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Abstract

This dissertation concerns the development of a feedback control framework for coordinat-

ing multiple, sensor-equipped, autonomous vehicles into mobile sensing arrays to perform

adaptive sampling of observed fields. The use of feedback is central; it maintains the array,

i.e. regulates formation position, orientation, and shape, and directs the array to perform

its sampling mission in response to measurements taken by each vehicle. Specifically, we

address how to perform autonomous gradient tracking and feature detection in an unknown

field such as temperature or salinity in the ocean.

Artificial potentials and virtual bodies are used to coordinate the autonomous vehicles,

modelled as point masses (with unit mass). The virtual bodies consist of linked, moving

reference points called virtual leaders. Artificial potentials couple the dynamics of the

vehicles and the virtual bodies. The dynamics of the virtual body are then prescribed

allowing the virtual body, and thus the vehicle group, to perform maneuvers that include

translation, rotation and contraction/expansion, while ensuring that the formation error

remains bounded. This methodology is called the Virtual Body and Artificial Potential

(VBAP) methodology.

We then propose how to utilize these arrays to perform autonomous gradient climbing

and front tracking in the presence of both correlated and uncorrelated noise. We implement

various techniques for estimation of gradients (first-order and higher), including finite dif-

ferencing, least squares error minimization, averaging, and Kalman filtering. Furthermore,

we illustrate how the estimation error can be used to optimally choose the formation size.

To complement our theoretical work, we present an account of sea trials performed

with a fleet of autonomous underwater gliders in Monterey Bay during the Autonomous

Ocean Sampling Network (AOSN) II project in August 2003. During these trials, Slocum
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autonomous underwater gliders were coordinated into triangle formations, and various ori-

entation schemes and inter-vehicle spacing sequences were explored. The VBAP method-

ology, modified for implementation on Slocum underwater gliders, was utilized. Various

operational issues such as speed constraints, external currents, communication constraints,

asynchronous surfacings and intermittent feedback were addressed.
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Chapter 1

Introduction

For some time now, it has been recognized that mobile autonomous robots have the poten-

tial to perform a multitude of tasks which may be impractical, costly, dangerous, or just

too mundane for humans. For example, the Woods Hole Autonomous Benthic Explorer

(ABE) is an autonomous underwater vehicle (AUV), see Figure 1.1, designed to monitor

the deep ocean over long periods of time. ABE can survey bottom environments at depths

of 5000 meters with a variety of sensors and tools, and has been used to study geothermal

vent formations, a dangerous environment where hot lava is expelled at the intersection of

tectonic plates [16].

Today, mobile autonomous robots that operate on land, in sea, and in the air are avail-

able for military and commercial applications, see Figure 1.1. However their autonomous

capabilities are often relegated to navigation and low-level control functions, e.g. keeping

the autonomous aircraft aloft. A human is often in the loop making high-level control

decisions to direct the vehicle in completing its tasks. A critical challenge for automating

high-level control is translating the task requirements and the current state of the vehicle

into a metric from which the vehicle can correctly decide how to respond.
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Figure 1.1: Robotic Vehicles with Fully Autonomous Capability Available To-
day. Top left: Woods Hole Oceanographic Institution’s ABE vehicle studies the deep
sea. Top right: Silver Arrow Hermes 450 unmanned air vehicle (UAV) performs military
and homeland security operations. Bottom left: Autonomous Solutions’ Gator unmanned
ground vehicle (UGV) is at home on the farm. Bottom right: Webb Research’s Slocum
Glider autonomous underwater vehicle (AUV) has been successfully deployed in large-scale
oceanographic survey operations.

With the apparent utility of a single mobile autonomous robot, it is natural to ques-

tion what gains can result by using multiple robots cooperatively. There are a number of

tasks a single robot or vehicle cannot effectively perform. For example, for meteorological

or oceanographic surveys where vehicles equipped with sensors serve as mobile sensor plat-

forms, the spatial and temporal scales present in the field of interest may be too dynamic for

a single vehicle to provide adequate sampling. Cooperating vehicles can serve as a mobile

sensor array that can change as needed in response to changing dynamics. Another example

is multiple vehicles serving in a communication relay; numerous vehicles may be necessary

to provide adequate range. In addition to expanded capabilities, utilizing multiple vehicles

may provide robustness against mission failures should a component or vehicle fail.
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The work presented in this thesis focuses on developing a control framework for coordi-

nating groups of autonomous robots into mobile sensor arrays to perform adaptive sampling

of observed fields. In particular we derive control laws that not only coordinate the vehicles

into useful formations but use the acquired spatially distributed measurements to direct the

array in gradient tracking and feature detection in an unknown field. The use of feedback is

central to both objectives. Feedback is used to maintain the array, i.e. regulate formation

position, orientation, and shape, and to direct the dynamics of the array to perform its

mission.

Our goals can be listed as follows:

1. Develop an approach which provides a systematic procedure for generating provably

stable control laws to coordinate multiple agents using local, relatively simple agent

interactions. A main focus is on multiple vehicle systems.

2. Derive control laws that exploit the capabilities of multiple vehicles to serve in mobile

and reconfigurable sensor arrays. These arrays adapt in response to the local measure-

ments taken by the constituent vehicles to perform tasks such as gradient climbing

and feature tracking.

3. Demonstrate coordinated fleets of autonomous underwater gliders at sea given real-

world implementation constraints.

Our approach to coordinated control relies on artificial potentials and virtual bodies to

coordinate groups of vehicles modelled as point masses (with unit mass). The virtual body

consists of linked, moving reference points called virtual leaders. Artificial potentials couple

the dynamics of the vehicles and the virtual body by regulating desired vehicle-to-vehicle

spacing and vehicle-to-virtual-leader spacing. Potentials can also be designed to enforce a
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desired orientation of vehicle position relative to a fixed frame attached to a virtual leader.

The stabilizing control law for each vehicle is simply the negative gradient of the sum of

artificial potentials with an additional dissipative term. The gradient is taken with respect

to the vehicle’s configuration; for a point mass the configuration is its position. The work

is developed for particles each in R
3 with some results specialized to R

2.

With artificial potentials in place to stabilize the vehicles about the virtual body, the

dynamics of the virtual body are then prescribed as part of the multi-vehicle control design

problem. Indeed we parameterize the virtual body dynamics in such a way as to permit

a decoupling of the formation stabilization and the formation maneuver/mission control

subproblems. The methodology allows the virtual body, and thus the vehicle group, to

perform maneuvers that include translation, rotation and contraction/expansion, all the

while ensuring that the formation error remains bounded. In the case that the vehicles

are equipped with sensors to measure the environment, the maneuvers can be driven by

measurement-based estimates of the environment. This permits the vehicle group to perform

as an adaptable sensor array.

The use of artificial potentials is inspired in part by biologists who study animal aggrega-

tions. These biologists have proposed that animals use simple traffic rules at the individual

level to regulate spacing, alignment, and speed relative to their local neighbors, and these

yield structure at the level of the aggregate [66, 37, 69, 19]. From these local actions emerge

complicated group-level behaviors that increase the group’s effectiveness in performing a

variety of tasks such as foraging and predator avoidance. In the seminal work of Reynolds

[74], simulated flocks using rules motivated from biology are observed performing remark-

able maneuvers. This work has inspired many control theorists and roboticists to further

explore coordination with only local level interactions.
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Our artificial potentials are designed to emulate the social forces described by the biolo-

gists. Much like animals in a flock or herd, vehicles attempt to maintain specified distances

from neighboring vehicles and virtual leaders. Models for the traffic rules that govern fish

schools and animal groups found in the literature provide motivation for control synthesis.

The methodology presented herein has the following desirable features:

• No specific ordering or numbering of the vehicles is required.

• Vehicular control laws which rely only on local interactions are possible.

• Controller design for formation shape regulation is decoupled from the design of the

controller that regulates formation maneuvers.

• Stability of the formation is automatic from the construction.

A principal motivating application of coordinated autonomous vehicles is adaptive ocean

sampling. The central theme of our adaptive sampling strategies is the use of feedback that

integrates distributed in-situ measurements into our coordinated control methodology to

affect sampling paths and formation patterns. For example, observations of environmental

fields relevant to ocean science such as temperature, salinity, and bioluminescence, are

collected by individual members of the sensor array and used to compute gradients and

directions of maximum gradient variation. This is done not only to direct the network to

fronts and features of interest but also to dictate how the network should respond while

sampling along and about them. For example, we enable adaptive sensing resolution by

way of formation expansion (or contraction) in response to flat, i.e. mostly constant, (or

steep) measurements from the network. We also present filtering and averaging techniques

for use with vehicle networks, e.g. least square estimates, discrete averaging, or Kalman

filtering, to reduce the influence of noise and improve estimates.
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Autonomous sampling networks provide an exciting opportunity with numerous impor-

tant applications. In the ocean, these opportunities are enabled by autonomous underwater

vehicles (AUVs). The Autonomous Ocean Sampling Network II (AOSN II) project [2]

was devised to build a coupled observation/prediction system where ocean models would

assimilate observations made by AUVs. The goal is to improve the models’ skill at provid-

ing estimates and predictions of physical variables such as temperature and salinity, and

biochemical signatures such as chlorophyll. Our contributions to the AOSN paradigm, de-

scribed in this thesis, include demonstrating (1) how AUVs can be controlled as coherent

arrays in a dynamic ocean environment and (2) how formations of AUVs serving in mobile

sensor arrays can improve sampling of local features, e.g. by detecting and tracking the

associated frontal boundaries and biological plumes. In August 2003 the first experimental

component of AOSN II was performed in Monterey Bay, CA with the deployment of 12

Webb Slocum autonomous underwater gliders and 5 Scripps Spray gliders. Autonomous

underwater gliders are a class of energy efficient AUVs designed for continuous, long-term

deployment.

A goal of the month-long experiment was to study the physical and biochemical response

to upwelling events. During an upwelling event cold, nutrient-rich water rises to the surface

leading to increased biological activity in the vicinity of the upwelled water. In Monterey

Bay, onset of upwelling events are marked by cold water appearing at the surface at the

northern mouth of the bay which proceeds to spread south closing off the bay.

A major objective of our participation in the AOSN II experiment in summer 2003 was to

demonstrate and evaluate coordinated AUV arrays in the ocean. To this effect we developed

from our coordinated control theory, a methodology specific to underwater gliders with a

number of operational constraints. For example, our approach had to be a plug-in solution
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given a currently existing glider command structure. We also addressed issues related to

glider control and actuation in the presence of external currents, planning and information

latencies, and asynchronicities in communication. We performed several demonstrations at

sea in Monterey Bay in August 2003. In this thesis we describe the implementation and

evaluate the performance of coordinated glider formations using this methodology.

The earliest work regarding coordination of mobile robots dates back to the mid-to-late

1960s involving the study of one-dimensional strings of inter-connected vehicles [53, 70, 57].

Interestingly, many authors posed the problem in an optimal control framework citing

the historic, and then recent, work of Kalman. The purpose of this work was to devise

controllers which regulated inter-vehicle spacing and attenuated propagating disturbances

along the string. Work on vehicle strings continued into the 1970s.

During the 1980s work on coordination in higher dimensions began to appear. In lit-

erature reviews, Erdmann [26] and Tournassoud [93] point out several concurrent lines of

work on multiple movable objects. The first direction was taken by roboticists who sought

optimal paths and both linear and non-linear controllers for multiple robotic arms [3, 76].

A second direction was taken by the computer science and artificial intelligence (AI) com-

munity where algorithms were devised to move multiple movable disks or polygonal objects

from an initial configuration to a final configuration in bounded regions [80, 72]. This work

is an extension of the classic “Piano Movers” problem. In [72], for example, the configu-

ration space of multiple disks in a cluttered environment is transformed into a graph and

searching for collision-free path is reduced to a graph-searching problem. In a third direc-

tion, the multiple moving object problem is decomposed into two subproblems [26]. First,

paths which avoid collisions with static objects are planned for each movable object one at

a time. Then the speed of each moving object along these trajectories is adjusted to avoid
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collisions.

In 1989, Wang [96] took a more dynamical systems perspective by treating the robots as

dynamic, interacting particles. Wang proposed using repulsive potentials between vehicles

to avoid collisions and an attracting force directed towards static destinations, which al-

though not explicitly stated, can be also be derived from a potential. Wang also introduces

a vehicle’s “cone of visibility” in which neighboring vehicles must lie to be sensed. Wang

did not however consider attracting potentials between vehicles.

In the 1990s, the AI community proposed explicit behavior-based methodologies [55, 9,

5]. Here, each robot derives its control from a weighted average of behaviors, e.g. maintain

formation, move towards goal, avoid obstacles, etc. We note that the work of Wang can

also be described as behavior based. In [55, 10] learning was also implemented where the

behavior weights would be adjusted based on the success of past actions and the present

state of the vehicle and its environment. Artificial potentials were proposed for coordinated

control in [98, 56] where control laws for agents were explicitly derived from the gradients

of potentials. Work on multiple manipulators continued and was extended to consider

moving manipulators [42, 23, 91]. Leader-follower algorithms where vehicles are divided

into two sets: leaders and followers, were proposed in [97, 24]. Often in this setting the

leaders are given pre-planned missions and the focus of study is on stabilizing control laws

for the followers. Virtual structures, entities similar to our virtual bodies, were used in

[89, 12]. Their construction differs from ours in that the virtual structure is a rigid template

whose position and orientation is redefined at each iteration to best fit the current vehicle

configuration. Our virtual body has continuous dynamics and evolves as a function of

formation error.

From the late 1990s to the present research on coordinated multi-agent systems has
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expanded drawing from graph theory [88, 29, 27, 68], hybrid control [30], and real-time

optimization theory [25], among others. In Young et al [101] translation, rotation and

expansion of a group is treated using a virtual structure which has dynamics dependent

on a formation error function. Although similar in spirit to the work in this thesis, the

formation control laws and the dynamics of the virtual structure differ from those presented

here, and an ordering of vehicles is imposed. In Ögren et al [63] control Lyapunov functions

are used for multi-agent coordination where vehicles track reference points similar to our

virtual leaders. However, these reference points follow predefined trajectories. This theory

was extended in [65] with the introduction of the virtual body and dynamic virtual body

trajectories which enable missions such as gradient climbing.

Artificial potentials play an important role in our construction. In robotics, they have

been extensively used to produce feedback control laws [41, 43, 75, 73] for avoidance of

stationary obstacles as well as obstacles in motion [60] and have been used in motion

planning [11]. In the modelling of animal aggregations, forces that derive from potentials

are used to define local interactions between individuals (see [66] and references therein).

In more recent work along these lines, the authors of [35, 90, 58] investigate swarm stability

under various potential function profiles. Artificial potentials have also been exploited

to derive control laws for autonomous, multi-agent, robotic systems [98]. In [56, 51, 67]

convergence proofs to desired configurations are explicitly provided.

Lately, research on the subject of sampling using autonomous vehicle groups has been

drawing much attention. In particular, gradient climbing with a vehicle network is a topic

of growing interest in the literature (see, for example, [8, 35]). In [54] gradient climbing is

performed in the context of distributing vehicle networks about environmental boundaries.

In [18], the authors use Voronoi diagrams and a priori information about an environment
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to design control laws for a vehicle network to optimize sensor coverage in, e.g. surveillance

applications.

Coordinated AUV fleets have also been a topic of recent research. In 2004, the IEEE

AUV 2004 workshop was dedicated to multi-AUV coordination; our contribution can be

found in [32]. In the literature, one paper of note by Curtin et al in 1993 [20] presents a

vision of how AUVs would participate in AOSNs and would later lead to AOSN II initiated

in 2002 [31]. Recent theoretical work on coordinating constellations of AUVs can be found

in [38] where linear control is used in conjunction with a derived formation error. In [6]

a more practical leader-follower algorithm is introduced to induce coordination using local

acoustic ranging from the leader, acoustic communication and Kalman filtering. However,

there are fewer examples of full-scale, cooperative multiple-AUV demonstrations in the

water. One example by Schultz et al is described in [79] where a group of AUVs was used

to map salinity distributions.

In Chapters 2 and 3 we present the framework for the Virtual Body and Artificial

Potential (VBAP) multi-vehicle control methodology. We first introduce virtual leaders

and virtual bodies along with artificial potentials and present control laws which stabilize

point-mass formations at rest or those strictly translating. The control law for each vehicle

is derived from the gradient of the artificial potentials. We present a variety of artificial

potentials and show how they are used to construct stable formations elucidating the role

of virtual leaders in symmetry breaking. Hexagonal lattices are presented as an avenue to

systematically produce various formation shapes.

In Chapter 3 this methodology is extended to allow the virtual body, and thus vehicle

group, to perform maneuvers that include translation, rotation and contraction/expansion,
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all the while ensuring that a formation error remains bounded1 . Stability of the complete

closed-loop system is proven using a Lyapunov function that sums the system kinetic and

potential energies.

With a framework for coordinating vehicles into dynamic sensor arrays in place, in

Chapter 4 we investigate how to use these arrays to achieve the scientific objective of

adaptive ocean sampling. We first define the adaptive ocean sampling problem using mobile

sensor arrays and motivate the specific sampling problems to be addressed, namely gradient

climbing and front tracking. We then define the problem domain in which subsequent

analysis will be based. We discuss how to estimate gradients utilizing finite differencing and

review least squares gradient estimates using scalar measurements taken by each vehicle.

We also discuss how measurement noise and estimates of the field’s higher order spatial

derivatives can dictate optimum sensor array resolution. We then describe an alternate

approach to gradient estimation using the gradient of the average value of the field contained

within a closed region. As shown by Uryasev [94], this average can be expressed as a function

of the field values along only the boundary of the closed region. We present cases in which

this approach is equivalent to a least-squares estimate, elucidating when it can be viewed as

an averaging process. Estimation by finite differencing and least-squares optimization are

point-wise in time in that they only utilize present information. To further improve these

estimates in the presence of noise we develop a Kalman filter that utilizes both past and

present information. Lastly we present our gradient climbing and front tracking algorithms

and demonstrate their effectiveness through simulation.

The theory presented in Chapters 2 and 3 does not directly address various operational

constraints and realities associated with working with real vehicles in the sea. In Chapter 5

1This research was conducted jointly with Petter Ögren [65, 64] who is now with the Swedish Defense
Research Agency (FOI)

11



we address a number of these issues in a presentation of our implementation of the VBAP

methodology for a fleet of Slocum underwater gliders in Monterey Bay. For example, the

control laws are modified to accommodate constant speed constraints consistent with glider

motion and to cope with external currents. The implementation also treats underwater

gliders which can only track waypoints and can only communicate every few hours while at

the surface. To test and refine our methodology prior to sea trials, we performed a series

of simulations in realistic settings implementing communication constraints, computational

limitations, and constrained vehicle kinematics and dynamics. We simulated an autonomous

glider fleet performing cooperative temperature front tracking. Innovative Coastal-Ocean

Observation Network (ICON) model data [83] provided current data and the gliders took

measurements from aircraft-observed sea surface temperature (SST) data.

Chapter 6 presents and evaluates the coordination demonstrations performed during the

AOSN II experiment at Monterey Bay in August 2003. We describe two demonstrations and

present an evaluation of the coordination performance. The sea-trials performed on August

6, 2003 and August 16, 2003 demonstrate our ability to coordinate a group of three Slocum

underwater gliders into triangle formations. In both cases, we used our VBAP methodology

with a single virtual leader serving as the virtual body. We explored various orientation

schemes and inter-vehicle spacing sequences as the formation made its way through the

bay. The metrics we evaluate relate to virtual body trajectory tracking error, inter-vehicle

spacing error, orientation error, and group center of mass tracking error.

Chapter 7 summarizes the major findings and contributions, and suggests directions for

future research.
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Chapter 2

Coordinated Control: Virtual

Bodies and Artificial Potentials

This chapter discusses our multi-vehicle control framework developed to coordinate vehicles

into regular formations using virtual leaders and artificial potentials. Virtual leaders are

mobile reference points which provide a mechanism for constructing a vast array of forma-

tion shapes and drive formation translations and rotations. Essentially, virtual leaders are

implemented to break symmetries, giving us control over the formation’s shape, location

and orientation with respect to a fixed inertial frame. When linked, virtual leaders consti-

tute a virtual body. In this chapter we present vehicle control laws that stabilize a formation

with respect to either a fixed virtual body or one moving at a velocity v0(t) with respect to

a fixed inertial frame. In Chapter 3 we discuss how to achieve any combination of formation

translation, re-scaling, and rotation by assigning dynamics to the virtual body.

Artificial potentials couple the dynamics of the vehicles and the virtual body by imposing

desired vehicle-to-vehicle spacing and vehicle-to-virtual-leader spacing. The forces that

derive from the potentials emulate the social forces described by biologists. Much like
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animals in a flock or herd, vehicles attempt to maintain specified distances from neighboring

vehicles and virtual leaders. Potentials are also designed to enforce a desired orientation

of vehicle position relative to a fixed frame attached to a virtual leader. This orientation

control between vehicles and virtual leaders is an extension of the biological theme. A key

feature of our potentials is that interactions can be limited to finite neighborhoods about

each vehicle and virtual leader; thus, long range interactions (atypical in biological groups)

can be prohibited. Furthermore, there is no ordering of vehicles required; any vehicle is

interchangeable with any other. Lastly, a benefit of using artificial potentials for control

design is that they provide a guide for choosing Lyapunov functions. In this chapter we

present a variety of artificial potentials useful for constructing and regulating formations.

The artificial potentials are realized by means of the vehicle control actuation; the

control law for each vehicle is derived from the gradient of the artificial potentials. We

consider fully actuated, double integrator, point mass vehicle models. This model may be

simple but it is not without merit. For example, it has been shown for a certain class

of non-holonomic wheeled vehicles with differential drive, e.g., when drive wheels can be

independently actuated and are located on a single axis, the kinematics of an off-wheel

axis point are indeed holonomic [46]. Through feedback linearization, fully actuated double

integrator dynamics can be derived for an off-axis point. In Chapter 5 we present how our

model was adapted for use in coordinating autonomous underwater gliders at sea. There

we specialize to first-order dynamics with vehicle speed constraints.

In Section 2.1 we present our framework in detail and important notation used through-

out. In Sections 2.2, 2.3, and 2.4 we present a variety of artificial potentials and show

how they are used to construct stable formations elucidating the role of virtual leaders in

symmetry breaking. Specifically, in Section 2.2 we present potentials to regulate relative
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distances between vehicle pairs and vehicle and virtual leader pairs. We also show how a

variety of formation shapes can be constructed using vehicles and virtual leaders in hexag-

onal lattices. In Section 2.3 we present potentials that only break the rotational symmetry

between virtual leaders and vehicles. In Section 2.4 we present potentials that regulate rel-

ative position between vehicles and virtual leaders. This chapter concludes with Section 2.5

in which we discuss stability for general formations using the framework presented herein.

2.1 Formation Framework

Let the position of the ith vehicle in a group of N vehicles, with respect to an inertial frame,

be given by a vector xi ∈ R
p, p = 2, 3, and i = 1, . . . , N as shown in Figure 2.1.1. Let the

corresponding velocity be given by vi = ẋi. The position of the lth virtual leader with

respect to the inertial frame is bl ∈ R
p, for l = 1, . . . , M . The virtual leaders are linked

and the position vector from the origin of the inertial frame to the center of mass of the

virtual body is denoted r ∈ R
p, where r = 1/M

∑M
m=1 bm. Let xij = xi − xj ∈ R

p and

hil = xi − bl ∈ R
p. Finally define the configuration for all vehicles and virtual leaders as

X = (xT
1 , . . . ,xT

N , bT
1 , . . . , bT

M )T ∈ R
p(N+M). Throughout bold characters indicate column

vectors and the same variable in normal font refers to its magnitude, for example xij = ‖xij‖.

The hat character indicates that a vector has been normalized, e.g. x̂ij =
xij

xij
for xij 6= 0.

The control force on the ith vehicle is given by ui ∈ R
p. For now we assume full

actuation and the dynamics can be written for i = 1, . . . , N as

ẋi = vi

ẍi = ui. (2.1.1)

In Chapter 5 we consider additional forcings arising from ocean currents.
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Figure 2.1.1: Notation for Framework. Shaded dots are vehicles, solid dots are virtual
leaders.

The control force for each vehicle, ui, is the negative gradient of an artificial potential,

Vi : R
p(N+M) → R

+, with respect to xi plus an additional control force which is not

necessarily derived from a potential, i.e.

ui = −∇xi
Vi − fvi. (2.1.2)

fvi serves to provide asymptotic convergence to the desired formation geometry. The partic-

ular functional form of fvi will depend on the virtual body motion prescribed. For example,

we will show that for a stationary virtual body, equating fvi = ẋi, i.e. the vehicle’s absolute

velocity, is sufficient to provide local asymptotic convergence to a desired formation shape.

For a virtual body under strict translation, i.e. ṙ = ḃ1 = . . . = ḃM = v0(t), r̈ = b̈1 = . . . =

b̈M = v̇0(t), we can use

fvi = αv(ẋi − ṙ) − r̈, (2.1.3)

where αv > 0 is a constant parameter, to prove asymptotic convergence to the desired

formation shape about the translating virtual body.
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To establish a systematic procedure for obtaining a desired formation geometry, we

define

V =
N∑

i=1

Vi, (2.1.4)

and restrict Vi to be of the form

Vi =
N∑

j 6=i

VI(xij ; µI) +
M∑

l=1

Vh(xi, bl; µh),

where

Vh(xi, bl; µh) = V c
h (hil; µ

c
h) + V o

h (xi, bl; µ
o
h) + V p

h (xi, bl; µ
p
h).

V is designed such that the desired formation is a global minimizer for a prescribed vector

µ of design parameters.

VI is a potential that defines vehicle-to-vehicle interactions with parameters given by µI.

It acts to regulate relative distance between vehicle pairs. Likewise, Vh is a potential which

defines virtual leader-to-vehicle interactions with parameters given by µh. It is comprised of

the sum of three potentials V c
h , V o

h , and V p
h . V c

h is a potential that acts to regulate distance

between vehicles and virtual leaders. V o
h is a potential that acts to regulate the orientation

of a vehicle’s relative position vector, e.g. hil, with respect to a fixed frame attached to

a virtual leader. Lastly, V p
h is a potential that regulates relative position between vehicles

and virtual leaders. Common to all potentials is a limited range of effect. Vehicles more

than a distance d1 > 0 apart, and virtual leaders and vehicles more than h1 > 0 apart do

not interact. An important distinction between these potentials is their role in symmetry

breaking and in the next three subsections we further elaborate on their nature and their

role in controller design for stable formations.
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2.2 Potentials to Regulate Relative Distance

2.2.1 Vehicle-to-Vehicle Interaction

To regulate relative distance between pairs of vehicles i and j, we define an artificial potential

VI(xij ; αI , d0, d1) which is only a function of the relative distance xij between the ith and

jth vehicle. The scalar d0 > 0 specifies the desired inter-vehicle distance. In turn, we design

the potential VI such that it has a global minimum at xij = d0. The force derived from this

potential will be a central force acting along the line connecting the two vehicles. Define

fI(xij) as

−∇xi
VI = −fI(xij)x̂ij

= fI(xij)x̂ji.

The interaction force regulates relative distance by attracting vehicles that are too far apart

and repelling vehicles that are too close together. Furthermore, to aid in formation design

we require that the force be zero for vehicles separated by scalar d1 > 0, d1 > d0. The scalar

αI is a multiplicative scaling which allows us to adjust the magnitude of gradients.

For example, consider the potential defined for any pair of vehicles i and j given by

VI(xij ; αI , d0, d1) =






αI

(
1
3x3

ij − d3
0 lnxij − 1

3d3
0 + d3

0 ln d0

)
0 < xij ≤ d1

0 xij > d1

(2.2.1)

which is plotted in Figure 2.2.1a. The nonzero component of the force derived from this

potential is given by the expression

fI(xij) =






∇xij
VI 0 < xij ≤ d1

0 xij > d1

(2.2.2)
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and thus,

fI(xij) =






αI(x
2
ij −

d3
0

xij
) 0 < xij ≤ d1

0 xij > d1

where we have explicitly defined the force at xij = d1 (the discontinuity in VI). As indicated

in Figure 2.2.1a, if xij < d0 then fI(xij) < 0 and yields a repelling force between the ith

and jth vehicles (since the corresponding control term for the ith vehicle is −∇xi
VI). In

fact for this particular potential, as xij → 0, fI(xij) → ∞ which is intended to prevent

vehicle-to-vehicle collisions. If d0 < xij ≤ d1 then fI(xij) > 0 and yields an attractive force

between the ith and jth vehicles. If xij > d1 then fI(xij) = 0 and the ith and jth vehicles

do not affect each other.
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Figure 2.2.1: Vehicle-to-Vehicle Interaction Potentials. Solid lines indicate potential
profile and dashed lines indicate its gradient. (a) Profile of potential given in (2.2.1) with
αI = 1, d0 = 3, and d1 = 5. (b) Profile of numerically integrated potential whose gradient
is given in (2.2.3) with αI = 1, d0 = 3, d1 = 5, a = 4 and b = 5.

This potential is clearly discontinuous at xij = d1, as is its gradient. This does not create

a problem for our immediate purposes in proving local stability of our resulting controllers,

i.e. for xij initially sufficiently close to d0. However, to avoid the discontinuity at d1 we can

scale the potential by a bump function β(xij) ∈ [0, 1] so that the resulting potential is at
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least C1. A common example of a C1 bump function (so named for its shape) is given by

β(x) =






1 x ≤ a

sin2(π
2

x−b
a−b ) a < x ≤ b

0 x > b

where a and b are constants (see Figure 2.2.2).
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Figure 2.2.2: Bump Function.

We now scale fI by β(xij) so as to make the potential C1. We take b = d1, a ∈ (d0, d1)

and define the force to be,

fI = αIβ(xij)

(
xij −

d2
0

xij

)
, xij > 0. (2.2.3)

The potential is then obtained by integrating (2.2.3) with respect to xij . In this example, no

anti-derivative exists due to a cosxij/xij term in the integrand. However, the value of the

potential at any xij (to within an additive constant) can be found by numerical integration.

For example, in Figure 2.2.1b we have plotted the continuous fI and the associated potential

obtained by numerical integration.
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2.2.2 Vehicle-to-Virtual Leader Interaction

Regulating relative distance between the ith vehicle and lth virtual leader is achieved by

using an artificial potential, V c
h (hil; α

c
h, h0, h1). This potential will yield a force similar to

the vehicle-to-vehicle interaction force where scalar h0 ≥ 0 now specifies the desired vehicle-

to-virtual leader distance and h1 > 0 specifies the radius of interaction. The force derived

from this potential will be a central force acting along the line connecting the vehicle and

virtual leader. Since virtual leaders are only reference points, collisions with vehicles are not

a concern and we do allow h0 to be zero. That is, we permit desired formation geometries

where a vehicle may coincide with a virtual leader.
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Figure 2.2.3: Vehicle-to-Virtual Leader Interaction Potentials. Solid lines indicate
potential profile and dashed lines indicate its gradient. (a) Profile of potential analogous to
that given by numerically integrating (2.2.3) with αc

h = 1, h0 = 3, and h1 = 5. (b) Profile
of smooth quadratic potential given in (2.2.4) with αc

h = 1, h0 = 0, h1 = 5, a = 4 and b = 5.

