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Abstract— Coexistence and interaction of multiple strategies
in a large population of individuals can be observed in a variety
of natural and engineered settings. In this context, replicator-
mutator dynamics provide an efficient tool to model and analyze
the evolution of the fractions of the total population commit-
ted to different strategies. Although the literature addresses
existence and stability of equilibrium points and limit cycles
of these dynamics, linearity in fitness functions has typically
been assumed. We generalize these dynamics by introducing a
nonlinear fitness function, and we show that the replicator-
mutator dynamics for two competing strategies exhibit a
quintic pitchfork bifurcation. Then, by designing slow-time-
scale feedback dynamics to control the bifurcation parameter
(mutation rate), we show that the closed-loop dynamics can
exhibit oscillations in the evolution of population fractions. Fi-
nally, we introduce an ultraslow-time-scale dynamics to control
the associated unfolding parameter (asymmetry in the payoff
structure), and demonstrate an even richer class of behaviors.

Index Terms— Nonlinear Systems, Evolutionary Dynamics,
Bifurcation

I. INTRODUCTION

Evolutionary dynamics provide a set of powerful tools
to model and analyze how the fractions of a population
committed to different strategies evolve over time. These
dynamics have been used to study evolution of language
grammars [1]–[3], population genetics in biology [4], opinion
formation in social-networks [5], [6], decision-making in
multi-agent systems [7], [8], signaling systems [9], evolu-
tionary graph theory [10], [11] and multi-agent systems [12].
The replicator-mutator dynamics model this evolution as a
function of replication (commitment to strategies with higher
rewards/pay-offs) and mutation (tendency for spontaneous
switch among strategies). Depending on the rate of mutation
and strategy interaction network, steady-state system-level
behavior can be classified into three types: (i) dominance
of a single strategy, (ii) coexistence of a few strategies, and
(iii) the mixed equilibrium corresponding to equal fractions
across strategies, also known as collapse of dominance. High
mutation rate leads to collapse of dominance, whereas low
mutation rate results in a single dominant strategy.

This model has been extensively studied in the literature
for various numbersof strategies, distinct pay-off structures
and strategy interaction networks [13]–[16]. Most of the
studies in the literature have focused on the analysis of the
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stable equilibria of the replicator-mutator dynamics when
there is assumed to be a symmetry in fitness functions
associated with the strategies. However, [15], [16] explored
asymmetry in fitness functions, and proved that the dynamics
exhibit Hopf bifurcations and limit cycles for a circulant
interaction network of N ≥ 3 strategies.

In our previous work [17], we used replicator-mutator
dynamics to investigate the mechanisms of social decision-
making for a structured improvisational dance (with choreog-
rapher R. Lazier and composer D. Trueman from Princeton
University) in which a group of dancers make a sequence
of compositional choices among pre-defined dance motion
primitives. The replicator-mutator dynamics were used to
model the evolution of different fractions within a group of
dancers committed to the different strategies (dance motion
primitives) as a function of replication (commitment to
motion primitives with higher fitness) and mutation (spon-
taneous switch between the primitives). We argued that the
replicator-mutator dynamics provide a framework for analyz-
ing dancers’ decision-making strategies, and we incorporated
a feedback mechanism for tuning the rate of mutation driven
by the dancers’ observations of the evolving subpopulation
fractions. This yielded a feedback controlled bifurcation
in the model dynamics which predict the persistence of
strategies in the behavior of the group of dancers.

Further collaborations with Lazier, Trueman, and the
dancers revealed that, during the structured improvisational
dance, subgroup of dancers make decisions based on an artis-
tic explore-exploit tradeoff, which is described by oscilla-
tions between dominance of a single strategy/coexistence of
multiple strategies (exploitation) and collapse of dominance
(exploration) in the steady-state behavior of the replicator-
mutator model [18]. To capture this in the model in a
systematic way, we introduced a nonlinear fitness function
that enriches the steady-state behavior of the dynamics. We
showed through simulations that our framework can emulate
the oscillatory behavior in dance even in the case of only
two interacting strategies at a time. The feedback of the
bifurcation parameter was then used to study the duration
of explore-exploit phases in the dance improvisation.

