach,
when a glider surfaces it is steered in the direction that adds the
most to instantaneous network-integrated skill. This requires
good communication and speedy steering-instruction calculation,
but automatically coordinates a fleet to avoid the bunching that

degrades mapping while keeping the vehicles close to the ideal
path and moving forward. This procedure, which is based on
improving instantaneous skill, is vastly simpler but theoretically
performs worse than a procedure that optimizes the sampling
path over the full time period of interest, although achievability of
this optimal sampling path is questionable because of the
complexity of trajectories and the limited accuracy of current
forecasts needed to direct gliders in strong currents.

We also tested a simpler procedure of controlling vehicles for
sampling that uses a simple first-order control loop based on a
“steering distance” A over which each vehicle tries to get back on
its ideal track. By adjusting A an operator can alter the balance
between off-track distance and forward speed and maximize
mapping skill or favor the characteristic that is most important in
a particular circumstance. The results of simulating sampling
pseudo-random eddy fields suggest choosing A to be equal to, or
less than, an eddy length scale.

While the various techniques discussed help in dealing with
the slow speed of gliders, no routing procedure can keep
performance from being significantly degraded when the magni-
tude of perturbing currents becomes comparable to the vehicle
speed. This suggests that the optimal long-duration autonomous
underwater vehicle (AUV) should operate at slow speeds to
optimize endurance but should be able to operate temporarily at
significantly higher speeds when currents are strong.

Perhaps most conspicuously missing from the methods
discussed here is a way of making good use of incomplete and
inaccurate but still useful information about currents. Just like
advancing gliders in a model simulation, the rapid-transit ray-
tracing procedure requires perfect knowledge of the current field
while all the other procedures depend only on the instantaneous
currents at the locations of vehicles. What is needed is a way of
retaining some of the flexibility and noise tolerance of the local-
steering procedures while making use of whatever global
information on currents is available. It is challenging to effectively
use inaccurate current predictions because glider trajectories are
so sensitively and nonlinearly dependent on small errors (indeed
the trajectory equations are unstable almost everywhere).
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Appendix A. Efficient calculation of mapping skill increment

The array coordination procedure of Section 4.3 based on
mapping skill requires extensive evaluation of the skill of different
potential sampling arrays. We show here a procedure to
dramatically reduce the computations required to invert large
data-data covariances needed to evaluate the skill gradient as
required.

We begin with the evaluation of skill after the previous step
(the Nth) using (15), which requires the inverse of the order-N
covariance with elements <{d,d,,>. Also needed is the skill after
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the next datum dy.; is added. The minimum-square-error linear
estimate of this datum (repeated lower-case indices indicate
summing) is

&N+1 = dnDyp (A1) (A1)

Subtracting the part of dy.; determined by N data gives the
“innovation” of this datum:

d = dys1 — duDp ) (dindys ). (A2)

This is uncorrelated with all other data so that the least-expected-
square-error estimate of w from N+1 data is the estimate based on
N data plus the estimate based on d':

W = d,D;,} (dnw) + d (dw)/(d?). (A3)
The skill from N+1 data is
Q = (Wdn) Dy (dmw) + (wd')2 /(d), (A4)

where the first term on the rhs is recognized from (15) as the skill
from the first N data and the second term is the skill added by
datum N+1. This added skill Q' is

o wd)? _ (wdni1) — (Wdn) Dpp (1))
(d?) (dRy1) = (dnsadn) Dy (dmdi 1))

Evaluating V5 involves the skill from a minimum of three
additional potential points for dys; after D, ~' has been found
for N data. This is much more rapidly evaluated from (A.5) than by
inverting the order N+1 covariance, particularly if the repeated
appearance of the vector Dy, ! (dmdns1 > in (A.5) is noted.

(A.5)
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