Two virtual leader interaction force profiles are shown in Figure 2.2.3. In the left pane

we plot the potential and its gradient analogous to that found in (2.2.3) where xij , αI , d0,
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and d1 are replaced by hil, α
c
h, h0, and h1, respectively. That is,

f c
h(hil) =






∇hil
V c

h 0 < hil ≤ h1

0 hil > h1,

where −∇xi
V c

h = −f c
h(hil)ĥil.

Virtual leaders affect real vehicles in their neighborhood through f c
h by repelling them if

they are at a relative distance, hil, less than h0 and attracting them if they are at a relative

distance greater than h0 but less than h1. In the right pane we plot f c
h for a quadratic

potential when h0 is zero. The force (scaled by β) is given by

f c
h(hil) = αc

hhilβ(hil),

which is the gradient with respect to xi in the direction −ĥil of the potential

V c
h (hil) =






αc
h

2 h2
il hil ≤ a

αc
h

(
h2

il

4 + hil

2π (a − h1) sin γ − (a−h1)2

2π2 cos γ + a2

4 − (a−h1)2

2π2

)
a < hil ≤ h1

αc
h

4 h2
1 +

αc
h

4 a2 − αc
h

π2 (a − h1)
2 hil > h1,

(2.2.4)

where γ = π h1−hil

a−h1
.

2.2.3 Formation Design with Distance Regulation

We are now ready to present examples of formation design using only the potentials we

have just discussed. The first three examples are simple structures that illustrate the use

of our potentials and associated parameters. In the last example we show how we can build

upon these simple structures to systematically construct varied formations by utilizing a

hexagonal lattice arrangement of vehicles and virtual leaders.

The potentials and resulting control laws presented in Section 2.2.1 and Section 2.2.2

are equally valid in both planar formations and formations in R
3. In this subsection we
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provide details for planar formation design and in concluding remarks we briefly touch upon

how these results relate to formation design in R
3. The virtual body is fixed in the inertial

frame and throughout we take fvi = ẋi.

Example 2.2.1. Two Vehicles Only

In this example we consider a formation of only two vehicles (and no virtual leaders)

which is essentially the classical two body problem [36] with dissipation. The desired forma-

tion consists of the vehicles separated by a distance d0; this can be achieved by introducing

a single potential, VI(x12). The resulting dynamics are given by

ẍ1 = −∇x1
VI(x12) − fv1

= −fI(x12)x̂12 − ẋ1

ẍ2 = −∇x2
VI(x21) − fv2

= fI(x12)x̂12 − ẋ2.

Assuming x12 6= 0 this simple system has equilibria, i.e. ẍi = ẋi = 0, when fI(x12) = 0.

Using a potential VI of the form defined in Section 2.2.1 implies either x12 = d0 or x12 ≥ d1.

In both instances we have a continuous set of equilibria due to the SE(2) symmetry in

the control law; the control law is a function of relative distance only which is invariant

under SE(2) actions. To see this, let (R, c) ∈ SE(2) where R ∈ SO(2), c ∈ R
2 and define

x′
i = Rxi + c. Then x′

12 = ‖x1
′ − x2

′‖ = ‖Rx1 − Rx2‖ = x12 since multiplication by an

element of SO(2) preserves length.

Given the SE(2) symmetry, we will only examine the dynamics of x12. These are

ẍ12 = ẍ1 − ẍ2

= −2fI(x12)x̂12 − ẋ12
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which has an isolated equilibrium at x12 = d0. This equilibrium can be proven to be

asymptotically stable by use of Lyapunov stability analysis with application of LaSalle’s

invariance principle. The Lyapunov function is given by Φ(x12) = 1/2‖ẋ12‖2 + 2VI(x12).

A continuous set of neutrally stable equilibria exists for x12 ≥ d1. Clearly a drawback of

vehicle-to-vehicle interaction only is the innability to break the SE(2) symmetry. In the

next example we introduce a single virtual leader to break the translational symmetry.

Example 2.2.2. Two Vehicles, One Virtual Leader

In Example 2.2.1 there was an SE(2) symmetry in the control law. In this example

we show how virtual leaders are used to break the translational symmetry. Let the virtual

leader be stationary and located at the origin of an inertial frame, i.e. b1 = r = 0. The

desired formation geometry consists of two vehicles to be separated by a distance d0 with the

formation center of mass located at the origin (see Figure 2.2.4a). Consider three potentials,

VI(x12), V
c
h (h11), and V c

h (h21). We choose h0 = d0/2 and select d1 ≫ d0 and h1 ≫ d0 such

that the desired configuration will be a minimum of VI and V c
h . The dynamics for each

vehicle are written

ẍ1 = −∇x1
V c

h (h11) −∇x1
VI(x12) − fv1

= −f c
h(h11)ĥ11 − fI(x12)x̂12 − ẋ1 (2.2.5)

ẍ2 = −∇x2
V c

h (h21) −∇x2
VI(x21) − fv2

= −f c
h(h21)ĥ21 + fI(x12)x̂12 − ẋ2. (2.2.6)

Equating ẍi = ẋi = 0 above we find the condition for equilibria

f c
h(h11) ĥ11 = −fI(x12) x̂12 = −f c

h(h21) ĥ21. (2.2.7)
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Figure 2.2.4: Single Virtual Leader Equilibrium Formations for Example 2.2.2.
Shaded dots are vehicles, solid dots are virtual leaders. (a) Desired vehicle configuration
corresponding to the minimum of all acting potentials. (b) Spurious equilibrium corre-
sponding to a saddle point in the net potential field (formation persists under perturbation
in the radial direction).

Assuming that x12 < d1 and hi1 < h1, i = 1, 2, an equilibrium set exists at the desired

formation, i.e. the desired formation is any point in the set Σ = {x1 ∈ R
2, x2 ∈ R

2, ẋ1 =

ẋ2 = 0|x12 = d0, h11 = h21 = h0} (shown in Figure 2.2.4a). Furthermore, any other

equilibria must be one in which the vehicles are co-linear along a line that passes through

the origin, such an example is illustrated in Figure 2.2.4b. It follows from the conditions

specified in (2.2.7) that the translational symmetry has been broken; however, rotational

symmetry about the origin persists. That is, the conditions in (2.2.7) are preserved under a

rotation of x1 and x2 by R ∈ SO(2). To illustrate why, suppose that x1
∗ and x2

∗ are vehicle

positions that satisfy (2.2.7). Then for any R ∈ SO(2), x1
∗′

= Rx1
∗ and x2

∗′
= Rx2

∗ are

solutions of (2.2.7) as well. Furthermore,
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x∗′
12 = ‖x1

∗′ − x2
∗′‖ = ‖Rx1

∗ − Rx2
∗‖ = x∗

12

h∗′
11 = ‖x1

∗′‖ = ‖Rx1
∗‖ = h∗

11

h∗′
21 = ‖x2

∗′‖ = ‖Rx2
∗‖ = h∗

21

x̂12
∗′

=
x1

∗′ − x2
∗′

‖x1
∗′ − x2

∗′‖
= R

x1
∗ − x2

∗

‖Rx1
∗ − Rx2

∗‖ = Rx̂12
∗

ĥ11
∗′

=
x1

∗′

‖x1
∗′‖

= R
x1

∗

‖Rx1
∗‖ = Rĥ11

∗

ĥ21
∗′

=
x2

∗′

x2
∗′ = R

x2
∗

‖Rx2
∗‖ = Rĥ21

∗.

Thus,

f c
h(h∗′

11) ĥ11
∗′

= Rf c
h(h∗

11) ĥ11
∗

fI(x
∗′
12) x̂12

∗′
= RfI(x

∗
12) x̂12

∗

f c
h(h∗′

21) ĥ21
∗′

= Rf c
h(h∗

21) ĥ21
∗.

Now x1
∗ and x2

∗ are such that (2.2.7) is satisfied, i.e.

f c
h(h∗

11) ĥ11
∗ = −fI(x

∗
12) x̂12

∗ = −f c
h(h∗

21) ĥ21
∗,

and multiplying through by R we also have

Rf c
h(h∗

11) ĥ11
∗ = −RfI(x

∗
12) x̂12

∗ = −Rf c
h(h∗

21) ĥ21
∗,

which is equivalent to

f c
h(h∗′

11) ĥ11
∗′

= −fI(x
∗′
12) x̂12

∗′
= −f c

h(h∗′
21) ĥ21

∗′
.

Thus, formation rotation preserves (2.2.7) and rotational symmetry persists.

We can prove asymptotic stability of this equilibrium (the set Σ) modulo S1 ≈ SO(2),

i.e., to the formation shown in Figure 2.2.4a. Define χ = (xT
1 , xT

2 , ẋT
1 , ẋT

2 )T ∈ R
8 and

26



consider the candidate Lyapunov function

Φ(χ) =
1

2

2∑

i=1



‖ẋi‖2 +
2∑

j 6=i

VI(xij) + 2 V c
h (hi1)



 .

Taking the time derivative of Φ yields

Φ̇ = ẋ1 · ẍ1 + ẋ2 · ẍ2 + ∇x1
VI(x12) · ẋ12 + ∇x1

V c
h (h11) · ẋ1 + ∇x2

V c
h (h21) · ẋ2.

Now,

ẋ1 · ẍ1 + ẋ2 · ẍ2 = ẋ1 · (−∇x1
VI(x12) −∇x1

V c
h (h11) − ẋ1)

+ ẋ2 · (−∇x2
VI(x21) −∇x2

V c
h (h21) − ẋ2)

= −ẋ1 · ∇x1
V c

h (h11) − ẋ2 · ∇x2
V c

h (h21) −∇x1
VI(x12) · ẋ12 − ‖ẋ1‖2 − ‖ẋ2‖2

Thus,

Φ̇ = −‖ẋ1‖2 − ‖ẋ2‖2 ≤ 0,

which is negative semi-definite. To prove asymptotic stability of the set Σ we invoke

LaSalle’s invariance principle. Note that Φ ≥ 0 and is identically 0 only when ‖ẋ1‖ =

‖ẋ2‖ = 0 and x12 = d0, h11 = h21 = h0. Furthermore, Φ̇ ≤ 0 and identically 0 only at

equilibria. We prove asymptotic stability of the set of desired formation Σ by proving it is

the only member of an invariant set to which all trajectories converge when starting within

some region of attraction.

Let Σ′ denote the set of all equilibria χ which satisfy (2.2.7) other than the desired

formations contained in Σ, i.e.

Σ′ = { χ /∈ Σ | f c
h(h11) ĥ11 = −fI(x12) x̂12 = −f c

h(h21) ĥ21 }.

Let c′ = min
χ∈Σ′

Φ(χ), that is, c′ is the least value of Φ corresponding to some equilibrium other

than the desired formations contained in Σ (recall by design the set of desired formations Σ
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is the global minimizer of Φ). We assert that there exist potentials as presented in Figure

2.2.1 and 2.2.3a for which c′ > 0 (and bounded away from 0). Choose a c such that c < c′

and define Ωc = { χ | Φ(χ) ≤ c}. Since Φ̇ ≤ 0 in Ωc, Ωc is a positively invariant1 set.

Let E be the set of all points in Ωc where Φ̇(χ) = 0 and let M be the largest invariant set

in E, i.e. M ⊂ E ⊂ Ωc. By Theorem 4.4 in [40], every solution starting in Ωc approaches

M as t → ∞. All points in E satisfy Φ̇ = −‖ẋ1‖2 − ‖ẋ2‖2 = 0 and thus M , being an

invariant set within E, only contains equilibria. Since χ ∈ Σ are the only equilibria in Ωc,

the set M only consists of χ ∈ Σ. Thus, by Theorem 4.4 of [40] the equilibria formations

in Σ are asymptotically stable.

When x12 < d1 and h11, h21 < h1, the conditions in (2.2.7) permit an equilibrium

associated with |f c
h(h11)| = |fI(x12)| = |f c

h(h21)| 6= 0 and h11, h21 and x12 co-linear (see

Figure 2.2.4b). Denote the positions of each vehicle at this equilibrium as x1
∗ and x2

∗

and define χ∗ = (x1
∗T , x2

∗, 0, 0)T ∈ R8. Furthermore, define the set of equilibria Σ∗ =

{(Rx1
∗T , Rx2

∗T , 0, 0)T |R ∈ SO(2)}. The equilibrium set, Σ∗, is in fact unstable. Given

any neighborhood of radius ǫ about an equilibrium χ∗ ∈ Σ∗, for χ∗ to be stable we must

be able to produce a δ(ǫ) > 0 such that ‖χ(0) − χ∗‖ < δ ⇒ ‖χ(t) − χ∗‖ < ǫ,∀t ≥ 0 [40].

Denote the open disc of radius ǫ about χ∗ as Bǫ, i.e., Bǫ = {χ ∈ R
8 | ‖χ − χ∗‖ < ǫ}.

Suppose we choose ǫ small enough such that the equilibria shown in Figure 2.2.4a, the

desired formation equilibria, are not contained within Bǫ (we assume our potentials are

constructed in a manner that this is indeed possible). Thus, since Φ(χ) is continuous and

χ∗ ∈ Σ∗ is not the global minimizer of Φ for any χ∗ within Bǫ, Φ is bounded from below

by some a > 0, for χ ∈ Bǫ, i.e. Φ(χ) > a,∀χ ∈ Bǫ.

We will now construct a family of initial conditions arbitrarily close to χ∗ such that

1A set Q is said to be a positively invariant set with respect to (2.2.5)-(2.2.6) if χ(0) ∈ Q ⇒ χ(t) ∈

Q, ∀t ≥ 0 [40].
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1

2

Figure 2.2.5: Perturbation from Equilibrium Formation. Shaded dots are vehicles,
solid dot is the virtual leader. Solid circular arc has radius h0, dashed circular arc has
radius h∗

11. Dotted arc has radius x∗
12.

there exists no δ(ǫ) > 0 that guarantees ‖χ(t) − χ∗‖ < ǫ,∀ t ≥ 0.

For the equilibrium χ∗ = (x1
∗T , x2

∗T , 0, 0)T , denote h∗
i = ‖xi

∗‖, i = 1, 2, x∗
12 =

‖x1
∗ − x2

∗‖ and denote the perturbation as χ′ = (x1
′T , x2

′T , 0, 0)T , with h′
i = ‖xi

′‖, i =

1, 2, x′
12 = ‖x1

′ − x2
′‖. Referring to Figure 2.2.5, consider holding vehicle 2 fixed, i.e.

h′
21 = ‖x2

′‖ = h∗
21, and perturb vehicle 1 to any location along a circular arc about vehicle

2 of radius x∗
12 (indicated by the dotted curve) such that h′

11 = ‖x1
′‖ < h∗

11 and h′
11 > h0.

Note that x′
12 = ‖x1

′ − x2
′‖ = x∗

12. Note that χ′ ∈ Bǫ cannot be an equilibrium solution

of (2.2.7) because the virtual leader and the two vehicles are not all co-linear.

Since h0 < h′
11 < h∗

11 < h1, V c
h (h′

11) < V c
h (h∗

11) from which it follows Φ(χ′) < Φ(χ∗) for

χ∗ ∈ Σ∗. Furthermore, any trajectory, χ(t), with χ(0) = χ′ cannot return to the Σ∗ set

since Φ(χ(0)) < Φ(χ∗) and Φ̇(χ(t)) ≤ 0,∀ t ≥ 0. Define M as the invariant set for which

Φ̇ = 0 for χ(0) ∈ Bǫ. M only contains the equilibria set Σ∗. Therefore, since Φ > a > 0 on

Bǫ and Σ∗ is both unreachable and the sole member of M , all trajectories must leave Bǫ. A

perturbation χ′ produced in the manner described above can be produced no matter how

small ǫ, therefore, χ∗ is not stable.
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Example 2.2.3. Two Vehicles, Two Virtual Leaders

In Example 2.2.2 we saw how the addition of a virtual leader broke the translational

symmetry but not the S1 symmetry. Here we include an additional virtual leader and

demonstrate that the full SE(2) symmetry can be broken. Again we wish the desired

vehicle pair to be separated by a distance d0 with center of mass at the origin. However, in

addition we now wish the line connecting the two vehicles to be oriented along the y-axis

(̂j) as indicated in Figure 2.2.6.

A virtual body configuration that makes this desired formation an equilibrium corre-

sponds to placing each virtual leader along the x-axis (̂i) at bl = ±
√

h2
0 − 1/4d2

0 î as shown

in Figure 2.2.6. The virtual body center is therefore located at the origin, r = 0.

h0

i

j

d0

h0

Figure 2.2.6: Double Virtual Leader Equilibrium Formations for Example 2.2.3.
Shaded dots are vehicles, solid dots are virtual leaders. Virtual body center of mass is
indicated by hatched dot. Desired vehicle configuration corresponding to the minimum of
all acting potentials.

We consider five potentials VI(x12), V
c
h (h11), V

c
h (h12), V

c
h (h21), and V c

h (h22). The mini-

mum of potentials V c
h (hi1) and V c

h (hi2) alone define the desired formation geometry with

broken SE(2) symmetry; however, to ensure no vehicle collisions we include VI(x12), the

vehicle interaction potential. The vehicle interaction potential also helps ensure that two

vehicles will not try to converge to the same minimum of the virtual leader interaction po-

tentials since vehicles repel when they are too close. As in the previous two examples, the

desired formation geometry is by design a minimum of the sum of the artificial potentials
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and can be shown to be a stable equilibrium. The dynamics for each vehicle are written

ẍ1 = −∇x1
V c

h (h11) −∇x1
V c

h (h12) −∇x1
VI(x12) − fv1

= −f c
h(h11)ĥ11 − f c

h(h12)ĥ12 − fI(x12)x̂12 − ẋ1 (2.2.8)

ẍ2 = −∇x2
V c

h (h21) −∇x2
V c

h (h22) −∇x2
VI(x21) − fv2

= −f c
h(h21)ĥ21 − f c

h(h22)ĥ22 + fI(x12)x̂12 − ẋ2 (2.2.9)

which yield the following equations at equilibrium

0 = −f c
h(h11)ĥ11 − f c

h(h12)ĥ12 − fI(x12)x̂12

0 = −f c
h(h21)ĥ21 − f c

h(h22)ĥ22 + fI(x12)x̂12.

As expected these equations permit the desired formation geometry as a solution. Another

set of (unstable) equilibria are the solutions where all ĥi1 and x̂12 lie along the x-axis (̂i).

Formation Design in R
3

Formation design in R
3 follows the same methodology as we have presented for for-

mations in R
2: (1) interaction potentials between vehicles prevent collisions and dictate

vehicle spacings and (2) virtual leaders with their respective interaction potentials break

symmetries. However, designing appropriate potentials for desired patterns in R
3 is much

more challenging given the increased number of degrees of freedom. For the two vehicle

case considered in Example 2.2.1 the symmetry is now an SE(3) symmetry. Introducing a

virtual leader (as in Example 2.2.2) breaks the translational symmetry but leaves an S2 or

spherical symmetry about the virtual leader. Adding a second virtual leader is not sufficient

to completely fix the orientation of the formation as rotation about the line connecting the
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two virtual leaders is unconstrained (see Figure 2.2.7a). As indicated in Figure 2.2.7b a

virtual body consisting of three virtual leaders can fully break the symmetry.

(a) (b)

Figure 2.2.7: Equilibria Formations in R
3. Gray spheres indicate radius h0 about each

virtual leader. (a) Two virtual leaders at (±0.5, 0, 0) with h0 = 1. The black circle at
the intersection of the spheres indicates non-isolated minima of sum of potentials V c

h (hil).
(b)Three virtual leaders at (±0.5, 0, 0) and (0, 0.5, 0) with h0 = 1. Two isolated equilibria

at (0,±
√

3
2 , 0) exist at the minima of the sum of all three potentials (intersection of all three

spheres).

It can be difficult, especially in R
3, to find virtual leader configurations to break rota-

tional symmetry in a systematic manner. In the next section we introduce potentials with

the specific purpose of breaking this symmetry for N > 2. These potentials depend on

relative position vectors and make it possible to fix formations with only a single virtual

leader.

Example 2.2.4. Formation Arrays: Hexagonal Lattices

In this example we present a method for constructing formation arrays for many vehicles,

N > 2. These arrays take the form of hexagonal lattices. Given N vehicles with interaction
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potential, VI(xij) and desired spacing d0, we choose d0 < d1 < d0

√
3. This yields hexagonal

lattice equilibria in which xij = d0 for i, j = 1, . . . , N as shown in Figure 2.2.8. About each

vehicle there is a maximum of six vehicles lying evenly spaced around a circle of radius d0.

d0

d1

(a) (b)

Figure 2.2.8: Hexagonal Lattice. Shaded dots are vehicles. Solid circles have radius
d0, dashed circles have radius d1. (a) Lattice with four vehicles. (b) Lattice with twelve
vehicles.

We can break the translational symmetry by introducing a virtual leader in place of a

vehicle. Alternatively, to keep the lattice intact we can place the virtual leader at the center

of a three vehicle group as shown in Figure 2.2.9. This is achieved by choosing h0 = d0

√
3/3

and h0 < h1 < 2d0

√
3/3. In this case, three vehicles now lie in an equilateral triangle on

the circle of radius h0 about the virtual leader.

Note that near this equilibrium (in phase space) only three vehicles will be aware of and

influenced by the virtual leader. Similarly, near this equilibrium, each vehicle will in general

interact with at most six neighboring vehicles. With one virtual leader there remains an S1

symmetry. This can, of course, be broken with the addition of other virtual leaders as in

Example 2.2.2 or by using artificial potentials of the form to be discussed in Section 2.3.

For groups with N > 3 we can extend these ideas to artificial potential design for stable
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h0

h1

Figure 2.2.9: Hexagonal Lattice with Virtual Leader. Shaded dots are vehicles. The
solid dot is the virtual leader.

equilibria that corresponds to more varied group geometries of interest such as vehicles

moving in a circle (e.g., to escort another vehicle), in a line, in a V-shape, etc. One way

to do this is to start with the hexagonal lattice set-up and impose a virtual leader in any

position where no real vehicle should be present. For example, if we have five vehicles and

want them to form a V-shape, we would place a virtual leader in each position in the lattice

of Figure 2.2.9 that is not part of the V-shape. In Figure 2.2.10 we have shown five of these

“occupier” virtual leaders (smaller black dots). For these we assign h0 = d0 and h1 = d1.

For the virtual leader near the apex of the V-shape (the larger black dots in Figure 2.2.10)

we assign h0 = d0

√
3/3 and h0 < h1 < 2d0

√
3/3. Then, the five vehicles (shaded dots) in

the V formation are in equilibrium and the virtual leaders “use up” spaces so no real vehicle

can occupy them.
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Figure 2.2.10: V-formation from Hexagonal Lattice. Shaded dots are vehicles and
black dots are virtual leaders. Solid circles around each virtual leader have radius h0.

2.3 Potentials to Regulate Relative Orientation

In Section 2.2 we introduced potentials between vehicles and vehicle-virtual leader pairs

which are functions of relative distance only. The resulting control forces are central forces

acting along the line between pairings. In Section 2.2.3 with a single virtual leader and

potentials that regulate inter-vehicle distance alone, it was demonstrated that a desired

formation can only be stabilized to within an S1 symmetry about the virtual leader. To

break that symmetry we introduced a second virtual leader. For the same two-vehicle

formation in R
3, an S2 symmetry exists about a single virtual leader; it was illustrated that

three virtual leaders are needed to break all symmetries and define isolated minima.

In this section we introduce potentials that intrinsically serve to break these S1 and

S2 symmetries for planar and R
3 formations, respectively. To do so, we first assume that

hil 6= 0 for all i = 1, . . . , N and l = 1, . . . , M , i.e. no vehicle can be at the same position as

a virtual leader. We then define the relative orientation of the ith vehicle and lth virtual

leader as the orientation of the relative position vector (hil). This relative orientation is

denoted Θil ∈ Sp−1
hil

, p = 2, 3 where S1
hil

is the circle of radius hil and S2
hil

is the sphere of

radius hil. For orientation in the plane, it is convenient to use polar coordinates (hil, θil)
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where Θil = θil ∈ [0, 2π) with θil = 0 corresponding to hil pointing in the î direction. For

orientation in R
3 we will use spherical coordinates. The desired relative orientation will be

denoted with the superscript “d” as Θd
il ∈Sp−1. The symmetry breaking potentials we define

in this section depend on these relative orientations and are denoted V o
h (Θil) or sometimes

V o
h (Θil; α

o
h, Θd

l , h1) where αo
h is a scalar design parameter. The range of influence of these

potentials is limited to hil ≤ h1. In this section we retain the discontinuity at hil = h1 and

explicitly define the potential and gradient to be zero for hil ≥ h1.

qil

hil

qil [      )0,2p

il

j
l

(a)

q

f

il

il

hil

f
il

qil [        )0, 2p

(      )0, p
il

j
l

k l

(b)

Figure 2.3.1: Defining Relative Orientation. Vehicle orientation relative to virtual
leader (a) in the plane and (b) in R

3. Black circle is the virtual leader, shaded circle is the
vehicle.

2.3.1 Planar Formations.

Consider formations restricted to the plane. As described above, we identify the orientation

of the ith vehicle with respect to the lth virtual leader with the polar coordinate θil ∈ [0, 2π).

This is shown in Figure 2.3.1 where we have fixed a frame îl, ĵl to the virtual leader with

orientation the same as the inertial frame. When designing potentials on S1, we must ensure

our potentials are C1 with respect to our parametrization by verifying that
(

∂V o
h

∂θil

)

θil=0
=

(
∂V o

h

∂θil

)

θil→2π
. The examples presented in what follows are all C1 for θil ∈ [0, 2π).

For formation design we will introduce potentials, V o
h (θil), that are strictly functions
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of θil and yield gradients which are perpendicular to fc
h(hil). Therefore these potentials

only break the S1 symmetry and do not influence the radial dynamics between vehicle and

virtual leader. The gradient of this potential with respect to xi is given by

∇xi
V o

h (θil) =
∂V o

h

∂θil

∂θil

∂xi

= fo
h(θil) h⊥

il

where we have defined

h⊥
il ≡

∂θil

∂xi
=

1

hil

(
− sin θil îl + cos θil ĵl

)
.

In light of the well known formula for the gradient in planar polar coordinates, it is not

surprising that ‖h⊥
il ‖ = ‖hil‖−1. Furthermore, h⊥

il is indeed perpendicular to hil.

Consider the potential given by

V o
h (θil) = αo

h sin2 1

2
(θil − θd) (2.3.1)

which acts to align θil to a chosen reference angle, θd. This potential has a unique minimum

at θil = θd, see Figure 2.3.2a. The gradient is given by ∇xi
V o

h (θil) =
αo

h

2 sin(θil − θd) h⊥
il . A

simple modification of the potential of (2.3.1) is given by

V o
h (θil) = αo

h sin2 r

2
(θil − θd). (2.3.2)

The potential of (2.3.2) has r isolated global minima, evenly spaced at angles θd + 2πt/r,

for t = 0, . . . , r − 1 (see Figure 2.3.2b). This potential is especially suited to breaking the

S1 symmetry for a formation with r vehicles about a single virtual leader where the desired

formation geometry is an r − 1 sided regular polygon. More generally, given r desired

orientations θd
q , q = 1, . . . , r about the virtual leader (not necessarily evenly spaced about

2π), the potential

V o
h (θil) = αo

h

r∏

q=1

sin2 1

2
(θil − θd

q )
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has an isolated minimum at each θd
q , q = 1, . . . , r.
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Figure 2.3.2: Potentials Regulating Orientation in the Plane. Solid lines indicate
potential profile and dashed lines indicate the nonzero component of its gradient. (a) Profile
of potential given in (2.3.1) with αo

h = 1 and θd = π/4. (b) Profile of potential given in
(2.3.2) with αo

h = 1, θd = π/4, and r = 3.

Alternatively, since S1 is isomorphic to SO(2) we can map θil ∈ [0, 2π) to Ril ∈ SO(2)

and the desired orientation θd ∈ S1 to Rd ∈ SO(2), i.e.

Ril =




cos θil − sin θil

sin θil cos θil


 , Rd =




cos θd − sin θd

sin θd cos θd


 .

In [85], given two vehicles, A and B, with orientation defined by RA ∈ SO(3) and RB ∈

SO(3), control laws are sought to align the vehicles body frames by seeking to drive RA =

RB. In [85], control laws derived from the potential

V = Tr(I − (RA)T RB) (2.3.3)

are shown to solve this vehicle alignment problem. The potential in (2.3.1) and (2.3.3) are

identical when setting RA = Rd and RB = Ril in the latter equation.

38



2.3.2 Formations in R
3.

For formations in three dimensions, the orientation of the ith vehicle relative to the lth

virtual leader, Θil, is an element of S2. Unlike for S1, no single parametrization can cover

S2. To ease matters, we assume that we may disregard the north and south poles on S2. A

useful parametrization for our purposes is then (ρ, θil, φil)-spherical coordinates with radius

ρ = hil. In this parametrization the orientation of a vehicle relative to a virtual leader is

described by a pair of angles, (θil, φil), where θil ∈ [0, 2π) and φil ∈ [0, π] (see Figure 2.3.1).

These angles are measured with respect to a reference frame attached to the lth virtual

leader and oriented as the inertial frame. In light of our assumption, we only consider

φil ∈ (0, π).

As in the planar case, V o
h (θil, φil) yields gradients which are perpendicular to fh(hil).

Therefore these potentials only break the S2 symmetry and do not influence the radial

dynamics between vehicle and virtual leader. The gradient of this potential with respect to

xi is given by

∇xi
V o

h (θil, φil) =
∂V o

h

∂θil

∂θil

∂xi
+

∂V o
h

∂φil

∂φil

∂xi

= fθ
h(θil, φil) hil

θ⊥ + fφ
h (θil, φil) hil

φ⊥

where we have defined

fθ
h(θil, φil) ≡

∂V o
h

∂θil
,

fφ
h (θil, φil) ≡

∂V o
h

∂φil
,

hil
θ⊥ ≡ ∂θil

∂xi
=

1

hil

(
− sin θil

sinφil
îl +

cos θil

sinφil
ĵl

)

and

hil
φ⊥ ≡ ∂θil

∂xi
=

1

hil

(
cos φil cos θil îl + cos φil sin θil ĵl − sinφil k̂l

)
.
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hil
θ⊥ and hil

φ⊥ lie in the plane whose normal is given by hil. Thus, neither fθ
h nor fφ

h

have influence in the radial direction. Furthermore, hil
θ⊥ and hil

φ⊥ are orthogonal to each

other.