In the present study, we extend the model and analy-
sis of feedback controlled bifurcations [19] of replicator-
mutator dynamics with a generalized1 nonlinear payoff. In
Section II we first introduce our notation, the model and
the tools we use from singularity theory [20]. In Section III

1The term generalized has been used to imply that an appropriate choice
of parameters for the nonlinear fitness will retrieve the linear fitness.
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we incorporate the proposed nonlinear payoff structure in
the well known replicator-mutator model. In Section IV,
we prove conditions under which there exists a symmetric
quintic bifurcation (a pitchfork bifurcation with a quintic,
instead of cubic, stabilizing term) and a symmetric subcritical
pitchfork bifurcation in its unfolding. The latter provides
a hysteresis that we leverage in Section V by designing
feedback dynamics for the bifurcation parameter to produce
oscillations in the dynamics. We explore further ways to
construct dynamics using bifurcation theory by explore the
non-symmetric unfolding of the subcritical pitchfork in Sec-
tion VI and introducing feedback dynnamics in an unfolding
parameter in Section VII. We conclude in Section VIII.

II. NOTATION AND BACKGROUND

Singularity theory provides a useful mathematical tool
for investigating bifurcation in nonlinear dynamical systems
[21]. In this section we provide a brief review of relevant
results from singularity theory. Interested readers can refer
to [20] for further details.

A scalar bifurcation problem

ψ(x,λ) = 0 (1)

is defined by the set of scalar solutions x of (1) as the
bifurcation parameter λ ∈ R is varied. In this setting, λ
usually represents some relevant control parameter, whereas
the variable x denotes the state of the underlying system.
The zero set {(x,λ)∣ψ(x,λ) = 0} is called the bifurcation
diagram of (1), and a point (x∗, λ∗) on the bifurcation
diagram is called a bifurcation point if any neighborhood of
λ∗ contains a parameter value λ̃ such that the dynamics at λ̃
are topologically inequivalent from that at λ∗. For instance,
the number or stability of equilibria, or periodic orbits of ψ
might change with perturbations of λ from λ∗.

It directly follows from the implicit function theorem that
a necessary condition for (x∗, λ∗) to be a bifurcation point is
that ψx(x∗, λ∗) = 0, where ψx denotes the partial derivative
of ψ with respect to x. In addition, if ψ satisfies

ψxx(x∗, λ∗) = ψλ(x∗, λ∗) = 0

and, ψxxx(x∗, λ∗) > 0, ψλx(x∗, λ∗) < 0,
(2)

then (1) undergoes a pitchfork bifurcation at this point.
At any pitchfork bifurcation point a single zero divides
into three zeros, and it has a normal form of ψ(x,λ) =
x3 − λx. As we will see later in Section IV, we can write
similar conditions (9)-(13) for existence of a quintic pitchfork
bifurcation which has a normal form of ψ(x,λ) = x5 − λx.

Now, by introducing α ∈ Rl, we consider an l-parameter
family of bifurcation problems represented by Ψ(x,λ,α) =
0. Moreover, the restriction that Ψ(x,λ,0) = ψ(x,λ) allows
us to recover the original scalar bifurcation problem as
a special case. In addition, for any smooth perturbation
term εψ̃(x,λ) with sufficiently small ε, there exists some
parameter value α ∈ Rl such that ψ(x,λ) + εψ̃(x,λ) and
Ψ(x,λ,α) are strongly equivalent (i.e. Ψ is obtained from
ψ + εψ̃ via a local diffeomorphism of the form (x,λ) ↦
(X(x,λ),Λ(λ)), and a nonzero function S(x,λ)). Such a Ψ

