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Abstract

This dissertation examines the effect of two types of system complexity, nonlinearity

and heterogeneity, on oscillatory dynamics in networked systems. In particular, we

focus on finding conditions for complete synchronization, where the dynamics of mul-

tiple systems are identical, phase locking, where the dynamics of multiple systems

share critical features, and mixed mode oscillations (MMOs), where the dynamics

of a single system demonstrate periodic oscillations with peaks of markedly different

sizes. A fascinating application of these conditions is to networks of model neurons

and the crucial role of synchronization in brain function.

We establish conditions for synchronization in networks of heterogeneous sys-

tems with nonlinear dynamics and diffusive coupling. We leverage a passivity-based

Lyapunov approach to find a condition for complete synchronization in networks of

identical nonlinear systems in terms of the network structure and the dynamics of

individual systems. An application to networked model neurons with biologically rel-

evant parameter values demonstrates improvement over alternative methods. Cluster

synchronization is an extension of complete synchronization where the network can be

partitioned into distinct subgroups of systems that are synchronized. We find condi-

tions for cluster synchronization in networks of non-identical systems with nonlinear

dynamics and diffusive coupling using a passivity-based Lyapunov approach and a

contraction based approach.

We examine a system of two model neurons where the first neuron receives a

constant external input and the second neuron receives input from the first through

diffusive coupling. Large networks that are cluster synchronized can be represented by

simpler systems; in particular, the dynamics of a network synchronized in two clusters

can be represented by a system of two coupled model neurons. We use techniques

from dynamical systems theory to characterize parameter regimes where each model

neuron is resting, firing, or sustaining MMOs. The system of two model neurons
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and its extensions represent a foundation for investigating how network structure and

external stimuli interact to influence the dynamics in networks of neurons.

Characterization of the conditions for when synchronization may arise in networks

of heterogeneous nonlinear systems is a crucial step toward understanding complex

networked systems.
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Part I

Conditions for Synchronization and

Phase Locking in Networks
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Chapter 1

Introduction

Synchronization and phase locking are compelling phenomena where systems are af-

fected by one another or a common environment and develop related patterns of

behavior. Synchronization plays a pivotal role in natural and man-made systems;

for example, synchronized motion in animal groups is used to avoid predators [116],

synchronized firing of lasers is leveraged to make precise measurements [105], and

synchronized cells in the heart, called the sinoatrial node, generate the heartbeat

[85]. In spring, the synchronous flashing of fireflies in the Great Smoky Mountains

National Park attract thousands of parking lottery winners. This massive display of

synchronization is an extremely popular attraction - the lottery was enacted because

the previous first-come, first-served system would sell out in seconds. The emergence

of synchronization in a universe characterized by disorder is a striking dynamic that

captivates the imagination and is an active area of research in diverse fields of science

and engineering.

In this dissertation, we find novel conditions for complete synchronization, where

the states of individual systems are identical, and phase locking, where the phases of

oscillating models are separated by a constant offset, in complex networked systems.

We focus on two types of complexity: heterogeneity and nonlinearity. A network
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of stable oscillatory systems with identical dynamics that are all connected to one

another through a linear coupling function will synchronize for any positive coupling

strength. However, once heterogeneity is incorporated into the system dynamics or

the coupling, this is no longer the case. In addition to heterogeneity, nonlinearity in

the form of nonlinear dynamics introduces further complexity in the methods needed

to prove conditions for synchronization or phase locking.

1.1 Networked systems

A graph G = (N , E) is a mathematical object comprised of nodes N that are con-

nected by edges E and can facilitate analysis of complex networked systems by provid-

ing a representation that is compact and straightforward to interpret. The nodes in

a network can be agents in a multi-agent system, compartments in a compartmental

model, or any other collection of systems that relates to one another in a pairwise

fashion. The edges in a network represent pairwise connections between nodes. The

structure is written in an adjacency matrix A =
[
aij
]
, where aij ≥ 0 is the weight of

the edge from node i to node j. When there is no edge from node i to node j, aij = 0.

Networks can be undirected, where aij = aji for all i and j in the set of nodes, or

directed, where this condition does not need to be satisfied.

The term connected graph denotes a graph where a path, which is a series of edges

that are connected sequentially, can be found between any two nodes. Common

network structures include the complete graph, where each node is connected to

every other node, the star graph, where a central node connects to all other nodes

and there are no other connections, the cycle graph, where the nodes are connected

in a cycle, and the tree graph, a connected graph with no cycles.

Throughout this dissertation, we repeatedly consider general networks of nonlinear

systems connected by linear diffusive coupling. For a network of n systems, where
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system i has state xi ∈ RN , the dynamics are written

ẋi = f i(xi) +Bui, for i = 1, . . . , n. (1.1)

For the Lyapunov based approaches we take B to be a vector of zeros with a one in

the first entry, indicating that coupling only influences the first variable. The coupling

ui is linear diffusive coupling, which is written

ui =
∑
j∈N i

γaij(x
j
1 − xi1), (1.2)

where xi1 is the variable corresponding to the first variable of system i, γ > 0 is the

coupling strength, and N i is a collection of indices that represent the neighbors of

node i.

The Laplacian matrix of G is [4]

Lij =


∑

k∈N i a
ik i = j,

−aij i 6= j, j ∈ N i,

0 otherwise.

(1.3)

In a connected graph, the smallest eigenvalue of the Laplacian, λ(1), is zero. For a

connected and undirected graph, the rest of the eigenvalues are real and positive. The

second smallest eigenvalue, λ(2), is called algebraic connectivity and corresponds to

how connected the graph is, where a higher value of λ(2) indicates higher connectivity.
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1.2 Conditions for synchronization in networked

systems

Synchronization is a ubiquitous phenomenon in natural and engineered systems, and

has been observed and studied in a variety of fields [100]. In the brain, synchroniza-

tion helps produce desired behavior [38, 81], while excess synchronization can cause

debilitating disorders such as Parkinson’s disease [22] and epilepsy [75]. Complete

synchronization is a type of synchronization where the state of a system in the net-

work converge to the states of all other systems, such that xi = xj, for (i, j) = 1, . . . , n

after a transient period. Finding necessary and sufficient conditions for the existence

of synchronization is a crucial step toward understanding and controlling complex

oscillatory behavior.

In the literature, necessary and sufficient conditions for synchronization have been

studied for a variety of networked systems. For networks of identical systems with

nonlinear dynamics and arbitrary network structure, sufficient conditions are typically

found using Lyapunov approaches that leverage passivity properties of the individual

nonlinear systems [101, 124] or by employing a contraction-based approach [7, 118].

Our approach in Chapter 2 is to build on the semi-passivity method described in [101,

124] to provide a tighter bound on the required coupling strength for synchronization

in biologically relevant model parameter regimes.

1.3 Conditions for cluster synchronization in net-

worked systems

When a network is comprised of heterogeneous systems, complete synchronization

is no longer possible. Instead, the network may become partitioned into subgroups

of systems, where the systems in a subgroup synchronize with one another. In this
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dissertation, we define a synchronized cluster as a group of completely synchronized

nodes [11, 121].

Finding necessary and sufficient conditions for cluster synchronization in net-

worked systems is an active area of investigation. For nodes in a cluster to synchronize

completely, it is necessary that the internal dynamics of each node are identical and

that the sum of the edge weights from each other cluster is also identical for every

node [11,51,125]. Sufficient conditions guarantee stability of the potential cluster par-

tition. Such sufficient conditions have been found for networks where the dynamics

are in terms of a single variable [19,92] and in terms of the network structure within

clusters for networks of systems with more general nonlinear dynamics [45, 79, 134].

The contributions described in Chapter 2 on cluster synchronization use a contrac-

tion based approach to find a sufficient condition for cluster synchronization that

improves over previous sufficient conditions. The improvement is partly due to the

fact that the condition incorporates both the network structure within clusters and

the network structure between clusters.

1.4 Model neurons∗

The numerical simulations presented throughout this dissertation implement low-

dimensional, nonlinear, conductance-based models of membrane potential dynamics

that replicate features of neurons observed in experiment. Conductance-based models

are biophysical models that represent the membrane potential of a neuron in terms

of an electrical circuit with the following components: (1) batteries, which represent

ion concentration gradients across the membrane, (2) resistors, which represent ion

channels in the membrane, and (3) capacitors, which represent charge stored across

the membrane [41].

∗The second and third paragraphs of this section are modified from [28] and parts are verbatim.
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Mathematical efforts to model neuronal dynamics have a rich history, dating back

to the pioneering work of Hodgkin and Huxley [59] on the action potential in the squid

giant axon. The Hodgkin-Huxley model (HH) consists of four ordinary differential

equations that model the membrane potential and three gating variables [63]. While

the Hodgkin-Huxley model is directly based on experiment, the high dimension and

large number of parameters result in issues with analytical tractability as the number

of model neurons is scaled in a network setting.

A two-dimensional model that captures salient qualities of the four-dimensional

Hodgkin-Huxley model was developed independently by FitzHugh [46, 47] and by

Nagumo [90]. In this model, commonly known as the FitzHugh-Nagumo model (FN),

one variable represents the membrane potential and the other represents a gating

variable. A constant external input to the FN model neuron can produce quiescent,

or resting, behavior (a low-voltage stable equilibrium point), firing (a stable limit

cycle), or saturated behavior (a high-voltage stable equilibrium point). The FN model

neuron captures realistic neuronal behavior such as spike accommodation, bistability,

and excitability [63].

In this dissertation, we focus on the FN model and leverage the balance between

analytical tractability and biologically realistic dynamics. We implement the FN

model in Chapter 2 to illustrate applications of the theory for complete and cluster

synchronization, and analyze the dynamics of two FN models and directed trees of

FN models in Chapters 3 and 4.

1.5 Complex oscillatory patterns in networks of

model neurons

The FN model is a fast-slow system characterized by dynamics that operate at two

different timescales. The membrane potential dynamics are fast and the gating vari-
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able is slow; the difference in speeds is determined by a constant timescale separation

parameter. In the single FN model neuron, the bifurcation parameter corresponding

to external input determines whether the FN model is in a quiescent, firing, or satu-

rated regime. When the external input is near the boundaries between these regimes,

the dynamics follow canard trajectories. Canards are solutions that pass from a slow

stable manifold, near a bifurcation point, and on to a slow unstable manifold, where

they stay for a long time compared to the system timescale [15, 126, 139]. Canards

only exist for a very small range of the bifurcation parameter in the single FN model,

but are seen for a wider range of parameter values when multiple FN models are

coupled together.

In Chapters 3 and 4, we study a system of two model neurons, the directed two-

FN system, where the first neuron receives a constant external input and the second

neuron receives an input from the first neuron. For certain combinations of external

input and strength of coupling from the first neuron to the second, canard trajectories

are observed numerically. The directed two-FN system has two fast and two slow

variables, so the existence of canard trajectories, combined with a suitable return

mechanism, can drive mixed mode oscillations (MMOs) [34, 71]. MMOs are periodic

solutions that alternate between small amplitude oscillations (SAOs) and much larger

oscillations [84]. As noted in [28], the “existence of canard-driven MMOs has been

described for systems in four dimensions [14, 126], systems with two slow variables

and two fast variables [128], and generalized systems in arbitrary finite dimensions

[138].” In a two-FN system, a necessary condition for MMOs was found in terms of

a parameter corresponding to input to one of the two FN models [69]. In Chapters

3 and 4, we leverage these results to determine necessary conditions for existence of

canards and canard-driven MMOs in the directed two-FN system in terms of two

parameters: (1) the external input and (2) the coupling strength from the first FN

model to the second.
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1.6 Outline

In Chapter 2, we present approaches to finding conditions for synchronization in

networks of nonlinear systems and summarize results from Part II: Chapter 7 [29]

and Chapter 8 [4]. The two main developments we highlight use a nonsmooth Lya-

punov approach inspired by [37] and a contraction based approach [3] to find sufficient

conditions for complete synchronization in networks of identical systems and cluster

synchronization in networks of non-identical systems. The conditions are in terms of

coupling strength and network connectedness. Applications of the theory to networks

of FN model neurons demonstrate improvement over a sufficient condition calculated

using a previously proposed method, the quadratic Lyapunov approach [124]. We

provide numerical examples to illustrate applications and shortcomings of both ap-

proaches and to motivate the material in Chapter 3.

In Chapter 3, we characterize the parameter regimes where different dynamics are

possible for networks of FN models and summarize results from the paper in Part II:

Chapter 9 [28]. We begin by detailing the bifurcation structure of three systems of

FN model neurons. The first is a single FN model neuron, the second is the directed

two-FN system, and the third is a general directed tree of FN model neurons. The

analysis builds off of the work presented in Chapter 2 by considering simple networks

that can represent reductions of cluster synchronized networks. We go on to describe

parameter regimes where canards and canard-driven MMOs are possible by relating

the bifurcation structure of the directed two-FN system to a singularly perturbed

system. We find necessary conditions for canard-driven MMOs in terms of two model

parameters and provide a complementary sufficient condition for phase locking that

we extend to directed trees of FN models.

In Chapter 4, we examine how synchronization and phase locking emerge in net-

works of model neurons with both excitatory and inhibitory coupling. We extend

the analysis of the directed two-FN system presented in Chapter 3 to incorporate
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inhibitory coupling. Canards, MMOs, and phase locking are all exhibited in the in-

hibitory regime. We characterize regions of parameter space where MMOs may occur

and where phase locking is guaranteed and generalize these conditions to directed

trees of FN neurons with excitatory and inhibitory coupling.