Now consider the potential

V o
h (θil, φil) = αo

h

(
1 − cos(θil − θd) sin φil sin φd − cos φil cos φd

)
(2.3.4)

which is positive definite and has a unique isolated global minimum at (θil, φil) = (θd, φd),

see Figure 2.3.3. This potential is indeed C0 even at the poles, φil = 0, π. Taking partials

with respect to θil and φil, i.e.

∂V o
h

∂θil
= αo

h sin(θil − θd) sin φil sinφd

∂V o
h

∂φil
= αo

h

(
sinφil cos φd − cos(θil − θd) cos φil sinφd

)

illustrates how the gradient is undefined at the poles since
∂V o

h

∂φil

∣∣
φil=0

=
∂V o

h

∂φil
(θil, φil) and

thus our removal of the poles. Also, as in the planar case
(

∂V o
h

∂θil

)

θil=0
=
(

∂V o
h

∂θil

)

θil→2π
.

Given r desired orientations (θd
q , φ

d
q), q = 1, . . . , r about the virtual leader, we design a

potential given by

V o
h (θil, φil) = αo

h

r∏

q=1

(
1 − cos(θil − θd

q ) sin φil sin φd
q − cos φil cos φd

q

)
(2.3.5)

which has r isolated minima, one at each of the desired orientations (see Figure 2.3.3).

S2 is not isomorphic to SO(3). However, we can define Ril(θil, φil) = Ry(φil)Rz(θil)

where Rz(θil) ∈ SO(3) represents rotation about the z-axis (k̂l) by an amount θil and

Ry(φil) ∈ SO(3) represents rotation about the y-axis (̂jl) by an amount φil. Then, ĥil =

Rilk̂l. Given a desired orientation (θd
il, φ

d
il) we define Rd = Ril(θ

d
il, φ

d
il) ∈ SO(3) and derive

a control law from the potential presented in (2.3.3). In this setting, quaternions provide a

singularity free parametrization for both Ril and Rd.
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Figure 2.3.3: Potentials Regulating Orientation in R
3. Gray scale corresponds to

value of the potential. Black dots indicate global minima. (a) Surface plot of the potential
given in (2.3.4) on the sphere modulo north and south poles with (θd, φd) = (π/4, π/4)
and αo

h = 1. (b) Surface plot of the potential given in (2.3.5) on the sphere modulo north
and south poles with eight minima at (θd, φd) = (π/4 + pπ/2, π/4), (π/4 + pπ/2,−π/4) for
p = 0, 1, 2, 3 and αo

h = 1.

2.4 Potentials to Regulate Relative Position

In Section 2.2 and Section 2.3 we presented methods for breaking selected symmetries using

virtual leaders and various artificial potentials. In this section we present a single potential

to break the SE(p), p = 2, 3 symmetries about a virtual leader. These potentials will be

denoted V p
h (hil; d, αp) and have minima when the relative vehicle position, hil, is equal to

desired relative position vector d ∈ R
p. As in Section 2.3 in what follows we impose the

discontinuous cutoff for hil > h1.

The simple quadratic potential

V p
h =

αp

2
‖hil − d‖2

has a unique and isolated minimum when hil = d. If there are r desired locations about
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Figure 2.4.1: Potentials Regulating Relative Position. Potential in (2.4.1) with min-
ima at vertices of the square defined by d1 = (2, 2), d2 = (2,−2), d3 = (−2,−2), and
d4(−2, 2). Axis are defined by hi1 = (hx

i1, h
y
i1).

the virtual leader denoted dq, q = 1, . . . , r, the potential

V p
h =

αp

2r

r∏

q=1

‖hil − dq‖2 (2.4.1)

suffices having r minima at each dq. For example, in Figure 2.4.1 we show the resulting

potential field associated with (2.4.1) for a square formation in the plane about a virtual

leader at the origin.

2.5 Formation Stability

In Example 2.2.2 we used Lyapunov’s Second Method and invoked LaSalle’s invariance

principle to prove asymptotic stability of the two vehicle, one stationary virtual leader

formation modulo an S1 symmetry about the virtual leader. In general, a benefit of using

artificial potentials for control design is that they provide a guide for choosing Lyapunov

functions. In particular, a Lyapunov function for proving stability and robustness of the

group motion can be constructed as the sum of each vehicle’s kinetic energy and the artificial

potentials. That is, local asymptotic stability of χ = (xT
1 , . . . ,xT

N , ẋT
1 , . . . , ẋT

N )T = χ∗
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corresponding to the vehicles at rest and at the global minimum of the sum of the artificial

potentials is proven with the Lyapunov function

Φ=
1

2

N∑

i=1



‖ẋi‖2 +
N∑

j 6=i

VI(xij) + 2
M∑

l=1

(
V c

h (hil) + V o
h (Θil) + V p

h (xi, bl)
)


 . (2.5.1)

Without dissipation, the examples provided in Section 2.2.3 are all stable in the sense of

Lyapunov. When there is an S1 symmetry, the stability is modulo S1. Stability follows from

the fact that in each of these cases, by design, the equilibrium described is a global minimum

of the total artificial potential. Recall that the local potential VI(xij) is designed so that

it has a global minimum at xij = d0 and Vh has a global minimum at hil = h0, Θil = Θd

and/or hil = d. In all of these cases, the desired equilibrium corresponds to these minimum

values. Thus, the sum of the local potentials has a global minimum at the equilibrium.

In general, the Lyapunov function corresponding to total kinetic energy plus artificial

potential energy (Φ in the example above) can be used further to select a controlled dissi-

pation force fv and to prove local asymptotic stability. The derivative of Φ with respect to

time is

Φ̇ =
N∑

i=1

ẋi ·



ui +
N∑

j 6=i

∇xi
VI(xij) +

M∑

l=1

∇xi
Vh(xi, bl)





=

N∑

i=1

ẋi · fvi

where we have used the expression (2.1.2) for the control law ui and we have assumed there

is a neighborhood about the equilibrium in which the control law remains smooth. Thus,

if we choose

fvi = aiẋi, ai > 0 (2.5.2)

for i = 1, . . . , N , then Φ̇ is negative semi-definite being equal to zero if and only if ẋi = 0

for all i. By the LaSalle invariance principle we can conclude that an equilibrium that has
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been made stable without dissipation will be asymptotically stabilized with this form of

dissipation.

In the case where the virtual body is not stationary but rather strictly translating with

a velocity v0(t), i.e. ṙ = ḃ1 = . . . = ḃM = v0(t), r̈ = b̈1 = . . . = b̈M = v̇0(t), an fv which

asymptotically stabilizes a desired formation that is at rest with respect to the moving

virtual body is given by,

fvi = αv(ẋi − ṙ) − r̈

where αv > 0 is a constant parameter. A Lyapunov function that can prove asymptotic

stability and has a global minimum at the desired formation is given by

Φ′=
1

2

N∑

i=1

M∑

l=1



‖ḣil‖2 + 2M
(
V c

h (hil) + V o
h (Θil) + V p

h (xi, bl)
)

+
N∑

j 6=i

VI(xij)



 . (2.5.3)

Clearly, Φ′ > 0 and Φ′ = 0 only when each vehicle is at rest with respect to the virtual

body (i.e. each virtual leader) and at positions relative to the virtual body such that the

sum of artificial potentials is zero. The Lyapunov function, (2.5.1), used to prove stability

when the virtual body is stationary, i.e. ḣil = ẋi, is identical to (2.5.3) except for how the

sums over the virtual leaders, i.e. sums over l, are nested. With vehicle dynamics given in

(2.1.1) and control law given in (2.1.2), the time derivative of Φ is given by

Φ̇′ =
N∑

i=1

M∑

l=1

−αv‖ḣil‖2. (2.5.4)

Φ̇′ is only negative semi-definite but stability of the desired formation equilibrium can be

proven by invoking LaSalle’s invariance principle (see Example 2.2.2).

We conclude with a proposition about the stability of formations constructed with the

artificial potentials discussed throughout this chapter, with vehicle dynamics as given in

(2.1.1), and control law given in (2.1.2).
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Proposition 2.5.1. Consider a group of N vehicles with dynamics defined by (2.1.1) and

the control law given by (2.1.2) and (2.5.2) and let the virtual body be strictly translating with

respect to a fixed inertial frame, i.e. ṙ = ḃ1 = . . . = ḃM = v0(t), r̈ = b̈1 = . . . = b̈M = v̇0(t).

Let the equilibrium of interest be one in which ḣil = 0 and a global minimum of the sum of

artificial potentials given in (2.1.4). Then, the equilibrium is locally asymptotically stable for

the closed-loop dynamics. In the case in which there is no symmetry, stability is achieved

in the full state space. In the case in which there is symmetry, the relative velocity of

all vehicles will go to zero and each symmetry variable will be stabilized to an arbitrary

(constant) value. We assume that h1 and d1 have been defined so that there is a neighborhood

about the equilibrium in which the control law remains smooth.

Proposition 2.5.1 can be used to prove asymptotic stability of all of the equilibria de-

scribed in this chapter. This excludes, of course, the unstable equilibria shown in Figure

2.2.4b and others.

It should be emphasized that stability results are generally local. A major disadvantage

of potentials is that there can be many local minima and other critical points. This is

true even for relatively small N (as illustrated in Example 2.2.2). Often it is impossible to

catalog all possible equilibria and thus stating anything global about stability is prohibited.
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Chapter 3

Dynamic Formations

In Chapter 2 we presented a methodology for designing stable vehicle formations using

artificial potentials and a virtual body. Vehicle control laws comprised of the gradients of

these artificial potentials and the fed-forward virtual body dynamics were introduced to

stabilize the vehicle formation about a translating virtual body. Central to a stability proof

was a Lyapunov function that serves as a meaningful measure of the formation error. In

this chapter we enable the virtual body to rotate, expand/contract, and deform and we

describe control laws that drive the virtual body, and thus the vehicle group, to perform

these maneuvers in a stable manner. These control laws regulate the speed of the virtual

body to ensure bounded formation error. In the construction presented herein, we use the

formation design tools and vehicle control laws presented in Chapter 2, that stabilize a

formation of vehicles about a stationary virtual body.

In Section 3.1 virtual body maneuvers (and thus desired vehicle formation maneuvers)

are identified with trajectories in an extended virtual body configuration space. Motion

along these trajectories, i.e. virtual body motion, is achieved by parameterizing these

trajectories by a time-like variable s. In Section 3.2, formation stabilization is achieved by
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specifying a feedback control to regulate the speed, ṡ, at which the virtual body traverses

the mission trajectories to ensure that formation error remains below a specified upper

bound.

The parametrization of the virtual body dynamics by s permits a decoupling of the

formation stabilization and the formation maneuver/mission control subproblems. By ap-

propriate choice of vehicle control law and the proposed ṡ control law, it can be shown that

formation error will remain bounded regardless of virtual body maneuver direction.

The vehicle control laws must be designed to asymptotically stabilize the formation

about a stationary virtual body. A Lyapunov function used to prove asymptotic stability

then serves as the formation error function by which we regulate ṡ. The interpretation of

this function as a meaningful measure of formation error during the formation maneuver

is limited since the function may be inherently biased from zero when the vehicles have

nonzero velocity. This will be addressed and demonstrated in Section 3.3 where we present

a simulation of the virtual body translating and rotating.

Much of the work in this chapter was first presented in [64] and [61]. The presentation

of Section 3.1 and Section 3.2 closely follows [64]. The development that allows the vehicle

group to deform using potentials presented in Section 2.3 and Section 2.4, remarks regarding

the controller performance, and Section 3.3 are all new since [64] and [61].

3.1 Formation Trajectories

As presented in Chapter 2, the position of the lth virtual leader with respect to an inertial

frame is given by bl ∈ R
p and the virtual body center of mass is given by r ∈ R

p, where

p = 2 or 3. Denote the orientation of the virtual body with respect to a fixed inertial frame

as R ∈ SO(p).
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3.1.1 Translation and Rotation

When virtual leaders are constrained to maintain fixed relative position between each other,

it is natural to view the virtual body as a rigid body and define its configuration as an element

of SE(p), i.e. (R, r) ∈ SE(p) where R ∈ SO(p) is the p × p rotation matrix. Translation

and rotation of the virtual body are then defined by a trajectory in this space. To achieve

motion these trajectories are parameterized by the time-like variable s, i.e. (R(s), r(s))

where s ∈ [ss, sf ]. The dynamics of the virtual body are then described by the relations

ṙ =
d̂r

ds
ṡ, Ṙ =

dR

ds
ṡ, (3.1.1)

and the trajectory for the lth virtual leader is

bl(s) = R(s)b̄l + r(s), l = 1, . . . , M,

where b̄l = bl(ss) − r(ss), i.e. the initial relative position, and R(ss) is the p × p identity

matrix.

For example, the choice

d̂r

ds
=




1

0


 ,

dR

ds
= 0,

produces a formation with its center of mass moving in a straight line in the (1, 0) direction

in the plane with fixed orientation. Stability of the formation during the maneuver is

guaranteed by the choice of ṡ presented in Section 3.2.

3.1.2 Expansion and Contraction

Expansion and contraction are achieved by scaling the distances between virtual leaders and

the desired separation parameters in each artificial potential, (di, hi), i = 0, 1, by a scalar

variable ke(s). We now define the virtual body configuration as an element of SE(p) × R
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and the s-parameterized trajectory is defined by the triplet (R, r, ke) ∈ SE(p) × R where

bl(s) = ke(s)R(s)b̄l + r(s),

hi(s) = ke(s)h̄i,

di(s) = ke(s)d̄i,

with ke(ss) = 1, h̄i = hi(ss) and d̄i = di(ss). The dynamics of a virtual body which can

translate, rotate, and expand and contract are now described by the relations

ṙ =
d̂r

ds
ṡ, Ṙ =

dR

ds
ṡ, k̇e =

dke

ds
ṡ. (3.1.2)

3.1.3 Deformation

In Section 2.3 we introduced artificial potentials, denoted V o
h , designed to regulate the orien-

tation of the relative position vectors of virtual leaders and vehicles. This was accomplished

by designing the potential associated with the lth virtual leader to have Zl isolated minima

at the angles φd
lz, z = 1, . . . , Zl for formations in R

2 and at the angles (θd
lz, φ

d
lz), z = 1, . . . , Zl,

for formations in R
3. The superscript “d” refers to deformation which is the maneuver re-

sulting from the introduction of dynamics to the (p − 1)
∑M

i=1 Zi desired angles, (θd
lz, φ

d
lz),

by parameterizing them by s. For example, in the plane we can define the scaling

φd
lz(s) = kd

lz(s)φ̄
d
lz

with kd
lz(ss) = 1, and φ̄d

lz = φd
lz(ss). If we introduce the desired orientations into an extended

virtual body configuration space defined by (R, r, ke, kd) ∈ (SE(p) × R × R

MP
n=1

Zn

, where

kd = (kd
11, . . . , k

d
1Z1

, . . . , kd
M1, . . . , k

d
MZM

)T ,

the dynamics of this virtual body are defined by

ṙ =
d̂r

ds
ṡ, Ṙ =

dR

ds
ṡ, k̇e =

dke

ds
ṡ, k̇d =

dkd

ds
ṡ. (3.1.3)
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Note that the term deformation is to used to describe the effect of this maneuver on

the vehicle formation, not on the virtual body. That is, this maneuver does not affect the

position of the virtual leaders in any way.

3.1.4 Deformation and Expansion/Contraction Alternative

In Section 2.4 we introduced a potential, denoted V p
h , designed to regulate relative position

of the vehicles about virtual leaders. These potentials act to drive hil towards a desired

relative position vector dlz where i = 1, . . . , N identifies the vehicle, l = 1, . . . , M identifies

the virtual leader and z = 1, . . . , Zl. By introducing dynamics to dlz formations can be

made to simultaneously deform and expand/contract. Parameterizing these dynamics by s

yields

ḋlz(s) =
ddlz

ds
ṡ.

When these potentials are utilized, extended virtual body configuration space is defined by

(R, r, d) ∈ SE(p) × R

p
MP

n=1

Zn

, where

d = (dT
11, . . . ,d

T
1Z1

, . . . ,dT
M1, . . . ,d

T
MZM

)T ,

with virtual body dynamics given by

ṙ =
d̂r

ds
ṡ, Ṙ =

dR

ds
ṡ, ḋlz =

dd

ds
ṡ. (3.1.4)

(3.1.4) provides the same maneuver capabilities as those provided in (3.1.3); they vary only

in the type of potentials used to construct the formation.

3.1.5 Sensor Driven Trajectories

In Section 3.1.1 we presented an example where the virtual body trajectory was prescribed

to generate translation in a fixed direction with fixed orientation. With the developments in
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this chapter, the virtual body trajectory can be prescribed with many more degrees of free-

dom. Furthermore, the specification of virtual body direction, i.e. dR/ds, d̂r/ds, dke/ds,

etc., can be chosen to be a function of the measurements taken by sensors on the vehicles.

For instance, suppose that we have underwater vehicles and each can measure a scalar

environmental field T such as temperature, salinity, or biomass concentration. These mea-

surements can be used to estimate the gradient of the field ∇Test at the center of mass of

the group. If the mission is to move the vehicle group to a maximum in the field T , e.g. hot

spots or high concentration areas, an appropriate choice of direction for the virtual body

dynamics is

d̂r

ds
= ∇Test .

This drives the virtual body, and thus the vehicle group, to a local maximum in T . Proof

of convergence to a maximum with gradient climbing using least-squares estimation of

gradients (with the option of Kalman filtering to use past measurements) are presented

in [64]. The optimal formation (shape and size) that minimizes the least-square gradient

estimation error is also developed in [64]. Adaptive gradient climbing is then possible;

for example, the diameter of the formation (spatial resolution of the sensor array) can be

changed in response to measurements for optimal estimation of the field.

The approach to gradient climbing can be extended to drive formations to and along

fronts and boundaries of features. For example, measurements of a scalar field can be used

to compute second and higher-order derivatives in the field, necessary for estimating front

locations (e.g. locations of maximum gradient). This will be discussed in Chapter 4.
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3.2 Formation Speed

In Section 3.1 we explained how various formation maneuvers can be implemented by defin-

ing trajectories in the virtual body’s (extended) configuration space. These trajectories are

parameterized by a scalar variable s and in each case we showed how the virtual body dy-

namics (in time) can be written as the product of virtual body direction and virtual body

speed ṡ. For example, for group translation we parameterize the position of the virtual

body center of mass r = r(s) such that its dynamics can be written ṙ = (d̂r/ds) ṡ. In

this section we present a control law for ṡ which guarantees that a formation error remains

below a user-specified upper bound as s evolves from ss to some final sf . This control law

also allows the specification of a desired virtual body speed, v0, which will bound ṡ and be

obtained as the formation error approaches zero [62].

Denote the state of the vehicle group as χ = (xT
1 , . . .xT

N , ẋT
1 , . . . ẋT

N )T ∈ R
2Np and the

desired equilibrium configuration χ∗ ∈ R
Np. Suppose a vehicle control law is known which

provides asymptotic stability of χ = χ∗ when the virtual body is stationary , i.e. when

ṡ = 0. By Lyapunov converse theorems (e.g. see Theorem 4.16 in [40]) we know there exists

a Lyapunov function to prove asymptotic stability of χ∗ for s fixed. Suppose one such

function is given by Φ(χ) and thus Φ̇ = ∂Φ
∂χ

T
χ̇ ≤ 0, and Φ̇ = 0 if and only if χ = χ∗, for all

χ ∈ Bc where Bc is the ball of radius c about χ∗. By introducing virtual body maneuvers,

s will no longer be constant. This implicitly makes the desired formation configuration a

function of s, i.e. χ∗ ≡ χ∗(s). Since the Lyapunov function also depends on the virtual

body motion, we have Φ ≡ Φ(χ, s). The following theorem presents a control law for ṡ which

guarantees that Φ(χ, s) < ΦU (the user specified upper bound) given Φ(χ(t0), ss) < ΦU .

The s-dependent function Φ(χ, s) is interpreted as the formation error.
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Theorem 3.2.1. (Convergence and Boundedness) [64] Let Φ(χ, s) be a Lyapunov

function for every fixed choice of s with Φ(χ∗(s), s) = 0. Let ΦU be a desired upper bound

on the value of this Lyapunov function such that the set {χ : Φ(χ, s) ≤ ΦU} is bounded.

Let v0 be a nominal desired formation speed and δ a small positive scalar. Let h : R
+ → R

+

be a continuous function with compact support in {Φ | Φ ≤ ΦU/2} and h(0) > 0. If the

endpoint is not reached, i.e. for s < sf , let ṡ be given by

ṡ = min





v0, h(Φ(χ, s)) +

−
(

∂Φ
∂χ

)T
χ̇

δ + |∂Φ
∂s |

(δ + ΦU )

(δ + Φ(χ, s))





(3.2.1)

with initial condition s(t0) = ss. At the endpoint and beyond, i.e. for s ≥ sf , set

ṡ = 0. Then, the coupled vehicle-virtual body system asymptotically converges to (χ, s) =

(χ∗(sf ), sf ). Furthermore, if at initial time t0, Φ(χ(t0), s(t0)) ≤ ΦU , then Φ(χ, s) ≤ ΦU

for all t ≥ t0 and thus bounded.

Proof: See Appendix A.

Remark 3.2.1. A typical choice of h(Φ) is

h(Φ) =






1
2v0

(
1 + cos

(
π 2

ΦU
Φ
))

if |Φ| ≤ ΦU

2

0 if |Φ| > ΦU

2

Here, h(0) = v0 > 0 guaranteeing asymptotic stability and giving ṡ = v0 at Φ = 0. ṡ ≤ v0

because of the min-operator in (3.2.1). Its support is limited to |Φ| ≤ ΦU

2 thus not affecting

the Φ ≤ ΦU property.

Remark 3.2.2. The typical effect of the second term within the min function in (3.2.1) is

to slow the virtual body dynamics to guarantee that Φ does not exceed ΦU .

Remark 3.2.3. The choice of mission trajectory appears in the control law for ṡ implicitly

through the term ∂Φ
∂s . This highlights the decoupling between the design of trajectories to
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meet mission requirements and the design of virtual body dynamics to ensure formation

stabilization during the maneuver.

Remark 3.2.4. Consider the case in which vehicle control laws are derived from artificial

potentials, e.g. as in Chapter 2. Suppose that the desired formation equilibria correspond

to isolated minima of these potentials. Since Φ(χ, s) is a Lyapunov function for the s-

frozen system, χ∗ must be of the form χ∗ = (x1
∗T , . . . ,xN

∗T , 0, . . . , 0)T where xi
∗ denotes

any desired equilibrium position for the ith vehicle as long as (x1
∗, . . . ,xN

∗) is the desired

formation configuration. During the maneuver when ṡ > 0, on average ẋi 6= 0 and thus

Φ(χ, s) > 0 since χ 6= χ∗.

Remark 3.2.5. Selection of ΦU should be consistent with v0 and Φ(χ, s) > 0 during the

maneuver. For example, during a pure virtual body translation where sf >> ss, if ṡ con-

verges to v0 and subsequently ẋi converges to v0
cdr
ds , ΦU should be at least equal to Φ(χ†, s)

where χ† = (x1
∗T , . . . ,xN

∗T , v0
cdr
ds

T
, . . . , v0

cdr
ds

T
)T .

3.3 Simulation: Formation Translation and Rotation

To demonstrate this controller and motivate a discussion of its performance, a simulation of

a two-vehicle planar rotation and translation using a virtual body composed of two virtual

leaders is presented. Starting from rest, the virtual body is made to translate in a straight

line for 5 units of time. The line connecting the two virtual leaders is parallel to the direction

of motion. After 5 time units the virtual body is made to rotate 90◦ counterclockwise while

the virtual body is still translating. To effect rotation about the center of mass of the

virtual body, we parameterize a trajectory in SO(2) by s. The ṡ dynamics are prescribed

by equation (3.2.1) with h as suggested in Remark 3.2.1. After 23 time units the virtual
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body is halted by setting ṡ = 0.

In this example, the distance between the two virtual leaders is chosen to be 2
√

h2
0 − d2

0/4.

The center of mass of the virtual body is initially at the origin of the inertial frame, i.e.

r = 0 ∈ R
2. The simulation is started with the two virtual leaders in a line along the hori-

zontal as shown in Figure 3.3.1a. Initially, the two vehicles are in the stable configuration

corresponding to the global minimum of the sum of the artificial potentials, i.e., they sit at

a distance d0 from one another and a distance h0 from each of the virtual leaders.

Virtual body translation to the right is specified by choosing
cdr
ds = (1, 0) ∈ R

2. The

objective of the rotation is to produce the formation shown in Figure 3.3.1b. The path of the

virtual body is counterclockwise rotation R(s) ∈ SO(2), equivalently θ(s) (see Figure 3.3.1b)

will go from 0 to π/2 by choosing

dθ

ds
= kβ(β(t; tl, tu) − 1)(θ(s) − π/2).

where kβ is a constant gain. The (β − 1) term is included to activate rotation at tl. Recall

that we define the bump function β(t; tl, tu) (see Figure 2.2.2) such that β = 1 for t < tl,

β = 0 for t ≥ tu and β decreases monotonically for t ∈ (tl, tu]. In this simulation, we choose

tl = 5 time units , tu = 10 time units and kβ = 0.5.

The nominal desired speed was chosen as v0 = 1 space units per time unit. At t = 23

the virtual body is halted and the vehicles should then converge to the new equilibrium

configuration corresponding to the global minimum of the sum of the artificial potentials.

This is the formation shown in Figure 3.3.1b.

The controlled dynamics for each vehicle are given by

ẍ1 = −∇VI(x12) −∇V c
h (h11) −∇V c

h (h12) − αvẋ1

ẍ2 = −∇VI(x21) −∇V c
h (h21) −∇V c

h (h22) − αvẋ2.
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Figure 3.3.1: Formation Rotation. Shaded dots are vehicles and solid dots are virtual
leaders. The dotted circle around each virtual leader has radius h0. a) Formation initially
at global minimum of total potential. b) Formation after rotation by 90◦.

The artificial potentials used in this simulation are

V c
h =






αh

(
1
3h3

il − h3
0 lnhil − 1

3h3
0 + h3

0 lnh0

)
0 < hil ≤ h1

0 hil > h1

(3.3.1)

VI =






αI

(
1
3x3

ij − d3
0 lnxij − 1

3d3
0 + d3

0 ln d0

)
0 < xij ≤ d1

0 xij > d1.

(3.3.2)

We also use

Φ(χ, s)=
1

2

2∑

i=1



‖ẋi‖2 +
2∑

j 6=i

VI(xij) + 2
2∑

l=1

V c
h (hil)



 . (3.3.3)

For fixed s, Φ(χ, s) is the Lyapunov function presented in Chapter 2 to prove stability for

vehicle convergence with a stationary virtual body. This is extended to the variable s by

including the s-dependence of hil = xi(t) − bl(s(t)) in (3.3.3). Following Remark 3.2.5 the

upper bound ΦU is set at ΦU = 1.1. This follows from the fact that Φ ≥ 1
2

∑2
i=1 ‖ẋi‖2 so

that if the virtual body is to converge to v0 while translating, then Φ ≥ v2
0 = 1.

The equations of motion were integrated in MATLAB using a Runge-Kutta 4th order

integrator for 30 time units with parameters αI = 10, αh = 10, d0 = 2
√

3, and h0 = 2. The

damping coefficient αv was taken to be αv = 2I, where I is the identity matrix. We take d1
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and h1 to be 100 so that neither xij nor hil will approach the discontinuities at d1 and h1,

respectively. The resulting vehicle and virtual body trajectories are plotted in Figure 3.3.2.

In the top left pane we show the initial formation and the evolution for the first 2 time

units, during which the vehicles and virtual body start from rest and translate in the +X

direction (refer to Figure 3.3.2). In the top right pane we show the trajectories for t = 5 to

t = 10. During this interval the virtual body begins to rotate. In the bottom left pane we

show the trajectories for t = 10 to t = 20. During this interval the virtual body completes

the rotation. In the bottom right pane we show the trajectories for t = 20 to t = 30.

Figure 3.3.3 shows the evolution of Φ(χ, s) (the formation error function) during the

controlled translation and rotation of the two-vehicle formation. Initially, Φ(χ, s) = 0 since

we start the vehicle at the equilibrium configuration. During the rotation, Φ(χ, s) increases,

but as expected Φ(χ, s) ≤ ΦU throughout. At roughly t = 12 we see that Φ dips below ΦU

and converges to some value below it. Finally at t = 23 when the virtual body is halted

and Φ converges to 0.

In Figure 3.3.4 we plot ṡ versus t in the left pane and θ versus t in the right pane.

Notice that before the rotation, ṡ converges to a value less than v0 (the dashed line). This

illustrates one limitation of the controller (3.2.1). In this example, v0 serves only as an upper

bound for ṡ. This is a result of the statement made in Remark 3.2.4. That is, suppose ṡ was

driven towards v0 (from below). This implies that Φ ≥ v2
0. However, ṡ has only been shown

to converge to v0 as Φ → 0. There is no guarantee that ṡ will converge to v0 otherwise.

When the virtual body rotation is initiated there is a decrease in ṡ. At this time

Φ remains unchanged at the ΦU bound. This indicates that the controller in (3.2.1) is

working as designed by slowing the virtual body dynamics to ensure Φ does not exceed ΦU .

Once the rotation is near completion the second argument of the “min” function in (3.2.1)
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Figure 3.3.2: Simulation Trajectories. Shaded dots are vehicles and solid dots are virtual
leaders. Lines are their respective trajectories. Dotted circles about virtual leaders have
radius h0. Small circle illustrates virtual body center of mass. Dotted line is its respective
trajectory. The squares in the top left pane illustrate initial conditions.

exceeds v0 and thus ṡ becomes equal to v0. In this case, limiting ṡ results in Φ converging

to a value less than ΦU (at t = 12).
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Figure 3.3.3: Formation Error Function. Φ(χ, s) versus time. Dashed line indicates
ΦU = 1.1.
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Figure 3.3.4: Virtual Body Dynamics. (a) ṡ versus time. Dashed line indicates v0 = 1.0.
(b) θ(s) versus time. Dashed line indicates θ = π/2.
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Chapter 4

Adaptive Sampling with Vehicle

Arrays

With a framework for coordinating vehicle groups into dynamic sensor arrays in place,

we now investigate how to use these arrays to achieve the scientific objective of adaptive

ocean sampling. Recall that our control technique provides a decoupling of the formation

stabilization problem from the mission planning problem. Thus we are free to select mission

parameters such as direction of travel and formation spacing independently of formation

stabilization considerations. In this chapter we examine the roles of these parameters in

enabling adaptive sampling using vehicle fleets. Our context will be oceanographic and we

specialize to the problem of feature tracking. This is just one subproblem of the large field

of ocean sampling.

In Section 4.1 we define the adaptive ocean sampling problem using mobile sensor arrays.