Fig. 1: Universal unfolding of a pitchfork (�) bifurcation.

is called a l-parameter unfolding of ψ. However, unfolding
of a bifurcation is not unique, and it is possible to obtain
another unfolding Ψ̃(x,λ, β) = 0, β ∈ Rl̃ for the same scalar
bifurcation problem. Ψ will be called a universal unfolding
of ψ if for any other l̃-parameter unfolding Ψ̃ we have
l̃ ≥ l and Ψ is strongly equivalent to Ψ̃. Then, l is called
the codimension of ψ. The family of bifurcation diagrams
associated with a universal unfolding is given by the set
{(x,λ)∣Ψ(x,λ,α) = 0, α ∈ Rl}.

Remark 2.1: For a supercritical pitchfork bifurcation
problem ψ, l = 2, and the associated universal unfolding Ψ is
strongly equivalent to the 2-parameter family of bifurcation
problems given by x3+α2x

2−λx+α1 = 0, α1, α2 ∈ R. Based
on the value of these two unfolding parameters α1 and α2,
the associated bifurcation diagram is strongly equivalent to
one of the persistent bifurcation diagrams of the pitchfork
bifurcation (see Figure 1).

In this paper we use the recognition problem and unfolding
theory for Z2-symmetric quintic bifurcations (−x5 + λx). In
the space of odd functions (Z2 symmetry), the codimension
of the quintic pitchfork is l = 1 [20, Table VI.5.1]. A
normal form of its universal unfolding is −x5 + λx + αx3.
We also recognize and unfold subcritical (x3 +λx) pitchfork
bifurcations.

III. REPLICATOR-MUTATOR DYNAMICS WITH
GENERALIZED FITNESS

We begin by considering a large population of agents
committed to N different strategies, wherein xi ∈ [0,1],
i ∈ {1,2, . . . ,N} represents the fraction of population com-
mitted to the i-th strategy. Furthermore, we define the fitness
fi associated with the strategy-i as

fi =
N

∑
j=1

bijσk,γ(xj) =
N

∑
j=1

bij (
xγj

k(1 − xj)γ + xγj
) , (3)

where bij represents the payoff to an agent using strategy-
i while interacting with agents committed to strategy-j and
B = [bij] ∈ RN×N is the payoff matrix. In the subsequent
analysis, we assume the payoffs to be non-negative (i.e.
bij ≥ 0), and an agent gets the maximum payoff (normalized
to 1) during interaction with those using the same strategy.
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(a) γ Dependence (b) k Dependence

Fig. 2: The influence of γ and k on the fitness function. Left panel:
k is fixed at 0.25. Right panel: γ is fixed at 3.

Hence, bii = 1, and bij ∈ [0,1) for the off-diagonal entries
of B. The Hill-function (i.e. σk,γ) parameters γ and k affect
the nonlinearity in the fitness function (see Figure 2). Note
that the original (linear) nature of the fitness function can be
retrieved by setting k = 1 and γ = 1. We define the average
fitness of the population φ as

φ =
N

∑
i=1
fixi. (4)

Next, we define the mutation rate qij (i.e. the probability
of spontaneous switch from strategy-i to strategy-j) as

qij =
µbij

∑j≠i bij
, and, qii = 1 − µ, (5)

where µ ∈ [0,1] is the overall mutation strength which repre-
sents the probability of error in replication. As ∑Nj=1 qij = 1,
it directly follows that the mutation matrix Q = [qij] is
row stochastic. In this framework, spontaneous switches (i.e.
mutations) are always favored toward strategies with higher
payoffs.

Finally, we define the replicator-mutator dynamics for
this large population committed to N different strategies by
describing the evolution of population fractions xi as

ẋi =
N

∑
j=1

xjfjqji − φxi = gi(x1, x2, . . . , xN), (6)

where gi ∶ RN → R is a function on the N − 1 simplex
∆N−1 = {(x1, . . . , xN) ∈ RN ∣xi ≥ 0,∑Ni=1 xi = 1}. It can be
shown that ∑Ni=1 xi remains constant along any trajectory of
the replicator-mutator dynamics (6). In the sequel we focus
on the interaction between two strategies (i.e. N = 2).