Chapter 5 concludes Part I of this dissertation by summarizing the main contri-

butions from each chapter and outlining future directions of inquiry.
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Chapter 2

Conditions for Synchronization in

Networks of Nonlinear Systems∗

This chapter summarizes the derivation of conditions that guarantee synchronization

in networks of nonlinear systems which appear in the published papers [29] and [4].

Using the network model defined in Section 1.1, we consider synchronization in a

network of identical nonlinear systems configured in an arbitrary network with linear

coupling. A nonsmooth Lyapunov analysis is used to find a sufficient condition for

synchronization of the nonlinear systems in the network. The condition is in terms of

two quantities: 1) the overall coupling strength in the network and 2) the connected-

ness of the network structure. For high enough coupling strength and connectedness,

a given network is guaranteed to exhibit synchronous dynamics.

To compare the sufficient condition to commonly used methods in the literature,

we study a model of neuronal membrane potential dynamics, the Fitzhugh-Nagumo

(FN) model. For a network of FN models, we compare the sufficient condition for

synchronization derived through nonsmooth Lyapunov analysis to the sufficient con-

∗This chapter summarizes results from Davison, Dey, and Leonard [29] and Aminzare, Dey,
Davison, and Leonard [4]. Further details and the full papers can be found in Chapters 7 and 8,
respectively.
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dition for synchronization derived through quadratic Lyapunov analysis in Section

2.2. Under biologically relevant model parameter regimes, the sufficient condition

derived through nonsmooth Lyapunov analysis is tighter.

As a step toward more general networks, we incorporate two types of heterogeneity

into our study of FN model neurons: 1) the network structure is arbitrary and 2) the

models have non-identical external inputs. When the inputs to different models are

non-identical, a phenomenon called cluster synchronization emerges. After a suitable

transient, it is possible to reduce a cluster synchronized network to a network where

each node represents a cluster [24, 112, 115]. By looking at the network structure of

each cluster independently and applying the conditions derived through nonsmooth

Lyapunov analysis, we find conditions that guarantee synchronization within clusters

in Section 2.2.

Section 2.3 summarizes the development and application of a sufficient condition

for cluster synchronization in networks of heterogeneous nonlinear systems using a

contraction based approach. The condition was derived using contraction theory in

[4]. We consider applications to networks of model neurons with FitzHugh-Nagumo

and Hindmarsh-Rose dynamics. In the FN setting, we prove the sufficient condition

found using the contraction approach represents a substantial improvement over the

sufficient conditions derived using Lyapunov methods in Section 2.2. In part, this

is because the contraction-based proof does not rely on a bound on the dynamics,

which results in more conservative conditions. The sufficient conditions for cluster

synchronization are in terms of the network structure, for a network where the in-

trinsic nonlinear dynamics of each node may differ. Finally, we provide numerical

examples that illustrate the utility of the contraction based approach. In particular,

we consider the same setting as the final example from Section 2.2 and show that the

sufficient condition from contraction theory predicts the synchronized clusters more

accurately than the sufficient condition from Lyapunov theory. We also illustrate
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the limitations of the sufficient condition derived using contraction theory and give

an example of implementation when the clusters are comprised of different types of

neuronal models.

2.1 Definitions, background, and main results

In this section, we provide definitions from [29] and [4] that formalize the notions

of complete synchronization and cluster synchronization. We describe two methods,

contraction and Lyapunov stability, that are commonly used to find sufficient condi-

tions for synchronization in terms of the graph structure and system dynamics. The

main result from [29], a condition on the network connectivity and coupling strength

for general nonlinear systems comprised of polynomial ordinary differential equations,

is included. We also restate the main result from [4]. The main theorem in [4] im-

plements contraction to find a sufficient condition for synchronization in terms of

the network structure and the dynamics of systems in the network. We begin with

definitions of the complete synchronization manifold and complete synchronization.

Throughout this dissertation, we consider complete synchronization unless otherwise

specified.

We consider a network of n general nonlinear models with dynamics xi ∈ RN .

This can be described by (1.1), or more generally by

ẋi(t) = f i
(
xi(t), t

)
+
∑
j∈N i

γijD
(
xj(t)− xi(t)

)
i = 1, . . . , n . (2.1)

Here D ∈ Rn×n = diag (d1, . . . , dn) is the diffusion matrix, a nonzero diagonal matrix

with di ≥ 0. Additionally, γij = aij, the network graph edge weights. In (1.1),

D = diag (γ, 0, . . . , 0) and the f i are time independent. We consider the description

in (1.1) for the Lyapunov based approach and the more general description in (2.1)

for the contraction based approach.
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Definition 2.1.1 (Complete synchronization manifold [29]). The complete synchro-

nization manifold S is an algebraic manifold in the state space of the full system

wherein the states of individual systems are identical:

S =
{
x1, . . . ,xn ∈ RN |xi = xj, ∀ i, j = 1, . . . , n

}
.

Definition 2.1.2 (Complete synchronization [29]). The dynamics given in Equa-

tion (1.1) synchronize completely if, for any solution x of Equation (1.1), there exists

a solution x̄ ∈ S such that

x(t)− x̄(t)→ 0 as t→∞.

An extension of complete synchronization to networks of systems with heteroge-

neous parameters is cluster synchronization, which we define here and use throughout

the chapter.

Definition 2.1.3 (Cluster synchronization [4], modified for consistency). For any

1 ≤ K ≤ n and any 1 ≤ c1, . . . , cK ≤ n such that c1 + · · ·+ cK = n, let

SK :=
{

x ∈ RnN
∣∣ x1 = · · · = xc1 , . . . , xn−cK+1 = · · · = xn, xi ∈ RN

}
.

The dynamics given in Equation (2.1) synchronize in clusters if there exists 1 ≤ K ≤

n such that all solutions of Equation (2.1) converge to SK in an appropriate norm.

SK is called the K−cluster synchronization manifold.

In this chapter, we consider complete synchronization, which requires systems

to have identical dynamics after initial transients, and complete synchronization in

clusters, which requires the systems in a cluster be completely synchronized [100].

While this restriction fails to incorporate cases where systems are approximately
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synchronized [99,122], it is a good starting point due to the wide variety of theoretical

tools that can be applied to the problem. One essential tool is the concept of Lyapunov

stability. An equilibrium point x∗ ∈ RN of the nonlinear system ẋ = f(x), where

f ∈ RN , is stable if there exists a continuously differentiable function V (x) : D → R

such that V (x∗) = 0, V (x) > 0 (V (x) is positive definite) in D−{x∗}, and V̇ (x) ≤ 0

(V̇ (x) is negative semidefinite) in D − {x∗}, where D is a region in RN containing

x∗ [66]. Extensions of Lyapunov stability are used to prove stability of equilibrium

points and trajectories for various applications. Quadratic Lyapunov functions have

been used to prove stability of synchronized solutions in general semi-passive systems

[124] and networks of Hindmarsh-Rose model neurons [93]. To prove stability in [29],

we use a nonsmooth Lyapunov function,

V (x) =
N∑
k=1

max
i,j=1,...,n

(xik − x
j
k). (2.2)

The derivative V̇ (x) is replaced by an upper Dini derivative, which is defined in the

following.

Definition 2.1.4 (Upper Dini derivative [66]). The upper Dini derivative, also called

the upper right hand derivative, of a real valued function V : R→ R is defined as

D+V (t) = lim sup
h→0+

V (t+ h)− V (t)

h
. (2.3)

It provides an upper bound for right hand derivatives of V .

We use the concept of strict semi-passivity to bound the system dynamics.

Definition 2.1.5 (Strictly Semi-passive, [29]). A dynamical system ẋ = f(x) + Bu,

y = Cx, x ∈ RN , u,y ∈ Rm is strictly semi-passive in a region D ⊂ RN if there exists

a nonnegative function V : D → R+ such that D is open, connected and invariant
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under the dynamics, V (x) > 0 for x ∈ D\{0}, V (0) = 0, and V̇ ≤ yTu−H(x), where

H(x) > 0 when ‖x‖ ≥ r with the radius r being dependent on the system parameters.

Using the nonsmooth Lyapunov function and bounds on the dynamics that arise

from strict semi-passivity, we prove stability of the complete synchronization manifold

for sufficiently large γλ(2)(L). This combination of terms represents the strength of

coupling and connectedness of the graph.

Theorem 2.1.6 ([29], modified for consistency). Consider the system described in

(1.1) with a linear diffusive coupling on the first variable (1.2). Assume that (1.1)

is strictly semi-passive and f i is equal for i = 1, . . . n. Then, whenever the coupling

strength γ and the second smallest eigenvalue of the graph Laplacian λ(2)(L) (repre-

senting network connectivity) satisfy

γλ(2)(L) >
N∑
k=1

F1k + h1,

and
N∑
k=1

Fjk + hj < 0 ∀j = 2, . . . , N,

the complete synchronization manifold S is globally asymptotically stable, where Fij’s

and hi’s are functions of system parameters.

Assuming the intrinsic dynamics of all systems are equal, for an arbitrary system

k, the (i, j)th element of F ∈ RN×N is the linear term of xkj in the function fki , and

the function hi is a function that bounds the nonlinear dynamics of fki . For a detailed

proof of Theorem 2.1.6, please see Chapter 7.

Another commonly used method to find conditions for synchronization is contrac-

tion [3]. Intuitively, for a system to be contractive, any two solutions of the system

must grow closer together, as defined by a suitable norm, as time progresses. The

formal definition for contraction follows.
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Definition 2.1.7 (Contraction [4]). Consider the nonlinear dynamical system

ẋ(t) = G(x(t), t) (2.4)

on V × [0,∞], where V is a convex subset of RN . Let the vector field G satisfy G(x, t)

Lipschitz on x and continuous on (x, t) such that the existence and uniqueness of

solutions of (2.4) is guaranteed. Equation (2.4) is contractive if there exist c < 0 and

a norm ‖ · ‖ on RN such that, for any two solutions x and y, the following inequality

holds for any t ≥ 0

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖. (2.5)

Contraction has been used to find conditions for synchronization in [5, 8, 78, 111,

112,135]. For a thorough description of relating contraction theory and synchroniza-

tion, please refer to [3]. The conditions derived using contraction approaches are in

terms of the Jacobian, JG(x), of the system dynamics G(x) [5] and may also incor-

porate diffusion matrix D or the graph structure G [8]. A common format for graph

structure to be incorporated into synchronization conditions is in terms of the second

smallest eigenvalue of the Laplacian of each cluster subgraph, λ
(2)
Cr

[29]. The main

result from [4] contains more information about the graph structure by also including

the second smallest eigenvalue of the Laplacian of the subgraph of interconnections

between clusters, λ̄(2). It relies on the following assumption of the arrangement of the

clusters and cluster-input-equivalence.

Assumption 2.1.8 ([4] modified for consistency). In the network described by Equa-

tion (2.1), we assume that

1. There exist K ≤ n and c1, . . . , cK ≥ 2, such that c1 + · · ·+ cK = n, and

f i1 = · · · = f ic1 =: fC1 , . . . , f in−cK+1 = · · · = f in =: fCK ,
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where {i1, . . . , in} is a permutation of {1, . . . , n}. Without loss of generality, we

can assume:

f1 = · · · = f c1 =: fC1 , . . . , fn−cK+1 = · · · = fN =: fCK .

Let C1, . . . ,CK denote K clusters of nodes. The nodes in cluster C1 are defined

by x1, . . . ,xc1 and they all have dynamics fC1, the nodes in cluster C2 are defined

by xc1+1, . . . ,xc1+c2 and they all have dynamics fC2, etc. For ease of notation in

our calculations, we let

x1
C1

= x1, . . . ,xc1C1
= xc1 ,

x1
C2

= xc1+1, . . . ,xc2C2
= xc1+c2 ,

...

x1
CK

= xn−cK+1, . . . ,xcKCK = xn.

(2.6)

2. The cluster-input-equivalence condition defined in [11] holds. This implies that

the following edge weight sums are equal: for any two nodes xiCr ,x
j
Cr

, (i, j) ∈ Cr,

ηCrCs :=
∑
k∈N i

Cs

γik =
∑
k∈N j

Cs

γjk, (2.7)

where N i
Cs

denotes the indices of the neighbors of node i which are in cluster

Cs.

Theorem 2.1.9 (Theorem 1, [4] modified for consistency). Consider Equation (2.1)

with Assumption 2.1.8, and let

µ := max
r=1,...,K

sup
(x,t)∈V×[0,∞)

µ2,P

[
JfCr (x, t)−

(
λ

(2)
Cr

+ λ̄(2)
)
D

]
, (2.8)
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where P ∈ RN×N is a positive definite matrix chosen such that P 2D+DP 2 is positive

semidefinite. Then, for any solution x of Equation (2.1) that remains in V N , there

exists x̄(t) such that

‖x(t)− x̄(t)‖2,P ≤ eµt‖x(0)− x̄(0)‖2,P , (2.9)

where P = In ⊗ P 2 and ‖ · ‖2,P is a P-weighted L2 norm on RnN , defined by

‖x‖2,P :=

∥∥∥∥(∥∥P 2x1
∥∥

2
, . . . ,

∥∥P 2xn
∥∥

2

)>∥∥∥∥
2

,

for any x =
(
x1>, . . . ,xn>

)>
∈ RnN . In particular, if µ < 0, then for any pair of

nodes i, j ∈ Cr, xiCr and xjCr satisfy

xiCr(t)− xjCr(t)→ 0 as t→∞.