We also motivate the specific adaptive sampling problems to be addressed, namely gradient

climbing and front tracking, and define the problem domain in which subsequent analysis

will be based. In Section 4.2 we present techniques for estimating derivatives of our ocean
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model from noisy measurements taken by each vehicle in the array, and we present an

optimal formation problem in terms of the estimate error covariance. These derivatives

are necessary ingredients of the gradient climbing and front tracking strategies. We then

present a Kalman filter in Section 4.3 that uses past information with present information

to improve estimates. Lastly, in Section 4.4 we present our gradient climbing and front

tracking algorithms and demonstrate their effectiveness through simulation.

4.1 Adaptive Ocean Sampling with Multiple AUVs

“A central objective in ocean sampling experiments is to collect the data that best reveals

the ocean processes of interest given available resources. There are a number of metrics that

can be used to help define what is meant by the best data set, and the appropriate choice of

metric will typically depend on the spatial and temporal scales of interest. For example, for

a broad area, the goal might be to collect data that minimizes estimation error of the process

of interest. For smaller scales, the goal may be to collect data in and around features of

interest, e.g., to sample at locations of greatest dynamic variability. A fundamental problem

is to choose the paths of available mobile sensor platforms, notably sensor-equipped AUVs,

in an optimal way. These paths, however, do not need to be predetermined, but instead

can be adapted in response to sensor measurements. This is what we refer to as adaptive

sampling” [32]. In this chapter we focus on sampling at smaller spatial scales and address

the problems of gradient climbing and front tracking.

Feedback control is implicit in adaptive sampling. For example, in covering a broad

region, the AUV’s should be controlled to appropriately explore the region and avoid ap-

proaching one another (in which case they might become redundant sensors). For adaptive

feature tracking, the formation control described in Chapters 2 and 3 are merged with the
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gradient climbing and front tracking algorithms described in this chapter. A central theme

is that feedback plays multiple critical roles in managing uncertainty. First, feedback can

be used to redesign paths in response to new sensor measurements. As new information

about the environment becomes available, the AUVs should react accordingly and not be

constrained by plans designed a priori . Of equal importance, feedback is needed to manage

the uncertainty inherent in the dynamics of the vehicles in the water.

Suppose there is a scalar field T : R
2 → R and consider the following motivating example

for adaptive sampling where each vehicle in a sensor array can compute and communicate

the gradient of T at its current position. In the following lemma, we propose an algorithm for

gradient descent of a three-vehicle triangular formation in a planar quadratic field T (x) =

1
2xT Px, x ∈ R

2 and prove convergence to the minimum of this field.

Lemma 4.1.1 (Gradient Descent in Quadratic Field). Consider three vehicles and a single

virtual leader with artificial potentials defined with global minimum corresponding to the

vehicles in a triangular formation about the virtual leader. Let the control law be given by

equation (2.1.2). Consider the gradient field T (x) = 1
2xT Px, x ∈ R

2, where P ∈ R
2×2 is

positive definite. Let each (ith) vehicle be capable of measuring the local gradient, ∇T (xi) =

Pxi, i = 1, 2, 3, at its location given by xi ∈ R
2 with respect to a fixed inertial frame. Let

r ∈ R
2 be the position vector of the virtual leader which is contained within the convex hull

of the three vehicle formation. Define pi = xi − r. For each of the three vehicles, define ai

to be the area of the triangle with vertices coincident with the other two vehicles and virtual

leader, i.e. ai = 1
2 ||pj × pk|| for i, j, k ∈ {1, 2, 3} and i 6= j, i 6= k, j 6= k. Additionally, let

a =
∑3

i=1 ai. Suppose that the virtual leader is given dynamics

ṙ =
dr

ds
ṡ
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with

dr

ds
= −

3∑

i=1

ai

a
∇T (xi)

and ṡ given by equation (3.2.1) where Φ(x1, x2, x3, s) is given by equation (2.5.1) with global

minimum at zero. Then the formation will asymptotically converge to the minimum of T,

i.e., r will converge to the origin and the formation will converge to the equilibrium at

s = sf . Further, Φ(x1, x2, x3, s) ≤ VU throughout.

Proof: Convergence of the virtual leader to the minimum of T can be proven with the

Lyapunov function Ψ given by

Ψ(r) = T (r) =
1

2
rT Pr.

We compute

Ψ̇ = ∇T (r) · ṙ = − ṡ

a
∇T (r) ·

3∑

i=1

ai∇T (xi)

= − ṡ

a
Pr ·

3∑

i=1

aiPxi

= − ṡ

a
Pr ·

3∑

i=1

aiP (pi + r) = −ṡ||Pr||2 ≤ 0

since
∑3

i=1 aipi = 0 and ṡ ≥ 0. Since ṡ = 0 only at s = sf and Pr = 0 only at r = 0, Ψ̇ = 0

only at r = 0 in which case T = 0. Here we assume that sf is chosen large enough that the

formation reaches its goal. Boundedness of the formation Lyapunov function (Φ(x, s) ≤ VU )

follows from Theorem 3.2.1.

Remark 4.1.1. The quantity
∑3

i=1
ai

a ∇T (pi) is essentially a first-order (linear) approxi-

mation of the gradient field at r, ∇T (r). Thus, for a quadratic field T the approximation

is exact.

Remark 4.1.2. The result in Lemma 4.1.1 holds locally near the minimum of a more

general gradient field when, near the minimum, the field can be approximated by a quadratic.
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If each vehicle can individually sense the gradient, we have illustrated a simple method

for averaging these measurements which guarantees for the quadratic field that the vehicles

will remain in formation while the vehicle fleet descends the gradient. In practice the

individual gradient measurements can be obtained from multiple sensors on each vehicle.

Of course, the practical value of the gradient measured at the scale of the vehicle size may

be quite limited when the ultimate goal is to estimate the gradient at the center of the

vehicle array. The practicality relies on the spatial scales of interest of the scalar field which

dictate the array size (along with noise statistics if noise is present). In fact, in Section

4.2 we derive optimal vehicle spacings for estimating derivatives and show that the optimal

measurement separation is proportional to higher-order derivatives and the noise variance.

In this chapter we rely only on the scalar measurements obtained by each vehicle (and not

a gradient measurement by each) and make use of the spatial distribution of measurements

that a formation of vehicles affords. In [59, 7, 8] gradient ascent or descent is demonstrated

(and proven) in the absence of noise, where given a single sensor per vehicle, each vehicle

computes the gradient of T projected in its direction of motion.

4.1.1 Sampling Objectives

We are now poised to present the sampling objectives we will address. These objectives are

• to locate extrema, i.e. local minima and maxima, in the measured field and,

• to track frontal boundaries, such as temperature or salinity fronts.

To direct the vehicle fleet towards extrema we perform adaptive gradient climbing (or

descent) in the sampled field. For example, gradient climbing could be used to steer a

fleet towards (and therefore locate) a pollutant source by tracking the gradient of pollutant

concentration. Alternatively, it may be desirable to direct the fleet to sample particularly
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cold or warm water; in this case the group would be made to track the thermal gradient. We

also present a projected gradient method which is designed to perturb a trajectory selected

a priori in the direction of the estimated gradient.

Fronts are distinctive oceanographic features that mark the boundaries between water

bodies with differences in temperature, salinity, density, or other characteristics [33]. They

are characterized by large spatial gradients in these variables relative to the surrounding

water.

The aggregation of marine organisms at frontal systems is well documented [47]. For ex-

ample, during the spring and summer months in Monterey Bay frontal systems are observed

to form as a result of upwelling. Upwelling events are caused by favorable cross shore winds

which draw water away from the coastline which is then replaced by colder and nutrient

rich water from below. Organisms such as phytoplankton thrive on this nutrient rich water

and, in particular, they do so at the frontal boundaries [33]. The abundance of organisms

at the lower levels of the food chain attract animals at higher levels. Even sea birds (and

fisherman) have been known to aggregate at these frontal boundaries [13].

The study of fronts was a research focus of the AOSN II project in Monterey Bay, CA.

During AOSN II, data collected by various sensors, such as autonomous vehicles, drifters,

ships, etc, was assimilated into ocean models for the purpose of improving their predictive

capabilities. One goal of the experiment was to forecast position and characteristics of

discovered small-scale dynamical features like fronts and upwelling plumes [22]. A sensor

array capable of directing itself towards and sampling along these frontal features or direct-

ing itself towards extrema and sampling within an upwelling plume may provide valuable

data that, when assimilated, could in principle reduce the model error associated with pre-

dicting the location of these features. Thus, frontal regions are areas of much interest to
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the oceanographic community, and sensor arrays capable of directing themselves towards

and along these fronts are of potentially great value.

Another potential application for both gradient climbing and front tracking is in studying

harmful algae blooms such as red tides. A red tide occurs when certain varieties of toxin-

releasing algae experience population blooms and accumulate on the surface of the water

and form dense patches. These blooms can have a great impact on the local ecosystem as

the released toxins are distributed through the food chain affecting zooplankton, shellfish,

fish, birds, marine mammals, and even humans [4]. Given the ecological and economical

effects of these blooms, it is not surprising that research is underway to understand their

dynamics and constituency. In fact, the use of multiple autonomous underwater gliders has

already been proposed to monitor for the onset of red tides [17]. Front tracking algorithms

provide a means for tracing the boundaries of these blooms and collecting data in and

around these boundaries.

Fronts are ridges of high spatial variation in the sampled field. Not surprisingly, the in-

dicator to detect and localize fronts involves the spatial gradients and high-order derivatives

of the scalar field of interest. However, one is hard pressed to find a precise mathematical

definition of a front in the oceanographic literature. Such a definition does exist in the

meteorological literature. It is called the Thermal Front Parameter (TFP), denoted by ν

[81]. The TFP is often used to produce frontal structures in atmospheric maps and it is

a scalar function of the gradient and Hessian of the sampled field. To be precise it is the

directional derivative of the magnitude of the gradient in the gradient direction (along with

a normalization factor), i.e.,

ν = −∇||∇T || · ∇T

||∇T || = − ∇T T

||∇T ||H
∇T

||∇T ||
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where H is the Hessian of T . The center line of the front is defined at the contour where

ν(T ) = 0. A warm front corresponds to contours or ridges where ν(T ) is maximum and

a cold front corresponds to contours or ridges where −ν(T ) is maximum. These warm or

cold fronts are located by taking the directional derivative of ν in the gradient direction and

setting it equal to zero. The TFP front definition is illustrated in Figure 4.1.1. For example,

in Figure 4.1.1a a warm front identified as a maximum of ν (along the gradient direction of

T ) is located at (1) whereas a front defined at ν = 0 or where ‖∇T‖ is maximum is located

at (2). In Figure 4.1.1b, the fronts associated with a two-dimensional temperature field are

illustrated.

An alternative definition of a front corresponds to regions where ‖∇T‖ is maximum

(note ν = 0 in this case). In practice thresholding is performed where the constant ǫF ,

selected a priori , is used to define points belonging to a front as XF = {p ∈ R
l, l =

2, 3 | ‖∇T (p)‖ > ǫF }. ǫF is a constant parameter which sets the threshold.

Whichever definition is used, estimates of the spatial variation of the field will need

to be made in order to determine front locations. In Sections 4.2 and 4.3 we discuss how

vehicle arrays can be used to obtain the required derivatives and in Section 4.4 we present

a control strategy to direct the vehicle towards a perceived front and travel along it.

4.1.2 Problem Domain

For our investigations we model the ocean as a noisy and static environment. In ignoring

the temporal dynamics of the field, we are focusing on phenomena with features, either

critical points or frontal boundaries, that persist in time or evolve on time scales that are

large relative to the ratio of spatial scale to vehicle speed. That is, we assume that the ratio
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(a) (b)

Figure 4.1.1: Front Definition. (a) [45] From top to bottom, the scalar field, T , magnitude
of its gradient, and thermal front parameter, ν, are plotted as a function of x where x
parameterizes the curve tangent to the gradient of T . The black dot at (1) indicates a
warm front corresponding to a maximum in ν (in the direction of the gradient). The
gray dot at (2) indicates the center line of the front where ν = 0. (b) Surface plot of

T = arctan(5 − x2

10 − y2

2 ), (x, y) ∈ R
2, with grayscale contours of ν. Dotted line indicates

center line of the front where ν = 0. Solid lines indicate warm and cold fronts where ν is
maximum and minimum in the direction of the gradient of T, respectively.

of

v△t

σf
≫ △t

τf
,

where

σf , feature spatial scale,

τf , feature temporal scale,

v , vehicle speed,

△t , duration of sampling mission.

This comparison asserts that the ratio of the distance the vehicles can travel to the spatial

scale of the feature is much larger than the ratio of the duration of the sampling mission to

the time scale at which the field changes. The assumption is that we can adequately sample
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the field in space before the field changes significantly in time.

To make things concrete let us denote our environmental scalar T (x) : R
l → R, e.g.

temperature, where x ∈ R
l, l = 2, 3. We assume this scalar field is a realization of a

stochastic process that can be decomposed into the sum

T (x) = T̄ (x) + w(x)

of a deterministic mean field, T̄ (x) : R
l → R, where T̄ is smooth, and w(x) ∈ R, a Gaussian

noise process at x1 . The mean field can be thought as the value of the scalar field, T ,

averaged over the duration of the sampling experiment (△t). We assume the noise is zero

mean. Given a sequence of wi = w(xi) at N locations xi ∈ R
l for i = 1, . . . , N , the

covariance matrix is given by

E[wwT ] = σ2
wI + W

where w = (w1, w2, . . . , wN )T ∈ R
N , E[w2

i ] = σ2
w for any i, I is the N × N identity matrix

and W is the symmetric matrix with zeros along the diagonal given by

W =




0 E[w1w2] . . . E[w1wN ]

E[w1w2] 0 E[w2wN ]

...
. . .

E[w1wN ] E[w2wN ] 0




.

If we assume the random component of the field T is completely uncorrelated then W is

the zero matrix.

A measurement of this field, TM , taken at a point xi(t) ∈ R
l (i.e. by the ith vehicle at

time t) is given by

TM (xi, t) = T (xi) + ǫMi, (4.1.1)

1In the language of random field theory, w(x), is a random field which is defined as a family of random
variables indexed by x. [95]
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where ǫMi = ǫMi(t) is the sensor noise associated with the measurement taken taken by the

ith vehicle at xi(t). ǫMi(t) is a zero mean Gaussian distribution with variance σ2
M . Given

N vehicles and a set of measurements at locations xi(t), i = . . . , N , we define the vector of

sensor noise as ǫM(t) = (ǫM1(t), ǫM2(t), . . . , ǫMN (t))T .

4.2 Derivative Estimation from Distributed Measurements

In this section we present techniques for estimating the derivatives of our field using mea-

surements obtained from each vehicle in a sensor array.

4.2.1 Finite Differencing

Finite differencing formulas are very well known for numerical computation of derivatives,

see for example [71]. In this section we present some simple formations to accurately

estimate derivatives and investigate the error associated with each formation.

Consider the simple problem of estimating the derivative of the mean field, T̄ , in the

plane at a point (u, v) in some coordinate frame in the direction of n given only two vehicles.

As usual denote the x axis the abscissa and y axis as the ordinate. Furthermore, assume

the frame is oriented such that n lies along the x axis. Aligning the vehicles along n at

x1 = (u + △x, v) and x2 = (u −△x, v) where △x > 0, and expanding T̄ in a Taylor series

about (u, v) we have

T̄ (x1) = T̄ (u, v) +
dT̄

dx
(u, v)△x +

1

2

d2T̄

dx2
(u, v)△x2 +

1

6

d3T̄

dx3
(u, v)△x3 + O(△x4)

T̄ (x2) = T̄ (u, v) − dT̄

dx
(u, v)△x +

1

2

d2T̄

dx2
(u, v)△x2 − 1

6

d3T̄

dx3
(u, v)△x3 + O(△x4).

By subtraction we find

dT̄

dx
(u, v) =

T̄ (x1) − T̄ (x2)

2△x
− 1

6

d3T

dx3
(u, v)△x2 + O(△x4). (4.2.1)

70



Ignoring the higher-order terms in (4.2.1), a second-order accurate estimate for the

derivative along n at (u, v) is given by

dT̄

dx

′

est
=

T̄ (x1) − T̄ (x2)

2△x
. (4.2.2)

This is the well known central differencing formula.

Now, we do not have T̄ at x1 and x2 but rather TM (at some time t) from (4.1.1).

Substituting TM for T̄ on the right hand side of (4.2.1) and taking the expected value of

the resulting expression yields

E

[
TM (x1, t) − TM (x2, t)

2△x

]
= E

[
T̄ (x1) − T̄ (x2) + w1 + ǫM1 − w2 − ǫM2

2△x

]

=
T̄ (x1) − T̄ (x2)

2△x

=
dT̄

dx

′

est
.

Therefore an expression for the estimated mean field derivative along n, given our measure-

ments, is given by

dT̄

dx est
=

TM (x1, t) − TM (x2, t)

2△x
. (4.2.3)

This estimate is appropriate because its expected value is equal to the derivative estimate

obtained by central differencing the mean field itself.

Expanding the measurement at x1 and x2 in a Taylor series about (u, v), we have

TM (x1, t) = T̄ +
dT̄

dx
△x +

1

2

d2T̄

dx2
△x2 +

1

6

d3T̄

dx3
△x3 +

1

24

d4T̄

dx4
△x4 + O(△x5) + w1 + ǫM1,

TM (x2, t) = T̄ − dT̄

dx
△x +

1

2

d2T̄

dx2
△x2 − 1

6

d3T̄

dx3
△x3 +

1

24

d4T̄

dx4
△x4 + O(△x5) + w2 + ǫM2,

where T̄ = T̄ (u, v), dT̄
dx = dT̄

dx (u, v), etc. Subtracting these expressions from one another and

dropping the higher-order terms yields

TM (x1, t) − TM (x2, t)

2△x
=

dT̄

dx
+

1

6

d3T̄

dx3
△x2 +

w1 + ǫM1 − w2 − ǫM2

2△x
+ O(△x4). (4.2.4)
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We now formulate an expression for the error in our estimate in terms of the expected

value of the squared error,

E

[(
dT̄

dx
− dT̄

dx est

)2
]

= E

[(
1

6

d3T̄

dx3
△x2 +

w1 + ǫM1 − w2 − ǫM2

2△x
+ O(△x4)

)2
]
(4.2.5)

=
1

36

(
d3T̄

dx3

)2

△x4 +
1

2△x2
(σ2

w + σ2
M − E[w1w2]),

where we have dropped all terms O(△x6) and above2 .

We now optimize the vehicle spacing, 2△x, to minimize this error. Suppose that E[w1w2]
△x2

is either zero or not a function of △x, then differentiating (4.2.5) with respect to △x and

equating the result to zero we find

1

9

d3T̄

dx3

2

△x3 − σ2
w + σ2

M

△x3
= 0,

and thus the optimal △x ≡ △x∗ is given by,

△x∗6 =
9(σ2

w + σ2
M )

(
d3T̄
dx3

)2 . (4.2.6)

Clearly the practicality of this formula is limited as it requires the knowledge of third-

order derivatives. However, as stated in [64] where a similar error is used to derive an

optimal spacing based on second-order derivatives, this formulation can serve as a rule

of thumb. As noise increases it is desirable to spread the vehicles out, and as the field

variation increases (manifested as increased higher-order terms), the inter-vehicle spacing

should decrease.

To examine the effect of non-zero correlation in the process noise field, w, suppose that

E[w1w2] 6= 0 but rather has the form of a Gaussian, e.g E[w1w2] = σ2
we

−4△x2

σ2
d . σd is the

2Note that the O(△x4) produced by the O(△x−1) and O(△x5) terms combining are zero after the
expectation is taken since the noise is zero mean.
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1
e decorrelation length scale of the noise process. Returning to (4.2.5) and differentiating

with respect to △x and equating the result to zero we find,

1

9

(
d3T̄

dx3

)2

△x6 +

(
1 + 4

△x2

σ2
d

)
σ2

we
−4△x2

σ2
d − σ2

w − σ2
M = 0. (4.2.7)

Dividing through by σ2
w we obtain an expression for the optimal △x in terms of three

dimensionless parameters, s1 =

“
d3T̄

dx3

”2

σ2
w

σ6
d, s2 =

σ2
M

σ2
w

, and △x̃ = △x
σd

, i.e.

1

9
s1△x̃6 +

(
1 + 4△x̃2

)
e−4△x̃2 − 1 − s2 = 0. (4.2.8)

In Figure 4.2.1 we present a parameter study where we have varied s2 and plotted the

solution sets of (4.2.8) as a function of s1 and △x̃. Note that since we expect the sensor

noise variance, σ2
M , always to be less than the ocean (process) noise variance, σ2

w, we only

look at cases with s2 ≤ 1.
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Figure 4.2.1: Effects of Nonzero Covariance on Optimal Vehicle Separation. The
solid lines indicate solution contours of (4.2.8) for values of s2 equal to 0, 0.01, 0.1, 0.5, and
1. The arrow indicates the direction of increasing s2.

Examining Figure 4.2.1 we see that for increasing values of s1, △x̃ decreases. Increasing
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s1 can occur by increasing σd, increasing the third-order derivative of T , or decreasing the

ocean noise variance. Holding σd fixed, the effect of increasing the ratio of the third-order

derivative to the ocean noise variance is to cause △x∗ to decrease. This is analogous to

the discussion above for the zero covariance case solution given by (4.2.6). The effect of

increasing s2, the ratio of sensor noise to ocean noise, while holding s1 fixed, is to cause

△x̃ to increase. Thus, the effect of increasing sensor noise is to increase the optimal vehicle

spacing.

We can get an approximate analytical solution for △x∗ by expanding e
−4△x2

σ2
d up to 6th

order terms, i.e. e
−4△x2

σ2
d ≈ 1 − 4△x2

σ2
d

+ 8△x4

σ4
d

− 32
3

△x6

σ6
d

, and substituting it into (4.2.7) to

yield,
(

1

9

d3T̄

dx3

2

+
64

3

σ2
w

σ6
d

)
△x6 − 8

σ2
w

σ2
d

△x2 − σ2
M = 0. (4.2.9)

where we have dropped the O(△x8) terms. Dividing through by σ2
w and defining

a3 =

(
1

9σ2
w

d3T̄

dx3

2

+
64

3

1

σ6
d

)
6= 0, a2 = −8

1

a3σ2
d

, a0 = − 1

a3

σ2
M

σ2
w

,

and γ = △x2, we can write

γ3 + a2γ
2 + a0 = 0.

The general solution to the cubic equation is given by Cardano’s formula.

If we wish to compute the derivative in the y direction, we use two vehicles aligned in

that direction and analogously derive

dT̄

dy est

(u, v, t) =
TM (u, v + △y, t) − TM (u, v −△y, t)

2△y
. (4.2.10)

This suggests that four vehicles in a cross formation are sufficient to estimate the gradient

of the mean field to second-order accuracy. Using this same formation, in [102] an error

metric is based on second-order derivatives which are estimated through introduction of a

procedure to estimate the curvature of level sets.
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In the plane, if we wish to estimate the Hessian there are three second-order derivatives

we will need to estimate, namely d2T̄
dx2 , d2T̄

dy2 , and d2T̄
dxdy which can be estimated by classical

finite difference equations. In the next section we present how to estimate second-order

derivatives (or ever higher-order given a sufficient number of measurements) by taking a

least squares error approach. The classical finite difference equations are particular solutions

of the posed least squares problem. Furthermore, a least squares error formulation can

provide a first-order accurate gradient estimate using only three vehicles.

4.2.2 Least-Squares Approximation

In [64] a procedure was presented to estimate the gradient by finding the best linear fit to

measured data in a least squares sense. Given N noisy measurements, TM , each taken by

the ith vehicle at its current position xi at time t, an estimate of z̄ = (∇T̄ (r)T , T̄ (r))T , i.e.

the gradient and value of the mean field at r ∈ R
l, l = 2, 3, is sought. Recall from Chapter

2 and Chapter 3 that r is the position of the virtual body with respect to an inertial frame.

Define pi = xi − r, i = 1, . . . , N and given any x, define p = x − r. The following lemma

is very similar to that presented in [64] but modified for our model selection, see Section

4.1.2.

Lemma 4.2.1 (Least Squares Estimate). The best, in a Least Squares sense, approximation

aT p+b of a continuously differentiable scalar field T (x) about r from a set of measurements

y = {TM (x1, t) . . . TM (xN , t)} at positions xi ∈ R
l, N ≥ l + 1 is given by

z̄LS = (CT C)−1CT y, C =




pT
1 1

...
...

pT
N 1




. (4.2.11)

It is assumed that the pi’s are such that C above has full rank. Furthermore, the error
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due to second-order terms and measurement noise can be written

(z̄ − z̄LS) = −(CT C)−1CT ǫE,

where ǫE =




...

1
2pT

i H̄(r)pi

...




+ ǫM + w,

H̄(r) is the Hessian of the mean field.

Proof:

A Taylor expansion of the mean field around r together with assumed noises ǫMi and

wi at each xi gives the measurement

TM (xi, t) = T̄ (r) + pT
i ∇T̄ (r) +

1

2
pT

i H̄(r)pi + O(||pi||3) + ǫMi + wi.

Ignoring the higher-order terms and writing the equations in matrix form we get y =

Cz̄ + ǫE . Applying the least squares estimate, [87], minimizing ‖Cz̄LS−y‖2, we get z̄LS =

(CT C)−1CT y yielding the estimation error

(z̄ − z̄LS) = z̄ − (CT C)−1CT (Cz̄ + ǫE)

= −(CT C)−1CT ǫE .

Remark 4.2.1. [64] Note that if the measurements TM (xi, t) are to be useful for estimating

∇T (r), then the distances ‖pi‖ must be small enough to make the lower-order terms in the

Taylor expansion above dominate.

Remark 4.2.2. Reassuringly the finite difference estimates of the gradient computed with

the vehicles in rectangular formation given in (4.2.3) and (4.2.10) are identical to the least

squares estimate computed by (4.2.11).
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The optimal formation problem is also addressed in [64] by minimizing

E[(z̄ − z̄LS)T (z̄ − z̄LS)]

with respect to the set of pi. Expanding this expression we find that

E[(z̄ − z̄LS)T (z̄ − z̄LS)] = E[(T̄ − T̄LS)
2 + ‖∇T̄ −∇T̄LS‖2] (4.2.12)

where z̄LS = (T̄LS,∇T̄ T
LS)

T = (CT C)−1CT y. Notice that we have assumed that there is a

unit weight conversion coefficient to assure that the sum in the right hand side of (4.2.12)

is indeed summable.

Given our model (4.1.2) we use an identical metric to (4.2.12) but formulate it is as the

trace of an error covariance matrix, i.e.

Tr(E[(z̄ − z̄LS)(z̄ − z̄LS)T ].

This error metric is widely used in the oceanographic community when addressing optimal

interpolation problems. One example of such a problem is how to best map a collection

of measurements onto a uniform grid [39]. For ease of notation we introduce the following

definition

ρ =




...

1
2pT

i H̄(r)pi

...




, (4.2.13)

and thus ǫE = ρ + ǫM + w.

Lemma 4.2.2 (Optimal Formation Problem). 3

Let M(p1, . . . ,pN ) = (CT C)−1CT , where C depends on pi as in Lemma 4.2.1 above.

3Lemma 4.2.2 closely follows Lemma 5.2 in [64]. The only difference is the form of error metric (4.2.14).

77



The trace of the error covariance matrix is

Tr(E[(z̄ − z̄LS)(z̄ − z̄LS)T ]) = Tr(MρρT MT ) + (σ2
M + σ2

w)Tr((CT C)−1) + Tr(MWMT )

(4.2.14)

An optimal formation geometry problem can now be formulated as

min
p

1
,...,pN

g(p1, . . . ,pN ) := min
p

1
,...,pN

Tr(E[(z̄ − z̄LS)(z̄ − z̄LS)T ]). (4.2.15)

Proof: From Lemma 4.2.1 we directly have

(z̄ − z̄LS)(z̄ − z̄LS)T = MǫEǫE
T MT

Taking the expected value and expanding ǫE we get

E[(z̄ − z̄LS)(z̄ − z̄LS)T ] = ME[(ρ + ǫM + w)(ρT + ǫM
T + wT )]MT

= M
(
E[ρρT ] + E[ǫMǫM

T ] + E[wwT ]
)
MT

= MρρT MT + σ2
MMMT + σ2

wMMT + MWMT

= MρρT MT + (σ2
M + σ2

w)(CT C)−1 + MWMT ,

where we utilized the fact that E[ρǫM
T ] = E[ρwT ] = E[ǫMwT ] = 0 and MMT =

(CT C)−1.

Finally,

Tr(E[(z̄ − z̄LS)(z̄ − z̄LS)T ]) = Tr(MρρT MT ) + (σ2
M + σ2

w)Tr((CT C)−1) + Tr(MWMT ).

Remark 4.2.3. Clearly as before this optimization relies on an estimate of the Hessian.

In [64] the Hessian is modelled as an additional noise term, e.g. H̄(r) ≈ ǫHH where ǫH

is zero mean with a Gaussian distribution and H is a rough estimate of the Hessian. The

framework presented above allows for this same substitution.
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Remark 4.2.4. It can be shown that the optimal formation metric given in (4.2.14) is

invariant under formation rotation for 3 vehicles estimating the gradient.

We can get a sense of the role each term in (4.2.14) by noting that if d is some average

over all ‖pi‖ then

Tr(MρρT MT ) ∝ d2,

Tr((CT C)−1) ∝ 1

d2
,

and if the covariance of the process field is taken as E[wiwj ] = e

−‖pi−pj‖
2

σ2
d where σd is the

1/e decorrelation length scale,

Tr(MWMT ) ∝ e−d2/σ2
d

d2

and thus Tr(MWMT ) ∝ 1/d2 for small ‖pi‖ and Tr(MWMT ) → 0 for large ‖pi‖, relative

to σd.

When the covariance of the noise field, w(x), is small enough or the vehicles are far

enough away from each other such that we may model E[wwT ] ≈ σwI, then the optimiza-

tion problem is identical to that found in [64] with the substitution noted in Remark 4.2.3.

In [64] it is discussed how the optimization problem is non-convex and therefore only local

results are achievable using standard methods. It was found that for H̄(r) ≈ σHI forma-

tions consisting of vehicles at the vertices of regular polyhedra were locally optimal in R
2

and vehicles at the vertices of a equilateral tetrahedron for four vehicles in R
3.

The least squares method can also be used to estimate higher-order derivatives. For

example in the plane, given N ≥ 6 measurements TM (xi) taken at pi = (px
i , py

i ) ∈ R
2, i =
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1, . . . , N (recall pi = xi − r), we define

C =




1
2(px

1)2 px
1py

1
1
2(py

1)
2 px

1 py
1 1

1
2(px

2)2 px
2py

2
1
2(py

2)
2 px

2 py
2 1

...
...

...
...