IV. SYMMETRIC QUINTIC PITCHFORK BIFURCATION
AND ITS UNFOLDING FOR A TWO STRATEGY CASE

It has been shown, e.g., [3], [15], that the replicator-
mutator dynamics with N = 2 undergo a supercritical
pitchfork bifurcation (−x3+λx) when the fitness of strategies
is governed by a linear function, which corresponds to setting
k = 1 and γ = 1 in (3), and payoffs are symmetric (i.e. b12 =
b21). Here, we prove the existence of a symmetric quintic
pitchfork (−x5 + λx) in the same dynamics for symmetric
payoffs, small k and large γ.

Since the replicator-mutator dynamics (6) for a two strat-
egy case (N = 2) is restricted to the 1-simplex ∆1, the
associated 2-dimensional dynamics can be represented by
a scalar differential equation. In addition, if we assume the

payoffs to be symmetric, i.e., b11 = b22 = 1 and b12 = b21 =
b ∈ (0,1), the underlying 1-dimensional dynamics can be
expressed as

ẋ1 = g(x1, µ, k, γ, b)

= x1(1 − µ)(σγ,k(x1) + bσγ,k(1 − x1))

+ (1 − x1)µ(bσγ,k(x1) + σγ,k(1 − x1)) − φx1, (7)

where the nonlinear Hill-function is given by (3) and φ is
the average fitness (4).

Fig. 3: Evolution of gx1x1x1 as a function of k.

A. Existence of a Symmetric Quintic Pitchfork Bifurcation

To show the existence of a symmetric quintic pitchfork in
the scalar bifurcation problem

g(x1, µ, k, γ, b) = 0, (8)

we first identify that the 1-dimensional reduced dynamics (7)
is Z2 symmetric with respect to x1 = 0.5, i.e. (7) remains
unchanged under the change of variable x1 ↦ 1 − x1. Then
by leveraging the results from [20, Proposition VI.3.4], we
can conclude that this singularity in (8) has codimension 1,
and hence we can use a scalar parameter for unfolding this
bifurcation problem.

Proposition 4.1: Consider the dynamics (7) with fixed b =
0.04 and γ = 3.0. There exists a k∗ such that the bifurcation
problem at k = k∗, i.e., g(x1, µ, k∗,3.0,0.04) = 0, is strongly
equivalent (in the sense of [20, Definition VI.2.5]) to the
quintic bifurcation problem: (x1−0.5)5+(µ−µ∗)(x1−0.5) =
0, at the mixed equilibrium x1 = 0.5 for some suitable µ∗.

Proof: We use k as an unfolding parameter to verify the
existence of a symmetric quintic pitchfork in the dynamics
(7). Following the recognition problem in [20, Proposition
VI.2.14], we seek µ∗, k∗ that satisfy

g(0.5, µ∗, k∗,3.0,0.04) = 0, (9)
gx1(0.5, µ∗, k∗,3.0,0.04) = 0 (10)
gx1x1x1(0.5, µ∗, k∗,3.0,0.04) = 0, (11)
gx1x1x1x1x1(0.5, µ∗, k∗,3.0,0.04) ≠ 0, (12)

and, gx1µ(0.5, µ∗, k∗,3.0,0.04) ≠ 0. (13)

We first solve (9) in order to express µ∗ as a function of
k∗, and plug this solution into (11) so that gx1x1x1 = 0 can
be represented as a function of k∗. Note that (10) holds true
whenever x1 = 0.5, irrespective of the values of µ∗ and k∗.
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Fig. 4: Bifurcation diagrams of the replicator-mutator dynamics
(6) corresponding to six different values of the k parameter in the
nonlinear fitness function. We have used γ = 3.0 for each of these
bifurcation diagrams. k∗ ≃ 0.257. Solid lines show stable branches,
whereas dashed lines represent unstable branches.