For a detailed proof of this theorem and a table of induced matrix measures µ in

Table 8.1, please refer to Chapter 8.

2.2 Synchronization in networks of model neurons:

Lyapunov approach

Here, we apply the general theory outlined in Theorem 2.1.6 to a network of FitzHugh-

Nagumo (FN) model neurons [47,90]. We highlight the new result that the sufficient

condition for synchronization derived using the nonsmooth Lyapunov approach is

an improvement over the sufficient conditions derived using a quadratic Lyapunov

function [124].

We consider two settings: (1) a network of n FN model neurons with identical

model parameters and (2) a network of n FN model neurons with differing external
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inputs. In the first case, we find sufficient conditions for synchronization. In the

second case, we find sufficient conditions for cluster synchronization. In both settings,

the dynamics of each FN model are modeled by

ẏi = yi − yi
3

3
− zi + I i + ui,

żi = ε(yi + a− bzi), for i = 1, . . . , n.

(2.10)

The two variables model the membrane voltage (y) and a recovery variable (z). They

are separated by the timescale parameter ε� 1, where ε is a positive constant. The

variables a and b are also positive constants that are common to all FN models in the

network. The input to neuron i is written as two terms: a constant external input I i

and an input from all neighbors in the network ui.

2.2.1 Identical model parameters

In [29], we find a sufficient condition for synchronization in a network of FN models

(2.10) with identical I i by applying Theorem 2.1.6. The FN model (2.10) was shown

to be strictly semi-passive [101] and we consider networks where ui consists of linear

diffusive coupling (1.2), so both assumptions in Theorem 2.1.6 are satisfied. The

resulting sufficient condition is in terms of the coupling strength γ and the second

smallest eigenvalue of the graph Laplacian λ(2)(L). The sufficient condition is given

by

γλ(2)(L) ≥ 1 + ε+
β2

1

3
, (2.11)

where β1 is the bound on the dynamics of y given by strict semi-passivity. We compare

the sufficient condition for synchronization found using the nonsmooth Lyapunov

approach (2.11) to a sufficient condition for synchronization found using a quadratic

Lyapunov approach. The quadratic Lyapunov function is used to find conditions
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for synchronization in networks of general strictly semi-passive systems [124] and

Hindmarsh-Rose model neurons [93]. For FN model neurons, the sufficient condition

is given by

γλ(2)(L) >
(ε− 1)2

4bε
+ 1 +

β2
1

3
. (2.12)

We show that, when the FN models are arranged in a complete graph and the

parameters satisfy ε small and b ∈ [0, 1] - which corresponds to biologically plausi-

ble model behavior - the condition from the nonsmooth Lyapunov approach is an

improvement on the condition from the quadratic Lyapunov approach and a contrac-

tion based approach [113]. We denote λ∗m as the value of λ(2)(L) where, for a given

γ, (2.11) is satisfied. Similarly, we denote λ∗s as the value of λ(2)(L) where, for a

given γ, (2.12) is satisfied. A comparison between these values for a range of model

parameters is depicted in Figure 2.1, which illustrates the improvement.

Figure 2.1: Ratio of synchronization conditions for the nonsmooth and quadratic
Lyapunov approaches. For the biologically relevant parameter ranges plotted, the
bound derived from the nonsmooth approach is always tighter. Repeated from Figure
7.1.

Details of the calculations are contained in Chapter 7.

2.2.2 Non-identical model parameters

Networks of systems with non-identical model parameters may experience cluster

synchronization, where the network can be partitioned such that systems within a

subgroup only synchronize with one another. The interplay between network struc-
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ture and arrangement of model parameters determine how and whether cluster syn-

chronization arises [12, 121]. In particular, input-equivalent systems have equivalent

sums of the external input and input from neighbors in the graph over all time. We

use input-equivalence [113] to extend Theorem 2.1.6 to cluster synchronized networks

where the constant external input I i is non-identical. See Corollary 7.5.2 and the

corresponding proof for more details.

Example 2.2.1 (Limitations of Lyapunov-based approach). To motivate the im-

provement in synchronization conditions from using a contraction based approach de-

tailed next, we present two distinct limitations of the Lyapunov approach when finding

sufficient conditions for cluster synchronization. In this example and throughout the

remainder of this dissertation, we use the terminology “cluster” to denote a cluster

synchronized group of nodes. The first limitation is the bound from semi-passivity,

β1, which is often much larger than the dynamics and so results in a loose bound for

synchronization. The second limitation is that this method only considers the graph

structure within clusters, and so misses situations where the synchronization in one

cluster is mediated by the synchronization in another cluster.

The example system we consider is a graph composed of two clusters with structure

depicted in Figure 2.2. The first is a complete graph on three nodes, which are colored

orange in the figure. The second, colored blue, consists of six nodes that are connected

to one of the nodes in the first cluster but are not connected to one another. The

coupling within the first cluster (orange-orange), denoted γ1, is set to 1. The coupling

from the first cluster to the second (orange-blue), denoted γ12, is set to 0.25. There

is no coupling within the second cluster (blue-blue), so γ2 = 0. The model parameters

are a = 0.7, b = 0.8, ε1 = 0.3, I1 = 0, ε2 = 0.08, and I2 = 0.5, where I1 is the constant

external input to each system in the first cluster and I2 is the constant external input

to each system in the second cluster.
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Figure 2.2: Graph structure (left) and y dynamics (right) for a graph with two clusters
of FitzHugh-Nagumo model neurons.

We compute the synchronization bounds for each cluster and compare these to the

corresponding graph measures in Table 2.1. In both clusters, the coupling is lower

than the sufficient condition. The dynamics are depicted in Figure 2.2. In the orange

cluster, the coupling is about a factor of two less than the sufficient condition, but the

cluster synchronizes. This illustrates the limitation of the Lyapunov approach where

the bounds are not tight. In the blue cluster, the coupling is infinitely smaller than

the sufficient condition, but the cluster synchronizes. This illustrates the limitation

of this approach where cluster synchronization mediated by other clusters is not taken

into consideration. Both of these limitations are addressed and improved on in the

following section where we present the contraction based approach.

Table 2.1: Sufficient conditions for cluster synchronization and graph measures for
the graph in Figure 2.2.

Cluster c λ(2)(Lc) γcλ
∗
m Sufficient condition Actual γc

Inner (orange) 3 5.3 γ1 > 1.77 γ1 = 1

Outer (blue) 0 5.08 Not satisfied for finite γ γ2 = 0
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2.3 Synchronization in networks of model neurons:

Contraction approach

In this section, we highlight an application of Theorem 2.1.9 to networks of cluster

synchronized FN models and Hindmarsh-Rose (HR) models. Through numerical ex-

amples in Section 2.3.2, we illustrate several improvements on the sufficient conditions

derived using the Lyapunov approach in Section 2.2.2.

2.3.1 Cluster synchronization in networks of heterogeneous

FN and HR model neurons

We begin by considering a network of n FitzHugh-Nagumo models (2.10) with a

linear gap diffusive coupling (1.2) on the first variable with coupling strength γ > 0.

Furthermore, assume the network can be partitioned into K ≥ 1 clusters according

to Assumption 2.1.8 and let model parameters aCr , bCr , εCr , and ICr be heterogeneous

across clusters but the same within a given cluster Cr, where r = 1, . . . , K.

Corollary 2.3.1. ([4]) Consider Equation (2.10), with Assumption 2.1.8. For all

r = 1, . . . , K, let

γ >
1 + αr

λ
(2)
Cr

+ λ̄(2)
,

where αr =
(εCrp−1/p)

2

4bCr εCr
and p > 0 is a constant. Then for any pair of FN model

neurons {(yi, zi)>, (yj, zj)>} such that (i, j) ∈ Cr,

yi(t)− yj(t)→ 0, zi(t)− zj(t)→ 0, as t→∞.

In particular, if p = maxr
1√
εCr

, then αr is minimized.

There are two FN model parameters that appear in the expression for the bound

on γ. The first is ε � 1, which is the timescale separation between y and z and

24



controls the frequency of spiking. The second is b, which determines the ratio of the

time for a spike to the refractory period. For a detailed proof and discussion, please

refer to Chapter [4].

When K = 1, the network is represented by a single cluster and the sufficient con-

dition from Corollary 2.3.1 becomes γλ
(2)
C1
> 1. The sufficient condition for synchro-

nization found using the nonsmooth Lyapunov approach (2.11) is γλ
(2)
C1
≥ 1 + ε+

β2
1

3
.

The constants ε and β2
1 are both nonnegative, so the sufficient condition from 2.3.1

represents an improvement over previous results.

The second application of Theorem 2.1.9 we provide is a network of N modified

Hindmarsh-Rose models with a linear gap diffusive coupling (1.2) on the first variable

with coupling strength γ > 0. The two-dimensional Hindmarsh-Rose dynamics we

consider are

ẏi = −yi3 + ciyi
2

+ zi + I i + ui,

żi = δi(1− 5yi
2 − zi), for i = 1, . . . , n,

(2.13)

where y is the membrane potential, z is a recovery variable, c > 0 is a constant,

0 < δi � 1 determines the time scale separation, I i is a constant external input to HR

model i and ui is the collection of inputs from all neighbors of i in G. Again, assume

the network can be partitioned into K ≥ 1 clusters according to Assumption 2.1.8

and let model parameters, cCr , δCr , and ICr be heterogeneous across clusters but the

same within a given cluster Cr, where r = 1, . . . , K.

Corollary 2.3.2. ([4] ) Consider Equation (2.13), under Assumption 2.1.8. For all

r = 1, . . . , K, let

γ >
1

λ
(2)
Ci

+ λ̄(2)
max

{
−(2cCi − 5)2

4(25δCip
2 − 3)

+
1

4δCip
,
c2
Ci

3
− δCi

}
, (2.14)
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where p is a constant that satisfies 0 < p <
√

3
25δCi

. Then for any pair of HR models

{(yi, zi)>, (yj, zj)>} such that (i, j) ∈ Cr,

yi(t)− yj(t)→ 0, zi(t)− zj(t)→ 0, as t→∞.

In particular, if p = maxr
3

5δCr (5+|2cCr−5|) , then the first argument of the max operator

in Equation (2.14) is minimized and has the value
(5+|2cCr−5|)2

12
.

For a detailed proof, please refer to Chapter 8.

2.3.2 Numerical examples

This section contains numerical examples that illustrate the applications of Theorem

2.1.9 from Section 2.3.1. Three distinct examples are presented. The first revisits

Example 2.2.1 and compares the bounds from the nonsmooth Lyapunov approach

with the bounds from Corollary 2.3.1. The bounds from contraction theory are shown

to be tighter and more useful in describing the behavior for both clusters. The second

example is a case where multiple models are connected in the graph and illustrates

how the contraction-based approach can be generalized. The third example depicts

a scenario where the cluster synchronized steady state includes complex oscillatory

dynamics that can be studied by reducing the cluster synchronized graph to a simpler

graph. Chapter 3 provides an in-depth analysis of the scenario presented in the third

example.

Example 2.3.3 (Comparison of contraction and Lyapunov bounds). We again con-

sider the example system from Figure 2.2. The first cluster (orange) is a complete

graph on three nodes and the second cluster (blue) consists of six nodes that are con-

nected to one of the nodes in the first cluster but are not connected to one another.

The coupling within the first cluster (orange-orange), denoted γ1, is set to 1. The

coupling from the first cluster to the second (orange-blue), denoted γ12, is set to 0.25.
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There is no coupling within the second cluster (blue-blue), so γ2 = 0. The model

parameters are a = 0.875, b = 0.8, ε1 = 0.3, I1 = 0, ε2 = 0.08, and I2 = 0.5.

We compute the synchronization bounds using both the Lyapunov approach and

the contraction approach for each cluster in Table 2.2. Neither cluster satisfies the

sufficient condition for synchronization derived using the nonsmooth Lyapunov ap-

proach. However, both clusters do indeed synchronize. The inner cluster satisfies the

sufficient condition for synchronization derived using the contraction approach. This

is an example of how the improvement described in Section 2.3.1 is also present in a

cluster synchronized network. The outer cluster does not satisfy the sufficient condi-

tion for synchronization derived using the contraction approach. This is a limitation

for the contraction based approach - the bounds are still not necessary and sufficient

and, while tighter than previous bounds, still do not capture all of the conditions

where synchronization occurs. However, the connection between clusters is taken into

account, which provides for a more accurate understanding of the system.

Table 2.2: Comparison of synchronization conditions derived through contraction and
Lyapunov approaches for the graph in Figure 2.2. When the Lyapunov function ap-
proach is used, neither cluster satisfies the sufficient condition. When the contraction
approach is considered, the inner cluster is guaranteed to synchronize and the outer
cluster does not satisfy the sufficient condition.

