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Abstract— We define and analyze a multi-agent multi-armed
bandit problem in which decision-making agents can observe
the choices and rewards of their neighbors under a linear
observation cost. Neighbors are defined by a network graph
that encodes the inherent observation constraints of the system.
We define a cost associated with observations such that at
every instance an agent makes an observation it receives a
constant observation regret. We design a sampling algorithm
and an observation protocol for each agent to maximize its
own expected cumulative reward through minimizing expected
cumulative sampling regret and expected cumulative observa-
tion regret. For our proposed protocol, we prove that total
cumulative regret is logarithmically bounded. We verify the
accuracy of analytical bounds using numerical simulations.

I. INTRODUCTION

The effect of communication structure in cooperative
and competitive multi-agent systems has been extensively
studied in decision theory. Performance of a group of social
learners can be improved by the shared information among
individuals. In most real-world decision-making processes,
however, information sharing between agents can be costly.
As a result, directed communication, where each agent only
needs to observe its neighbors, has advantages over undi-
rected communication, where each agent sends and receives
information. Even when observation costs are high, agents
can keep costs to a minimum by choosing when and whom
to observe as a function of their own performance. Further, in
this setting costs associated with cooperation can be avoided.

Consider the problem of a group of fishermen foraging
in an uncertain environment that consists of a distribution
of spatial resource (fish). Because of the natural dynamics
of fish, environmental conditions, and other external factors,
the resource will be distributed stochastically. As a result, a
fisherman will receive different reward values (number of fish
harvested) at different times, even when sampling from the
same patch. Thus, in order to maximize cumulative reward
fishermen need to be able to exploit, i.e., forage in well sam-
pled patches known to provide better harvest, and to explore,
i.e, forage in poorly sampled patches, which is riskier but
may provide even better harvest than well sampled patches.
Benefiting from exploitation requires sufficient exploration
and identification of the patches that yield highest rewards.
More generally, optimal foraging performance comes from
balancing the trade-off between exploring and exploiting.
This is known as the explore-exploit dilemma.
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Multi-armed bandit (MAB) problems are a set of math-
ematical models that have been proposed to capture the
salient features of explore-exploit trade-offs [1], [2]. For the
standard MAB problem the reward distributions associated
with options are static. An agent estimates the expected
reward of each option using the rewards it receives through
sampling. The agent chooses among options by considering
a trade-off between estimated expected reward (exploiting)
and the uncertainty associated with the estimate (exploring).
Therefore, in the frequentist setting, the natural way of
estimating the expectation of the reward is to consider the
sample average [3], [4], [5]. The papers [6], [7] present how
to incorporate prior knowledge about reward expectation in
the estimation step by leveraging the theory of conditional
expectation in the Bayesian setting.

Multi-agent multi-armed bandit (MAMAB) problems con-
sider a group of individuals facing the same MAB problem
simultaneously. For an individual to maximize its own re-
ward, it will naturally seek to observe its neighbors and use
those observations to improve its performance. Individual
and group performance of agents will vary according to the
observation structure, i.e., who is observing whom, and the
type of information they observe. For example, if the agents
are cooperative and can broadcast signals, they could share
their estimates of rewards. When there are constraints, such
as communication costs and privacy concerns, they might
instead share only their instantaneous rewards and choices.
Even without the ability to broadcast, agents may still be
able to use sensors to observe the instantaneous rewards and
choices of neighbors. A centralized multi-agent setting is
considered in [8] and a decentralized setting is considered
in [9]. The papers [10], [11] use a running consensus
algorithm in which agents observe the reward estimates of
their neighbors. In [12], [13] an MAMAB problem is studied
in which agents observe instantaneous rewards and choices
in a leader-follower setting.

In all of these previous works, communication between
agents is assumed to be cost free. However, in real world
settings observing neighbors or exchanging information with
neighbors is costly. In the present paper, we propose a setting
in which agents can decide when and whom to observe in
order to receive maximum benefits from observations that
incur a cost. An underlying undirected network graph defines
neighbors and models the inherent observation constraints
present in the network. Agents receive a fixed observation
cost at every instance they observe a neighbor.