However, solving (11) to obtain a closed form solution for
k∗ is non-trivial. So, we examine the evolution of gx1x1x1 as
a function of k (see Figure 3), and this reveals the presence
of an isolated zero for (11) at k = k∗ ≃ 0.257. We can now
also easily verify that

gx1x1x1x1x1(1/2, µ∗, k∗,3.0,0.04) < 0,

and, gx1µ(1/2, µ∗, k∗,3.0,0.04) > 0,

which completes the recognition problem for the symmetric
quintic bifurcation.

Remark 4.2: For γ ≠ 3.0 we expect a codimension 1
algebraic manifold (locally, a line) of symmetric quintic
pitchfork singularity in the (k, γ) plane. The existence of
this structure will be analyzed in a future work.

B. Symmetric subcritical pitchfork bifurcation in the unfold-
ing of the symmetric quintic pitchfork bifurcation

Proposition 4.3: Consider the dynamics (7) with fixed b =
0.04 and γ = 3.0. For k > k∗ the quintic pitchfork unfolds
into a supercritical pitchfork bifurcation. For k < k∗ quintic
pitchfork unfolds into a subcritical pitchfork bifurcation with
a quintic stabilizing term.

Proof: Variations of k around the special value k =
k∗ unfolds the Z2-symmetric quintic pitchfork without
breaking the Z2 symmetry. That is, it follows from [20,
Theorem VI.3.3] that g(x1, µ, k,3.0,0.04) = 0 provides
a Z2-symmetric unfolding of the quintic pitchfork around
(x,µ, k) = (0.5, µ∗, k∗). For k > k∗ the cubic term is
negative, which unfolds the quintic pitchfork into a super-
critical pitchfork bifurcation. For k < k∗ the cubic term is
positive, which unfolds the quintic pitchfork into a subcritical
pitchfork bifurcation with a quintic stabilizing term.

The unfolding of the quintic pitchfork for k above and be-
low k∗ is shown in Figure 4. As leveraged in the next section,
the tristability observed in the case k < k∗ provides sufficient
richness to capture oscillatory behaviors in the evolution of
fractions of population committed to two strategies.

V. TWO TIME-SCALE OSCILLATORY BEHAVIOR FROM
SYMMETRIC SUBCRITICAL PITCHFORK BIFURCATION

As illustrated in Figure 4, for k < k∗ the replicator-mutator
dynamics (6) undergo a symmetric subcritical pitchfork

bifurcation with a quintic stabilizing term. By providing a
hysteresis between the mixed equilibrium and the dominant
solutions, this gives rise to a novel kind of multi-stability .
Whenever k < k∗ two stable dominant solutions co-exist with
the stable mixed equilibrium. In our subsequent analysis we
leverage this feature to enable a fast switching behavior in
the underlying population fraction x1.

We begin by introducing a slowly varying feedback to
control the bifurcation parameter µ so that it can oscillate
around the bifurcation point. In particular, for a two-strategy
case with symmetric payoffs (i.e. b12 = b21 = b) this fast-slow
closed-loop dynamics can be expressed as

ẋ1 = x1(1 − µ)(σγ,k(x1) + bσγ,k(1 − x1))

+ (1 − x1)µ(bσγ,k(x1) + σγ,k(1 − x1)) − φx1
µ̇ = −Kµ(x1 − α1)(α2 − x1)µ(1 − µ), (14)

where α1 ∈ (0.5,1) and α2 ∈ (0,0.5) represent two thresh-
olds, and 0 < Kµ ≪ 1 represents the extent of separation
between the time-scales of the ẋ1 and µ̇ dynamics. The
feedback dynamics (14) imply that in absence of a strong
dominance, the mutation rate decreases and drives the pop-
ulation fractions away from the mixed equilibrium. If either
of the strategies is dominating (i.e. x1 ≥ α1 or x1 ≤ α2), the
mutation rate increases and breaks the dominance.