Cluster c γcλ
(2)(Lc) γcλ

∗
m Ns Lyapunov γ(λ(2)(Lc) + λ̄2) Contraction

Inner (orange) 3 5.3 3 < 5.3 7 3.25 3.25 > 1 3

Outer (blue) 0 5.08 0 < 5.08 7 0.25 0.25 < 1 7

Example 2.3.4 (Cluster synchronization in a network with both FN and HR models,

adapted from [4]). In this example, we consider a network of 12 model neurons grouped

into three clusters as depicted in Figure 2.3. The clustering, determined based on the
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graph structure and nodal dynamics, satisfies Assumption 2.1.8. Parameters for the

models in each cluster are descrbed in the following.

1. Cluster C1 (purple circles): four FN models; a
C1

= 0.875, b
C1

= 0.8, I
C1

= 1,

and ε
C1

= 0.08;

2. Cluster C2 (green squares): six HR models; c
C2

= 2, I
C2

= 0.5, and δ
C2

= 0.01;

3. Cluster C3 (blue triangles): two HR models; c
C3

= 3, I
C3

= 0.2, and δ
C3

= 0.08.

The intra-cluster coupling is 0.01 times the coupling in cluster 1, the coupling in

cluster 2 is 0.5 times the coupling in cluster 1, and the coupling in cluster 3 is 2

times the coupling in cluster 1. The second smallest eigenvalues of the Laplacian of

the three intra-cluster subgraphs and the inter-cluster subgraph are λ
(2)
C1

= 2, λ
(2)
C2

= 1,

λ
(2)
C3

= 4, and λ̄(2) = 0.01, respectively. By Corollaries 2.3.1 and 2.3.2, the clusters

will synchronize if

γ > max

 1

λ
(2)
C1

+ λ̄(2)
,

1
8

(
25
p
− 1

p2−12

)
λ

(2)
C2

+ λ̄(2)
,

1.32

λ
(2)
C2

+ λ̄(2)
,

(
25
p
− 1

p2−12

)
λ

(2)
C3

+ λ̄(2)
,

2.92

λ
(2)
C3

+ λ̄(2)

 .

(2.15)

Taking p = 2.4 is close to the minimum for the second and fourth terms. The fourth

term has the largest numerator, so a sufficient condition for cluster synchronization

over all clusters is γ > 2.59. The right panel of Figure 2.3 shows three synchronized

clusters in the network when γ = 2.6.

Example 2.3.5 (Reduction example and motivation for two-FN analysis). In this

example, we illustrate how cluster synchronization can be leveraged to reduce the num-

ber of nodes in a graph and consider the complex oscillations that emerge for coupling

below the synchronization bound. We consider a complete graph on six nodes with

identical FN model neuron dynamics. The parameters are a = 0.875, b = 0.8,
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Figure 2.3: Graph structure (left) and y dynamics (right) for a graph on 12 nodes
with three clusters. The purple cluster consists of FN models, while the green and
blue clusters are formed of HR models with different dynamics. Adapted from Figure
8.1.

and ε = 0.08, there is an input I = 0 to the dark blue node and I = 1 other-

wise, and the coupling is γ = 0.016 for edges connecting the dark blue node to all

other nodes and is 14γ = 0.224 otherwise. This gives λ(2)(Lc) = 70 and λ̄2 = 1, so

γ(λ(2)(Lc) + λ̄2) = 1.136 and, by Theorem 2.1.9, the complete graph on five nodes will

synchronize.

This gives us a useful tool to study the complex oscillations seen in Figure 2.4.

We can reduce the graph to a simple graph on two nodes, shown in the lower panel.

The larger cluster is guaranteed to synchronize, so the steady state dynamics can be

accurately modeled by a single FN model. In Chapter 3, we analyze the dynamics of

the two-FN system in detail as the coupling and external input are varied.
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γ

5γ

Figure 2.4: Graph structure (top left) and y dynamics (top right) for a graph on
six nodes with two clusters. The graph is a complete graph and the nodal dynamics
are FN models with parameters a = 0.875, b = 0.8, and ε = 0.08. The coupling
is γ = 0.016 for edges connecting the dark blue node to all other nodes and is 14γ
otherwise. The external input I = 1 to all FN models except the dark blue one, which
receives an external input of I = 0. The system separates into two clusters: the first
fires normally and the second exhibits oscillations at half the frequency of the first.
Because it is synchronized after the transients, the system can be reduced to a graph
on two nodes in the steady state (bottom).
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Chapter 3

Conditions for Mixed-Mode

Oscillations and Phase Locking in

Coupled FN Model Neurons∗

In this chapter, we investigate networks of FN models coupled through linear gap dif-

fusive coupling. We characterize the different dynamic behavior for values of external

input and coupling strength and further investigate the complex oscillations observed

numerically in Example 2.3.5. In Section 3.1, we provide definitions and background

from multiple timescale systems theory.

In Sections 3.2, 3.3, and 3.4, we describe the bifurcation structure of three funda-

mental networks of FN models: (1) a single FN model with constant external input,

(2) a unidirectionally coupled pair of FN models where the first receives a constant ex-

ternal input and the second receives only an input from the first (the directed two-FN

system), and (3) directed trees of FN models. We characterize regions of bifurcation

parameter space where the models are resting, firing with alternating small amplitude

oscillations (SAOs), and phase locked. The boundaries between regions are charac-

∗The material presented in this chapter is based on Davison, Aminzare, Dey, and Leonard [28].
Please see Chapter 9 for detailed calculations.

31



terized by Hopf bifurcations, where varying a parameter results in a stability change

for an equilibrium point as an isolated limit cycle appears or disappears from that

equilibrium point. If the limit cycle is stable, the Hopf bifurcation is supercritical. If

the limit cycle is unstable, the Hopf bifurcation is subcritical.

In Chapter 2, we noted that there are certain requirements on the FN model

parameters for biologically realistic results. We formalize these requirements in the

following assumption to ensure that the FN model has a unique equilibrium point for

all constant external inputs I.

Assumption 3.0.1. ([28]) Parameters a, b, and ε are such that the FN model (2.10)

has a unique equilibrium point for all values of I ≥ 0. This results in conditions

0 < a < 1 and 0 < b < 1.

For the remainder of this chapter and much of Chpater 4, we maintain this as-

sumption.

3.1 Definitions and background

In this section, we provide definitions of canards and mixed mode oscillations

(MMOs), which are observed numerically in coupled systems of FN models. Exam-

ples of (a) small amplitude oscillations (SAOs) (b) MMOs, and (c) phase locking are

shown in Figure 3.1.

In Chapter 2, we described ε as the timescale separation parameter. It controls the

difference in speed between the slow and fast dynamics. A general fast-slow system

with m fast variables and n slow variables is typically studied by considering one

of two subsystems, where y ∈ Rm are the fast variables and z ∈ Rn are the slow
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Figure 3.1: Example of (a) SAOs, (b) MMOs, and (c) phase locking observed in
simulation of the directed two-FN system. In all plots yA is in blue and yB is in
magenta. (a) For I = 1 and γ = 0.05, yB follows small oscillations with the same
frequency as the firing of model neuron A. (b) For I = 1 and γ = 0.08, yB exhibits
MMOs. (c) For I = 1.4 and γ = 1.03, yA and yB exhibit phase locking, i.e., they fire
at a constant phase offset, even though the amplitude of the spikes and the waveforms
are different. Modified from Figure 9.4.

variables. A general fast-slow system can be written

ε
dy

dτ
= f(y, z, ε),

dz

dτ
= g(y, z, ε).

(3.1)

The singular limit, ε = 0, gives the slow subsystem, which is often referred to as the

reduced system [72]. In networks of FN models, the functions f and g do not depend

on ε. Changing timescales by t =
τ

ε
gives

dy

dt
= f(y, z, ε),

dz

dt
= εg(y, z, ε).

(3.2)

The singular limit, ε = 0, gives the fast subsystem, which is often referred to as the

layer system [72]. The set of equilibrium points of the layer system, where f(y, z, 0) =

0, is called the critical manifold when the set is a submanifold of Rm × Rn [72].

When the Jacobian at a point y∗ on the critical manifold, Dyf(y∗), has at least one

eigenvalue with zero real part, y∗ is a fold point [139]. A canard is a solution of the

singularly perturbed system that passes from an attracting slow manifold through a
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fold point to a repelling slow manifold and stays within O(ε) of the repelling slow

manifold for O(1) in the slow timescale [126]. Mixed mode oscillations (MMOs) are

periodic solutions of (3.2) comprised of SAOs and large amplitude oscillations (LAOs)

with substantially different amplitudes [72].

To find conditions for canard-driven MMOs, we study a rescaling of the reduced

system called the desingularized system. The derivation of the desingularized system

proceeds as described in the following, quoted from [28].

To derive the desingularized system we first differentiate f(y, z) = 0 with

respect to τ to get

(Dyf) · dy
dτ

+ (Dzf) · dz
dτ

= 0. (3.3)

Multiplying both sides of (3.3) by adj(Dyf), the adjugate (or the trans-

pose of the cofactor matrix) of Dyf , gives

− det (Dyf)
dy

dτ
= adj(Dyf)(Dzf) · g(y, z). (3.4)

This system is singular when det (Dyf) = 0, namely at fold points. This

means that standard existence and uniqueness results do not hold at the

fold points. However, rescaling time in (3.4) by dτ = − det (Dyf)dτ2

yields the desingularized system

dy

dτ2

= adj(Dyf)(Dzf) · g(y, z). (3.5)

Note that to obtain the corresponding flows of the reduced system from

the desingularized system, due to the time scaling dτ = − det (Dyf)dτ2,

the direction of the flows of the desingularized system must be reversed

on branches where det (Dyf) > 0.
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There are two types of equilibrium points of the desingularized system: ordi-

nary singularities and folded singularities. Ordinary singularities are also equilibrium

points of the reduced system and are within O(ε) of the equilibrium points of the full

system. When f and g do not depend on ε, the ordinary singularities are the equi-

librium points of the full system. Folded singularities are the fold points, or points

where the Jacobian on the critical manifold has at least one eigenvalue with zero real

part, of the reduced system.

In systems with two or more slow variables, the existence of MMOs with canard

SAOs over a range of parameter space requires there exist (1) a stable folded node and

(2) a global return mechanism to return the dynamics to near the stable folded node.

A cubic-shaped critical manifold is the global return mechanism in the FN model. In

a system with two fast and two slow variables, the eigendirections create a funnel.

Trajectories of the full system pass from the attracting branch of the critical manifold

close to the folded singularity to the repelling branch of the critical manifold. The

corresponding trajectory eventually jumps away from the repelling branch [26, 137].

The global return mechanism is essential because it returns trajectories to the funnel

[34,71].

A Folded Saddle Node of Type II (FSN II) bifurcation in the desingularized system

(3.5) corresponds to a Hopf bifurcation in the full system. In a FSN II bifurcation,

there is a transcritical bifurcation where a folded saddle and stable ordinary singular-

ity change stability and become a stable folded node and saddle ordinary singularity.

An example FSN II bifurcation in the directed two-FN system is depicted in Figure

9.9, with corresponding phase planes shown in Figure 9.7.
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3.2 Single FN model

We begin by describing the bifurcation structure and dynamics of a single FN model

with a constant external input I (2.10). In Figure 3.2, the bifurcation diagram of the

FN model is depicted with bifurcation parameter I. The points where the unique

equilibrium point changes stability are Hopf bifurcations. The stability of the limit

cycle that emerges from a Hopf bifurcation point is determined by the cubic coeffi-

cient, also referred to as the first Lyapunov coefficient, α (refer to Definition 9.2.3).

According to Proposition 9.2.4, a Hopf bifurcation is supercritical if α < 0, subcritical

if α > 0, and degenerate if α = 0. For a single FN model, the cubic coefficient is

α =
1

8

(
2b− b2ε− 1

1− b2ε

)
.

Please refer to Chapter 9 for details. The Hopf bifurcations observed experimentally

in neurons at the boundary between resting and firing are subcritical [10, 104]. We

fix parameter values a = 0.875, b = 0.8, and ε = 0.08 that satisfy Assumption 3.0.1

that there be a unique equilibrium point and ensure subcritical Hopf bifurcations.

As I is increased from zero, there are six values of I that mark boundaries for

dynamic regimes: I0sn, I0c, I0, I1, I1c, and I1sn. Behavior according to parameter

ranges is described in the caption of Figure 3.2. Figure 3.2 was created using the

numerical continuation software package MATCONT [36]. Note that the Isn, which

denote saddle node bifurcations of limit cycles, are almost indistinguishable in pa-

rameter space from the Ic, or canard explosion points [16,53,88]. A canard explosion

is a sudden growth in size of limit cycles as the bifurcation parameter is varied. For

the FN model, the canard explosion and saddle node bifurcation of limit cycles occur

O(ε) away from the Hopf bifurcation point. Refer to Chapter 9 for details and a

calculation of I0c and I1c.
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Figure 3.2: Bifurcation diagram for a single FN model drawn with a numerical con-
tinuation software tool [36] for a = 0.875, b = 0.8, and ε = 0.08. Green corresponds
to stable equilibrium points or limit cycles and red corresponds to unstable equilib-
rium points or limit cycles. For most values I < I0, the FN model is in the quiescent
regime. For I0sn ≈ I0c < I < I0, the FN model is in the firing regime since it con-
currently exhibits a stable equilibrium point, small unstable oscillations, and larger
stable oscillations. The FN model is always in the firing regime when I0 < I < I1.
For I1 < I < I1c ≈ I1sn, the FN model is also in the firing regime since it concurrently
exhibits a stable equilibrium point, small unstable oscillations, and larger stable os-
cillations. For all other I > I1, the FN model is in the saturated regime. Repeated
from Figure 9.1

3.3 Two FN models

The directed two-FN system consists of two FN models, A and B, arranged as in

Figure 3.3. Parameter values a, b and ε are identical for both FN models, A receives

a constant external input I, and B receives no external input and receives a linear

gap junction (1.2) input from A with strength γ. We characterize the regions of I-γ

parameter space where different dynamic behavior occurs.