To account for the observation cost, we define cumulative
regret to be the total cumulative regret agents receive from
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sampling suboptimal options (sampling regret) and from
observing neighbors (observation regret). Deterministic [13]
and probabilistic [14] communication strategies proposed in
the MAB literature lead to a linear cumulative observation
regret. Our main contribution is the design of a new strategy
for which we prove a logarithmic total cumulative regret,
i.e., order-optimal performance. Our design leverages the
intuition that it is most useful to observe neighbors when
uncertainty associated with estimations of rewards is high.

In Section II we introduce the MAMAB problem and
we propose an efficient sampling rule and a communication
protocol for an agent to maximize its own total expected
cumulative reward. We analyze the performance of the
proposed sampling rule in Section III. In Section III-A we
analytically upper bound the expected cumulative regret and
in Section III-B we analytically upper bound the expected
observation regret. We present the upper bound for the total
expected cumulative regret in section III-C. In Section IV
we provide numerical simulation results and computationally
validate the analytical results. We conclude in Section V and
provide additional mathematical details in the Appendix.

II. MULTI-AGENT MULTI-ARMED BANDIT PROBLEM

In this section we present the mathematical formulation of
the MAMAB problem studied here. Let N be the number of
options (arms) and K the number of agents. Define Xi as the
random variable that denotes reward associated with option
i ∈ I = {1, 2, . . . , N}. In this paper we assume that all the
reward distributions are sub-Gaussian. Let σi be the variance
proxy of Xi, and µi the expected reward of option i. Let i∗

be the optimal option with highest expected reward µi∗ =
max{µ1, µ2, . . . , µN}. Each agent k ∈ {1, . . . ,K} chooses
one option at each time step t ∈ {1, 2, . . . , T} with the
goal of minimizing its cumulative regret. In MAB problems,
cumulative regret is typically defined as cumulative sampling
regret, which is equivalent to expected number of times
suboptimal options are selected. We let cumulative regret
be the sum of cumulative sampling regret and a cumulative
observation regret that accumulates a fixed cost for every
observation of a neighbor.

We assume that the expected reward values µi are un-
known and the variance proxy values σi are known to the
agents. To improve its own performance, each agent observes
its neighbors according to an observation protocol that we
define. We use a network graph to encode hard observation
constraints and this defines neighbors of agents. Let G(V, E)
be an undirected graph. V is a set of K nodes, such that
node k in V corresponds to agent k for k ∈ {1, . . . ,K}.
E is a set of edges between nodes in V . If there is an
edge e(k, j) ∈ E between node k and node j, then we say
that agent k and agent j are neighbors. Since the graph is
undirected, e(k, j) ∈ E ⇐⇒ e(j, k) ∈ E . Let dk be the
number of neighbors of agent k.

Let ϕtk ∈ I and Xt
k be random variables that denote the

option chosen by agent k and the reward received by agent
k at time t, respectively. Let I{ϕtk=i} be a random variable
that takes value 1 if option i is chosen by agent k at time

t and is 0 otherwise. Let It{k,j} be a random variable that
takes value 1 if agent k can observe agent j at time t and is
0 otherwise.

In order to maximize the cumulative reward in the long
run, agents need to both identify the best options through
exploring and sample the best options through exploiting.
Observing neighbors allows an agent to receive more in-
formation about options and hence obtain better estimates
about expected reward values of options. This leads to less
exploring and more exploiting, which reduces the regret an
agent receives due to sampling suboptimal options. However,
since taking observations is costly, an agent is required to
find a trade-off between the information gain and the cost
associated with observations. Let ck,j be the cost incurred
by agent k when it observes the instantaneous reward and
choice of agent j at time step t. In this paper we consider
the case in which ck,j = c,∀j, k.

Let the number of times that agent k samples option
i until time t be given by the random variable nki (t) =∑t
τ=1 I{ϕτk=i}. And let the total number of times that agent

k observes rewards from option i until time t be given by
the random variable Nk

i (t), where

Nk
i (t) =

t∑
τ=1

K∑
j=1

I{ϕτj=i}Iτ{k,j}.