The lines x1 = α1 and x1 = α2 belong to the nullcline of
the µ̇-dynamics on the x1 −µ plane. When these lines inter-
sect the critical manifold of the replicator-mutator dynamics
(where ẋ1 = 0) along its unstable branches, the closed-loop
system (14) exhibits two distinct oscillatory behaviors for
sufficiently low value of Kµ (see Figure 5). Each of these
oscillations corresponds to the periodic switches between
the mixed equilibrium and either of the strongly dominant
solutions. Also, these limit cycles are symmetric with respect
to the mixed equilibrium (x1 = 0.5).

Fig. 5: Co-existence of two stable limit cycles (green and magenta),
shown on the bifurcation diagram for (14). Stable manifolds of the
fast dynamics are shown in solid lines, whereas the corresponding
unstable manifolds are shown in dashed lines. Parameters are γ =
3.0, k = 0.02, Kµ = 0.3, b = 0.04, α1 = 0.2, and α2 = 0.8.

By using techniques from geometric singular perturbations
and blow-up theory [22], one can prove existence and
stability of these limit cycles. Because of space constraints
we leave the proof for our next publication and focus instead
on showing how symmetry-breaking in the associated payoff
structure can lead to oscillations between two dominant
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solutions. We provide geometric intuition on how these
cycles can be constructed in the limit Kµ → 0 by showing the
singular (i.e. Kµ → 0) phase portrait (see Figure 6), Because
x1 evolves at a time-scale which is much faster than that for
µ, trajectories spend most of the time on the critical manifold.
The singular limits of the two limit cycles are constructed as
closed singular trajectories, which merge along the horizontal
part of the critical manifold where x1 = 0.5. Because µ
is decreasing in that region, both singular cycles approach
the vertical line µ = 0. There, they split in upward and
downward direction, respectively. At the intersection with
the upper and lower branches of the critical manifold, where
µ is increasing, they slide along the critical manifold until
the fold singularity, where they jump back to the horizontal
branch of the critical manifold, much in the same way as a
standard relaxation oscillator.

Fig. 6: Geometric construction of the two stable limit cycles (green
and magenta) in the limit Kµ → 0, shown on the bifurcation
diagram for (14). Parameters are γ = 3.0, k = 0.02, b = 0.04,
α1 = 0.2, and α2 = 0.8.

For small values of Kµ these two singular cycles perturb
into two exponentially stable limit cycles, corresponding to
the two oscillatory behaviors (as shown in Figure 5). Then
using Fenichel theory [23], one can show that these two
cycles are O(e−1/Kµ)-close to each other in the region where
they shadow the horizontal branch of the critical manifold.
For Kµ sufficiently small, tiny perturbations (possibly due to
noise) can lead the system to switch spontaneously between
these two cycles.

VI. NON-SYMMETRIC UNFOLDING OF THE SUBCRITICAL
PITCHFORK BIFURCATION

Although the subcritical pitchfork has codimension 0
under Z2-symmetry [20, Proposition VI.3.4], we can unfold
it into one of the persistent bifurcation diagrams of the pitch-
fork (as shown in Figure 1) by relaxing the Z2-symmetry
condition. A natural way to break the Z2-symmetry in the
replicator-mutator dynamics (6) with N = 2 is to let the
payoffs become asymmetric, i.e. b12 ≠ b21. Note that in the
absence of Z2-symmetry, the subcritical pitchfork bifurcation
has codimension 2.