...
...

1
2(px

N )2 px
Npy

N
1
2(py

N )2 px
N py

N 1




, and y =




TM (x1, t)

TM (x2, t)

...

TM (xN , t)




. (4.2.16)

The least squares estimate of z̄T = (∂2T̄
∂x2 , ∂2T̄

∂x∂y , ∂2T̄
∂y2 , ∂T̄

∂x , ∂T̄
∂y , T̄ )T is given as before by

z̄LS = (CT C)−1CT y.

4.2.3 Gradient-of-the-Average Approximation

In this subsection we present an alternative approach to gradient estimation: we compute

the gradient of an average of the scalar environmental field values (measurements) over a

closed region. This gradient is formulated as an integral over a continuous set of measure-

ments and is approximated using the finite set of measurements provided by the vehicle

group. We show that for a particular choice of discretization, i.e. numerical quadrature,

and for certain distributions of vehicles over a circle in R
2 and a sphere in R

3, this gradient-

of-the-average estimate is equivalent to the least-squares estimate presented in §4.2.2. The

class of vehicle formations for which this equivalence holds includes the optimal formations

mentioned in §4.2.2 and found in [64].

Suppose we had noisy measurements (at time t) inside a disc Ω of radius h0, i.e. Ω =

{x| ‖x − r‖ ≤ h0} (see Figure 4.2.2). To mitigate noise we are motivated to average these

measurements over Ω,

Tavg(r, t) =
1

πh2
0

∫

Ω
TM (x, t)dx.

For a gradient climbing (or descent) problem, we seek the gradient of Tavg(r, t) with

respect to r. In light of our disc example, we can view ∇rTavg(r, t) as specifying the best

80



x

r

p

W

0

dW

Figure 4.2.2: The Ω Disc.

direction to move the center of the disc so as to maximize (minimize) the average of TM

over Ω. As shown by Uryasev [94], this gradient can be written as

∇rTavg(r, t)=
∇r

∫
Ω TM (x, t)dx

πh2
0

=
1

πh3
0

∫

∂Ω
TM (x, t)(x − r) dS

where ∂Ω is the boundary of Ω and dS is a surface area element in R
3 or line element in

R
2.

Suppose we are given only N measurements TM at points xi, i = 1, . . . , N , i.e., one from

each vehicle, at time t. We can approximate the above integral using numerical quadrature.

Consider the case in which the N vehicles are uniformly distributed over the boundary.

Using the composite trapezoidal rule, we obtain

1

πh3
0

∫

∂Ω
TM (x, t) p dS ≈

1

πh3
0

N∑

i=1

TM (xi, t) pi △s

where again pi = xi−r, i.e. the measurement location relative to r, and △s = 2πh0

N . Thus,

∇rTavg(r, t) ≈
2

Nh2
0

N∑

i=1

TM (xi, t) pi. (4.2.17)

Similarly, to compute the gradient of the average within a ball of radius h0 in R
3, we

obtain:

∇rTavg(r, t) =
3

4πh4
0

∫

∂Ω
TM (x, t)(x − r)dS

≈
3

Nh2
0

N∑

i=1

TM (xi, t)pi (4.2.18)
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for vehicle distributions that permit N equal area partitions of the sphere with each vehicle

located at a centroid of a partition, and where all vehicles do not lie on the same great

circle.

Lemma 4.2.3 (Least Squares Equivalence). Consider N vehicles in R
l, l = 2, 3. Suppose

for l = 2 that the vehicles are uniformly distributed around a circle of radius h0. Suppose

in the case l = 3 that the vehicles are distributed over a sphere of radius h0 such that

the formation partitions the sphere into equal-area spherical polygons, where each vehicle is

located at a centroid, and all vehicles do not lie on the same great circle. Denote pi, i =

1, . . . , N, the position vector of the ith vehicle relative to the center of the circle or sphere.

Each vehicle takes a noisy measurement TM (xi, t). Define pj ≡ (pj
1, . . . , p

j
N )T where pj

i is

the jth coordinate of pi.

Assume that the group geometry satisfies

N∑

k=1

pj
k = 0 and 〈pi, pj〉 = δij

Nh2
0

l
,

where i, j = 1, . . . , l and δij =






0 for i 6= j

1 for i = j

, and 〈·, ·〉 is the standard inner product on

R
l. Then, the least squares gradient estimate is equivalent to the gradient-of-the-average

estimate as given above (4.2.17), (4.2.18).

Proof. A proof is only presented for formations in R
2; the result in R

3 follows analogously.

In terms of pj , j = 1, 2,

CT C =




〈p1, p1〉 〈p1, p2〉
N∑

i=1
p1

i

〈p2, p1〉 〈p2, p2〉
N∑

i=1
p2

i

N∑
i=1

p1
i

N∑
i=1

p2
i N




It follows from the hypotheses on group geometry that (CT C)−1 = diag(2/Nh2
0, 2/Nh2

0, 1/N).

82



Furthermore,

CT




...

TM (xi, t)

...




=




N∑
i=1

TM (xi, t) pi

N∑
i=1

TM (xi, t)


 .

Thus the least squares estimate, z̄LS is given by,

z̄LS =




2
Nh2

0

N∑
i=1

TM (xi, t) pi

1
N

N∑
i=1

TM (xi, t)




which is equivalent to ∇rTavg(r, t) given in (4.2.17).

Remark 4.2.5. For N vehicles in R
2, the assumptions on the group geometry are satisfied

for equally-spaced vehicles on the circle. These formations are N -sided, regular polyhedra

that coincide with the optimal formations for H = ǫHiI.

Remark 4.2.6. For vehicles in R
3, the group geometry assumptions are not so easily sat-

isfied; indeed, the specifications may not be achievable for arbitrary N . Examples of for-

mations meeting the assumptions include vehicles placed at the vertices of one of the five

Platonic solids, i.e. tetrahedron (N = 4), octahedron (N = 6), cube (N = 8), icosahe-

dron (N = 12), and dodecahedron (N = 20). The tetrahedron was found to be an optimal

formation H = ǫHiI in [64].

Remark 4.2.7. When numerically integrating periodic functions, composite trapezoidal

quadrature typically outperforms other methods such as the standard Simpson’s Rule, high-

order Newton-Cotes, and Gaussian quadratures ([21]). In our numerical experiments with

gradient estimation in quadratic and Gaussian temperature fields, the trapezoidal rule con-

sistently outperformed the high-order Newton-Cotes methods by exhibiting smaller gradient

estimation error. When equivalency holds, the averaging method may provide insight into

when the least-squares linear approximation is appropriate for these kinds of fields.
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4.3 Discrete-Time Kalman Filter for Mean Field Estimation

So far we have focused on how to estimate the value and derivatives of the mean field, T̄ ,

given a set of measurements, one taken by each vehicle in the formation. We now address

how to use previous measurements to improve these estimates and to do so we construct a

Kalman filter. We derive a discrete-time filter, not only for ease of construction, but also

because a discrete-time filter may be more appropriate to use with data from underwater

gliders which only yield data at a given depth level every 100 m or more. In what follows

we specialize to the plane but in principle the concepts can be extended to R
3.

At the kth instant we have a measurement vector given by

yk = Ckz̄k + wk + ρk + ǫMk,

= Ckz̄k + wk + ǫk

where

Ck =




pT
1k 1

pT
2k 1

...
...

pT
Nk 1




,

ǫk = ρk + ǫMk, and as before z̄k = (∇T̄ (rk), T̄ (rk))
T . Note that the subscript k serves

as a discrete-time index. We have assumed that ρ only contains second-order terms as in
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(4.2.13) and that third-order and above terms can be discarded. Furthermore,

E[wk] = 0,

E[ǫk] = 0,

E[wkw
T
k ] = σ2

wI + Wk,

E[wkw
T
k−1] = Vk,

E[ǫkǫ
T
k ] = R̃k = Sk + Rk,

E[ǫkǫ
T
k−1] = 0,

given E[ǫMk] = 0, E[ρk] = 0, E[ǫMkǫM
T
k ] = Rk and E[ρkρ

T
k ] = Sk. Notice here we are

interpreting ρk as a Gaussian white noise.

We wish to filter the estimate of z̄k given z̄k−1. To derive the relation between these

quantities we assume that the formation center of mass moves by δk ∈ R
2 from the k − 1

instant to the kth instant, see Figure 4.3.1. Define p′
ik = pik + δk, i.e. the position of

the ith measurement at the kth instant with respect to the formation center of mass at the

k − 1 instant.

dk

i
pik`

pik

j

xjk

r
k

0

Figure 4.3.1: Past and Previous Formations.

Expanding the mean field, T̄ , with respect to the center of mass at the kth instant and
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k − 1 instant to express T̄ at xik we get

T̄ (xik) =

(
pT

ik 1

)
z̄k +

1

2
pT

ikH̄kpik + O(‖pik‖3)

T̄ (xik) =

(
p′T

ik 1

)
z̄k−1 +

1

2
p′T

ikH̄k−1p
′
ik + O(‖p′

ik‖3),

=

(
p′T

ik 1

)
z̄k−1 +

1

2
(pik + δk)

T H̄k−1(pik + δk) + O(‖p′
ik‖3),

respectively.

Given measurements i = 1, . . . , N we can construct the matrix equations

ȳk = Ckz̄k +




1
2pT

1kH̄kp1k

1
2pT

2kH̄kp2k

...

1
2pT

NkH̄kpNk




, (4.3.1)

ȳk = C ′
kz̄k−1 +




1
2(p1k + δk)

T H̄k−1(p1k + δk)

1
2(p2k + δk)

T H̄k−1(p2k + δk)

...

1
2(pNk + δk)

T H̄k−1(pNk + δk)




, (4.3.2)

where

C ′
k =




p′T
1k 1

p′T
2k 1

...
...

p′T
Nk 1




,

and we have dropped the O(‖pik‖3) and O(‖p′
ik‖3) terms.

Expanding H̄k, we have

H̄k = (I
⊗

δk)H̄
′
k−1 + H̄k−1
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where H̄k =




H̄11k H̄12k

H̄21k H̄22k


 ∈ R

2×2,

(I
⊗

δk) =




δT
k 0

0 δT
k


 ∈ R

2×4 and H̄ ′
k =



∇H̄11k ∇H̄12k

∇H̄21k ∇H̄22k


 ∈ R

4×2.

Subtracting (4.3.2) from (4.3.1) we have

Ckz̄k = C ′
kz̄k−1 −

1

2




pT
1k(I

⊗
δk)H̄

′
k−1p1k

pT
2k(I

⊗
δk)H̄

′
k−1p2k

...

pT
Nk(I

⊗
δk)H̄

′
k−1pNk




+




pT
1kH̄k−1δk

pT
2kH̄k−1δk

...

pT
NkH̄k−1δk




,

where O(‖δk‖2) terms have been dropped.

Rearranging we now have an expression for z̄k in terms of z̄k−1,

z̄k = (CT
k Ck)

−1CT
k C ′

kz̄k−1+(CT
k Ck)

−1CT
k







pT
1kH̄k−1δk

pT
2kH̄k−1δk

...

pT
NkH̄k−1δk




− 1

2




pT
1k(I

⊗
δk)H̄

′
k−1p1k

pT
2k(I

⊗
δk)H̄

′
k−1p2k

...

pT
Nk(I

⊗
δk)H̄

′
k−1pNk







,

or

z̄k = Ak−1z̄k−1 + qk−1,

where

Ak−1 = (CT
k Ck)

−1CT
k C ′

k,

qk−1 = (CT
k Ck)

−1CT
k







pT
1kH̄k−1δk

pT
2kH̄k−1δk

...

pT
NkH̄k−1δk




− 1

2




pT
1k(I

⊗
δk)H̄

′
k−1p1k

pT
2k(I

⊗
δk)H̄

′
k−1p2k

...

pT
Nk(I

⊗
δk)H̄

′
k−1pNk







.
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Note that as in Lemma 4.2.1, we assume that at the kth instant the formation geometry is

such that CT
k Ck is nonsingular.

In the absence of correlated field noise, i.e. when E[wk−1w
T
k ] = 0, the discrete-time

linear system for which we wish to find filtered state estimates is given by

z̄k = Ak−1z̄k−1 + qk−1 (4.3.3)

yk = Ckz̄k + wk + ǫk.

As in [64] we interpret q as a stochastic noise source and we define Qk = E[qkq
T
k ].

The model in (4.3.3) does not take into account that we have modelled our field so that

the noise in the previous measurement, wk−1, will in general be correlated with the noise

wk in the current measurement, i.e. E[wk−1w
T
k ] 6= 0. Following the development in [86]

we assume that the field noise can be modelled as a first-order Gauss Markov process

wk = Gk−1wk−1 + ηk−1, (4.3.4)

where ηk is a white noise sequence with E[ηk] = 0, E[ηkη
T
k ] = Uk. Given the statistics

E[wkw
T
k ] = σ2

wI + Wk and E[wkw
T
k−1] = Vk the required model parameters are derived to

be

Gk−1 = Vk(σ
2
wI + Wk−1)

−1

Uk−1 = σ2
wI + Wk − σ2

wGk−1G
T
k−1 − Gk−1Wk−1G

T
k−1.

With noise model (4.3.4) in hand we now can define the complete model to be filtered

as 


z̄k

wk


 =




Ak−1 0

0 Gk−1







z̄k−1

wk−1


+




qk−1

ηk−1




88



with output equation given by

yk =

(
Ck I

)



z̄k

wk


+ ǫk

Or defining

ξk =




z̄k

wk


 , Ãk−1 =




Ak−1 0

0 Gk−1


 , H̃k =

(
Ck I

)
, w̃k =




qk−1

ηk−1




we have

ξk = Ãk−1ξk−1 + w̃k−1 (4.3.5)

yk = H̃kξk + ǫk

with

E[w̃kw̃
T
k ] =




Qk 0

0 Uk


 = Θk

E[w̃kǫ
T
k ] = 0.

Defining the estimate of ξk as ξestk and the error covariance matrix Pk = E[(ξk −

ξestk)(ξk − ξestk)
T ], the Kalman estimate is obtained by propagating the discrete state

equation

ξestk = Ãk−1ξestk−1 + K∗
k(yk − H̃kÃk−1ξestk−1),

where the optimal Kalman filter gain, K∗
k , is found by minimizing the cost function, Jk =

Tr(Pk) [86], and is given by

K∗
k = (Ãk−1Pk−1Ã

T
k−1 + Θk−1)H̃

T
k

(
H̃k(Ãk−1Pk−1Ã

T
k−1 + Θk−1)H̃

T
k + R̃k

)−1

with error covariance

Pk = (I − K∗
kH̃k)(Ãk−1Pk−1Ã

T
k−1 + Θk−1)(I − K∗

kH̃k)
T + K∗

kR̃kK
∗T
k .
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The derivation can be found in Appendix B.

Note that we have derived the Kalman filter associated with estimating the mean field

and gradient. However, by defining the C matrix as in (4.2.16), we can also use this

formulation to estimate filtered higher-order derivatives.

To demonstrate the Kalman filter we simulate three vehicles in a triangle formation

traversing a region in which a noisy field is present and estimate the mean field and

its gradient. The field consists of a Gaussian mean field given by T̄ = e
−y2

2σ2 with σ =

5 and superimposed Gaussian noise, see Figure 4.3.2. The noise field, w, is generated

from an isotropic, zero mean Gaussian distribution with covariance function given by

E[w(xi)w(xj)] = σ2
we

− ‖xi−xj‖
2

σ2
d . The scale length of this noise σd = 1 and the variance

σ2
w = 0.005. If the length scale is to be interpreted as km then this random field may be

thought of as characteristic of a small scale feature such as a biological plume, a red tide or a

pollutant plume. For simulation purposes we use the sampling from the spectrum technique

for generating a realization of a homogenous and isotropic field given the spectral density

function [15] which was also implemented in [100].

Each vehicle takes a measurement of the noisy field that is corrupted by white sensor

noise with variance σ2
M = 0.0001. To evaluate how the filter can perform with potentially

poor estimates of the higher-order terms in the mean field expansion, represented by Qk

and Sk in the filter, we assign fixed values of Qk = 2× 10−5I and Sk = 10−3I. The correct

noise covariances, σw, Wk and Vk, and correct noise scale length, σd were used in the filter

equations. The inter-vehicle distance is fixed at 2.5
√

3. This size was found to be near a

local minimum of the integrated least squares error (4.2.12) along the formation’s trajectory

(shown in Figure 4.3.2).

At each step the formation propagates 0.1 units. The initial conditions for the filter are
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ξ0 = 0 and P0 = I. In Figure 4.3.2 we present snap shots of the three vehicle formation as

it moves across the region from bottom to top and the noise field.

Figure 4.3.2: Kalman Filtering for Mean Field Estimation Simulation. Left pane
shows the mean field with snap shots of the formation which traverses the region from
bottom to top. Right pane shows the noise field which is superimposed onto the mean field.

In Figure 4.3.3 we present the filtering results. Clockwise from the top left pane we

show ∂T̄
∂x , ∂T̄

∂y , Trace(P ), T̄ , where Trace(P ) is the trace of the filter error covariance metric.

We also present the actual mean field values, Kalman Filter estimates, and instantaneous

Least Squares estimate, at the formation center of mass. The black solid line indicates the

Kalman filter estimate, the grey solid line indicates the instantaneous least squares estimate,

and the dashed black line indicates the actual mean field value. The bottom right figure

demonstrates that our filter indeed converged.

The results shown in Figure 4.3.3 indicate that the Kalman filter estimate did not

significantly improve the mean field estimate T̄ but did yield an improved estimate of its

gradient. Denoting the Kalman filter estimate of ∂T̄
∂x at the formation center as ∂T̄

∂x KF
and
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Figure 4.3.3: Kalman Filtering Results. Black solid lines indicate the Kalman filter
estimates, the gray solid lines indicate the instantaneous least square estimates, and the
black dashed lines indicate the actual mean field values.

the instantaneous least squares estimate as ∂T̄
∂x LS

we find

‖∂T̄
∂x KF

− ∂T̄
∂x ‖

‖∂T̄
∂x LS

− ∂T̄
∂x ‖

= 0.80,
‖∂T̄

∂y KF
− ∂T̄

∂y ‖
‖∂T̄

∂y LS
− ∂T̄

∂y ‖
= 0.93.

Here we are utilizing the L2 norm defined as

‖z(t)‖2 =
1

T

T∫

0

|z(t)|2 dt

for square integrable functions z(t), t ∈ [0, T ]. Recall that the sensor array diameter was

chosen to minimize the least squares error. In simulations with non-optimal sensor diam-

eters, the Kalman filter performed even better relative to the instantaneous least squares

estimate.
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4.4 Gradient Climbing and Feature Tracking

In this section we demonstrate how to use the derivative estimates computed by the ve-

hicle array to perform gradient climbing and front tracking given a noisy scalar field. We

specialize to the plane for the discussions but the concepts presented are applicable in R
3.

4.4.1 Gradient Climbing

To enable gradient climbing we direct the virtual body to follow the estimate ∇T̄est (to

descend we track the estimate −∇T̄est). Recall from Chapter 3 that the virtual body

direction is given by
cdr
ds . Thus, for gradient ascent we set

d̂r

ds
=

∇T̄est

‖∇T̄est‖
.

When the field is noisy it may be preferable to use the estimated gradient to define a

desired virtual body heading angle and then use a simple controller to direct the virtual

body heading to track the desired heading. For example, suppose we denote θd ∈ (−π, π]

as the desired virtual body heading, i.e. for gradient ascent ∇T̄est

‖∇T̄est‖ = (cos θd, sin θd) and

define the virtual body heading as θv ∈ (−π, π] such that
cdr
ds = (cos θv, sin θv). We define

the heading angle error θev = θv − θd ∈ (−π, π]. As a heading controller we may use

θ̇v = −kr sin θev (4.4.1)

where kr > 0 adjusts the rate of the convergence. Implementation of this controller can

help mitigate steering chatter when gradient estimates are noisy.

It may also be desirable for the adaptive path of the glider group to be computed as a

modification of the path that one might otherwise select based on model forecasts, satellite

imagery, aircraft or other data. To perturb the formation’s path in the direction of the

estimated positive or negative gradient, a projected gradient approach could be utilized [77],
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see Figure 4.4.1. For example, to induce gradient descent, the negative of the estimated

gradient is projected perpendicular to r̂w, the normalized vector from the virtual body

center to a chosen final destination. This vector is denoted ∇T̄⊥
est, and ∇T̄⊥

est ⊥ r̂w. The

virtual body steering direction is given by

d̂r

ds
=

r̂w(1 − w⊥) − w⊥∇T̄⊥
est

‖r̂w(1 − w⊥) − w⊥∇T̄⊥
est‖

. (4.4.2)

The scalar w⊥ ∈ [0, 1] weights the influence of the gradient estimate on the virtual body

path.

Test

Test

rw

Initial location Destination

dr
ds

Figure 4.4.1: Projected Gradient Descent. The total virtual body heading vector
cdr
ds

is com-
posed of the unit-vector directed towards the desired destination, r̂w, less the normalized projected
gradient, ∇T̄⊥

est
, weighted by w⊥. The black-dashed line represents a fixed sampling path and the

black solid line illustrates the path when directing the virtual body with the negative projected
gradient for gradient descent.

Projecting the gradient perpendicular to the vector towards the desired destination

ensures that the virtual body converges towards to the destination while traversing a path

closer to minima or maxima in the field. Gradient ascent is achieved by adding rather than

subtracting the weighted sum of the projected gradient in (4.4.2).

To demonstrate gradient ascent of a noisy scalar field we present a simulation with

three vehicles in a triangle formation climbing a fabricated noisy field. In this simulation

the vehicle center of mass (virtual leader) is directed by the Kalman filter gradient estimate.

Note that the formation is rigid about the center of mass and we are not simulating vehicle
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dynamics relative to the center of mass. The formation is made to rotate about the center

of mass as is to be explained in what follows, but the formation is always a rigid triangle.

Consider the mean field, T̄ , shown in the left pane of Figure 4.4.2. The mean field is

given by

T̄ (x, y) = (y + 20)/10 e−
(x−sin( 2πy

10 ))
2

2σ2 (4.4.3)

with σ = 10. The noise field, w, is the same as used in the Kalman Filter simulation found

in Section 4.3 and Figure 4.3.2. An inter-vehicle spacing of
√

3 units was found to nearly

minimize the least squares error (4.2.12) and was used in this simulation.

Figure 4.4.2: Simulated Mean Field, Gaussian Noise and Formation Trajectories.
Left pane shows mean field given by (4.4.3). The right pane shows noisy field with formation
snapshots (white dots) and center of mass trajectory (white line). Triangle moves from
bottom of pane to top.

The Kalman filter presented in Section 4.3 is implemented with Qk = 4×10−4I and Sk =

10−3I. As before, the noise statistics in the filter were chosen to match their actual values.

To further smooth the formation motion we implement the virtual body heading control

presented in (4.4.1) with kr = 1. Additionally, in order to avoid redundant measurements

while travelling in a straight line, we implement a simple control which rotates the formation

such that there is always a line connecting two vehicles that is perpendicular to the direction
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of travel. In this simulation the vehicles are rigidly attached to the virtual leader frame and

orientation of the virtual leader frame (with respect to the inertial x− y frame) is specified

by a single angle, θf . To rotate the virtual leader frame so that the vehicles are oriented as

desired we implemented the control law

θ̇f = −krf sin θef (4.4.4)

with krf = 10 where θef = θf − θv ∈ (−π, π]. We choose the orientation of the virtual

leader frame so that an edge of the triangle is perpendicular to the direction of travel when

θef = 0.

As shown in the right pane of Figure 4.4.2 the group successfully navigates its way up

the wiggling slope.
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Figure 4.4.3: Gradient Estimates. Heavy black line indicates Kalman filter estimate,
gray line indicates instantaneous least squares estimate, and dashed line indicates mean
field value.

In Figure 4.4.3 we plot the components of the gradient estimates. Both instantaneous

least squares and Kalman filter estimates are shown along with the derivatives of the mean

field. As before the Kalman filter has the effect of reducing the excursions seen in the least

squares estimate. We again evaluate the ratio of Kalman filter estimate error with the

instantaneous least squares estimate error. Denoting the Kalman filter estimate of ∂T̄
∂x at
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the formation center as ∂T̄
∂x KF

and the instantaneous least squares estimate as ∂T̄
∂x LS

we find

‖∂T̄
∂x KF

− ∂T̄
∂x ‖

‖∂T̄
∂x LS

− ∂T̄
∂x ‖

= 0.89,
‖∂T̄

∂y KF
− ∂T̄

∂y ‖
‖∂T̄

∂y LS
− ∂T̄

∂y ‖
= 0.76.

4.4.2 Front Tracking

In this subsection we demonstrate how to use derivative estimates to track fronts. As de-

scribed in Section 4.1.1, we define a front as the contour where the Thermal Front Parameter

(TFP) given by ν = − ∇T̄ T

‖∇T̄‖H̄
∇T̄

‖∇T̄‖ = 0 and ‖∇T̄‖ > 0. A simple solution would be to track

the gradient of the TFP as presented in [49]. However, given our framework this would

require an estimation of third-order derivatives which would be very difficult to acquire in

the presence of noise. Instead, we present a method which only relies on the estimation of

first and second derivatives. It does not track the gradient of ν and thus does not require

the third-order terms. However, it also does not take the most direct path to the front.

We propose that if we follow the local gradient we will eventually cross the center line

of a front. The value of ν provides us with an indication of what side of the front we are

on, for example for ν > 0 we are on the “warm” side of the front and should descend the

gradient to reach the front. If ν < 0 we are on the “cold” side of the front and should

climb the gradient to reach the front (see Figure 4.1.1). Thus assuming that ν = 0 only

at the front then we can reach the front by tracking −ν∇T̄ . To travel along the front, we

choose to move in the direction perpendicular to the gradient, ∇T̄⊥, as ν → 0. The desired

direction of travel is then given by the weighted sum of ∇T̄ and ∇T̄⊥

rd = wν(ν)∇T̄ + |1 − wν(ν)|∇T̄⊥. (4.4.5)
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wν(ν) : R → [0, 1] is a weight function defined by

wν(ν) =






1 ν ≤ −νl

− sin(π
2

ν
νl

) −νl < ν ≤ νl

−1 ν > νl

(4.4.6)

where νl is a positive constant thresholding parameter which is selected a priori . For

ν ≤ −νl, rd steers the formation along the gradient since the formation is on the cold side

of the front. Likewise for ν > νl the formation is directed along the negative gradient since

the formation is on the warm side of the front. At the front where ν = 0, wν = 0 and thus

the formation is directed along a contour of the mean field. It should be understood that

this is not the zero contour of ν and thus the formation will likely be steered away from the

front. However, at some future instant |ν| 6= 0 and it will be large enough such that the

formation should be directed back towards the ν = 0 contour.

To demonstrate front tracking on a noisy scalar field we present a simulation with six

vehicles attempting to follow a contour of ν = 0. The formation consists of five vehicles in

a pentagon formation with a single vehicle in the center. The distance between the vehicle

at the center of the formation and each of the other vehicles is 3.5 units. This formation

size was found to minimize the integrated least squares error (4.2.12) along the formation

trajectory. As in the gradient climbing simulation, the vehicle center of mass (virtual leader)

is directed by the Kalman filter estimates. Furthermore, the formation is again rigid about

the center of mass and there are no vehicle dynamics relative to the center of mass other

than rigid body rotation.

The mean field is given by

T̄ (x, y) = e−
x2

+y2

2σ2

with σ = 5. The noise field, w, is identical to the one used in 4.4.1 except the variance, σ2
w,
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is chosen as 0.001.

The Kalman filter presented in Section 4.3 is implemented with the actual noise param-

eters and we chose Qk = 2 × 10−5I and Sk = 10−3I. We again implement a discretized

version of the virtual body heading control presented in (4.4.1) with kr = 1 and a dis-

cretized version of the formation orientation control presented in (4.4.4) with krf = 1. The

formation center of mass is propagated 0.1 units per time step in the direction specified by

(4.4.5) and (4.4.6) with νl = 0.02.

Figure 4.4.4: Front Tracking Simulation. Formation snap shots (white dots) and center
of mass trajectory (white line) are plotted against the noisy field sampled by the vehicle
array.

Figure 4.4.4 shows the front tracking performance. The solid white line is the trajectory

of the formation center of mass. The solid black circle is the front where ν = 0. The

white dots denote vehicles at incremental instances. In general, the formation appears to

stay relatively close the front while travelling around it. In the left pane of Figure 4.4.5

we plot the Kalman filter-estimated ν (solid black line), the instantaneous least squares

estimate of ν (solid gray line), and the mean field ν (black dashed line) along the trajectory
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Figure 4.4.5: Thermal Front Parameter Estimate and Correct Heading His-
togram. Left pane plots the actual, Kalman filter, and instantaneous least squares estimate
of the thermal front parameter at the formation center. Right pane presents histograms
of how often the TFP estimate correctly vs. incorrectly directs the formation (see text for
description).

of the formation center of mass. The ratio of Kalman filter estimate error and least squares

estimate error utilizing the L2 norm is given by

‖νKF − ν̄‖
‖νLS − ν̄‖ = 0.84

where ν̄ is the actual mean field value of the thermal front parameter at the formation

center of mass.

Recall we wish to estimate ν so that when the formation is on the warm side of the

front we are correctly directed down the gradient and vice versa when the formation is on

the cold side of the front. In the right pane of Figure 4.4.5 we present histograms of how

often the estimate of ν correctly directed the formation down the gradient when ν > 0 and

up the gradient when ν < 0. Case 1 on the histogram is when the formation is on the cold

side of the front, i.e. the formation center of mass is outside the circle of radius σ from

the center. The black bar is the number of instances for which wν correctly directed the
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formation to approach the front while the gray bar is the number of instances for which wν

incorrectly directed the formation to drive away from the front. As shown, the algorithm

correctly directed the formation towards the front twice as often as it incorrectly directed

the formation. Likewise Case 2 on the histogram is when the formation is on the warm

side of the front, i.e. the formation center of mass is inside the circle of radius σ. The

black and gray bars have identical meaning to that of Case 1. As before, the algorithm

correctly directed the formation towards the front twice as often as it incorrectly directed

the formation.
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Chapter 5

Cooperative Control of

Autonomous Underwater Glider

Fleets

In the preceding chapters we have presented methodologies for both coordinating vehicles

and using the resulting formations to perform tasks that could be used in the ocean. How-

ever, the theory presented in these chapters does not directly address various operational

constraints associated with coordinating real vehicles in a dynamic sea. In this chapter we

address these issues in a presentation of our implementation of the VBAP methodology for a

fleet of autonomous underwater gliders. This implementation was developed for use during

the Autonomous Oceanographic Sampling Network II (AOSN II) experiment conducted in

Monterey Bay, California, during the summer of 2003. In August of 2003 we implemented

this specialization of VBAP on a fleet of Slocum underwater gliders. The results of the sea

trials are presented in Chapter 6.