We define a sampling rule based on the well known UCB
(Upper Confidence Bound) rule for a single agent [5]. The
UCB rule chooses the option at time t that maximizes an
objective function that is the sum of an exploit term, equal
to the estimate of the reward mean at time t, and an explore
term, equal to a measure of uncertainty in that estimate
at time t. Our sampling rule for agent k in the MAMAB
problem accounts for the observations of neighbors by using
them to improve its estimate and reduce its uncertainty. Let
the estimate by agent k of the expected reward from option
i at time t be given by the random variable µ̂ki (t), where

µ̂ki (t) =
Ski (t)

Nk
i (t)

,

and Ski (t) =
∑t
τ=1

∑K
j=1XiI{ϕτj=i}Iτ{k,j} is the total re-

ward observed by agent k from option i until time t.
Definition 1: The sampling rule {ϕtk}T1 for agent k at time

t ∈ {1, . . . , T} is defined as

I{ϕt+1
k =i} =

{
1 , Qki (t) = max{Qk1(t), · · · , QkN (t)}
0 , o.w.

(1)

with

Qki (t) = µ̂ki (t) + Cki (t) (2)

Cki (t) = σi

√
2(ξ + 1)

log t

Nk
i (t)

, (3)

where ξ > 1 is a tuning parameter that captures the trade-off
between exploring and exploiting.

To find a balance between information gain and observa-
tion cost we define an observation rule for agents so that they



choose to incur the cost of making observations of neighbors
only when observations are most needed, i.e., when their
own uncertainty is high. In the following observation rule,
an agent observes the instantaneous rewards and choices of
all of its neighbors only when it is exploring, since it explores
when uncertainty is high. If agent k chooses the option at
time t that corresponds to the maximum of its estimates of
reward means, µ̂k1(t), . . . , µ̂kN (t), then it is exploiting and it
does not observe its neighbors.

Definition 2: The observing rule It{k,j} for agent k at time
t ∈ {1, . . . , T} and ∀j is defined as

It+1
{k,j} =

{
0 , ϕtk = i, s.t. µ̂ki (t)=max{µ̂k1(t), · · · , µ̂kN (t)}
1 , o.w.

(4)
III. PERFORMANCE ANALYSIS

In this section we analyze the cumulative regret of agent k
due to sampling suboptimal options and observing neighbors
when employing the sampling rule of Definition 1 and
observation rule of Definition 2.

A. Sampling Regret Analysis

Let i be a suboptimal option. The total number of times
agent k samples from option i can be upper bounded as

nki (T ) =

T∑
t=1

I{ϕtk=i} ≤
T∑
t=1

I{Qki (t)≥Qk
i∗ (t)}.

Here I{Qki (t)>Qk
i∗ (t)} is an indicator function such that

I{Qki (t)>Qk
i∗ (t)} =

{
1 , Qki (t) ≥ Qki∗(t)
0 , o.w.

Thus we have

E
(
nki (T )

)
≤

T∑
t=1

P
(
Qki (t) ≥ Qki∗(t)

)
.

Let Rks (T ) be the cumulative sampling regret of agent
k from option i until time T . Recall that the cumulative
regret is defined as the loss incurred by sampling suboptimal
options. Define ∆i = µi∗ − µi. Then we have, from [15],

E
(
Rks (T )

)
=

N∑
i=1

∆iE
(
nki (T )

)
. (5)

To analyze the expected number of samples from suboptimal
options until time T , we first note that ∀i, k, t we have{
I{ϕt+1

k =i}

}
⊆
{
Qki (t) ≥ Qki∗(t)

}
⊆
{
µi∗ < µi + 2Cki (t)

}
∪
{
µ̂ki∗(t) ≤ µi∗ − Cki∗(t)

}
∪
{
µ̂ki (t) ≥ µi + Cki (t)

}
and so

E
(
nki (T )

)
≤

T∑
t=1

P
(
µi∗ < µi + 2Cki (t)

)
+

T∑
t=1

P
(
µ̂ki∗(t) ≤ µi∗ − Cki∗(t)

)
+

T∑
t=1

P
(
µ̂ki (t) ≥ µi + Cki (t)

)
.