The equations describing the directed two-FN system can be written as a pair of

equations that describe a FN model with constant external input I and no coupling

and a pair of equations that describe a FN model with no external input and a linear
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A Bγ

I

Figure 3.3: A directed network of two FN model neurons, A and B. A receives an
external input I and there is a unidirectional coupling from A to B with strength γ.
Repeated from Figure 9.2.

coupling to the other FN model with strength γ. These equations are

dyA
dt

= yA −
y3
A

3
− a− zA + I, (3.6a)

dzA
dt

= ε (yA − bzA), (3.6b)

dyB
dt

= yB −
y3
B

3
− a− zB + γ(yA − yB), (3.6c)

dzB
dt

= ε (yB − bzB). (3.6d)

The desingularized system (3.5) gives us information about the types of folded

singularities present for different parameter values and so can be used to calculate

the regimes where canard-driven MMOs may be present. For the directed two-FN

system, the desingularized system is given by

dyA
dτ2

= −(1− y2
B − γ)

yA − b(yA − y3
A

3
− a+ I

) ,

dyB
dτ2

= γ

(
yA −

y3
A

3
− a+ I

)
− (1− y2

A)

yB − b(yB − y3
B

3
− a+ γ(yA − yB)

) .

(3.7)

Refer to Chapter 9 for details of the calculation. The desingularized system (3.7)

has a single ordinary singularity and two, four, or six folded singularities for different

values of I and γ. Refer to Chapter 9, Figure 9.5 for the signs of the real parts of the

eigenvalues of the Jacobian evaluated at the ordinary singularity and Figure 9.6 for
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the signs of the real parts of the eigenvalues of the Jacobian evaluated at each of the

folded singularities.

Figure 3.4: Regions of behavior of the directed two-FN system (3.6) in the I-γ pa-
rameter space. Boundaries between regions are identified in the key. In regions (3),
(5), (6), and (7), shaded gray, there is a stable limit cycle such that either A or B
is firing. In region (3), with cross hatching, only B is firing. In regions (5) and (7),
in darker gray, there is phase locking. In region (6), in light gray, A is firing and B
may exhibit canard solutions. In region (8), in light gray, B may exhibits MMOs for
some parameter values but the necessary conditions for canard-driven MMOs are not
satisfied. HH denotes a Hopf-Hopf bifurcation and GH denotes a generalized Hopf
bifurcation (also known as a degenerate Hopf or Bautin bifurcation). Adapted from
Figure 9.3.

In what follows, we briefly describe the possible and numerically observed dynam-

ics of FN models A and B for the eight distinct regions of I-γ parameter space in

Figure 3.4. Due to the time rescaling, the stability of the ordinary singularity of the

desingularized system will be opposite of the stability of the equilibrium point of the

full system, although they are the same point. Chapter 9 contains details about how

these results were obtained. The Hopf bifurcations I0A, I1A, I0B and I1B are detailed

in Propositions 9.5.1 and 9.5.4. In Chapter 9, a numerical error in calculating the

imaginary parts of the eigenvalues of the folded singularities resulted in an inaccurate

grouping of regions (6) and (8) as one region. They are distinct because there are no
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stable folded nodes in region (8), while a stable folded node exists in region (6). We

have modified Figure 3.4 to include a separation between these regions.

(1) The equilibrium point of the directed two-FN system (3.6) is stable, so FN model

A and FN model B are quiescent. Phase locking and MMOs are not possible.

Refer to Section 9.5.1 for details.

(2) The equilibrium point of the directed two-FN system (3.6) is stable. FN model A

is saturated, resting at a higher voltage, and FN model B is quiescent, so phase

locking and MMOs are not possible. Refer to Section 9.5.2 for details.

(3) The equilibrium point of the directed two-FN system (3.6) is a saddle. FN model

A is saturated and FN model B is firing. After a transient, this is analogous to a

single firing FN model (B) with a constant external input (A, saturated), which

has one fast and one slow variable so MMOs are not possible. Refer to Section

9.5.2, particularly Proposition 9.5.4, for details.

(4) The equilibrium point of the directed two-FN system (3.6) is stable. FN models

A and B are both saturated, so phase locking and MMOs are not possible. Refer

to Section 9.5.2 for details.

(5) The equilibrium point of the directed two-FN system 3.6 is a saddle. FN model

A is firing and FN model B is phase locked with A. Canard-driven MMOs are

not possible because there are no stable folded nodes in the desingularized system

(3.7) for the parameter ranges in this region of I-γ space. Refer to Section 9.5.3

for details.

(6) The equilibrium point of the directed two-FN system (3.6) is a saddle. FN model

A is firing. Canard-driven MMOs are possible because there is a stable folded

node in the desingularized system 3.7. Phase locking is also possible. Refer to

Section 9.5.4 for details. The curve I∗∗ is calculated numerically as the point
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where the eigenvalues of the stable folded singularity transition from complex

(left of I∗∗) to real (right of I∗∗).

(7) The equilibrium point of the directed two-FN system (3.6) is unstable. FN models

A and B are both firing and are phase locked. Canard-driven MMOs are not

possible because there are no stable folded nodes in the desingularized system

(3.7) for the parameter ranges in this region of I-γ space. Refer to Section 9.5.4

for details.

(8) The equilibrium point of the directed two-FN system (3.6) is a saddle. FN model

A is firing and FN model B exhibits various behavior according to the values

of I and γ chosen. Canard-driven MMOs are not possible because there are no

stable folded nodes in the desingularized system (3.7) for the parameter ranges in

this region of I-γ space. However, MMOs are observed in numerical simulation,

for example in Figure 3.1(b). Determining the generating mechanism for MMOs

in this region is a compelling direction for further investigation because the low

coupling regime is biologically relevant.

3.4 Directed trees of FN models

The results from the directed two-FN system can be extended to directed trees of

FN models with the same intrinsic model parameters and differing external inputs.

The Jacobian of a directed tree has a lower block triangular structure. As a result,

the eigenvalues of the blocks on the diagonal will determine local stability of the

equilibrium point. From this, the parameter values where Hopf bifurcations occur

can be determined. As in the directed two-FN system, when two or more FN models

are firing, they are phase locked due to the identical ε. Thus, the parameters for the

Hopf bifurcations are also sufficient conditions for phase locking. Refer to Chapter 9

for details, including Figure 9.10 for an example simulation.
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Chapter 4

Phase Locking in Excitatory -

Inhibitory Networks

The work presented in Chapters 2 - 3 relies on the assumption that connections

between model neurons follow a linear gap junction coupling γij(xj − xi), where i

is the model neuron under consideration, j is summed over all its neighbors, and

γij > 0 is the strength of coupling between model neurons i and j. In this chapter,

we consider inhibitory coupling in addition to the excitatory coupling – this broadens

our understanding of synchronization and phase locking in model neuronal systems.

In this chapter, we consider networks of FN model neurons with linear gap junction

coupling, but remove the restriction that γij > 0, which allows for inhibitory coupling.

Our goal is to analyze the dynamics of a network of two unidirectionally coupled FN

model neurons for different parameter values of the external input to the first FN

model, I, and the coupling from the first FN model to the second, γ. In Section

4.1, as in Chapter 3, we study the stability properties of equilibrium points of the

desingularized system. We classify the regions of parameter space where canards and

MMOs may exist for γ < 0 and provide a numerical example. We carefully study

the bifurcation structure of the desingularized system as γ crosses 0 and interpret the
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changes that are exhibited in Section 4.2. A degenerate Hopf bifurcation characterizes

the transition for certain folded singularities under conditions on the external input

I. Finally, in Section 4.3, we use a numerical example to explore a directed tree of

FN model neurons with both excitatory and inhibitory linear gap junction coupling.

4.1 Two-FN system with inhibitory electrical cou-

pling

We consider the two-FN system (3.6) with γ ∈ R and all other parameter ranges as

in Assumption 3.0.1 when γ > 0. For γ < 0 there are regions of the I-γ parameter

space where canards and MMOs exist. We describe conditions for which MMOs may

be present when γ < 0.

The desingularization of the reduced two-FN system is given by (3.7):

dyA
dτ2

= −(1− y2
B − γ)

yA − b(yA − y3
A

3
− a+ I

) ,

dyB
dτ2

= γ

yA − b(yA − y3
A

3
− a+ I

)
− (1− y2

A)

yB − b(yB − y3
B

3
− a+ γ(yA − yB)

) .

(4.1)

In Section 9.4.2, we solve for the equilibrium values and stability properties of

the ordinary and folded singularities in the desingularized system (4.1) as a function

of I and γ. The folded singularities are found using the same process for γ < 0.

Assumption 3.0.1 guarantees a unique ordinary singularity for γ > 0, but there are

regions of the I-γ parameter space for γ < 0 where there are three ordinary singu-

larities. The conditions for the ordinary singularities are identical to those that give
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the equilibrium points of the original system (3.6):

0 = yA∗ − b

(
yA∗ −

y3
A∗
3
− a+ I

)
, (4.2a)

0 = yB∗ − b

(
yB∗ −

y3
B∗
3
− a+ γ(yA∗ − yB∗)

)
. (4.2b)

The process of determining the number of ordinary singularities is analogous to the

process for determining the number of folded singularities in Section 9.4.2. The

conditions on a, b, and I follow Assumption 3.0.1, so there is one solution to Equation

(4.2a). Equation 4.2b can be written as a cubic equation

β3y
3
B∗ + β2y

2
B∗ + β1yB∗ + β0 = 0, (4.3)

where β0 = ba− bγyA∗, β1 = 1− b+ bγ, β2 = 0, and β3 = b
3
.

As in Section 9.4.2, the solutions of (4.3) for yB∗ as a function of γ and I are given

by

yA∗,k = − 1

3β3

(
β2 + Ck +

β2
2 − 3β1β3

Ck

)
,

where, for k = 1, 2, 3,

Ck =

(√
−3− 1

2

)k−1(
σ −

√
−27β2

3∆

2

)1/3

,

∆ = 18β3β2β1β0 − 4β0β
3
2 + β2

2β
2
1 − 4β3β

3
1 − 27β2

3β
2
0 ,

σ = 2β2
2 − 9β3β2β1 + 27β2

3β0.

If ∆ > 0, there are three real solutions (three ordinary singularities), and, if ∆ < 0,

there is one real solution (one ordinary singularity). When γ > 0, ∆ < 0 ∀ I. When
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γ < 0, there are regions of I-γ parameter space where ∆ > 0 and there are three

ordinary singularities.

The signs of the real parts of the eigenvalues of the three ordinary singularities

in the desingularized system (4.1) are plotted as a function of I and γ in Figure

4.1. In regions where there are three ordinary singularities, we do not describe the

dynamics of A and B here. In regions where there is only one ordinary singularity,

the dynamics are described in the following. When A and B are both quiescent or

saturated, there is only one ordinary singularity and it is an unstable equilibrium in

the desingularized system (4.1) with positive real parts of both eigenvalues, which

corresponds to a stable equilibrium in the full system (2.10). The regions where A

and B are both quiescent or saturated are I < I0A and I > I1A, which correspond to

the quiescent and saturated regions for A. In regions where there is only one ordinary

singularity A is firing, and B may or may not be firing, I0A < I < IIA, the ordinary

singularity is a saddle in the desingularized system (4.1) and the full system (2.10).

Figure 4.1: Regions in the I-γ parameter space distinguishing local stability of the
three ordinary singularities in the desingularized system (4.1). Each plot corresponds
to one of the three ordinary singularities. In white regions, the ordinary singularity
does not exist. In dark gray regions, the ordinary singularity is unstable. In light
gray regions, the ordinary singularity is a saddle. In light blue regions, the ordinary
singularity is stable. The Hopf bifurcations and distinguishing features of the original
two-FN system (3.6), the boundaries in Figure 9.3, are plotted for comparison as five
curves.

The equilibrium values and stability properties of all six folded singularities de-

tailed in Section 9.4.2 can be extended to γ < 0. Figure 4.2 depicts regions in I-γ

parameter space according to the local stability of the folded singularities. The white
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regions in Figure 4.2 correspond to values of I and γ where the given folded singu-

larity does not exist in the desingularized system (4.1) (i.e. ∆ < 0). In dark gray

regions, the folded singularity is unstable. In light gray regions, the folded singularity

is a saddle. In light blue regions, the folded singularity is stable.

The two folded singularities in the bottom row of Figure 4.2 exhibit no changes

in stability as γ changes from positive to negative. Two of the folded singularities

yB∗ =
√

1− γ persist as folded saddles as γ crosses zero, except for I < I0A for

the first (top row, right) and I > I1A for the second (middle row, right). Two of

the folded singularities yB∗ =
√

1− γ exhibit the reverse – the first (top row, left)

changes stability for I > I0A and the second (middle row, left) changes stability for

I < I1A. These changes in stability as γ crosses zero are a feature we explore further

in Section 4.2.