The contents of this chapter are as follows. In Section 5.1 we describe autonomous
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underwater gliders and, in particular, the Slocum autonomous underwater glider. In Section

5.2 we give a detailed account of the operational constraints which impact coordinating

multiple Slocum gliders in this setting and present the modification and extensions of VBAP

we developed to account for these constraints. Some constraints are related in part to

limitations of current underwater technologies; for example, the Slocum gliders do not

communicate with each other while underwater. Other constraints are specific to design

choices in AOSN II; for example, the gliders were operated at a constant speed relative

to the flow (on average). In Section 5.3 we summarize the complete VBAP/Slocum glider

system in place during AOSN II. After presenting the operational scenario and complete

implementation, in Section 5.4 we present realistic simulations that were designed to test and

demonstrate our methodology prior to the sea trials at AOSN II. In particular we describe a

simulation of an autonomous glider fleet performing cooperative projected gradient descent

in Monterey Bay using both available model and measured data in Monterey Bay from

summer 2000.

5.1 The Autonomous Underwater Glider

Autonomous underwater gliders are a class of energy-efficient autonomous underwater vehi-

cles (AUVs) designed for continuous, long-term deployment [78] and as a result are playing

an increasingly critical role in autonomous, large-scale ocean surveys [2]. Additionally, glid-

ers can be significantly less expensive and require less operational infrastructure as compared

to conventional AUVs, so they are well-suited to be deployed in large numbers, particularly

in multiple vehicle operations. Over the last few years underwater gliders have become a

promising emerging technology for oceanographic sensing applications. In the United States

three types of ocean-going underwater gliders have been developed for oceanographic ap-
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plications: the Slocum [99], the Spray [82], and the Seaglider [28]. The Slocum glider

manufactured by Webb Research Corporation is shown in Figure 5.1.1.

Figure 5.1.1: Webb Research Corporation Slocum glider.

Whereas a propeller driven vehicle can sustain operations for hours, glider endurance is

measured in weeks. With long term deployments in mind, gliders are designed to require

relatively little on-site operational infrastructure. The glider philosophy is “to throw it in the

water and go”, literally. For example in the spring of 2004 for a US Navy demonstration, a

Slocum glider owned by Dr. David Fratantoni of the Woods Hole Oceanographic Institution

(WHOI), was operating in the Sea of Japan while Dr. Fratantoni was prescribing missions

from his lab in Massachusetts [34]. All communication with the glider occurred via satellite

data links and internet traffic. Personnel from WHOI were locally on hand in the Sea of

Japan just to deploy and retrieve the glider, and to monitor glider activities. In the future,

other than for deployment and retrieval (which could be separated by weeks) no personnel

will be required to be on hand.

The energy efficiency of the gliders is due in part to the use of a buoyancy engine.

Gliders change their net buoyancy (e.g. using a piston-type ballast tank) to change their

vertical direction of motion. Actively controlled redistribution of internal mass is used for

fine tuning attitude. For example, the Slocum glider moves its battery pack fore to aft (and
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vice versa); whereas the Spray and Seaglider move their battery packs to fine tune pitch

and additionally, roll (for heading control). The Slocum uses a rudder for heading control.

Underwater gliders use body surfaces, typically fixed wings, to provide lift which induces

motion in the horizontal direction. The nominal motion of the glider in the longitudinal

plane is along a sawtooth trajectory where one down-up cycle is called a yo. Being generally

slow moving, gliders are very sensitive to external currents.

The Slocum glider is equipped with an Iridium-based, global communication system and

a line-of-sight, high-bandwidth Freewave system for data communication. Both systems are

RF-based and subsequently can only be used at the surface. While the glider is on the

surface, data collected can be sent back to the shore station (wherever it may be) and

new mission parameters can be downloaded onto the glider. The shore station will usually

be running server software to retrieve the incoming data, log it, and send new commands

to the gliders. For example, Dr. David Fratantoni has created the Glider Data System

(GDS), a custom software suite which provides real-time monitoring and mission cueing

services for multiple-Slocum glider operations. When a glider surfaces it acquires a Global

Positioning System (GPS) fix and then establishes a connection with the GDS Server. This

occurs either through Freewave when a receiver is in the local vicinity of the gliders, e.g.

ship board, or through Iridium when Freewave coverage is insufficient. In the latter case,

the gliders can be operating anywhere in the world wherever adequate Iridium coverage is

present. In either case, the recently acquired GPS fix, sensor profile data, and estimated

external currents are uploaded to the GDS server where they go through quality control

and are subsequently logged. Then either a new mission is downloaded to the glider or the

glider is directed to go about finishing its current mission.

During AOSN II operations, the gliders communicated solely by Iridium and at each
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surfacing, gliders would relay their data to the GDS at WHOI. This data would then

be available for retrieval via the internet by the operator stationed at the Monterey Bay

Aquarium Research Institute (MBARI). Once new mission plans were generated they would

be sent back to the GDS from MBARI (via the internet) to be uploaded at the next glider

surfacing. A simple schematic of the data flow during AOSN II is shown in Figure 5.1.2.

WHOI

MBARI

Internet

Iridium

Figure 5.1.2: AOSN II VBAP Communication Summary. All communication links
on this figure are bi-directional. At the surface the Slocum gliders transmit data to the GDS
server at WHOI by Iridium satellite connection. This data is then retrieved from MBARI
through the internet. New mission plans are sent to the GDS server via the internet where
they are downloaded to the gliders during their next respective Iridium connection.

The Slocum glider operates autonomously, tracking waypoints in the horizontal plane.

While underwater, the glider uses dead reckoning for navigation, computing its position

using integration of its horizontal-plane velocity, estimated from its depth and attitude

measurements. The GPS fix acquired at the surface is used to update its dead reckoning.

Gliders are inherently sensitive to ocean currents and the Slocum addresses the effects of

external currents in its dead reckoning algorithms and heading controller. However, during

a dive cycle the glider does not have a local current measurement. Instead the glider uses

a constant estimate computed at the last surfacing by comparing dead-reckoned position
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with recently acquired GPS fixes. Any discrepancy between the two is attributed to an

external current and is used to compute a new estimate of average current. This estimate

of average current is also made available as science data.

Gliders can be equipped with a variety of sensors for gathering data useful for ocean sci-

entists. The Slocum gliders used in Monterey Bay in 2003 housed sensors for temperature,

salinity, depth, chlorophyll fluorescence, optical backscatter and photo-synthetic active ra-

diation (PAR). Sensor measurements can be used to drive multi-vehicle feedback control

algorithms with the goal of collecting data that is most useful to understanding and pre-

dicting dynamic fields in the environment. This application of feedback control to a sensor

network is called adaptive sampling as described in Chapter 4.

5.2 VBAP and Coordinating Slocum Gliders at AOSN II

As part of the AOSN II experiment during August 2003, twelve Slocum gliders, operated

by Dr. David Fratantoni of WHOI, were deployed in Monterey Bay, CA. These gliders were

monitored from a central shore station located at the Monterey Bay Aquarium Research

Institute (MBARI) at Moss Landing, CA. During the experiment we performed demon-

strations of coordinated glider operations with a subfleet of these gliders. In this section

we describe constraints associated with coordinating Slocum gliders during AOSN II and

address how we modified VBAP to account for them. Constraints described here are as

follows:

• Constant-Speed Constraints. Glider speed was held fixed throughout the exper-

iment. This limits the range of feasible formations especially when currents which

vary across the array are present.

107



• External Currents. The methodology presented in Chapters 2 and 3 assumes no

external current. Given that the glider is particularly susceptible to external currents

this needed to be addressed.

• Intermittent Feedback. Lack of underwater communication restricted coordinating

feedback to occur only while gliders were on the surface. While underwater, the glider

could only follow prescribed waypoints. Thus the effective feedback sampling period

for coordinated control of the glider fleet was the interval between glider surfacings.

During AOSN II, this interval was approximately two hours, i.e. each glider surfaced

every two hours.

• Data Latency. In order to restrict the amount of time each glider would be at

the surface, mission plans had to be immediately available at surfacing and no time

was allotted for closing the feedback loop at the surface. Thus, the VBAP generated

trajectories had to be computed with data from less recent glider surfacings.

• Asynchronous Surfacings. A further complication arose from the fact that gliders

in a formation were not made to all surface at the same time. These asynchronous

surfacings complicated mission planning because gliders could not communicate while

underwater. Thus the gliders that have already surfaced that were give new plans

would be on different mission plans than the gliders that have yet to.

We tested our procedures for accommodating these constraints prior to AOSN II through

glider trials at sea and in simulation. During January 2003, prior to AOSN II, we partici-

pated in Slocum glider shakedown trials in the Caribbean. Dr. David Fratantoni was the

principle investigator for this cruise. As part of the shakedown we ran tests on a single

Slocum vehicle. We performed a two-vehicle coordination experiment with a single real ve-
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hicle and a second virtual vehicle. We also conducted detailed simulations of three Slocum

gliders in Monterey Bay. We used both model data and measured data to serve as the ocean

environment. These simulations are discussed in Section 5.4.

5.2.1 VBAP with a Constant Speed Constraint

During AOSN II, glider speed was not a control variable, i.e. speed remained fixed (on

average). A glider moves in a sawtooth motion with the forward speed of the glider slow-

ing at the inflections from upwards to downwards dives or downwards to upwards dives.

Therefore, the glider speed varies; however, when averaged over several yos, glider speeds

are found to be approximately constant relative to the external current. Thus we model the

glider in VBAP with fixed speed. Further we use a first-order vehicle model with constant

magnitude control input.

VBAP with First-Order Dynamics

The control methodology presented in Chapters 2 and 3 was presented for a point mass

model with second-order dynamics. In order to implement the constant speed constraint, a

first-order model was utilized. Recall that the ith vehicle’s position is given by xi ∈ R
2. As

before, bold font is reserved for vectors, and the same symbol in normal font indicates the

magnitude, i.e. h = ‖h‖. The hat character indicates that a vector has been normalized,

e.g. ĥ = h
h . The VBAP framework presented in the previous chapters varies slightly in

that now we have

ẋi = ui, (5.2.1)

and

ui = −∇xi
Vi. (5.2.2)
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Notice that the term fvi (see (2.1.2)) goes away in the kinematic model.

Define χκ = (xT
1 , . . . ,xT

N )T and note that equilibrium of the kinematic model are ob-

tained by setting χ̇κ = 0. Recall from Chapter 2 and Chapter 3 that vehicle-to-vehicle and

vehicle-to-virtual leader interactions are defined by artificial potentials. The potentials are

designed such that the desired formation is the global minimum of the sum of all artificial

potentials.

Recall that in Section 3.2 a vehicle control law requirement when introducing virtual

body dynamics was that we had a Lyapunov function to prove asymptotic stability to the

desired equilibrium when ṡ = 0. That is, we required the existence of a function Φ(χκ, s) ≥ 0

with dΦ
dχκ

T
χ̇κ ≤ 0 within some ball about χ∗

κ where dΦ
dχκ

T
χ̇κ = 0 only at χκ = χ∗

κ. With

first-order dynamics, a suitable Lyapunov function (for the s-frozen dynamics, ṡ = 0) is the

sum of all artificial potentials (c.f. for second-order dynamics, the total energy including

the kinetic energy of the vehicle point masses was used), i.e.

Φ(χκ, s) =
N∑

i=1

Vi ≥ 0,

dΦ

dχκ

T

χ̇κ =
N∑

i=1

∇xi
Vi · ẋi,

= −
N∑

i=1

||∇xi
Vi||2 ≤ 0.

If ∇xi
Vi = 0 only at χκ = χ∗

κ in some region around χ∗
κ then χ∗

κ is an asymptotically

stable equilibrium.
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Kinematic speed constraint

We now impose a constant speed constraint on the vehicle point mass model. To this effect

we make the following modification to the control vector for each glider:

ẋi = ui
′

ui
′ = αi (ui − ζi ûi

c) (5.2.3)

where ui is defined by 5.2.2, ûi
c is a unit vector given by − cdr

ds ,−ĥil, or −ĥ
⊥
il , for virtual

body translation, expansion, or rotation, respectively, and,

ζi(t) =






ǫκ, ||ui(t)|| ≤ ǫ2κ

0, ||ui(t)|| > ǫ2κ

, (5.2.4)

αi(t) =
ug

||ui − ζi ûi
c|| ,

ǫκ is fixed with 0 < ǫκ ≪ 1 and ug > 0 is the constant glider speed in the horizontal plane.

The term ζiûi
c is necessary to avoid singularities when ui → 0.

In the presence of this kinematic constraint, we present a condition sufficient to guar-

antee bounded formation error since it will be shown to permit a Lyapunov Function for

the s-frozen, i.e. ṡ = 0, closed-loop dynamics. By Theorem 3.2.1, with ṡ dynamics given in

(3.2.1), bounded formation error remains guaranteed.

Lemma 5.2.1 (Control Req. for Boundedness). Consider Φ(χκ, s) that is used as a Lya-

punov function for proving asymptotic stability of χ∗
κ when ṡ = 0, i.e. for the s-fixed system,

and is given by

Φ(χκ, s) =
N∑

i=1

Vi ≥ 0

where Φ = 0 only when χκ = χ∗
κ. Suppose we constrain the vehicle kinematics such that

ẋi = ui
′ = αi (ui − ζi ûi

c) ,
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where αi, ζi, ui, and ui
c are defined in (5.2.3) and (5.2.4). Suppose at time t ≥ 0, ||ui(t)|| >

ǫ2κ, for i = 1, . . . p ≤ N , and ||uj(t)|| ≤ ǫ2κ for j = p + 1, . . . , N where 0 < ǫκ ≪ 1

If at time t ≥ 0,

p∑

i=1

||ui|| >
N∑

j=p+1

−‖uj‖2 + 〈uj , ǫκ ûj
c〉

||uj − ǫκûj
c|| , (5.2.5)

then,

dΦ

dχκ

T

χ̇κ =
N∑

i=1

∇xi
Vi · ẋi ≤ 0.

Furthermore, if

p∑

i=1

||ui|| > (N − p)
ǫ2κ

1 − ǫκ
, (5.2.6)

then,

dΦ

dχκ

T

χ̇κ < 0.

Proof: Since Φ(χκ, s) =
N∑

i=1
Vi,

dΦ

dχκ

T

χ̇κ =

N∑

i=1

−ui · ui
′,

=
N∑

i=1

−ui · αi (ui − ζi ûi
c) ,

=
N∑

i=1

−αi||ui||2 + αi〈ui, ζi ûi
c〉.

Since ||ui(t)|| > ǫ2κ, ζi = 0 for i = 1, . . . , p ≤ N.

Similarly since ||uj(t)|| ≤ ǫ2κ, ζj = ǫκ for j = p + 1, . . . , N .

Therefore, using the hypotheses in (5.2.5)

dΦ

dχκ

T

χ̇κ = −
p∑

i=1

αi||ui||2 +

N∑

j=p+1

αj(−||uj ||2 + 〈uj , ǫκ ûj
c〉),

= ug



−
p∑

i=1

||ui|| +
N∑

j=p+1

−||uj ||2 + 〈uj , ǫκ ûj
c〉

||uj − ǫκûj
c||



 ,

< 0.
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Furthermore, since ‖uj(t)‖ ≤ ǫ2κ, j = p + 1, . . . , N ,

||uj − ǫκûj
c|| = ||ǫκûj

c − uj ||,

≥ ǫκ − ||uj ||,

≥ ǫκ − ǫ2κ,

and thus,

N∑

j=p+1

−‖uj‖2 + 〈uj , ǫκ ûj
c〉

||uj − ǫκûj
c|| ≤

N∑

j=p+1

〈uj , ǫκ ûj
c〉

ǫκ − ǫ2κ
,

≤
N∑

j=p+1

‖uj‖ ǫκ

ǫκ − ǫ2κ
,

≤ (N − p)
ǫ3κ

ǫκ − ǫ2κ
,

≤ (N − p)
ǫ2κ

1 − ǫκ
.

Thus, if the inequalities in (5.2.5) and (5.2.6) hold,

dΦ

dχκ

T

χ̇κ(t) = ug



−
p∑

i=1

||ui|| +
N∑

j=p+1

−||uj ||2 + 〈uj , ǫκ ûj
c〉

||uj − ǫκûj
c||



 ,

≤ ug

(
−

p∑

i=1

||ui|| + (N − p)
ǫ2κ

1 − ǫκ

)
,

< 0.

The constant-speed equality constraint will ultimately restrict what formations are fea-

sible using our potential function methods. Numerical simulations have shown that for-

mations that are not kinematically consistent with the speed constraint will not converge

properly. For example, a “rolling” formation defined by a virtual body that is simulta-

neously translating and rotating is not kinematically consistent with the constant speed

constraint. This is because each vehicle must slow down at some point to be “overtaken”

by its neighbor.
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Recall we define our artificial potentials such that the desired formation about the

virtual body is a global minimum of the sum of all potentials Φ. Consider a virtual body

translation, as the virtual body translates so do the desired vehicle positions which minimize

Φ since these desired vehicle positions are fixed in a frame attached to the virtual body.

We call the trajectories of these desired vehicle positions the desired vehicle trajectories. A

VBAP simulation in which Φ(χκ(t), s(t)) = 0 for all t ≥ 0, yields vehicle trajectories which

coincide with the desired vehicle trajectories throughout the simulation. However, the

VBAP methodology does not ensure Φ = 0 throughout, rather Φ(χκ(t), s(t)) ≤ ΦU ,∀t ≥ 0

given (χκ(0), s(0)) ≤ ΦU . ΦU is the upper bound on the permissable formation error

for which Φ is the metric. As we increase ΦU , we increase the permitted error from the

desired formation. We can visualize the effects of increasing ΦU on the vehicle trajectories

by imagining a set of tubes around each desired formation trajectory which contains all

possible vehicle trajectories for which Φ ≤ ΦU . By increasing ΦU we increase the size of these

tubes since increasing ΦU corresponds to increasing the allowable vehicle trajectory error

from the desired vehicle trajectories. In most simulations of infeasible desired trajectories,

i.e. desired trajectories that are inconsistent with the uniform constant speed constraint,

numerical convergence during simulation could not be obtained for small values of ΦU .

Feasible formations include pure translation, rotation, or expansion/contraction, combined

rotation and expansion/contraction, and other basic maneuvers. Throughout the AOSN

II demonstration, during each VBAP simulation, the virtual body was made to translate

while the orientation and size of the desired formation was held fixed.
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Trajectory Discretization into Waypoints

Trajectories generated by VBAP are continuous curves that must be discretized into glider

waypoints. We propose discretizing via the constrained minimization of an appropriate

cost function. We assume the number of waypoints, q, has been pre-selected. Denote

a continuous VBAP trajectory for the ith glider as si
V(t) ∈ R

2, t ∈ [ts, tf ] and define

the waypoint set as wi = {w1
i , w

2
i , . . . ,w

q
i } where w

j
i = si

V(tj) for j = 1, . . . , q such that

ts < t1 < t2 < . . . < tq = tf . Denote the trajectory composed of connecting these waypoints

with straight line segments and endpoints at the glider’s starting location and last waypoint

as si
w. Having a time parametrization of si

w implicitly defined by the constant speed ug

of the glider, a constrained minimization problem is specified by,

min
ti

J(ti) =

tf∫

ts

||si
V(t) − si

w(t)||2 dt

subject to ||wm+1
i − wm

i || > dmin for m = 0, 1, . . . , q − 1, and w0
i = si

V (ts). The scalar

parameter dmin specifies the minimum acceptable spacing between two adjacent waypoints.

For the AOSN II implementation we chose q = 2 waypoints
hr (tf − ts) and manually selected

the initial guess. Numerical optimizations suggest that the cost function may be non-convex

resulting in only locally optimal waypoint lists. Thus, there is some degree of sensitivity to

initial guesses.

5.2.2 External Currents

Gliders are inherently sensitive to ocean currents and it is important to include estimated

and forecast currents in the motion planning. For AOSN II we chose to focus on meso-

scale currents which are assumed to be adequately modelled as fairly uniform in an area of

interest. Accordingly, we used a simple average of the glider estimated currents uf
avg in our
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planning that was computed as

uf
avg =

1

N

N∑

i=1

ui
f ,

where ui
f is the ith vehicle’s estimate of the (constant) local advecting current. These

current estimates are constant throughout each planning stage. For use in simulation and

control design, the virtual body and vehicle velocity are then computed to be

ṙ =
d̂r

ds
ṡ + uf

avg,

ẋi = ui
′ + uf

avg.

This approximation assumes the flow average and ith glider’s flow estimate will not

differ significantly. By assuming identical advecting flow to each vehicle and the virtual

body, the bounded formation error results of Section 3.2 and Section 5.2.1 remain valid.

That is, you can think of the previous analysis as being done with respect to a frame that

moves with velocity, uf
avg.

As discussed in Section 3.1 the motion of the virtual body is responsible for directing

the motion of the glider fleet in addition to maintaining formation. To compensate for the

imposed advecting flow during translation, we direct the virtual body (
cdr
ds ) in a direction

to cancel the current perpendicular to the desired direction of travel as ṡ converges to ug.

The desired direction of travel of the virtual body at s is denoted by the unit-vector

r̂d(s) (see Figure 5.2.1). We then write uf
avg in terms of the orthonormal basis established

by r̂d and r̂d
⊥,

uf
avg = 〈uf

avg, r̂d〉 r̂d + 〈uf
avg, r̂d

⊥〉 r̂d
⊥,

= uf ||
avg r̂d + uf⊥

avg r̂d
⊥,

where u
f ||
avg = 〈uf

avg, r̂d〉 and uf⊥
avg = 〈uf

avg, r̂d
⊥〉.
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uavg
f

rd

uavg
f

rd

uavg
f ||

ug
dr
ds

uavg
f

Figure 5.2.1: Virtual Body Direction in Response to Current. Origin of frame is virtual
body center of mass.

Recall that the virtual body dynamics are given by ṙ =
cdr
ds ṡ + uf

avg. Let

d̂r

ds
= (cos θ, sin θ),

θ is defined as in Figure 5.2.1, i.e. to cancel the flow component perpendicular to r̂d we

choose θ such that

ug sin θ = −uf⊥
avg. (5.2.7)

Clearly a real solution, θ∗, exists only when uf⊥
avg ≤ ug. Even when a real solution exists

it may be possible that u
f‖
avg > ug cos θ∗ in which case no progress in the direction of r̂d

will be made. When ug > ||uf
avg||, equation (5.2.7) is guaranteed to have a real solution,

u
f‖
avg < ug cos θ∗ and the formation will move in the direction of r̂d.

In the instances when ug < ||uf
avg||, the formation may or may not be able to make

headway in the direction of r̂d. For example, if ug > uf⊥
avg then the perpendicular flow

component can be completely cancelled. Furthermore when ug < ||uf
avg|| and ug > uf⊥

avg

then ug < u
f‖
avg. So if u

f‖
avg > 0 then the formation will move in the direction of r̂d. However

if u
f‖
avg < 0 progress will not be possible in the direction of r̂d.
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5.2.3 Intermittent Feedback

The VBAP methodology presented in Chapters 2 and 3 provides a nonlinear state-feedback

controller implemented in continuous time. However, the feedback control implemented on

the Slocum glider used during AOSN II is capable of only following predefined waypoint

lists while underwater. Higher level feedback for formation control is only performed while

on the surface where inputs required for VBAP are relayed and new waypoint plans are

received. This feedback is intermittent, occurring at the rate of glider surfacing. During

AOSN II the minimum surfacing interval for the Slocum glider was dictated to be two

hours. This interval was the smallest interval agreed upon by the AOSN II participants.

It was chosen to balance the effects of surface drift due to winds or threats while on the

surface which increase with more frequent surfacing and the degradation in coordination

performance that comes with less frequent surfacing.

Because of the long periods between coordinating feedback, we developed an approach

whereby motion plans are computed using the VBAP methodology applied to the gliders

in simulation with initial conditions given by the measurement or estimation based on

measurements. Motion plans are re-computed only as frequently as new measurements are

available. In between measurement updates for coordination (i.e. in between surfacings)

each glider uses its low-level control to follow waypoints prescribed by the coordinated

motion plans.

5.2.4 Latency

At each glider surfacing new waypoint lists will be uploaded to the glider after data obtained

during the last mission has been downloaded. During AOSN II it was decided that the loop

could not be closed on the surface, i.e. the new waypoints should be ready for upload even
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before the data from the glider (including GPS and average current estimate) is downloaded.

The uploaded mission therefore does not use the latest GPS fix, local current estimate

and sensor measurements, but uses information gathered during the previous surfacing of

the glider. This introduces a degree of latency in the VBAP implementation. Simulations

indicate that with two-hourly feedback the formation is reasonably robust to these latencies.

5.2.5 Surfacing Asynchronicity

In addition to intermittent feedback and latency, there is also no guarantee of synchronized

glider surfacings since these are improbable and impractical to enforce. Variabilities across

the glider fleet, such as w-component (vertical) currents and the local bathymetry, decrease

the probability of synchronous surfacings. Furthermore, substantial winds and surface traffic

(like fishing boats, etc.) render waiting on the surface to impose synchronicity impractical.

When surfacing asynchronicity is present, gliders will be communicating new information

and receiving new missions at different times.

Before AOSN II we experimented with two strategies for implementing VBAP in the

presence of this asynchronicity. The strategies differed in the number of VBAP plans

generated per formation cycle. A VBAP plan is the set of trajectories generated for all the

gliders in the formation given a set of initial conditions. A formation cycle is defined as the

interval between the lead glider’s surfacings. The lead glider is the glider to surface first

and thus the first glider in need of new waypoints during the first formation cycle. In the

following we assume that the time interval between each glider’s consecutive surfacings is

uniform across the group.

The two strategies proposed involve either a single plan per formation cycle or multiple

plans per formation cycle:
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A. Single plan per formation cycle. In this strategy, waypoint plans are generated once per

formation cycle. The starting time tFC for a new formation cycle is the estimated time

of the lead glider’s next surfacing. The waypoint plans remain fixed during the formation

cycle even if new information becomes available. VBAP is initialized with estimated glider

locations and local currents at tFC . Glider locations are estimated using their active way-

point plans and last reported GPS fixes and local current estimates. Waypoint lists for each

glider are generated all at once and passed to each glider as they surface. This scenario is

illustrated in Figure 5.2.2.

The lead glider’s estimated location for planning (the location which initializes VBAP)

and its estimated surfacing location (where it is expected to acquire these waypoints) will

coincide. However, for an asynchronous group, the other gliders’ estimated locations for

planning may be behind their estimated surfacing locations. To avoid backtracking, the

waypoint plans generated for these gliders are edited to remove waypoints between the

estimated planning location and the estimated surfacing location.

B. Multiple plans per formation cycle. In this scenario new waypoint lists are generated

during a formation cycle whenever new information is available. New information becomes

available every time a glider surfaces. The actual surfacing location (last reported GPS) and

sensor measurements of the last glider to surface are used to immediately plan waypoints

for the glider to surface next. The location of each glider at the estimated surfacing of

the glider to surface next are used as initial conditions. This scenario is also illustrated in

Figure 5.2.2. During the VBAP simulation we did not have the capability of constraining

the trajectories of gliders currently underway. Thus, waypoint plans among gliders will not,

in general, be consistent because they will be computed with different information sets.

Furthermore, there must be sufficient time between glider surfacings to ensure that a plan
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can be available for download immediately when the next glider surfaces. So a large degree

of surfacing asynchronicity is favorable for this implementation. Simulations demonstrated

however, that with a two hourly surfacing interval (the interval to be used during AOSN

II) and asynchronous surfacings, cohesive formations were obtainable.

5.3 AOSN II VBAP Operational Summary

In this section we summarize the AOSN II VBAP operational scenario. Figure 5.3.1 presents

a detailed schematic view of the coupled VBAP-Glider system implemented during AOSN

II.

Starting from the top of Figure 5.3.1, gliders surfaced on a two-hourly interval, acquired

a GPS fix and then established an Iridium connection with the GDS server located at WHOI.

Data such as science measurements, the on-board average current estimate, and the glider’s

current location were transmitted. As discussed, no attempt was made to synchronize glider

dives or surfacings. The GDS then performed quality control, logged the data, and made

it available for download. At MBARI a standard Pentium IV laptop downloaded the glider

data via the internet, performed the necessary computations, and uploaded mission files

back to the GDS server.

In the following, we describe the computations used during operations in terms of three

modules: Glider Simulator, VBAP, and Waypoint Generator.

The Glider Simulator performs a dynamic simulation of a Slocum glider. It utilizes a

“black-box” model of the Slocum glider with parameters obtained by fitting model data

from the Slocum shakedown trials performed in the Caribbean during January 2003. As

its inputs, the simulator utilizes the current mission plan, consisting of waypoints, mission

duration, and yo depth bounds, the last known position before diving, and the currents
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Figure 5.2.2: Planning Scenarios. Horizontal axis is time axis and solid circles indicate
the time of actual surfacing for three fictitious gliders 1, 2, and 3. Adjacent (hollow) circles
indicate the estimated surfacing time. tik indicates the kth surfacing of the ith glider. ti

′

k

indicates the estimated kth surfacing of the ith glider. Glider 1 is the lead glider. The
arrows labelled tV BAP

k indicate the moments when the kth VBAP simulation is performed.
VBAP is initialized with the estimated glider positions at their next surfacings and the
average of the current estimates reported by each glider. Single plan per formation cycle:
in this strategy the kth VBAP computation is performed at tV BAP

k after all gliders have
surfaced and utilizes the GPS fixes and estimated currents reported at each tik, ∀i = 1, 2, 3.
VBAP is initialized with the estimated positions of all gliders at t1

′

k+1, i.e. the lead glider’s
next estimated surfacing. The waypoint lists generated for each glider are downloaded at
each glider’s surfacing at tik+1. Multiple plans per formation cycle: in this strategy VBAP
is performed each time a glider surfaces, i.e. each time new information is available. The
VBAP plan generated after the ith glider surfaces at tik is for the glider that is estimated
to surface next. For example, in the figure, the VBAP plan generated at tV BAP

k after glider
1 surfaces uses the estimated positions of all gliders at t2

′

k and the last reported estimated
currents for each glider as initial conditions. The waypoints from this plan are expected to
be uploaded to glider 2 at t2

′

k . Note there must be sufficient time between glider surfacings
to ensure that the plan will be available for download immediately when gliders surface.
For example, the VBAP plan computed at tV BAP

k must be available for upload to glider 2
at t2k. In the event that the plan computed at tV BAP

k is not available for glider 2 at t2k, the
waypoint plan computed at tV BAP

k−1 is issued to glider 2 at t2k.

reported during the last mission. The simulator is fairly detailed; an in-depth presentation

can be found in Appendix C. The simulator generates required information for both the

VBAP module and the Waypoint Generator.
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Figure 5.3.1: AOSN II VBAP Operational Scenario.