(6)

Next we analyze concentration probability bounds on the
estimates of options.

Theorem 1: For any ζ > 1 and for σi > 0 there exists a
ϑ > 0 such that

P

(
µ̂ki (T )− µi >

√
ϑ

Nk
i (T )

)
≤ ν log(dk + 1)T

exp(2κϑ)

where

ν =
1

log ζ
, κ =

1

σ2
i

(
ζ

1
4 + ζ−

1
4

)2 .

The proof of Theorem 1 can be found in the paper [14].
Using symmetry we conclude that

P

(∣∣∣µ̂ki (T )− µi
∣∣∣ >√ ϑ

Nk
i (T )

)
≤ ν log(dk + 1)T

exp(2κϑ)
.

Lemma 1: For ϑ = 2σ2
i (ξ + 1) log T and ξ > 1 there

exists a ζ > 1 such that

P

(∣∣∣µ̂ki (T )− µi
∣∣∣ > σi

√
2(ξ + 1) log T

Nk
i (T )

)
≤ ν log(dk + 1)T

T ξ+1
.

The proof of Lemma 1 can be found in the paper [14].
We proceed to upper bound the summation of the

probabilities of the events
{
µi∗ < µi + 2Cki (t)

}
for t ∈

{1, 2, . . . , T} as follows. Using equation (3) we have that
the inequality µi∗ < µi + 2Cki (t) implies

∆2
i

4σ2
i

(
Nk
i (t)

)2 − 2(ξ + 1) log t
(
Nk
i (t)

)
< 0.

This inequality does not hold for Nk
i (t) > ηi(t), where

ηi(t) =
8σ2

i (ξ + 1)

∆2
i

log t.

Thus we have
T∑
t=1

P
(
Qki (t) ≥ Qki∗(t), Nk

i (t) > ηi(t)
)
≤ ηi(T ). (7)

From the probability bounds given in Lemma 1 and (7), the
total expected number of times agent k samples suboptimal
option i until time T is upper bounded as

E
(
nki (T )

)
≤ 1

log ζ
(1 + log(dk + 1)) +

8σ2
i (ξ + 1)

∆2
i

log T

+
1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
(8)

where ζ, ξ > 1.
From equation (5) the expected cumulative sampling regret

of agent k until time T is upper bounded as

E
(
Rks (T )

)
≤

N∑
i=1

∆i

log ζ
(1 + log(dk + 1))

+
8σ2

i (ξ + 1)

∆i
log T



+

N∑
i=1

∆i

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)

+

N∑
i=1

∆i

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

(9)

B. Observation Regret Analysis

Recall that c is the constant unit cost associated with
observations. Let Rko(T ) be the cumulative observation regret
of agent k at time step T. Then we have

Rko(T ) = c

T∑
t=1

K∑
j=1

It{k,j}.

This is equivalent to the number of observations taken by
agent k until time T. Expected cumulative observation regret
can be expressed as

E
(
Rko(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
. (10)

So expected cumulative observation regret can be upper
bounded by upper bounding the expected number of obser-
vations until time T :
T∑
t=1

K∑
j=1

E
(
I{k,j}

)
= dk

T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}

)
.

(11)

To analyze the expected number of observation, we use

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}

)
=

P
(
ϕtk = i∗, µ̂ki∗(t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}

)
+ P

(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}, i 6= i∗

)
.

We first upper bound the expected number of times agent
k observes its neighbors until time T when it decides to
explore after sampling a suboptimal option.

Lemma 2: For all suboptimal i 6= i∗ we have

T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}, i 6= i∗

)
≤ N − 1

log ζ
(1 + log(dk + 1)) +

N∑
i=1

i 6=i∗

8σ2
i (ξ + 1)

∆2
i

log T

+
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

The proof of Lemma 2 is given in the Appendix.
Next we analyze the expected number of times agent k

observes its neighbors until time T when it decides to explore
after sampling the optimal option.