When the folded singularity is stable, it is either a stable folded node or a sta-

ble folded focus. Figure 4.3 depicts the regions of I-γ parameter space where the

eigenvalues of each folded singularity are real.

Thus, the regions where robust families of canards could exist for γ < 0 are

the light blue regions that overlap between Figure 4.2 and Figure 4.3. This can be

further refined by the condition that there be an ordinary singularity that is a saddle

to ensure the return mechanism to the stable folded node that allows for MMOs to

exist. Figure 4.4 depicts examples of small amplitude oscillations (SAOs) and MMOs

for values of I and γ in regimes where stable folded singularities exist and there is a

single ordinary singularity that is a saddle. The shape of the SAOs differ from the

shape of the SAOs when γ > 0, as seen by comparing Figure 4.4 with Figure 3.1.

We check whether the eigenvalues of the singularities have an imaginary compo-

nent for all six folded singularities and find that all stable folded singularities in the

γ < 0 regime are foci. The lack of stable folded nodes should indicate a lack of robust

families of canard solutions in the full system, but both canard-like SAOs and MMO
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Figure 4.2: Regions in the I-γ parameter space distinguishing local stability of the
three folded singularities corresponding to yB∗ = −

√
1− γ (top, middle, and bottom

plots on the left) and the three folded singularities corresponding to yB∗ =
√

1− γ
(top, middle, and bottom plots on the right). This is modified from Figure 9.6 to
include negative values for γ. In white regions, the folded singularity does not exist.
In dark gray regions, the folded singularity is unstable. In light gray regions, the
folded singularity is a saddle. In light blue regions, the folded singularity is stable.

are present for γ < 0 as seen in Figure 4.4. We also ran simulations for a range of

values of I and γ < 0 for which there are no stable folded nodes and observed both

canard-like SAOs and MMOs. These results warrant further investigation.

4.2 Bifurcations at γ = 0

In this section, we look at the transition between positive and negative γ in the

desingularized two-FN system (4.1). We highlight degenerate Hopf bifurcations that

occur at γ = 0 and are the mechanism for the transitions in stability for the folded
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Figure 4.3: Regions in the I-γ parameter space distinguishing existence of imaginary
parts of the eigenvalues for the three folded singularities corresponding to yB∗ =
−
√

1− γ (top, middle, and bottom plots on the left) and the three folded singularities
corresponding to yB∗ =

√
1− γ (top, middle, and bottom plots on the right). In

white regions, the folded singularity does not exist. In dark gray regions, the folded
singularity has imaginary or complex eigenvalues. In light blue regions, the folded
singularity has real eigenvalues.

Figure 4.4: Examples of canard-like SAOs (left) and MMOs (right) in the two-FN
system with negative coupling γ < 0. Parameters used in the simulation are I = 1,
γ = −0.04 (left) and I = 0.7, γ = −0.09 (right). In both plots, the light purple trace
is the voltage of FN model A, while the dark trace is the voltage of FN model B.
The small oscillations in both panels are canards.
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singularities at γ = 0 depicted in Figure 4.2. Conditions for the existence and stability

of degenerate Hopf bifurcations are provided for each folded singularity in terms of I.

At γ = 0, there is one ordinary singularity. It does not change stability, as seen

in Figure 4.2. Two of the six folded singularities have large values for yA∗ and do not

experience stability changes across I-γ parameter space. The other four are (−1,−1),

(−1, 1), (1,−1), and (1, 1), i.e., y2
A∗ − 1 = 0 and y2

B∗ − 1 = 0 for these four folded

singularities. Here, we detail the bifurcations at γ = 0 for the desingularized two-

FN system. We begin with definitions of Hopf bifurcations and the coefficients used

to determine type of Hopf bifurcations. The normal form for a Hopf bifurcation is

described in [28], which we quote in the following.

The dynamics at a Hopf bifurcation at the origin of a two-dimensional

system can be written as

 dx1

dt
dx2

dt

 =

 0 −ω

ω 0


 x1

x2

+

 F (x1, x2)

G(x1, x2)

 , (4.4)

such that F and G satisfy F (0, 0) = G(0, 0) = 0 and DxF (0, 0) =

DxG(0, 0) = 0 where DxF is the Jacobian of F with respect to x and

x = (x1, x2)>.

Definition 4.2.1 (First Lyapunov coefficient [28,53,57]). Consider the system (4.4).

The coefficient of the cubic term of the Taylor expansion of the RHS of (4.4) is

expressed as

α =
1

16
(Fx1x1x1 + Fx1x2x2 +Gx1x1x2 +Gx2x2x2)

∣∣∣∣
(0,0)

+
1

16ω
(Fx1x2(Fx1x1 + Fx2x2)−Gx1x2(Gx1x1 +Gx2x2)

− Fx1x1Gx1x1 + Fx2x2Gx2x2)

∣∣∣∣
(0,0)

, (4.5)

49



where Fx1x2 denotes
∂2F

∂x1∂x2

, and so on.

Proposition 4.2.2 (Theorem 3.4.2 (modified) [53], [28]). The system ẋ = f(x, µ),

admits a Hopf bifurcation for the parameter value µ = µ0 at an equilibrium point

x = 0 if

1. Dxf(0, µ0) has a pair of pure imaginary eigenvalues and no other eigenvalues

with zero real parts.

2.
∂

∂µ
<(λ(µ))

∣∣∣∣
µ=µ0

6= 0, where <(λ) denotes the real part of the eigenvalue λ.

3. The cubic coefficient of the Taylor expansion of f , denoted by α and defined in

Definition 4.2.1, is nonzero.

Furthermore, if α < 0, the Hopf bifurcation is supercritical, while, if α > 0, the Hopf

bifurcation is subcritical.

For details of the proof, refer to Chapter 9.

Definition 4.2.3 (Second Lyapunov coefficient when α = 0 [73]). Consider the sys-

tem (4.4), where the first and second conditions of Proposition 4.2.2 are satisfied

and the first Lyapunov coefficient α is zero. The second Lyapunov coefficient β is

expressed as

β =
1

12ω
Re(g32) +

1

12ω2
Im

[
g20ḡ31 − g11 (4g31 + 3ḡ22)− 1

3
g02 (g40 + ḡ13)− g30g12

]

+
1

12ω3

Re

g20

(
ḡ11(3g12 − ḡ30) + g02

(
ḡ12 −

1

3
g30

)
+

1

3
ḡ02g03

)

+g11

(
ḡ02

(
5

3
ḡ30 + 3g12

)
+

1

3
g02ḡ03 − 4g11g30

) 3Im (g20g11) Im(g21)


+

1

12ω4

{
Im
[
g11ḡ02

(
ḡ2

20 − 3ḡ20g11 − 4g2
11

)]
+ Im (g20g11)

[
3Re(g20g11)− 2|g02|2

]}
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where gij = 〈p,Bi+j(s, . . . , s︸ ︷︷ ︸
i

, s̄, . . . , s̄︸ ︷︷ ︸
j

)〉, with

Bi+j(u, . . . , u︸ ︷︷ ︸
i

, w, . . . , w︸ ︷︷ ︸
j

) =
(
u>, . . . , u>

)> ∂i+jF(x, 0)

∂xi+j

∣∣∣∣
x=0


w

...

w

 (4.6)

Here, F = (F,G)>, s is an eigenvector of A that corresponds to an eigenvalue iω,

and p is an eigenvector of A> that corresponds to eigenvalue −iω.

Definition 4.2.4 (Degenerate Hopf bifurcation). Consider the conditions for a Hopf

bifurcation given in Proposition 4.2.2 and let the first condition be satisfied. If ei-

ther of the second or third conditions are not satisfied, the bifurcation is a degenerate

Hopf bifurcation. If the first and second conditions are satisfied but the third is not,

we call the resulting bifurcation a degenerate Hopf bifurcation Type I. If the first

and third conditions are satisfied but the second is not, we call the resulting bifurca-

tion a degenerate Hopf bifurcation Type II. Furthermore, if β < 0, the degenerate

Hopf bifurcation is supercritical, while, if β > 0, the degenerate Hopf bifurcation is

subcritical. Further classification of the bifurcation structure near degenerate Hopf

bifurcations as a function of the bifurcation parameter can be found in [50].

Degenerate Hopf bifurcations have been studied in the Hodgkin-Huxley model

neuron [74] and the FitzHugh-Nagumo model neuron when parameters a, b, I, and

ε are treated as bifurcation parameters [106]. In the following Proposition, we give

conditions for degenerate Hopf bifurcations in terms of I for each of the four folded

singularities at y2
A∗ = 1 and y2

B∗ = 1.

Proposition 4.2.5. Consider the desingularized two-FN system (4.1) and Assump-

tion 3.0.1. Then, for any fixed I > 0, two degenerate Hopf bifurcations occur at γ = 0

as follows
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1. For I < I0A, the degenerate Hopf bifurcations occur at the folded singularities

(−1, 1) and (1,−1),

2. For I ∈ (I0A, I1A), the degenerate Hopf bifurcations occur at the folded singu-

larities (−1,−1) and (1,−1),

3. For I > I1A, the degenerate Hopf bifurcations occur at the folded singularities

(−1,−1) and (1, 1),

where I0A = −1
b

+
2

3
+ a, and I1A = 1

b
− 1

3
+ a.

Proof. When γ = 0, the first condition of Proposition 4.2.2 is satisfied. We check the

second and third conditions.

We begin by transforming the system (4.1) to the origin. Letting y0A = yA − yA∗
and y0B = yB − yB∗, we obtain the equations

dy0A
dτ2

= −
(

1− (y0B + yB∗)
2 − γ

)y0A + yA∗ − b

(
y0A + yA∗ −

(y0A + yA∗)
3

3
− a+ I

) ,

dy0B
dτ2

= γ

y0A + yA∗ − b

(
y0A + yA∗ −

(y0A + yA∗)
3

3
− a+ I

)− (1− (y0A + yA∗)
2) (4.7)

·

y0B + yB∗ − b

(
y0B + yB∗ −

(y0B + yB∗)
3

3
− a+ γ(y0A + yA∗ − (y0B + yB∗))

) .

At the bifurcation point, γ = 0, the value of the equilibrium points of the desingu-

larized system can be solved from the relations y2
B∗ − 1 = 0 and y2

A∗ − 1 = 0.

First, we check the transversality condition (Proposition 4.2.2, (2)) by showing

that the eigenvalues of the Jacobian evaluated at (y0A, y0B) = (0, 0) cross the imag-

inary axis with non-zero speed as γ is changed. We do this by taking the partial

derivative of the trace of Dyρ(0, 0), where ρ is the right hand side of (4.1), with

respect to γ and evaluating at γ = 0. If that is nonzero, then the real parts of the

eigenvalues are nonzero and the transversality condition is satisfied. The Jacobian of
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(4.1) is

Dyρ(0, 0) =

 −(1− y2
B∗ − γ)(1− b+ by2

A∗) 2yB∗ (yA∗ − bzA∗)

γ + 2yA∗ (yB∗ − bzB∗) −(1− y2
A∗)(1− b(1− y2

B∗ − γ))

 ,

with trace

Tr(Dyρ(0, 0)) = −
(
1− y2

B∗ − γ
)

(1− b+ by2
A∗)− (1− y2

A∗)(1− b(1− y2
B∗ − γ)).

The derivative of the trace of Dyρ(0, 0) is given by

∂

∂γ
Tr(Dyρ(0, 0)) =

(
2yB∗

∂yB∗
∂γ

+ 1

)
(1− b+ by2

A∗) +

(
2yA∗

∂yA∗
∂γ

)
(1− 2b(1− y2

B∗ − γ))

+ (1− y2
A∗)

(
2byB∗

∂yB∗
∂γ

+ b

)
.

Evaluating at γ = 0 and applying the relations y2
B∗ − 1 = 0 and y2

A∗ − 1 = 0 we

obtain

∂

∂γ
Tr(Dyρ(0, 0))

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

=

(
2yB∗

∂yB∗
∂γ

+ 1

)
+ 2yA∗

∂yA∗
∂γ

.

The values of the partial derivatives of the equilibrium points with respect to γ

are

∂yA∗
∂γ

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

= −
yA∗ − b

(
yA∗ −

y3
A∗
3
− a+ I

)

2yA∗

yB∗ − b(yB∗ − y3
B∗
3
− a

) ,
∂yB∗
∂γ

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

= ∓1

2
.
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Substituting these to the expression we obtain for the partial derivative of the

trace with respect to γ

∂

∂γ
Tr(Dyρ(0, 0))

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

= −
yA∗ − b

(
yA∗ −

y3
A∗
3
− a+ I

)
yB∗ − b(yB∗ − y3

B∗
3
− a

) .

We check the conditions where this is equal to zero, which gives values of the system

parameters where the transversality condition is not satisfied:

0 = yA∗ − b

(
yA∗ −

y3
A∗
3
− a+ I

)
. (4.8)

For all other values of I, the second condition of Proposition 4.2.2 is satisfied.