The VBAP implementation used during AOSN II was the single plan per formation

cycle strategy described in Section 5.2.5. So that mission plans are immediately available

at surfacing, an estimate is needed of the dive location of each glider at the start of its next

mission, denoted dive location. Also needed for each glider is its location when the lead glider

dives, denoted planning location. Both sets of locations are introduced to accommodate the

possibility of surfacing asynchronicity. The planning locations are used as initial positions

for each glider included in VBAP. The dive locations are used to adjust the generated

waypoint lists so that they are consistent with the locations of the gliders when they actually

start the mission. Both planning and diving locations are generated by the Glider Simulator.

Using the average of the last reported estimated currents, VBAP generates a contin-

uous trajectory for each glider which is then discretized into waypoints in the Waypoint
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Generator. In the process of generating waypoints, given the dive locations, we have the

option of removing waypoints for any glider if the output of the waypoint generator is ex-

pected to yield backtracking. During the sea-trials described in Chapter 6 this was never

required. The waypoint lists are then uploaded to the GDS and enter the mission queue

to be transmitted to each glider during the next Iridium connection along with mission

parameters such as glider max yo depth and time for next surface. The waypoint plans are

also fed-back to the Glider Simulator.

5.4 Simulations

Prior to the AOSN II demonstrations we ran detailed simulations of an autonomous glider

fleet in order to dry-run our methodologies and tune control parameters. In this section

we describe simulations of the fleet performing cooperative projected gradient descent (see

Chapter 4.4.1). During AOSN II, model-generated ocean forecasts were to be available to

guide glider mission planning. We simulated an adaptive sampling procedure that uses a

forecast to prescribe a coarse direction for sampling and gradient climbing to refine sampling

paths in response to on-board glider temperature measurements. For example, the forecast

might direct the gliders to the north to the cold water while the gradient climbing will

redirect the gliders according to the gliders’ estimate of the temperature gradient. For these

tests we use two sets of temperature data from the MOOS Upper-Water-Column Science

Experiment (MUSE) performed in Monterey Bay, California in August 2000. Innovative

Coastal-Ocean Observation Network (ICON) model data [83] is used as the forecast model

data set and the aircraft-observed sea-surface temperature (SST) data is used as the “truth”

data set. We use both datasets to demonstrate a principal advantage of adaptive sampling,

that is, the ability to correct for errors in the plans generated a priori. In addition to
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temperature data, ICON also supplies the flow field truth data set in which the simulated

gliders are advected.

Both the ICON data and airborne measured SST data is for August 17, 2000. During

this time, there is a temperature front near the 36.8-degree N parallel in the ICON data

(forecast set). However the aircraft-observed SST data (truth set) indicates the front is

southwest of the front predicted by the ICON data. We describe a simulation of a glider

fleet that is initially directed along the temperature front identified in the ICON model data.

By using the feedback temperature measurements and generating in-situ gradient estimates,

the fleet tries to redirect itself towards what it perceives to be the actual temperature front.

5.4.1 Truth and Model fields

Aircraft SST Data

The aircraft SST data, which provides the truth temperature field for our simulation, was

generated during MBARI’s MOOS Upper-Water-Column Science Experiment (MUSE) in

August 2000 by the Naval Postgraduate School in collaboration with Navy’s SPAWAR

System Center-San Diego and Gibbs Flying Services, Inc., San Diego, CA. The data was

collected on the afternoon of August 17, 2000 using a twin engine Navajo aircraft, which

was flown along a regular grid over Monterey Bay at an altitude of less than 1000 feet. The

aircraft measured sea surface temperature immediately below its location. More details

about the data collection and the MUSE experiment can be obtained from Monterey Bay

Aquarium Research Institute (MBARI)’s website [92].

Figure 5.4.1a presents the aircraft SST data. The black box illustrates a region of

particular interest which corresponds to a cold tongue of water entering the bay from the

north. This is characteristic of an upwelling event. In this section we present simulation
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results of a glider fleet exploring this region.

10 20 30 40 50 60 70
10

20

30

40

50

60

70

Longitude UTM Zone 10 (km)

La
tit

ud
e 

U
T

M
 Z

on
e 

10
 (

km
)

11

11.5

12

12.5

13

13.5

14

14.5

15

degrees C
 

(a) (b)

Figure 5.4.1: Sea Surface Temperature (SST) in Monterey Bay. (a) NPS Aircraft
SST, Monterey Bay, August 17, 2000 (b) ICON SST, Monterey Bay, August 17, 2000 16:00
local time

Innovative Coastal-Ocean Observing Network (ICON)

The fine-resolution numerical ocean model of the Monterey Bay Area (ICON model) was

developed in the “Innovative Coastal-Ocean Observing Network” (ICON) project [83]. The

ICON model is a three-dimensional, free surface model based on the Princeton Ocean Model

(POM) [14]. The model has an orthogonal, curvilinear grid, extending 110 km offshore and

165 km in the alongshore direction. The horizontal resolution is 1-4 km with the maximum

resolution in the vicinity of Monterey Bay. Vertically, the model is characterized by a

realistic bottom topography with 30 vertical levels. On the open boundaries the model

is coupled to a larger-scale Naval Research Laboratory (NRL) Pacific West Coast ocean

model. The ICON model was run with atmospheric forcings from COAMPS (Navy Coupled

Ocean and Atmospheric Mesoscale Prediction System) model predictions [44]. HF radar

(CODAR)-derived surface currents are assimilated into the model [84].

In our simulations we use the ICON data from August 17, 2000 fixed at 16:00 hours local
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time. The ICON sea surface temperature serves as a representative model field that we will

use to motivate a glider fleet mission. The ICON SST data is presented in Figure 5.4.1b.

The black rectangle illustrates the area of the interest as it appears in the ICON data.

ICON also supplies the quasi three-dimensional flow field truth set in which the simulated

gliders are advected. By quasi three-dimensional we mean horizontal currents are available

at various depth levels. The depth-averaged ICON model currents are shown in Figure

5.4.2. In the region where the simulations were conducted the flow is predominately flowing

to the south and southwest.
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Figure 5.4.2: ICON Depth Averaged Current Vector Field, Monterey Bay, Au-
gust. 17, 2000 16:00 local time. The average current magnitude is 7 cm/s within the
black rectangle.

5.4.2 Setup and Results

For our simulations we propose the following scenario: a perceived frontal boundary in the

model data (see box in Figure 5.4.1b) motivates us to drive a fleet of gliders through this

region while performing a projected gradient descent to steer the formation towards the
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colder regions. We assume we have a fleet of three gliders and choose an equilateral triangle

formation with an inter-vehicle spacing of 3 km.

While underwater the gliders are simulated to move at a horizontal speed of 40 cm/s

and a nominal vertical speed of 20 cm/s relative to water, consistent with the assumptions

made in Section 5.1. The horizontal velocity of each glider is added to the “truth” local

horizontal flow velocity, which is provided by the ICON data set, to compute the total

absolute horizontal velocity of the glider. Vertical velocity from ICON model predictions

were unavailable and not used in this study. Instead a zero-mean white noise is added to

the nominal vertical velocity of the glider to account for the vertical component of the true

local flow field.

The gliders are simulated to dive until 25 m above the sea floor, up to a maximum

depth of 200 m. Then they glide upward until they are 5 m from the surface before going

downward again, unless they are surfacing in which case they rise all the way to the surface.

The gliders are commanded to start surfacing 2 hours after they dive into the water. Since

the glider could be at any depth between 0 and 200 m when it starts surfacing, the total

time of implementation of the ‘glider in water’ module will in general be a little over 2 hours

during every cycle.

The glider is set to drift with the flow when it is on the surface. The amount of time

spent on the surface is the sum of a static term (estimated from historical data for time

required for GPS fixes and Iridium connections) and a random component. The random

component is simple white noise to model uncertainties associated with dropped Iridium

connections or lost GPS links due to wash over the glider’s antenna.

During the mission, surface temperature measurements for each glider are stored along

with their corresponding location. Whenever new waypoints are generated with VBAP, the
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last reported surface temperature measurements and corresponding locations are used to

compute a least-squares gradient estimate. The gradient estimate is then used to redirect

the group as described in Section 4.2.2.

The virtual body is composed of a single virtual leader. We suppose that it has been

decided to direct the group to head predominately south. So we choose the destination, rw,

to be approximately 70 km due south from the virtual leader’s initial location (see Section

4.4.1). We design our artificial potentials such that the desired triangle formation about

the virtual leader will be oriented such that a triangle edge spans from east to west with

the inside-directed normal to that edge pointing northward.

The formation error function used in the control law for the virtual body speed ṡ given

in (3.2.1), is

Φ(χ, s) =
3∑

i=1



V c
h (hi1) + V o

h (θi1) +
1

2

3∑

j 6=i

VI(xij)



 (5.4.1)

where VI(xij) is given in (2.2.1) with αI = 10 /km/hr, d0 = 3 km, and d1 = 100 km. Vh(hi1)

is analogous to that found in (2.2.1) where xij , αI , d0, and d1 are replaced by hil, α
c
h = 2

/km/hr, h0 =
√

3 km, and h1 = 100 km, respectively. V o
h is given in (2.3.2) with αo

h = 10

km/hr, r = 3 and φd = π/2. ΦU was set at 0.2. The virtual leader heading direction,
cdr
ds , is

computed using (4.4.2) with the weight w⊥ = 0.5. An approximately 12 hour experiment

was simulated.

Initially we assume the fleet is synchronized and compute a VBAP plan based on each

glider’s initial location. Initial local current estimates are taken to be the depth-averaged

current at each glider’s location. To induce asynchronous surfacings, we artificially stagger

the next surfacing time of each glider by 40 minutes (recall each glider surfaces approxi-

mately every 2 hours). Thus, the first glider (glider 1) will begin surfacing after 40 minutes,

the second (glider 2) after 80 minutes, and the third after 120 minutes (glider 3). We
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simulate both asynchronous implementations presented in Section 5.2.5. In both cases, the

virtual leader is relocated to the glider formation center of mass at the start of each VBAP

implementation.

(a) (b)

Figure 5.4.3: Coordinated Glider Simulations. Circle indicates initial formation center of
mass (virtual leader position). Tracklines denote glider trajectories, glider 1, 2, and 3 are shaded
white, dark gray, and light gray, respectively. Triangles illustrate glider relative locations at two
hour intervals. Grayscale contour shows “truth” sea surface temperature in degrees Celsius. Arrows
are (the negative) instantaneous least square gradient estimate. (a) Strategy A: Single plan per
formation cycle. (b) Strategy B: Multiple plans per formation cycle.

Multiple simulations were performed to tune and converge upon the parameters in

(5.4.1). We now present the trajectories and brief discussion of two simulations. Figure

5.4.3a presents the glider trajectories when implementing a single plan per formation cycle

(strategy A of Section 5.2.5). As shown, the fleet maintains the desired formation and

detects the cold water tongue in the truth field (aircraft SST data), redirecting the fleet

towards it while heading towards the destination. Figure 5.4.3b presents the glider tra-

jectories when planning multiple times per formation cycle (strategy B of Section 5.2.5).
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The glider fleet detects the cold water tongue but does not maintain formation as well

and exhibits noticeable stretching. Examining the individual glider trajectories indicates

that back-tracking for glider 3 is the cause. This illustrates a shortcoming in this plan-

ning method. Distortion is likely to result from inconsistent trajectories since mission plans

cannot be sent to gliders currently underway. Thus the trajectory for a particular glider

is generated on the incorrect assumption that gliders 1 and 2 will follow corresponding

trajectories that are generated simultaneously.

We also illustrate with arrows in Figure 5.4.3, the negative of the least squares estimated

temperature gradients. These gradients are estimated using the temperature measurements

taken by the gliders from the truth data set. Qualitatively, it can be seen that these vectors

do point in the direction of the coldest water. This demonstrates the formation’s ability

(at 3 km inter-vehicle spacing) to serve as a sensor array and correctly identify the path to

the coldest part of this feature. The temperature profiles recorded by each glider is shown

in Figure 5.4.4.
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Figure 5.4.4: Simulated Glider SST Profiles. SST measurements recorded by each glider
implementing the (a) single plan per formation cycle strategy and (b) multiple plans per formation
cycle strategy. Measurements from gliders 1, 2, and 3 are shown in light gray, dark gray, and black,
respectively.

In Figure 5.4.5 we qualitatively compare the performance of each planning method in
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Figure 5.4.5: Inter-Vehicle Spacing Error. Black lines correspond to single plan per forma-
tion cycle and gray lines correspond to multiple plans per formation cycle. Three of the plots show
rij spacing error, i, j ∈ {1, 2, 3}, i 6= j. The solid circles or squares refer to the surfacing of the ith
vehicle and the hollow circles or squares refer to the surfacing of the jth vehicle. The bottom right
shows the average spacing error, ravg, as a function of time.

terms of the formation’s ability to achieve and maintain the desired inter-vehicle spacing

of 3 km. In the top left pane, the inter-vehicle distance error between glider 1 and glider

2 is plotted as a function of time. In the top right pane we plot the inter-vehicle distances

between glider 1 and glider 3. In the lower left pane inter-vehicle distances are plotted for

glider 2 and 3. The error is computed as 3 km − rij where rij is the distance between vehicle

i and j in km. Lastly, in the bottom right pane we plot the average inter-vehicle distance

error which is given by 3 km − ravg where ravg = (|r12|+ |r13|+ |r23|)/3. Comparing the two

planning methods using these qualitative plots we see that the inter-vehicle spacing seems
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well correlated between both strategies for the first half of the experiment but becomes less

correlated during the latter half after the back tracking of glider 3. Comparing the average

inter-vehicle distance error we find that the two planning strategies performed similarly

with respect to this metric.

A serious issue when generating multiple plans per formation cycle arises when the

gliders surface so soon after each other that there is not enough time to have waypoint plans

immediately available. The simulation presented here is structured so that the asynchronous

surfacings are mostly uniform at 40 minute intervals. When surfacings occur at small

intervals plans may not be ready on time, in which case the waypoint plans generated from

the previous VBAP simulation are utilized. During AOSN II we utilized the single plan

per formation cycle strategy. We did so because it appeared robust through simulation, it

required less frequent VBAP planning (see Figure 5.2.2), and had a simpler implementation

when the degree of glider asynchronicty was unknown.
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Chapter 6

Sea Trials: AOSN II, Monterey

Bay Summer 2003

In this chapter we present an account of sea trials performed with a fleet of autonomous

underwater gliders in Monterey Bay during August 2003. These trials were performed as

part of the Autonomous Ocean Sampling Network (AOSN) II project [2] and demonstrate

our ability to coordinate autonomous underwater vehicles.

During these sea-trials, performed on August 6, 2003 and August 16, 2003, we coordi-

nated a group of Slocum underwater gliders into triangle formations and explored various

orientation schemes and inter-vehicle spacing sequences as the formation made its way

through the bay. In both cases, we used our VBAP methodology modified for implemen-

tation on Slocum underwater gliders as described in Chapter 5. We remark that during

AOSN II all virtual body parameters such as heading direction and formation size were

pre-planned and not directed by vehicle sensor measurements. Due to logistical constraints,

these trials focused strictly on demonstrating coordination. However, we do present gradi-

ent estimates that were computed offline that in principle could have been used to direct
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the motion of the fleet.

6.1 Brief Review of Operations during AOSN II

In this section we briefly review the operational scenario described in detail in Chapter 5.

AOSN II was devised to build a coupled observation/prediction system where ocean

models would assimilate observations made by AUVs. In August 2003 the first experimental

component of AOSN II was performed in Monterey Bay, CA with the deployment of 12

Webb Slocum autonomous underwater gliders and 5 Spray underwater gliders designed and

operated by the Scripps Institution of Oceanography.

During AOSN II fixed glider trajectories were chosen to provide sufficient sampling (or

coverage) of the pertinent model domains1 . The Slocum gliders were tasked with sampling

inside and near Monterey Bay while the Spray gliders were tasked with sampling outside

the bay and across model boundaries, see Figure 6.1.1. For the majority of the experiment

the Slocum gliders were placed on closed loops or race tracks. These are clearly visible in

the left pane of Figure 6.1.1. However, on two occasions we were given the opportunity

to take control of a three glider subfleet to perform demonstrations of coordinated glider

operations. The Spray gliders remained on fixed, cross-shore trajectories throughout the

experiment.

Two coordinated control demonstrations with the three Slocum glider subfleets were

performed, on August 6 and August 16 of 2003. The former involved directing the vehicle

group towards a fixed destination. For the first half of the experiment the group was

permitted to rotate freely about a single virtual leader which served as the virtual body.

1Alternatively, in the Adaptive Sampling and Prediction (ASAP) program the process will become more
adaptable by recomputing vehicle trajectories that optimize sampling performance over large regions (20 km
×40 km) although not quite as large as the model domains used during AOSN II [52].
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Figure 6.1.1: Autonomous Glider Tracks in Monterey Bay During AOSN II. The
left pane shows Slocum glider tracks whereas as the right pane shows Spray glider tracks.
Each point locates a glider at the center of its dive. [52]

During the latter half, we activated orientation control which acted to orient the triangle

formation about the virtual leader at a desired angle. During the August 16 experiment we

directed the vehicle group to follow a piecewise linear path consisting of multiple straight

line segments. We also demonstrated group contraction as the formation was made to

reduce its size by half. Throughout the entire course of this experiment we implemented

orientation control about the single virtual leader (which again served as the virtual body).

During both sea trials new mission plans consisting of waypoint lists were uploaded every

two hours when the gliders surfaced. A glider mission consisted of each glider tracking

its waypoint list while diving to a maximum depth of 100 meters. After two hours the

glider surfaced and established contact with the Glider Data System (GDS) at Woods Hole

Oceanographic Institution (described in Section 5.1). Sensor data, the glider’s GPS position,

and the average estimated currents during the last mission were transmitted to the GDS

and the next mission (having been pre-computed) was downloaded onto the glider. Mission

generation was computed in the “war room” located at the Monterey Bay Aquarium and

Research Institute (MBARI) in Moss Landing, CA. Data from the GDS was retrieved via
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the internet using a portable windows-based laptop and Mathworks Matlab was utilized to

implement the VBAP methodology for underwater gliders, as discussed in Chapter 5. When

planning each mission the virtual leader was initialized at the predicted center of mass of

the three glider formation at the lead glider’s next surfacing (see Section 5.2). After VBAP

generated continuous paths for each glider, we implemented the waypoint selection routine

described in Section 5.2.1. Mission plans (waypoint lists) were generated after all vehicles

had surfaced and uploaded to GDS to be ready for download onto the corresponding glider

at its next surfacing.

6.2 Discussion of Metrics

To quantify performance we compute and present graphically the following metrics:

• Virtual Leader Tracking Error.

Let Λ denote the set of all points which comprise the desired virtual body path, i.e. the

straight line or piecewise linear path, and r(t) denote the VBAP planned (continuous)

trajectory for the body center. r(t) is the result of controlling the virtual body given

the vehicle initial conditions, external currents, and desired virtual body path. Then

we define the virtual leader tracking error, ǫv(t), as

ǫv(t) = min
λ∈Λ

‖r(t) − λ‖. (6.2.1)

which is a measure (as a function of time) of how far the virtual leader strays from

the desired path.

• Formation Center of Mass Tracking Error.

Since the virtual body consisted of only one virtual leader, its trajectory, r(t), was

the trajectory of the desired center of mass (centroid) of the formation. Each mission
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defined a two-hour segment of the demonstration and the start of each mission was

defined by the time at which the lead glider dives after having surfaced. Thus, for a

demonstration lasting 2K hours, VBAP generated K missions.

The glider dead reckoning and current estimate histories were post-processed to esti-

mate each glider’s trajectory during the course of each demonstration. Denote the ith

glider’s position at time t in the horizontal plane as gi(t). (Note: gi(t) is distinguished

from xi(t) which refers to the position of the ith glider at time t as planned by VBAP).

The instantaneous formation center of mass is defined as

ḡ(t) =
1

N

N∑

i=1

gi(t)

where N is the number of vehicles in the formation. The formation centroid error at

time t is defined as

ǫ(t) = ‖ḡ(t) − r(t)‖

i.e. it is the magnitude of the error between the formation centroid and the virtual

leader position generated by VBAP at time t. We note that this error defines a rather

conservative performance metric because it requires, for good performance, that the

formation tracks the virtual body both in space and in time.

In case centroid tracking in space without regard to time is of central importance,

then a more suitable (and less conservative) metric can be defined by

ε′(t) = min
λ∈Γ

‖ḡ(t) − λ‖

where Γ = {r(t) | ∀ t} is the set of all points along the path of the virtual leader.

• Inter-vehicle Distance Error.
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The inter-vehicle distance between gliders is given by

dij(t) = ‖gi(t) − gj(t)‖

where i, j = 1, . . . , N, i 6= j.

• Formation Orientation Error.

During portions of the Monterey Bay sea trials, we let the orientation of the formation

about the virtual leader remain unconstrained. In principle, this means that the

formation can take any orientation around the virtual leader as it moves with the

virtual leader. In the case of significant currents and limited control authority, this

approach allows us to dedicate all the control authority to maintaining the desired

shape and size of the formation. Sometimes, however, it is of interest to devote some

control authority to control over the orientation. For instance, to maximize trackline

separation for improved sampling, we ran portions of the sea trials with one edge of the

formation triangle perpendicular to the path directed from the initial virtual leader

location to the desired destination. In order to effect this, we defined the desired

orientation of the formation by constraining the direction of the relative position

vectors (xi − r) (the vector from virtual leader to ith vehicle). Potential functions

Vr as described in Section 2.3 were used to impose this constraint. The orientation

error for a given glider is defined as the absolute value of the difference between the

desired angle of the ideal glider position relative to the virtual leader position (θik in

Figure 2.3.1) and the measured angle of the measured glider position relative to the

measured formation centroid.

All results pertaining to these metrics are subject to additional error in the estimate of

each glider’s trajectory from the dead reckoning and estimates of the current histories. All
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quantitative discussion of errors herein are relative to the estimated glider trajectories only.

6.3 August 6, 2003: Glider Formation at Upwelling Event

On August 6, 2003 three Slocum gliders were coordinated into a triangle formation and

directed towards the northwest part of Monterey Bay in response to the anticipated onset

of an upwelling event (see Figure 6.3.1). The WHOI gliders, numbered WE07, WE12, and

WE13, were initially holding station at the mouth of the bay and the overall objective

was to transit the gliders to the northwest in an equilateral triangle formation with an

inter-vehicle spacing of 3 km. The entire demonstration spanned sixteen hours, i.e. eight

two-hour missions. Each glider surfaced every two hours for a GPS fix and an updated

mission plan. During the first four missions the triangle formation was free to rotate about

the virtual leader. The virtual leader (body) was directed towards a single, fixed waypoint

as indicated by the solid diamond in Figure 6.3.1. The procedure for addressing external

currents as discussed in Section 5.2.2 was implemented. During the last four missions, the

orientation of the group about the virtual leader was controlled so that an edge of the

triangle formation would be perpendicular to the line connecting the initial virtual leader

location at the start of each mission and the virtual leader destination waypoint.

In the left pane of Figure 6.3.2 we present the glider trajectories and instantaneous glider

formations. Starting from their initial distribution, the gliders expanded to the desired

configuration while the formation centroid tracked the desired reference trajectory, i.e. the

virtual leader. As shown, the group did maintain formation while transiting. At 02:36 UTC

orientation control was activated and by 06:55 the group had noticeably reoriented itself.

As a result of generating waypoint plans that respect a glider with constant speed, some

degree of backtracking is seen to occur during the initial creation of the desired formation
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Figure 6.3.1: Satellite Sea Surface Temperature (degrees Celsius) in Monterey
Bay for August 6, 2003 19:02 UTC. Cold water region near the northwest entrance
of the bay indicates possible onset of upwelling event. The three solid dots indicate the
starting locations of the Slocum gliders at approximately 18:00 UTC. The solid diamond
is the desired destination of the glider group. AVHRR HRPT data provided courtesy of
NOAA NWS Monterey Office and NOAA NESDIS CoastWatch program.

and during the missions when orientation control was active. In the right pane of Figure

6.3.2 we present the trajectory of the virtual leader for all eight missions. Alternating black

and gray color is used to differentiate between subsequent missions. Note that no control

was utilized to direct the virtual leader to stay close to the line from the initial virtual

leader location at the start of mission 1 to the destination (dash-dot line in Figure 6.3.2).

The virtual leader is only trying to steer directly towards the destination. However, it is

clear from Figure 6.3.2 that the virtual leader in general did not stray far from this line as

it progressed towards the desired destination.

In Figure 6.3.3 we present the glider trajectories and the corresponding VBAP planned

trajectories for each mission. As shown, the demonstration got off to a rocky start with

each vehicle surfacing early during the first mission. At this surfacing the gliders did not

receive updated plans and continued with the first mission surfacing again at approximately

2 hours from the start of the mission. The time spent on the surface (approximately 17

141



−122.4 −122.35 −122.3 −122.25 −122.2
36.82

36.84

36.86

36.88

36.9

36.92

36.94

36.96

36.98

Longitude

L
a

tit
u

d
e

18:00
20:10

22:19

00:26

02:37

04:46

06:56

09:03

11:10
WE07
WE12
WE13

−122.4 −122.35 −122.3 −122.25 −122.2
36.82

36.84

36.86

36.88

36.9

36.92

36.94

36.96

36.98

37

Longitude

La
tit

ud
e

18:00

20:10
22:19

00:26

02:37
04:46

06:56

09:03

11:10

Figure 6.3.2: Glider Trajectories, Formation Snapshots, and Virtual Body Tra-
jectory for August 6 Demonstration. Left pane: solid lines are glider trajectories.
Black dashed lines illustrate instantaneous formations at 2-hour intervals. Dotted line is
formation centroid. Black dash-dot line is virtual leader’s trajectory (desired trajectory of
formation centroid). Right pane: Virtual leader trajectory is plotted in alternating black
and gray. Time is UTC from midnight August 5, 2003.

minutes) and not travelling resulted in poor planning and execution of the second mission.

However, this bug did not materialize in any subsequent mission and as indicated in Figure

6.3.3 planning performance improved thereafter.

We now look at our coordination metrics. In Figure 6.3.4 we plot the virtual leader

tracking error for each mission as defined in (6.2.1). Throughout the course of the demon-

stration the virtual leader tracking error did not exceed 60 meters. The integrated time

average of the virtual leader tracking error over all eight missions is 22.0 meters with a

standard deviation of 12.5 meters. The increasing error during the first mission was due to

the virtual leader slowing in response to large initial formation error while being advected

in an averaged external current whose speed exceeded that of the virtual leader.

The formation centroid error ǫ is plotted over all eight missions as a function of time

t in Figure 6.3.5. The mean value of ǫ averaged over all eight missions is 623 meters with

a standard deviation of 500 meters. The average error over the last four missions is 255
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Figure 6.3.3: VBAP and Glider Trajectories for August 6 Demonstration. Solid lines are
glider trajectories, dashed lines are VBAP plans. Dark gray, light gray, and black identify gliders
WE07, WE12, and WE13, respectively. Solid dots indicate waypoints. Outlined circles indicate
glider surfacing location at the beginning of the mission.
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Figure 6.3.4: Virtual Leader Tracking Error for August 6 Demonstration. Dotted
vertical lines indicate the beginning of each mission. Heavier dashed vertical line indicates
when orientation control was activated (time = 8.6 hours).

meters with a standard deviation of 67 meters. The discontinuity at each mission replan

is a result of re-initializing the virtual leader at the expected centroid of the group. The

error across the discontinuity gives insight into how well we predicted the initial location

of the group centroid at the start of each mission. During mission 2 we performed worse

at predicting initial centroid location and maintaining the distance between the actual and

desired centroid location. It is likely that the fact that each glider surfaced twice during

the previous mission contributed to this error. Furthermore, this error also corresponds to

the largest error between the estimates of current fed-forward into the glider simulator and

VBAP (see Figure 5.3.1), and the estimated current measured by the gliders at the end of

that mission.

We performed best with respect to this metric during the last four missions. It is possible

that the difference in performance is related to our observations that during the latter part

of the demonstration each glider travelled fastest relative to ground due to more favorable

currents in the glider’s direction of travel.
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Figure 6.3.5: Formation Centroid Error ǫ vs. Time for August 6 Demonstration.
Black dotted vertical lines indicate the beginning of each mission. Heavier black dashed
vertical line indicates when orientation control was activated (time = 8.6 hours).

Figure 6.3.6 portrays the magnitude of the error in inter-vehicle distance dij(t) versus

time for the three glider pairings WE07-WE12, WE07-WE13, and WE12-WE13. The mean

error of all three pairings is 423 meters, roughly 14% of the desired spacing of 3km, with a

standard deviation of 159 meters. The mean inter-vehicle spacing error was largest during

missions 2 and 5.

Formation orientation error versus time is portrayed in Figure 6.3.7. The desired ori-

entation was chosen to have an edge of the formation perpendicular to the line from the

initial virtual leader location at the start of each mission to the final destination, with two

vehicles in the front, side-by-side, and one vehicle trailing. The control is designed so that

any of the vehicles can play any of the roles, i.e. we do not assign a particular vehicle to a

particular place in the oriented triangle. As shown in Figure 6.3.2, WE07 was the trailing

glider and WE12 and WE13 the leading gliders in the triangle formation.

For comparison purposes, we plot the error during the first four missions, when the

orientation of the group was not controlled, and during the last four missions when the
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Figure 6.3.6: Magnitude of Inter-Glider Distance Error vs. Time for August
6 Demonstration. Black dotted vertical lines indicate the beginning of each mission.
Heavier black dashed vertical line indicates when orientation control was activated (time =
8.6 hours).

orientation was controlled. During missions 3 and 4, the mean orientation error was 18.2

degrees with a standard deviation of 7.8 degrees. We do not concern ourselves with the

first two missions since the orientation is in a state of flux while the formation is expanding

or contracting to achieve the desired inter-vehicle and vehicle-to-virtual-leader spacings.

During missions 5-8 the mean orientation error was reduced to 8.1 degrees with a standard

deviation of 8.1 degrees.

To examine the ability of the formation to serve as a sensor array and detect regions

of minimum (or maximum) temperature, we computed least-square gradient estimates of

temperature given each glider’s temperature measurements. The negative of these least

squares gradient estimates, −∇Test (to point to cold regions), are shown as vectors in

Figure 6.3.8. These gradients are computed using data measured along the 10 m isobath

for comparison with the available AVHRR SST data (satellite sea surface temperature data).

All glider temperature measurements and their respective locations which fall within a 0.5

m bin around the 10 m isobath are extracted from the post-processed glider data. Values
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Figure 6.3.7: Magnitude of Orientation Error vs Time for August 6 Demonstra-
tion. Black dotted vertical lines indicate the beginning of each mission. Heavier black
dashed vertical line indicates when orientation control was activated (time = 8.6 hours).

within each bin are then averaged. Since the gliders travel asynchronously through depth we

interpolated the data as a function of time. For simplicity, we chose to compute the gradients

at the times associated with the lead (WE12) glider’s binned measurements. Comparison

with Figure 6.3.1 illustrates that the formation points correctly to the cold water near the

coast at the northwest entrance of the bay.