Note that ∀i, k, t we have

{ϕtk = i∗, µ̂i∗ 6= max{µ̂ki (t), · · · , µ̂kN (t)}} ⊆
{µ̂ki∗(t) ≤ µi∗ − Cki∗(t)}
∪ {µ̂ki∗(t) ≥ µi∗ − Cki∗(t),∃i, s.t.(µ̂ki (t) ≥ µi∗ − Cki∗(t)}.

Thus we have
T∑
i=1

P
(
ϕtk = i∗, µ̂i∗ 6= max{µ̂ki (t), · · · , µ̂kN (t)}

)
≤

T∑
i=1

P
(
µ̂ki∗(t) ≤ µi∗ − Cki∗(t)

)
+

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t),∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)

)
.

From Lemma 1 we have
T∑
i=1

P
(
µ̂ki∗(t) ≤ µi∗ − Cki∗(t)

)
≤ 1

log ζ
(1 + log(dk + 1))

+
1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
. (12)

Theorem 2: For all suboptimal options i 6= i∗ we have

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t),∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)

)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T +
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
N − 1

log ζ
(1 + log(dk + 1))

+
N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

The proof of Theorem 2 is given in the Appendix.
Now we proceed to state the main result of this paper,

which is that the total expected cumulative observation regret
until time T for agent k employing the sampling rule given
by Definition 1 and the observation rule given by Definition 2
is upper bounded logarithmically in T .

Theorem 3: Expected cumulative observation regret until
time T for agent k can be upper bounded as

E
(
Rko(T )

)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T

+
cdk(2N − 1)

log ζ
(1 + log(dk + 1))

+
cdk(2N − 1)

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
cdk(2N − 1)

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

Theorem 3 follows from equations (10)-(12), Lemma 2
and Theorem 2.



Remark 1: Note that for deterministic communication
strategies [13], [10] the expected cumulative observation
regret until time T for agent k is linear in T :

E
(
Rko(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
= cdkT.

For the probabilistic observation strategy of [14] the expected
cumulative observation regret until time T for agent k is
linear in T :

E
(
Rko(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
= cdkpkT,

where pk is the observation probability of agent k. Thus,
our proposed sampling rule and observation rule outperform
these strategies when there are cumulative observation costs.

C. Total expected cumulative regret

Total expected cumulative regret E
(
Rk(T )

)
is defined as

the summation of expected cumulative sampling regret and
expected cumulative observation regret until time T :

E
(
Rk(T )

)
=

N∑
i=1

E
(
Rki (T )

)
+ E

(
Rko(T )

)
.

Let
∑N
i=1 ∆i = ∆̃. Total expected cumulative regret until

time T of agent k is upper bounded as

E
(
Rks (T )

)
≤

N∑
i=1

i6=i∗

8σ2
i (ξ + 1)

∆2
i

log T

∆̃ + cdk(2N − 1)

log ζ
(1 + log(dk + 1))

+
∆̃ + cdk(2N − 1)

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

∆̃ + cdk(2N − 1)

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
. (13)

IV. SIMULATION RESULTS

In this section we present numerical simulation results for
a network of 6 agents with underlying observation structure
defined by the star graph: the center agent observes all other
agents and all other agents only observe the center agent.
Agents other than the center agent are interchangeable and
their average regret and individual regret are the same. We
present numerical simulations to evaluate the performance of
the sampling rule and observation rule given by Definitions 1
and 2.

The 6 agents play the same MAB problem with 10 options.
In all simulations the reward distributions are Gaussian with
variance σi = 5, i = 1, . . . , 10, and mean values:

i 1 2 3 4 5 6 7 8 9 10
µi 40 50 50 60 70 70 80 90 92 95

.

The communication cost c = 1. We set the sampling rule
parameter ξ = 1.01. We provide results for 1000 time steps
with 1000 Monte Carlo simulations.
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Fig. 1. Dashed and dotted lines show expected cumulative sampling regret
of the agents using the sampling rule and observation rule of Definitions 1
and 2 with underlying star observation structure. The solid line shows the
average performance of agents when they are not observing their neighbors.