Next, we transform the system into the form given by (4.4) by finding a change

of coordinates that results in a matrix with the imaginary parts of the eigenvalues

in the off-diagonal entries. The Jacobian of (4.1) evaluated at the equilibrium (0, 0),

γ = 0, and y2
A∗ = y2

B∗ = 1 is

Dyρ(0, 0)

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

=

 0 2yB∗r

2yA∗q 0

 , (4.9)

where r = yA∗ − b
(
yA∗ −

y3A∗
3
− a+ I

)
and q = yB∗ − b

(
yB∗ −

y3B∗
3
− a
)

. The con-

ditions a ∈ (0, 1) and b ∈ (0, 1) that arise from Assumption 3.0.1 give q > 0, ∀ yB∗.

The sign of r in terms of I for the four folded singularities of interest is shown in

Table 4.1. The eigenvalues of the matrix (4.9) are given by λ = ±2
√
yA∗yB∗qr. When

yA∗yB∗qr < 0, the eigenvalues are purely imaginary and ω = 2
√
−yA∗yB∗qr. Con-

ditions for when the eigenvalues are purely imaginary as a function of I are given

in Table 4.1. When the eigenvalues are purely imaginary, ω2 = −4yA∗yB∗qr. The
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Table 4.1: Type of folded singularity for γ = 0 in the desingularized two-FN system as
a function of I. The upper table depicts the computational steps to finding the values
of the eigenvalues and the resulting type of equilibrium as a function of I. The top
row denotes the folded singularity, the second row shows the value of yA∗ multiplied
by yB∗ at that folded singularity, the third row shows the sign of q multiplied by r as
a function of I, and the fourth row shows the type of folded singularity. The lower
table depicts the type of folded singularity for the three regimes of I. In each entry
of the right column, the lower left corresponds to the type of folded singularity for
(−1,−1), the lower right corresponds to the type of folded singularity for (1,−1), the
upper right corresponds to the type of folded singularity for (1, 1), and the upper left
corresponds to the type of folded singularity for (−1, 1).

(yA∗, yB∗) (−1,−1) (+1,−1) (−1,+1) (1, 1)

yA∗yB∗ +1 −1 −1 +1

Sign(qr)
I > I0A I < I0A

< 0 > 0

I > I1A I < I1A

< 0 > 0

I > I0A I < I0A

< 0 > 0

I > I1A I < I1A

< 0 > 0

Type Center Saddle Saddle Center Saddle Center Center Saddle

I < I0A
Center Saddle

Saddle Center

I0A < I < I1A
Saddle Saddle

Center Center

I > I1A
Saddle Center

Center Saddle

corresponding eigenvectors are v1,2 = (±ic, 1)>, where c = 2yB∗r
ω

. We let

T =

 0 c

1 0

 , which gives T−1 =

 0 1

1
c

0

 .

Then, we have the desired relation

T−1Dyρ(0, 0)

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

T =

 0 −ω

ω 0

 ,
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and the transformation η = T−1(y0A, y0B)> gives us the relation

dη

dt
= T−1Dyρ(0, 0)

∣∣∣∣ γ=0
y2A∗=1

y2B∗=1

Tη + T−1h(Tη).

The function h(x) can be found by considering the nonlinear terms in (4.7) at

γ = 0. Solving for the nonlinear terms, we obtain

 h1(y0A, y0B)

h2(y0A, y0B)

 =




y20B

y0A + yA∗ − b

(
y0A + yA∗ −

(y0A + yA∗)
3

3
− a+ I

)
+2y0ByB∗

y0A − b(y0A − y30A
3
− y20AyA∗ − y0Ay2A∗

)


y20A

y0B + yB∗ − b

(
y0B + yB∗ −

(y0B + yB∗)
3

3
− a

)
+2y0AyA∗

y0B − b(y0B − y30B
3
− y20ByB∗ − y0By2B∗

)





.

The nonlinear terms, T−1h(Tη) are

 F (η1, η2)

G(η1, η2)

 =


h2

 cη2

η1


1

c
h1

 cη2

η1




.

This gives us

 F (η1, η2)

G(η1, η2)

 =




c2η22

η1 + yB∗ − b

(
η1 + yB∗ −

(η1 + yB∗)
3

3
− a

)
+2cη2yA∗

η1 − b(η1 − η31
3
− η21yB∗ − η1y2B∗

)


1

c
η21

cη2 + yA∗ − b

(
cη2 + yA∗ −

(cη2 + yA∗)
3

3
− a+ I

)
+

1

c
2η1yB∗

cη2 − b(cη2 − c3η32
3
− c2η22yA∗ − cη2y2A∗

)





.

56



The nonlinear functions satisfy F (0, 0) = G(0, 0) = 0. Taking derivatives, the

nonlinear functions also satisfy DηF (0, 0) = DηG(0, 0) = 0. To compute the stability

of the limit cycles resulting from the Hopf bifurcation, we check the sign of the cubic

coefficient, α, given in Definition 4.2.1. To find α, we begin by computing the partial

derivatives of F and G, which are given in Appendix A.1. The value of α as a function

of I is computed from these derivatives in Appendix A.2. When γ = 0 and the first

two conditions of Proposition 4.2.2 are satisfied, α = 0 for all values of I at all four

folded singularities. Thus, the third condition of Proposition 4.2.2 is not satisfied and

the bifrucation is a degenerate Hopf bifurcation Type I.

To obtain information about the stability of the limit cycles originating from the

Hopf bifurcation, we calculate the second Lyapunov coefficient in Appendix A.3 using

the method described in Definition 4.2.3. Table 4.2 compiles the information from

this calculation. Figure 4.5 shows the sign of the second Lyapunov coefficient as

calculated in Appendix A.3.

Table 4.2: Type of degenerate Hopf bifurcation for γ = 0 in the desingularized two-
FN system as a function of I. Each of the four fixed points that satisfy y2

A∗ = 1 and
y2
B∗ = 1 is shown. I∗− and I∗+ are the points where β = 0 found in Appendix A.3.

(yA∗, yB∗) (−1,−1) (+1,−1) (−1,+1) (+1,+1)

I < I0A none subcritical supercritical none

I0A < I < I∗− supercritical subcritical none none

I∗− < I < I∗+ subcritical subcritical none none

I∗+ < I < I1A subcritical supercritical none none

I1A < I subcritical none none supercritical

Remark 4.2.6. The values of I where the transversality conditions are not satis-

fied according to (4.8) are equivalent to I0A and I1A evaluated at yA∗ = 1. These
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Figure 4.5: Sign of the second Lyapunov coefficient β as a function of I for four
folded singularities at γ = 0. In this figure, a = 0.875 and b = 0.8. The (yA∗, yB∗)
value of the folded singularity is given in parentheses. Red indicates that β > 0, so
the degenerate Hopf bifurcation is subcritical, and green indicates that β > 0, so the
degenerate Hopf bifurcation is supercritical.

correspond to the Hopf bifurcations as a function of I in the full system (3.6) and

degenerate Hopf bifurcations of Type II in the desingularized system.

Remark 4.2.7. When γ = 0 and the conditions for the degenerate Hopf bifurcations

are met, the stability of the small limit cycles emerging from the degenerate Hopf

bifurcation for a small range of γ around γ = 0 can be determined by the second

Lyapunov coefficient β. Further work is required to determine whether one or more

saddle node of limit cycles bifurcations and subsequent changes in stability are present.

A thorough classification of degenerate Hopf bifurcations can be found in [50].

When γ < 0, there are two distinct differences from γ > 0 that we detailed in

Section 4.1. First, for parameter values that satisfy Assumption 3.0.1 for γ > 0, there

are regions of I-γ parameter space for γ < 0 that have three equilibrium points for

system (3.6). It would be useful to find conditions on a, b, and ε such that there is a

single equilibrium point for all values of I and γ considered. Second, while canards
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and MMOs are exhibited in simulation, there are no stable folded nodes when γ < 0,

which are a necessary condition for the robust families of canards that form the small

oscillations in MMOs. This may be indicative of a different generating mechanism

for MMOs and needs further study.

The transition between excitatory (γ > 0) and inhibitory (γ < 0) coupling is

characterized by degenerate Hopf bifurcations in the desingularized system and no

change to the single equilibrium point of the full system. A generalized Hopf bifurca-

tion in the full system is a known generating mechanism for MMOs [25,52]. Further

investigation is needed to determine whether the degenerate Hopf bifurcations in the

desingularized system generate the MMOs present in the inhibitory directed two-FN

system.

4.3 Numerical example

In this section, we provide a numerical example of a directed tree of FN models with

both excitatory and inhibitory coupling. As described in Section 9.6, a directed tree

is composed of distinct directed chains that can be analyzed independently.

In Figure 4.6, we illustrate with the directed chain that starts with the light orange

FN model and is directed to the right to the cyan FN model. The structure and inputs

to the chain are the same as that illustrated in Section 9.6 but the coupling weights are

different. The first FN model (light orange) receives an input I = 1.2, which ensures

that it is firing. The coupling strength from the first FN model to the second FN

model (dark orange) with input I = 0.4 is −γ, where γ = 0.4. This combination of

coupling strength of inputs ensures that the second FN model is firing. The coupling

strength to the third FN model (dark cyan) with zero input is −0.2γ. In this case,

MMOs induced by canards are exhibited. The input to the fourth FN model (cyan)

is an MMO. The strong positive coupling from the third FN model to the fourth FN
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model, γ = 0.4, ensures the frequency of spiking in the fourth FN model is the same

as the frequency of the third FN model.

The graph structure and inputs in this simulation is the same as the example

presented in Section 9.6, but the different coupling strengths illustrate similarities

and differences in firing patterns in the presence of inhibitory coupling. The main

similarity we highlight here is the presence of canards and MMOs for low strength

excitatory and inhibitory coupling. A crucial difference between the excitatory and

inhibitory regimes is the offset in spike timing. The following assumes the FN models

in a chain are firing. When the coupling is excitatory (γ > 0), the spikes of consecutive

FN models in the chain occur close to one another in time. As the magnitude of γ is

increased, the timing of spikes grows increasingly similar. This is depicted in Figure

9.10. When the coupling is inhibitory, (γ < 0), the spikes of consecutive FN models in

the chain are phase locked but are out of phase. As the magnitude of γ is increased,

the spike of the n + 1th FN model aligns with the point where the nth FN model

repolarizes. This is depicted in the first two FN models in Figure 4.3. When there

are multiple FN models with MMOs and the large oscillations of one occur during

the SAOs of another, the resulting behavior is called “leap-frogging.” Leap-frogging

oscillations have been observed in FN models with inhibitory coupling [42].
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Figure 4.6: Numerical simulation of a directed tree graph of FN model neurons with
heterogeneous external inputs. The directed tree is the same as the network from
Figure 9.10, but incorporates both excitatory (γ > 0) and inhibitory (γ < 0) cou-
pling strengths. Panel (a) depicts a directed tree graph of FN model neurons with
heterogeneous external inputs Ii and edge weights as shown, where γ = 0.4. A repre-
sentative chain is selected and indicated by vertices with colors matching simulation
results, which are shown in panel (b).
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Chapter 5

Final Remarks∗

In this dissertation, we derived novel bounds for synchronization in arbitrary networks

of heterogeneous nonlinear systems in terms of the network structure and examined

the dynamics of coupled model neurons. We implemented nonsmooth Lyapunov

functions to compute sufficient conditions for cluster synchronization in networks of

heterogeneous nonlinear systems coupled through linear gap junctions. These bounds

represent an improvement over the synchronization bounds previously reported in the

literature and incorporate two key types of heterogeneity: (1) differences in model

parameters and (2) arbitrary network structure. Reductions of cluster synchronized

networks motivated the detailed analysis of a network of two FitzHugh-Nagumo model

neurons with heterogeneous parameters and unidirectional coupling. We found neces-

sary conditions for canards and MMOs for excitatory coupling and used the resulting

bounds to draw conclusions about phase locking in directed trees of FN models. We

showed that canard-driven MMOs do not exist for the inhibitory directed two-FN

system. However, we observed MMOs in numerical simulation and will investigate

the generating mechanism in future work.

∗Some material from the Conclusion sections of [28, 29] appears in this chapter; the first two
paragraphs of Section 5.2 are verbatim.
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The bounds for synchronization and detailed bifurcation analysis of the two-FN

system presented here are an excellent starting point for further investigation into

the onset of firing and synchronization in systems of model neurons. In this section,

we detail potential directions of future investigation into further improvement and

extension of the synchronization conditions presented in Chapter 2. We go on to

discuss extensions of the conditions on canards and MMOs presented in Chapter 3

to diverse network structures and heterogeneous nodal dynamics. Finally, the results

presented in Chapter 4 form an exciting first step toward further inquiry into the

dynamics of networks with both excitatory and inhibitory coupling.

5.1 Improvement and generalization of synchro-

nization conditions

In Chapter 2, we improved upon existing sufficient conditions for synchronization by

implementing a nonsmooth Lyapunov function which had been previously used to

find tight bounds for synchronization in a complete graph of identical systems [19].

Sufficient conditions for synchronization in systems with nonlinear coupling, time

delays, and heterogeneous intrinsic nodal dynamics have been found using quadratic

Lyapunov and contraction analyses in [21, 65, 80]. We expect that such bounds may

also be improved by implementing nonsmooth Lyapunov functions or a contraction

based approach that takes clusters into consideration [4]. A key limitation of the work

presented in Chapter 2 and [4] is the requirement that synchronization be complete.