6.4 August 16, 2003: Multi-Asset Demonstration

On August 16, 2003 a formation of three Slocum gliders was directed to travel in a region

simultaneously sampled by a ship dragging a towfish sensor array and the MBARI propeller-

driven AUV Dorado. The towfish and Dorado measurements provide an independent data

set by which to corroborate the glider formation’s sampling abilities [32].

The mobile observation platforms should be used so that their capabilities are compatible

with the spatial and temporal scales of interest. The towfish, Dorado and gliders can be

used to resolve different length and time scales. For example, the towfish is much faster
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Figure 6.3.8: Glider Formation and Negative of the Least-Square Gradient Es-
timates for August 6 Demonstration. Estimates are computed at the instantaneous
formation centroid. Each glider is colored to indicate its temperature measurement in de-
grees Celsius.

than the Dorado and the gliders, whereas the Dorado is up to three times faster than the

gliders. Some analysis of sampling capabilities based on a metric computed from estimation

error of the sampled process of interest is presented in [32, 52].

Figure 6.4.1 illustrates the towfish and Dorado trajectories, the initial positions of the

three gliders and the desired trackline of the glider formation centroid. The WHOI gliders

WE05, WE09, and WE10, were initially holding station near the center of the bay, and

the overall objective was to criss-cross a region to the southeast while in an equilateral

triangle formation. The entire trial spanned seven two-hour missions. The desired inter-

vehicle distance was set to 6 km for the first three missions and reduced to 3 km thereafter.

The orientation of the desired triangle formation was controlled in the same manner as

the August 6 demonstration except the control was active during the entire experiment.

The virtual leader followed the piece-wise linear path shown as the black dash-dot line in

Figure 6.4.1. The endpoints of each line segment comprising the path were the waypoints

the virtual body was to track. In addition, to keep the virtual body near the path we

148



−122.05 −121.95 −121.85

36.6

36.65

36.7

36.75

36.8

Longitude

La
tit

ud
e

Towfish
Dorado
Desired Track

Figure 6.4.1: August 16 Demonstration. Black line is Towfish trajectory. Gray line is
Dorado trajectory. Shaded dots denote initial locations of gliders WE05, WE09, and WE10,
respectively. Black dash-dot line is desired formation centroid trackline. The towfish begins
at 15:07 UTC and finishes two transects of the “W” pattern by 03:20 August 17 UTC.
The Dorado vehicle begins its single transect at 14:19 August 16 UTC and finishes at 17:58
UTC. The gliders start at 14:11 August 16 UTC and finish at 06:17 August 17 UTC. Special
thanks goes to Steve Haddock and John Ryan from MBARI for cooperating with us on this
sea-trial.

chose the desired virtual body steering direction as a weighted sum of a vector directing the

formation towards the virtual body waypoint and a vector normal to the desired the path.

This steering direction was then adjusted to account for the effects of the local advecting

current as described in Section 5.2.2. The methodology for deriving the desired virtual body

steering direction to counter this cross track error is presented in Appendix D.

Figures 6.4.2 and 6.4.3 present the instantaneous glider formations and glider trajectories

during the demonstration, respectively. Starting from their initial distribution, the gliders

expand to the desired spacing and orientation while the group centroid attempts to track the

desired reference trajectory. In Figure 6.4.4 we present the trajectory of the virtual leader

for all seven missions. Alternating black and gray color is used to differentiate between

subsequent missions. In these figures we see that the group centroid had a difficult time
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staying near the reference trajectory in space for the first few missions.
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Figure 6.4.2: Glider formation Snapshots for August 16 Demonstration. Black
dashed lines illustrate instantaneous formations. Dotted line is formation centroid. Dash-
dot line is desired virtual leader path, i.e. desired centroid trajectory. Time is UTC from
midnight August 15, 2003.

In Figure 6.4.5 we present VBAP planned trajectories and corresponding glider trajec-

tories for each mission.

In Figure 6.4.6 we plot the virtual leader tracking error for each mission as defined in

(6.2.1). In general the tracking error was greater throughout the August 16 demonstration

than what we observed during the August 6 demonstration. We attribute this to both the

increased complexity of the maneuver and the presence of much more aggressive external

currents in the local vicinity. For example, the large error during the second mission was

caused by a large discrepancy between the currents used in the VBAP mission plan and the

currents in the region when the plan was executed. Due to moderate southward currents

during mission 1 we observed that glider WE10 (colored dark gray in Figure 6.4.5) makes

little progress northward. This strong current was not detected during planning for this

mission but was detected when the gliders surfaced to accept the mission. Thus, VBAP
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Figure 6.4.3: Glider Trajectories for August 16 Demonstration. Solid lines are
glider trajectories. Dotted line is formation centroid. Dash-dot line is virtual leader path,
i.e. desired centroid trajectory. Time is UTC from midnight August 15, 2003.

correctly provided a plan for the second mission that took into account that the formation

would initially be displaced to the south. The large initial error during mission 2 as seen

in Figure 6.4.6 is an artifact of the poor plans issued during mission 1. In general the cross

track error control did aggressively reduce the cross track error; however, we do observe

that the virtual leader tended to overshoot and cross over the desired path while traversing

along it. Throughout the course of the entire demonstration the integrated time average

of the virtual leader tracking error over all seven missions is 158.7 meters with a standard

deviation of 340.1 meters. The average error and standard deviation with the second mission

removed is 42.0 meters and 39.8 meters, respectively.

The formation centroid error ǫ is plotted in Figure 6.4.7 as a function of time t. The

mean value of ǫ averaged over all 7 missions is 732 meters with a standard deviation of

426 meters. The worst performance was observed to occur during mission 5. As on August

6, this error corresponds to the largest error between the current estimates fed forward
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Figure 6.4.4: Virtual Leader Trajectories for August 16 Demonstration. Dash-dot
line is desired virtual leader path, i.e. desired centroid trajectory. Solid lines are planned
virtual leader trajectories colored alternating black and gray. Time is UTC from midnight
August 15, 2003.

into the glider simulator and VBAP, and those estimated by the gliders at the end of that

mission. In general, the methodology did not perform as well with respect to this metric as

it did on August 6. One difference of note is the significantly stronger currents experienced

on August 16, exceeding 30 cm/s on more than one occasion (c.f. the average glider speed

relative to the surrounding water is 40 cm/s).

Figure 6.4.8 presents the less conservative formation centroid error ε′ for this demon-

stration as a function of time t. When utilizing the formation centroid metric that the

methodology performs quite well for the latter part of the experiment which is consistent

with what is observed in Figures 6.4.2 and 6.4.3. In particular, the mean error overall is

471 meters with a standard deviation of 460 meters. For missions 4 through 7 the mean

error is 210 meters with a standard deviation of 118 meters.

The magnitude of the inter-vehicle distance error versus time for the three glider pairings

WE05-WE09, WE05-WE10, and WE09-WE10, are presented in Figure 6.4.9. For missions

2 and 3, the mean error over all three pairings was 394 meters, roughly 7% of the desired
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Figure 6.4.5: VBAP and Glider Trajectories for August 16 Demonstration. Solid lines are
glider trajectories, dashed lines are VBAP plans. Light gray, black, and dark gray identify gliders
WE05, WE09, and WE10, respectively. Solid dots indicate waypoints. Outlined circles indicate
glider surfacing location at the beginning of the mission.
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Figure 6.4.6: Virtual Leader Tracking Error for August 16 Demonstration. Black
dotted vertical lines indicate the beginning of each mission.
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Figure 6.4.7: Formation Centroid Error ǫ vs. Time for August 16 Demonstration.
Black dotted vertical lines indicate the beginning of each mission.

spacing of 6km, with a standard deviation of 270 meters. For missions 5 through 7, the mean

error over all three pairings was 651 meters, roughly 22% of the desired 3 km spacing, with

a standard deviation of 312 meters. During this period the average inter-vehicle distance

was less than the desired 3 km.

The orientation error is plotted in Figure 6.4.10. The discontinuities reflect changes in

the desired orientation of the reference formation which were allowed to occur only at the
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Figure 6.4.8: Alternate Formation Centroid Error ε′ vs. Time for August 16
Demonstration. Black dotted vertical lines indicate the beginning of each mission.
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Figure 6.4.9: Magnitude of Inter-Glider Distance Error vs. Time for August 16
Demonstration. Dotted vertical lines indicate the beginning of each mission. Heavier
dashed vertical line indicates when desired inter-vehicle spacing was decreased from 6km to
3km (time = 6.7 hours).

beginning of a mission. The mean orientation error for mission 2 was 31 degrees with a

standard deviation of 3 degrees. This corresponds to the period when the formation centroid

was having difficulty staying on the desired trackline. At mission 3 the first significant

change in desired reference formation orientation occurred. The mean orientation error

during missions 3 through 5 was 18 degrees with a standard deviation of 11 degrees. The
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large standard deviation reflects the relatively lower orientation error during missions 3 and

4 as compared with mission 5. The next significant desired reference formation orientation

change occurred at mission 6 and the final change occurred at mission 7. For mission 6 the

mean orientation error was 13 degrees with a standard deviation of 2 degrees. For mission

7 the mean orientation error was 9 degrees with standard deviation of 7 degrees. Both

the mean inter-vehicle distance error and the mean orientation error exhibit similar trends

during missions 5 and 6. Recall that the formation centroid error was also largest during

mission 5 which corresponds to the largest variation between fed-forward currents and those

actually experienced.
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Figure 6.4.10: Magnitude of Orientation Error vs Time for August 16 Demonstra-
tion. Dotted vertical lines indicate the beginning of each mission. Heavier dashed vertical
line indicates when desired orientation changed to reflect change in virtual body direction
(time = 4.4, 11.2, and 13.4 hours).

In conclusion we have illustrated that our methods were successful in coordinating sub-

fleets of gliders. The results show that groups of AUVs, namely gliders, can be controlled

as formations which move around as required, maintaining prescribed formation orienta-

tion and inter-vehicle spacing with decent accuracy despite periods of strong currents and

numerous operational constraints.
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Chapter 7

Summary and Future Work

The principle theme of this work was the development and application of a coordinated

control framework for multiple autonomous vehicles to perform adaptive sampling, both in

theory for simple point mass models and in practice, as was demonstrated with a group

of autonomous underwater vehicles at sea. Coordinating vehicle groups, an interesting

problem in its own right, was not the sole aim, but rather we also sought to illustrate how

these vehicle groups could be used to perform adaptive sampling. In this thesis, we have

provided some tools that use the individual measurements of each vehicle in a formation to

dictate the actions for the whole to achieve the sampling objective of autonomous gradient

climbing and front tracking.

7.1 Summary

In Chapter 2 we presented the framework for the Virtual Body and Artificial Potential

(VBAP) multi-vehicle control methodology. Formations were constructed using artificial

potentials, the gradient of which serve in each vehicle’s control laws. The design principles

for VBAP include the introduction of virtual leaders and virtual bodies along with artificial
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potentials which define their interactions with the vehicles. A major theme of Chapter 2 was

the utilization of virtual leaders and the virtual body for symmetry breaking. Additionally,

interactions between vehicles were introduced to regulate inter-vehicle distance to further

the possibilities of formation design and prevent vehicle-to-vehicle collisions. An advantage

of utilizing artificial potentials in control design is a readily available Lyapunov function for

proving local stability of a desired formation configuration.

At the end of Chapter 2 we provided a control law to stabilize a formation to a virtual

body that is strictly translating. In Chapter 3 we introduced a methodology1 that eases

the restrictions on virtual body maneuvers and permits any combination of translation,

rotation, expansions/contractions, and formation deformation. Each maneuver was defined

as a trajectory in the virtual body configuration space. Parametrization of these trajectories

by the time-like variable s provided a mechanism to introduce dynamics to the virtual

body. As illustrated, a key feature of designing formation maneuvers in this fashion is

the inherent decoupling of the formation stabilization and the formation maneuver/mission

control subproblems. By appropriate choice of vehicle control law (2.1.2) and control law

for ṡ (3.2.1), it was shown that formation error remains bounded regardless of virtual body

maneuver direction.

To summarize, the VBAP methodology has the following desirable features:

• No specific ordering or numbering of the vehicles is required.

• Vehicular control laws which rely only on local interactions are possible.

• Controller design for formation shape regulation is decoupled from the design of the

controller that regulates formation maneuvers.

1This research was conducted jointly with Petter Ögren [65, 64] who now resides at the Swedish Defense
Research Agency (FOI)
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• Stability of the formation is automatic from the construction.

With a framework for coordinating vehicles into dynamic sensor arrays in place, in

Chapter 4 we investigated how to use these arrays to achieve the scientific objective of

adaptive ocean sampling in the context of gradient climbing and front tracking in the

presence of both correlated and uncorrelated noise. A central ingredient to perform these

tasks are gradients (first-order and higher) and we put to task various techniques for their

estimation including finite differencing, least squares error minimization, averaging, and

Kalman filtering.

In Chapter 5 we transitioned the theoretical developments in Chapters 2 and 3 to a real-

world implementation on Slocum underwater gliders in Monterey Bay. The transition was

complicated by the fact that our solution had to be a direct plug-in fit to a pre-existing glider

command structure (see Section 5.3). Inherited constraints included speed constraints,

glider commands that were limited to waypoint tracking, and glider communication only

available at the surface and at two hour intervals. Furthermore, we had to cope with external

currents. To test our methodology prior to sea trials, we performed a series of simulations in

realistic settings implementing communication constraints, computational limitations, and

constrained vehicle kinematics and dynamics.

Chapter 6 presented the coordination demonstrations performed during the AOSN II

experiment at Monterey Bay in August 2003. We described two sea-trials, performed on

August 6, 2003 and August 16, 2003, which demonstrated our ability to coordinate a group

of three Slocum underwater gliders into triangle formations. The metrics we evaluated

relate to virtual body trajectory tracking error, inter-vehicle spacing error, orientation error,

and group center of mass tracking error. With limited reports of coordinated autonomous

underwater vehicles in the field, the Monterey Bay demonstrations are especially meaningful.
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7.2 Future Work

• Centralization and VBAP.

The VBAP control methodology and its implementation during AOSN II is central-

ized. That is, during AOSN II, the evaluation of the control law for both vehicles and

virtual body is performed at a single computational node. In general, centralization

requires a high degree of communication as each vehicle’s state information must be

broadcast to a single location for evaluation of the control law. At each time step,

each vehicle’s absolute position (and velocity for vehicles with second-order dynam-

ics) is used in the evaluation of the vehicle control law (2.1.2) and the virtual body

dynamics (3.2.1). This centralized implementation was well suited for AOSN II as

vehicles could not measure the state of other vehicles nor communicate with each

other, neither underwater nor on the surface. However, underwater modems are cur-

rently under testing and are expected to be available in the near future. Furthermore,

should one wish to implement VBAP on ground or aerial vehicles, vehicle-to-vehicle

communications would then likely be available. In these cases, where inter-vehicle

communication is possible, a distributed implementation of VBAP may be feasible.

• Adaptive sampling strategies for time dependent, non-homogeneous fields.

The problem domain in which we presented our adaptive sampling methodologies in

Chapter 4 is one in which the time scales of the phenomena of interest are much

longer than the spatial scales the formation traverses during the course of the exper-

iment. This assumption allowed us to consider a temporally static field and focus

exclusively on exploiting the spatially distributed measurements acquired by the for-

mation. Further, the assumption of homogeneous and isotropic noise facilitated the
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use of least squares estimation and Kalman filtering. However, these assumptions

may restrict application of our methods, for example, for phenomena where the time

scales are rather short when compared with the spatial scales and when the noise is

poorly modelled as homogeneous. Research on this topic is ongoing in preparation

for the Adaptive Sampling and Predication (ASAP) [1] project, a followup to AOSN

II in which a fleet of underwater gliders will be used to minimize an error metric

associated with sampling a 20 km by 40 km region with time scales at roughly 1.5

days. An investigation into an optimal coverage metric in the presence of noise with

non-homogenous statistics is discussed in [48].

• AOSN II operational constraints.

In Chapter 5 we discussed operational constraints relating to coordinating fleets of un-

derwater gliders during AOSN II. In this thesis, we have not quantitatively addressed

the effects of the intermittent feedback and surfacing asynchronicity during AOSN II.

Clearly studying the effects of these constraints could lead to improvements in coordi-

nation performance. In preparation for ASAP, research on the effects of intermittent

feedback on sampling arrays is already being conducted [50].

• Adaptation based on sensor measurements in the field. At AOSN II in 2003

we demonstrated that Slocum gliders could be coordinated and perform various ma-

neuvers at sea. However, technical constraints made it impossible to perform sensor-

based feedback for adaptive sampling during the sea-trials. The ASAP project will

demonstrate the use of sensory feedback for coordinated and autonomous adaptive

sampling in Monterey Bay in the summer of 2006. The trajectories of approximately

9 autonomous underwater gliders will be recomputed to optimize sampling perfor-
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mance. “Real life” demonstrations and experiments with coordinated autonomous

vehicles performing practical and meaningful tasks, such as those planned for ASAP,

are the next logical step for research to progress beyond the theoretical stage towards

real-world implementations.
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Appendix A

Proof of Theorem 3.2.1 [64]

The proof of Theorem 3.2.1 is presented in two parts: we first show that Φ bounded above

by ΦU and secondly we show that trajectories to converge to (χ∗(sf ), sf ). This presentation

is nearly identical to that found in [64].

Boundedness Given the Lyapunov function Φ(χ, s) for every fixed point of s with

Φ(χ∗, s) = 0. We directly have

Φ̇ =

(
∂Φ

∂χ

)T

χ̇ +
∂Φ

∂s
ṡ(χ, s)

If ∂Φ
∂s ≤ 0 we get Φ̇ ≤

(
∂Φ
∂χ

)T
χ̇ ≤ 0. If, on the other hand, ∂Φ

∂s > 0, we get

Φ̇ ≤
(

∂Φ

∂χ

)T

χ̇ +
∂Φ

∂s




−
(

∂Φ
∂χ
)T

χ̇

δ + |∂Φ
∂s |

(
δ + ΦU

δ + Φ(χ, s)

)
+ h(Φ(χ, s))



 .

Now, assume that Φ(χ(t0), s(t0)) ≥ ΦU . This gives

h(Φ(χ, s)) = 0,
δ + ΦU

δ + Φ(χ(t0), s(t0))
≤ 1,

∂Φ(χ(t0),s(t0))
∂s(

δ +
∣∣∣∂Φ(χ(t0),s(t0))

∂s

∣∣∣
) ≤ 1,

and ((∂Φ/∂χ)T χ̇)(t0) ≤ 0. Thus

Φ̇ ≤
(

∂Φ

∂χ

)T

χ̇ +




−
(

∂Φ
∂χ
)T

χ̇

1
1 + 0



 = 0.
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Therefore, if Φ(χ, s) ≥ ΦU then Φ̇(χ, s) ≤ 0 along trajectories in both cases. Thus

Φ(χ(t), s(t)) ≤ ΦU for all t ≥ t0 if Φ(χ(t0), s(t0)) ≤ ΦU .

Asymptotic Stability Let the extended state of the system be (χ, s) ∈ R
n, n = 6N + 1,

and

Ωc = {(χ, s) ∈ R
n : s ∈ [ss, sf ], Φ(χ, s) ≤ ΦU}

S = {(χ, s) ∈ Ωc : ṡ = 0}.

Since ṡ ≥ 0 and s ∈ [ss, sf ], the limit s0 = limt→∞ s(t) exists. By the boundedness

property of Φ above, Ωc is invariant and bounded. Thus, on Ωc the ω-limit set L exists,

is invariant and (χ, s) → L ⊂ Ωc. For (χL, sL) ∈ L we must have sL = s0 and therefore

L ⊂ S. We will now show that {(χeq(sf ), sf )} is the largest invariant set in S and therefore

(χ, s) → {(χeq(sf ), sf )} = L.

ṡ = 0 implies that Φ(χ, s) is a Lyapunov function with respect to χ (since s is fixed).

Thus, every trajectory candidate approaches χeq(s), where Φ(χeq(s), s) = 0. This implies

(by the choice of ṡ in (3.2.1) that ṡ > 0 (due to the h term, unless s = sf where the

trajectory is completed and we let s halt). Therefore, {(χeq(sf ), sf )} is the only invariant

set in S. Thus, (χ, s) → (χeq(sf ), sf ) and the system is asymptotically stable.
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Appendix B

Kalman Filter Derivation

The model for which we implement the Kalman filter is presented in (4.3.5) and reproduced

here,

ξk = Ãk−1ξk−1 + wk−1

yk = H̃kξk + ǫMk

with

E[wkw
T
j ] =




Qk 0

0 Uk


 δkj = Θkδkj

E[ǫMkǫM
T
j ] = Rkδkj

E[wkǫM
T
k ] = 0

At the kth instant define the pre-update state estimate as ξ−estk and the post-update

state estimate ξ+
estk. These are given by

ξ−estk = Ãkξ
+
estk−1

ξ+
estk = ξ−estk + Kk(yk − H̃kξ

−
estk)

where Kk is the filter gain to be determined.
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Now, define the pre-update error, e−
k , and post-update error, e+

k as

e−
k = ξk − ξ−estk

e+
k = ξk − ξ+

estk.

Expanding we find,

e−
k = Ãk−1ξk−1 + wk−1 − Ãk−1ξ

+
estk−1

= Ãk−1e
+
k−1 + wk−1,

e+
k = Ãk−1ξk−1 + wk−1 − Ãk−1ξ

+
estk−1 − Kk(yk − H̃kξ

−
estk)

= e−
k − Kk(H̃kξk + ǫMk − H̃kξ

−
estk)

= e−
k − Kk(H̃ke

−
k + ǫMk).

Thus, we have

e−
k = Ãk−1e

+
k−1 + wk−1,

e+
k = e−

k − Kk(H̃ke
−
k + ǫMk).

Now define the pre-update error covariance matrix as,

P−
k = E[e−

k e−T
k ] = E[(Ãk−1e

+
k−1 + wk−1)(e

+T
k−1Ã

T
k−1 + wT

k−1)]

= Ãk−1E[e+
k−1e

+T
k−1]Ã

T
k−1 + E[wk−1w

T
k−1]

= Ãk−1P
+
k−1Ã

T
k−1 + Θk−1
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P+
k = E[e+

k e+T
k ]

= E
[(

e−
k − Kk(H̃ke

−
k + ǫMk)

)(
e−T

k − (e−T
k H̃T

k + ǫM
T
k )KT

k

)]

= P−
k − P−

k H̃T
k KT

k − E[e−
k ǫM

T
k ]KT

k − KkH̃kP
−
k − KkE[ǫMke

−T
k ] + KkH̃kP

−
k H̃T

k KT
k

+KkH̃kE[e−
k ǫM

T
k ]KT

k + KkE[ǫMke
−T
k ]H̃T

k KT
k + KkE[ǫMkǫM

T
k ]KT

k

= P−
k − P−

k H̃T
k KT

k − KkH̃kP
−
k + KkH̃kP

−
k H̃T

k KT
k + KkRkK

T
k

= (I − KkH̃k)P
−
k (I − KkH̃k)

T + KkRkK
T
k

The optimal Kk minimizes Jk = Tr(P+
k ), where

Jk = Tr(P+
k ) = Tr(P−

k )−Tr(P−
k H̃T

k KT
k )−Tr(KkH̃kP

−
k )+Tr(KkH̃kP

−
k H̃T

k KT
k )+Tr(KkRkK

T
k ).

Noting that for symmetric B, ∂
∂ATr(ABAT ) = 2AB and ∂

∂ATr(ABT ) = B, taking ∂Jk

∂Kk

and equating to zero we find

∂Jk

∂Kk
= −P−

k H̃T
k + KkH̃kP

−
k H̃T

k + KkRk = 0

which yields the optimal gain Kk = K∗
k , where

K∗
k = P−

k H̃T
k (H̃kP

−
k H̃T

k + Rk)
−1.

Lastly, we can substitute the pre-update variables into the post-update expressions to

yield

ξestk = Ãk−1ξestk−1 + Kk(yk − H̃kÃk−1ξestk−1),

K∗
k = (Ãk−1Pk−1Ã

T
k−1 + Θk−1)H̃

T
k

(
H̃k(Ãk−1Pk−1Ã

T
k−1 + Θk−1)H̃

T
k + Rk

)−1
,

Pk = (1 − KkH̃k)(Ãk−1Pk−1Ã
T
k−1 + Θk−1)(I − KkH̃k)

T + KkRkK
T
k .

167



Appendix C

Glider Simulator Details

In this appendix we describe a glider simulator utilized in the AOSN II simulation experi-

ment presented in Section 5.4. A component of this simulator was also used in the Glider

Simulator component of the AOSN II VBAP implementation (see Figure 5.3.1). The goal of

this simulator was to incorporate the operational behaviors, constraints and communication

latencies of the gliders as much as possible. This simulator was designed with the assistance

of Pradeep Bhatta at Princeton University.

The glider simulator consists of two modules -

• Module 1 : Glider in Water - to simulate glider motion during a dive

• Module 2 : Glider at Surface - to simulate glider motion (drift) when it is at the

surface and to update the onboard flow estimate.

C.1 Glider in Water

While in water the gliders are simulated to move at a horizontal speed of 40 cm/s,

and a nominal vertical speed of 20 cm/s relative to water, consistent with the assumptions
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made in Section 5.2.1. When utilized as part of the Glider Simulator (see Figure 5.3.1) the

horizontal velocity is added to the estimated local horizontal flow velocity, which is provided

by each glider at its previous surfacing, to compute the total absolute horizontal velocity

of the glider. When this module is used for simulation only, e.g. see Section 5.4, the local

horizontal flow velocity is acquired from the ICON data set. Vertical current velocities are

not utilized. During the simulations of Section 5.4 a zero-mean white noise is added to the

vertical velocity to account for the vertical component of the true local flow field.

The gliders are commanded to start surfacing 2 hours after they dove into the water.

Since the glider could be at any depth between the minimum and maximum yo depth limits1

when it starts surfacing, the total time of implementation of the ‘glider in water’ module

will in general be a little over 2 hours during every cycle.

The glider has a constant estimate of the local flow velocity, which is updated every time

it surfaces and obtains a GPS fix. To calculate its absolute velocity the glider adds the local

flow velocity estimate to its relative velocity (i.e., relative to water). The relative velocity

is computed using the heading measurement, and the assumptions regarding the horizontal

and vertical speeds. For the simulations of Section 5.4, a white noise with a nonzero bias

is added to the actual heading to simulate the heading sensor. The bias itself is randomly

chosen at the start of every dive cycle.

While in the water the glider servos its heading so that it tries to move towards the next

waypoint. A three-dimensional, black-box model is used to simulate the experimentally ob-

served input-output relation between the tailfin position (input) and the heading (output).

The proportional servo controller is turned off whenever the measured heading is within a

fixed deadband (±0.02 rad) of the continuously changing desired heading.

10-100 m during AOSN II and 0-200m during the simulations of Section 5.4.
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A waypoint is considered reached if the horizontal distance from the waypoint is less

than 25 m.

C.2 Glider at Surface

This module was only used during the simulations discussed in Section 5.4 and not as part

of the Glider Simulator in the AOSN II VBAP implementation.

The glider is set to drift with the flow when it is on the surface. As described in Section

5.1, the glider does not get a GPS fix immediately after it surfaces. We assume that the

first GPS fix is obtained t1 = 2 minutes after surfacing.

We assume that the glider uses a nominal time of t2 = 17 minutes for exchanging data

collected during the previous dive. We add a zero mean white noise with an amplitude of 2

minutes to t2 to account for possible communication problems. During this time the glider

also gets several GPS fixes. We use the first and the last GPS fix, and the glider’s estimate

of the local flow to calculate the actual position of its surfacing.

The glider corrects its flow estimate by comparing the dead reckoned and actual positions

of surfacing. The corrected flow estimate is used in the computation of dead reckoned

positions during the next dive.

During the data exchange the glider also gets an updated set of waypoints. The glider

prepares to dive after the data exchange is completed.

We assume that the glider gets its last GPS fix at the end of data exchange and that it

is at the surface for another minute before diving. Thus the total nominal time the glider

spends at the surface is 2+17+1=20 minutes.
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Appendix D

Virtual Body Steering for Cross

Track Error Reduction

In this appendix we present the steering control used during the August 16, 2003 experiment

to direct the virtual body. The steering law is devised to direct the virtual body towards

the destination waypoints but also to steer the virtual body onto a particular path. In

Figure D.1 the dash-dotted line segments comprise the desired virtual body trajectory

which is denoted by Γ′. The solid dots at the end points of each segment are the destination

waypoints. In the example illustrated in the figure the virtual body is to be directed towards

the destination waypoint at b′ ∈ R
2 having already visited the destination waypoint at

a′ ∈ R
2. r ∈ R

2 is the instantaneous position vector of the virtual body center and

rw = b′ − r. The point p′ ∈ R
2 is defined to be the closest point to r on the line segment

with endpoints a′ and b′. That is,

p′ = arg min
p̃∈Γ′

‖e‖
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where e = r − p̃ and exte is the cross track error vector given by

exte = r − p′.

r

0

p

b

a
exte rw

Figure D.1: Cross Track Error Diagram. Axes and origin 0 denote inertial frame. Cross
track error vector is denoted exte.

Recall the virtual body heading direction is denoted dr
ds . During the August 16, 2003

experiment, prior to being adjusted for the external currents (see Section 5.2.2), the heading

was selected as

dr

ds
= (1 − wxte)rw − wxteexte,

where the weight wxte ∈ [0, 1]. wxte weights the influence of the cross track error vector,

exte, as compared to the destination waypoint vector, rw.

We derive the cross track error vector by noting that

p′ = a′ + m(b′ − a′)

where m ∈ [0, 1]. For m = 0, p′ = a and for m = 1, p′ = b′. We can exclude one of these

cases by comparing the magnitude of exte for these cases. First, let e′
xte = min{r−a′, r−b′}.

Next we check if p′ lies along the line between (but not including) a′ and b′ by noting that

172



in this case exte is perpendicular to b′ − a′, i.e.

〈exte, b
′ − a′〉 = 0.

By substitution we have,

〈r − p′, b′ − a′〉 = 〈r − a′ − m(b′ − a′), b′ − a′〉

= 〈r − a′, b′ − a′〉 − m‖b′ − a′‖2 = 0.

Therefore,

m =
〈r − a′, b′ − a′〉

‖b′ − a′‖2
.

If m 6∈ (0, 1) then it follows that

exte = e′
xte,

otherwise, p′ lies along Γ′ (excluding the endpoints) and the cross track error vector is given

by

exte = r − a′ − 〈r − a′, b′ − a′〉
‖b′ − a′‖2

(b′ − a′).
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