Figure 1 shows simulation results for the expected cu-
mulative sampling regret of a group of 6 agents using the
proposed sampling and observation rules. The blue dashed
line shows regret of the center agent. The green dash-dot
line shows the average regret of the agents not in the center.
The red dotted line shows the average expected cumulative
sampling regret over all agents. It can be observed that the
expected cumulative sampling regret is logarithmic in time.
For comparison, we plot the average expected cumulative
regret of the agents when they make no observations of
neighbors (solid gold line). When agents are not making
observations they are interchangeable, and so the average
performance and the individual performance are the same.
The simulation results illustrate that the performance of every
agent improves significantly when it observes neighbors
according to the proposed protocol. The simulation results
further show that the center agent outperforms the other
agents. This is to be expected since the center agent has
more neighbors than the other agents.

Figure 2 shows simulation results for expected observation
regret. It can be seen that the expected observation regret is
logarithmic in time, as proved in Theorem 3. Since the center
agent has more neighbors than the others agents, its observa-
tion regret is the highest. However, the results illustrate that
when observation cost is small, a significant performance
improvement can be obtained for a small observation regret.

V. CONCLUSIONS

We studied an MAMAB problem where agents can ob-
serve the instantaneous choices and rewards of their neigh-
bors but incur a cumulative cost each time they make an
observation of a neighbor. We proposed a sampling rule and
an observation rule in which an agent observes its neighbors
only when it has decided to explore. We defined total
expected cumulative regret to be the regret agents receive due
to sampling suboptimal options and to observing neighbors.
Deterministic and stochastic observation strategies for MAB
protocols in the literature yield an expected cumulative
observation regret that is linear in time T . We analytically
proved that under the proposed sampling and observation
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Fig. 2. Dashed and dotted lines show expected cumulative observation
regret of the agents using the sampling rule and observation rule of
Definitions 1 and 2 with underlying star observation structure. The solid
line shows that agents do not suffer from any observation regret when they
do not observe their neighbors.

rules, expected cumulative regret of each agent is bounded
logarithmically in T . Accuracy of the upper bound has been
verified computationally through numerical simulations.

APPENDIX

Proof of Lemma 2: Note that ∀i, k, t we have

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}, i 6= i∗

)
≤

E
(
I{ϕtk=i}

)
.

Then we have
T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN (t)}, i 6= i∗

)
≤

T∑
t=1

N∑
i=1

E
(
I{ϕtk=i}

)
.

Lemma 2 follows from equation (8).
Proof of Theorem 2: Let i be a suboptimal option with

highest estimated expected reward for agents k at time t.
Then we have i = arg max{µ̂k1(t), · · · , µ̂kN (t)} and i 6= i∗.
If the agent k chooses option i∗ at time step t+ 1 we have
Qki∗(t) > Qki (t). Thus we have µ̂ki (t) > µ̂ki∗(t) and Cki (t) <
Cki∗(t).

Note that for some βki (t) > 0 we have

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t), µ̂ki (t) ≥ µ̂ki∗(t)

)
= βki (t)

+ P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t), µ̂ki (t) ≥ µ̂ki∗(t), Nk

i∗(t) ≥ βki (t)
)
.

Let βki (t) = 8σi(ξ+1)
∆2
i

log t. Then we have

T∑
t=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t), µ̂ki (t) ≥ µ̂ki∗(t)

)
= βki (T )

+

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t), µ̂ki (t) ≥ µ̂ki∗(t), Nk

i∗(t) ≥ βki (t)
)
.

Since Cki (t) < Cki∗(t) we have
T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t), µ̂ki (t) ≥ µ̂ki∗(t), Nk

i∗(t) ≥ βki (t)
)

≤
T∑
t=1

P
(
µ̂ki (t) ≥ µi + Cki (t)

)
≤ βki (T ) +

1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

log ζ
(1 + log(dk + 1))

+
1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

Then we have
T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Cki∗(t),∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)

)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T +
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
N − 1

log ζ
(1 + log(dk + 1))

+
N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.
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