We begin by introducing a new parameter b̃ such that b12 =
b+ b̃ and b21 = b− b̃. This new parameter b̃ provides the first
unfolding parameter. Another alternative way of breaking
Z2-symmetry involves considering different γ’s in the fitness
functions associated to the different population fractions xi,

i.e. we now define the fitness functions as σγi,k(xi) for all
i = 1, . . . ,N . In particular, for the N = 2 case, we pick γ1 =
γ + γ̃ and γ2 = γ − γ̃ where γ̃ provides the second unfolding
parameter. The resulting (non-Z2 symmetric) unfolding can
be expressed as

G(x1, µ, k, γ, b, γ̃, b̃)

= x1(1 − µ)(σγ1,k(x1) + b12σγ2,k(1 − x1))

+ (1 − x1)µ(b21σγ1,k(x1) + σγ2,k(1 − x1)) − φx1.

Note that the two unfolding parameters have distinct ef-
fects in breaking the Z2-symmetric bifurcation diagrams. For
γ̃ = b̃ = 0, x1 = 0.5 is a solution of G(x1, µ, k, γ, b,0,0) = 0
for all µ, k, γ. Although the Z2-symmetry is lost for γ̃ ≠ 0,
it still holds that G(x1, µ, k, γ, b, γ̃,0)∣x1=0.5 = 0 for all
µ, k, γ, b, γ̃. On the contrary, if b̃ ≠ 0, then x1 = 0.5 is
not a generic solution of G(x1, µ, k, γ, b, γ̃, b̃) = 0. The two
unfolding parameters in the normal form of the universal
unfolding of the pitchfork are distinguished in a similar way.

We consider the unfolding G for γ = 3.0, b = 0.04, and k <
k∗, which implies the presence of a subcritical pitchfork for
µ = µ∗SC if γ̃ = b̃ = 0. For γ̃ ≠ 0, b̃ ≠ 0, we obtain a universal
unfolding of the subcritical pitchfork, as illustrated in the
top-left panel of Figure 1. Similar to the recognition of the
symmetric quintic pitchfork in Section IV, this result can be
easily (but lengthy) be verified by applying [20, Proposition
III.4.4] in a semi-analytical way.

VII. THREE TIME-SCALE CHAOTIC BEHAVIOR VIA
UNFOLDING OF SUBCRITICAL PITCHFORK BIFURCATION

The universal unfolding of the subcritical pitchfork G
provides a principled way of modeling richer dynamical
behavior by adding a third variable on an ultraslow time-
scale modulating one of the unfolding parameters. Similarly
to [24], the hierarchy between state variable (x1), bifurcation
parameter (µ), and unfolding parameters (b̃, γ̃) is dynamically
reflected in the hierarchy of time-scales. We augment our
model (14) by introducing the following dynamics for b̃:

˙̃
b =Kb [−b̃ +

x1 − 0.5

(x1 − 0.5)2 + 0.5
] (15)

where 0 < Kb ≪ Kµ ≪ 1 represent the time-scale sepa-
rations. The rational behind dynamics (15) is as follows.
If b̃ > 0, the Z2-symmetry of equally preferred modules
is broken in favor of the one corresponding to the upper
attractive limit cycle, and vice-versa for b̃ < 0. Figure 7 shows
that, for b̃ > 0, trajectories indeed converge to the upper limit
cycle.

Dynamics (15) lets b̃ decrease if x1 > 0.5 and increase if
x1 < 0.5. At the behavioral level, the effect of introducing dy-
namics (15) is thus to switch the favored state of the (x1, µ)
subsystem. Similarly to the Lorentz chaotic system, there
exists a parameter range in which the switch between the
upper and lower cycle is chaotic, as illustrated in Figure 8.
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Fig. 7: Illustration of a solution trajectory of (14) converging to
the upper limit cycle when b̃ = 0.0049.

Fig. 8: Chaotic oscillation in population fractions for the three
time-scale dynamics (14,15). Parameters are γ = 3.0, k = 0.02,
b = 0.04, α1 = 0.2, α2 = 0.8, Kµ = 0.1 and Kb = 0.00005.

VIII. CONCLUSION

In this paper we have introduced a nonlinear fitness func-
tion within the framework of replicator-mutator dynamics.
This nonlinear fitness function, in addition to providing a
generalization of the more commonly used linear fitness
functions, also enables a richer class of behaviors. In par-
ticular, for a special case (i.e. N = 2) the replicator-mutator
dynamics exhibit a quintic pitchfork bifurcation. Then, by
introducing a slow dynamics to control the bifurcation pa-
rameter we synthesize an oscillatory behavior in associated
population fractions. Moreover, we have shown that it is
possible to obtain seemingly unpredictable oscillations with
larger amplitude by controlling the asymmetry in the payoff
structure at a much slower timescale. These results show
a range of ways that bifurcation theory can be used as a
constructive means to design closed-loop adaptive dynamics.
Future work will investigate the bifurcation problems present
in the competition of three or more strategies (i.e. N = 3
or more), and explore how introducing feedback at multiple
time scales can influence the closed loop dynamics.

REFERENCES

[1] M. Nowak, N. L. Komarova, and P. Niyogi, “Evolution of universial
grammar,” Science, vol. 291, no. 5501, pp. 114–118, 2001.

[2] W. G. Mitchener, “Bifurcation analysis of the fully symmetric lan-
guage dynamical equation,” Journal of Mathematical Biology, vol. 46,
no. 3, pp. 265–285, 2003.

[3] N. L. Komarova and S. A. Levin, “Eavesdropping and language
dynamics,” Journal of Theoretical Biology, vol. 264, no. 1, pp. 104–
118, 2010.

[4] J. F. C. Kingman, “A mathematical problem in population genetics,”
Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 57, no. 3, pp. 574–582, 1961.

[5] R. Olfati-Saber, “Evolutionary dynamics of behavior in social net-
works,” in Proceedings of 46th IEEE Conference on Decision and
Control (CDC), New Orleans, LA, Dec 2007, pp. 4051–4056.

[6] I. I. Hussein, “An individual-based evolutionary dynamics model for
networked social behaviors,” in Proceedings of the American Control
Conference (ACC), St. Louis, MO, June 2009, pp. 5789–5796.

[7] E. Wei, E. W. Justh, and P. S. Krishnaprasad, “Pursuit and an
evolutionary game,” Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 465, pp. 1539–
1559, 2009.

[8] H. Tembine, E. Altman, R. El-Azouzi, and Y. Hayel, “Evolutionary
games in wireless networks,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 40, no. 3, pp. 634–646,
June 2010.

[9] B. Skyrms, “Evolution of signalling systems with multiple senders
and receivers,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 364, no. 1518, pp. 771–779, 2009.

[10] H. Ohtsuki, J. M. Pacheco, and M. A. Nowak, “Evolutionary graph
theory: Breaking the symmetry between interaction and replacement,”
Journal of Theoretical Biology, vol. 246, no. 4, pp. 681 – 694, 2007.

[11] H. Ohtsuki and M. A. Nowak, “The replicator equation on graphs,”
Journal of theoretical biology, vol. 243, no. 1, pp. 86–97, 2006.

[12] Y. Wang, I. I. Hussein, and A. Hera, “Evolutionary task assignment in
distributed multi-agent networks with local interactions,” in Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2010, pp. 4749–4754.

[13] R. Bürger, “Mathematical properties of mutation-selection models,”
Genetica, vol. 102-103, no. 0, pp. 279–298, 1998.

[14] N. L. Komarova, “Replicator-mutator equation, universality property
and population dynamics of learning,” Journal of Theoretical Biology,
vol. 230, no. 2, pp. 227–239, 2004.

[15] D. Pais and N. E. Leonard, “Limit cycles in replicator-mutator network
dynamics,” in Proceedings of 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), Orlando, FL,
Dec 2011, pp. 3922–3927.
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