Systems with both heterogeneous nodal dynamics and asymmetric coupling will not

synchronize according to this definition. More realistic network configurations could

be studied if the complete synchronization requirement were extended. Two possible

extensions are phase synchronization, where clusters have critical features such as

peaks that occur at the same time [13,19,92,130], and approximate synchronization,
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where nodes within a cluster may have dynamics that slightly differ [43, 44, 99, 122].

Finding bounds that address a wider range of coupling types and intrinsic dynamics

is a critical step toward understanding the dynamics of heterogeneous networks of

model neurons.

5.2 Canards and MMOs in systems with arbitrary

network topology and heterogeneous nodal dy-

namics

The following two paragraphs are an excerpt from the conclusion of [28].

Further investigation of the two-FN system is necessary to determine the threshold

between MMOs and canard solutions without MMOs, which have been observed in

simulation. Firing onset has historically been difficult to analyze in the FN model

because MMOs are a direct result of spike threshold accommodation and the threshold

curve in the FN model is not analytically defined [41, 86, 131]. The threshold has

been studied numerically, as well as the chaotic behavior at the boundaries between

types of MMOs, e.g., in [60]. Canards have been shown to play a role in threshold

phenomena in FitzHugh-Nagumo model neurons, Hodgkin-Huxley model neurons,

and a compartmental model of a cerebellar Purkinje cell [68,86,88,139]. An analytical

description of the threshold phenomena involved in the onset of firing in the two-FN

system would add significantly to the literature on canards and MMOs.

Another promising future direction of study includes consideration of more di-

verse graph structures, e.g. loops within the graph, and a more detailed analysis of

the MMOs in these systems. General results have been found for finite dimensional

fast-slow systems, which could be applied in this context [138]. More complex graph

structures could be built from a set of motifs that are well understood: the unidi-
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rectional two-FN model presented in Chapter 3, a bidirectional two-FN system with

heterogeneous coupling strengths, and larger chains and loops that extend from these

cases. With these building blocks in place, it would be possible to prove conditions

for MMO and phase locking in a diverse class of networks.

Figure 5.1: Isospike diagram for the spike ratio of FN model B to FN model A as a
function of γ and the timescale parameter, ε, in the two-FN system. The dark blue
on the lower right indicates that B never spikes, while the dark red on the upper left
indicates that B spikes exactly once for every input spike from A. There are discrete
steps between each type of MMO with chaotic dynamics at the boundaries.

Heterogeneous intrinsic model parameters and different types of coupling have not

yet been incorporated into the analysis of MMOs and phase locking in Chapter 3.

Changing ε changes the frequency of oscillation and the timescale of the FN model,

so a network of FN models with differing values of ε would be a compelling system

for exploring canard phenomena in three or more distinct timescales. Figure 5.1

shows how the regimes where MMOs are found vary as a function of both γ and ε.

Heterogeneous ε parameters result in differing dynamics even given similar inputs and

coupling. Exploring the effects of variation in ε and other model parameters forms a

compelling next direction of research.
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Canards and MMOs have been analytically studied in a variety of neural systems.

In Chapters 3 and 4 we presented conditions for canards and MMOs in coupled FN

models. The role of canards has also been examined in models of cerebellar Purkinje

cells [68], neural field models [9], model dopaminergic neurons [70], among others.

Experimental observations of canards and MMOs have been made in cells of the

entorhinal cortex layer II and III [2, 40] and in mouse spinal motorneurons [62]. De-

velopments in the theory of multiple timescale systems have advanced understanding

of the conditions for existence of canards and mixed mode oscillations in neuronal

models. However, further experimentation is needed to clarify how the analytical re-

sults presented here and in related work correspond to systems of biological neurons.
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Part II

Papers
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Chapter 6

Overview

Part II of this dissertation is comprised of three published papers. Some differences in

formatting may be present between the published versions and the versions presented

here. The following sections outline the structure of this part and designate the

author contributions.

6.1 Outline

Chapter 7 presents a general framework for the use of nonsmooth Lyapunov functions

to find a sufficient condition for synchronization in networks of nonlinear systems

with polynomial dynamics. The condition is applied to networks of identical and

non-identical FN models and is an improvement over previous methods.

Chapter 8 details the use of a contraction based approach to find a sufficient

condition for cluster synchronization in networks of heterogeneous nonlinear systems.

A novel aspect of this approach is use of connections within and between clusters in

the condition. Improvement over the condition for networks of FN models in Chapter

7 is demonstrated.

Chapter 9 consists of a detailed investigation into the dynamics of networks of FN

models. Bifurcation theory and multiple timescale systems theory are leveraged to
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characterize the parameter values for which different dynamic behavior may occur,

including phase locking and mixed mode oscillations.

6.2 Author Contributions

For the papers [29] and [28], I am the lead author and the lead contributor to the

framing of the questions, the literature survey, the development and performance of

the analysis, the discussion, the creation of the numerical illustrations, and the writ-

ing. Early versions of some of the material in [29] have been presented at Princeton

Bioengineering Day 2015, APS March Meeting 2016, and the 54th Annual Allerton

Conference on Communication, Control and Computing (where the conference paper

appeared). Early versions of some of the material in [28] have been presented at SIAM

DS17, APS March Meeting 2018, and Janelia conference on Distributed, Collective

Computation in Biological and Artificial Systems in 2018. My dissertation advisor,

Naomi Ehrich Leonard, advised me on all aspects of this work.

I am grateful to my co-authors, Biswadip Day and Naomi Ehrich Leonard on the

paper [29], and my co-authors Zahra Aminzare, Biswadip Day, and Naomi Ehrich

Leonard on the papers [28] and [4]. In all cases, I discussed ideas and approach with

my co-authors. They also provided valuable guidance, helped check mathematical

results, and contributed to the editing and revision of the papers. Some specific

contributions are described here.

• In Chapter 7, Naomi Ehrich Leonard and Vaibhav Srivastava suggested looking

at synchronization in FitzHugh-Nagumo models. Biswadip Dey suggested also

including a result for a network of general nonlinear systems and helped with

formulation and notation. Naomi Leonard, Biswadip Dey, and I planned the

structure of the paper.
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• In Chapter 8, Zahra Aminzare proposed applying a contraction based approach

to study cluster synchronization based on our conversations about the paper

[29], wrote and proved the main theorem, and described the theory for using

contraction to prove synchronization. Naomi Ehrich Leonard checked the the-

ory and provided valuable guidance on clear and succinct writing. Biswadip

Dey wrote code and performed the numerical simulations. I contributed to

the introduction, conclusions, the application to two types of model neuron,

checking the theory, and editing.

• In Chapter 9, Naomi Ehrich Leonard first suggested I consider the directed

two-FN system and, along with Biswadip Dey, provided feedback and direction

in the early stages of the project. Zahra Aminzare advised me on writing the

propositions and definitions, particularly in Section 9.4, and shared code that I

used to effectively visualize phase planes. Zahra Aminzare, Biswadip Dey, and

I structured the paper, with advice and guidance from Naomi.
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Chapter 7

Synchronization Bound for

Networks of Nonlinear Oscillators∗

Elizabeth N. Davison, Biswadip Dey and Naomi Ehrich Leonard

Investigation of synchronization phenomena in networks of coupled nonlinear os-

cillators plays a pivotal role in understanding the behavior of biological and mechan-

ical systems with oscillatory properties. We derive a general sufficient condition for

synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov

function, and we obtain conditions under which synchronization is guaranteed for a

network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model param-

eter regimes. We incorporate two types of heterogeneity into our study of FN oscil-

lators: 1) the network structure is arbitrary and 2) the oscillators have non-identical

external inputs. Understanding the effects of heterogeneities on synchronization of

oscillators with inputs provides a promising step toward control of key aspects of

networked oscillatory systems.

∗This chapter appears in the paper Davison, Dey, and Leonard (2016) [29].
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7.1 Introduction

Synchronization phenomena in networks of nonlinear oscillators have critical impli-

cations in biology, communications, computer science, power networks, and diverse

other disciplines. In biological neuronal networks, synchronization can be beneficial,

allowing for production of complex behavior, or detrimental, causing disorders such

as Parkinson’s disease [75] and epilepsy [22]. Understanding the principles underlying

synchronization and related behavior in complex interconnected oscillatory systems

is a necessary first step toward effective control for enhancement of desired dynamics

and suppression of undesired dynamics.

Among multiple existing methods for finding necessary and sufficient conditions

to determine stability of synchronization in nonlinear systems, the master stability

function (MSF) approach establishes a necessary condition for synchronization in sys-

tems of oscillators with linear coupling [95]. Complementary sufficient conditions can

be found by leveraging passivity properties of the oscillators [101] or by employing

approaches based on contraction theory [7, 118]. However, the majority of synchro-

nization conditions expressed in terms of a lower bound on network coupling strength

are too loose to accurately describe the emergence of synchronization. Our approach

is to build on the semi-passivity method described in [101, 124] to provide a tighter

bound on the required coupling strength for synchronization in biologically relevant

model parameter regimes.

In this paper, we present a new sufficient condition for synchronization in a net-

work of nonlinear oscillators whose dynamics can be represented by ordinary differ-

ential equations composed of polynomial functions of the state. This class of models

generalizes well-known oscillator models including the Van der Pol oscillator, the

FitzHugh-Nagumo (FN) neuronal model [47, 90], and the Hindmarsh-Rose neuronal

model [58]. We consider dynamics that are strictly semi-passive and use a nons-

mooth Lyapunov function [37] to find a sufficient condition for full synchronization
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in terms of a lower bound on coupling strength in an arbitrary network of oscillators

with identical parameters. We apply this result to compute the bound for a network

FN oscillators with identical external inputs to fully synchronize, and we show it is

a tighter bound than bounds derived from related methods for relevant parameter

regimes.

We then introduce the concepts of input-equivalence [113] and cluster synchro-

nization [12, 121] to extend the nonsmooth Lyapunov analysis to networks of FN

oscillators with non-identical external inputs. We calculate the sufficient condition

for synchronization in clusters in a representative system to illustrate the utility of

the nonsmooth Lyapunov method.

An understanding of how and when synchronization occurs promises to be an

invaluable tool for informing experimental studies of oscillator ensembles and a basis

for examining mechanisms for the emergence of abnormal synchronization.

7.2 Network Model

In this paper, we consider a network of n nonlinear oscillators with identical internal

dynamics, and assume they interact over a connected, undirected graph G. We let

xi ∈ RN denote the state of the i-th node, and we define the underlying dynamics as

ẋi = f(xi) +Bui (7.1)

for i = 1, . . . , n. Each component of f : RN → RN is a polynomial function of the

state of the oscillator. B ∈ RN×1 captures how the social input ui (due to influence

from neighbors) affects the individual states of the i-th node. We assume B to be

a vector of zeros with a one in its first row, thereby implying that the social input
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has a direct impact on only the first variable† of the state xi. The dynamics of an

oscillator may also depend on an external input I i. We examine the influence of

identical and non-identical external inputs in Sections 7.4 and 7.5, respectively, in

the case of Fitzhugh-Nagumo oscillators.

We assume the social input ui provides a linear diffusive coupling between neigh-

bors in the graph G. Let A = [aij] with aij ∈ [0, 1] represent the weighted adjacency

matrix of G. We represent the linear diffusive coupling term ui as

ui =
n∑
j=1

γaij(x
j
1 − xi1), (7.2)

where the parameter γ > 0 is the coupling strength. Next, we define x1 =

[x1
1, x

2
1, . . . , x

n
1 ]T and u = [u1, u2, . . . , un]T to represent the vectors of first variables

of the system states and social inputs, respectively. The diffusive coupling between

individual oscillators becomes

u = −γ(D − A)x1 = −γLx1, (7.3)

where D = diag{d1, d2, . . . , dn}, di =
∑n

j=1 aij, and L = D−A denotes the Laplacian

of the underlying graph.

We restrict our analysis to systems where the dynamics are strictly semi-passive,

which allows us to bound the dynamics of each variable for each oscillator.

Definition 7.2.1 (Strictly Semi-passive). A dynamical system ẋ = f(x) + Bu, y =

Cx, x ∈ RN , u,y ∈ Rm is strictly semi-passive in a region D ⊂ RN if there exists a

nonnegative function V : D → R+ such that D is open, connected and invariant under

the dynamics, V (x) > 0 for x ∈ D \ {0}, V (0) = 0, and V̇ ≤ yTu − H(x), where

H(x) > 0 when ‖x‖ ≥ r with the radius r being dependent on the system parameters.

†In a neuronal oscillator context, the first variable xi1 is typically interpreted as the underlying
membrane potential.
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A strictly semi-passive system behaves like a passive system whenever the system

state is sufficiently away from the origin. As the trajectories of a semi-passive system

eventually return to the ball of radius r around the origin, the trajectories of the

system are ultimately bounded. Furthermore, when a group of n such semi-passive

systems are interconnected by a linear diffusive coupling, the closed-loop system has

ultimately bounded solutions [101,102]. We let {β1, β2, . . . , βN} represent the bounds

on the state variables for individual oscillators.

7.3 Nonsmooth Lyapunov Analysis

In this section, we derive a sufficient condition for synchronization in the class of

systems described in Section 7.2. To do so, we first define the manifold of synchronized

states, and then perform a stability analysis using a nonsmooth Lyapunov approach.

By exploiting the properties of Dini derivatives of the associated nonsmooth Lyapunov

function, our analysis yields the sufficient condition in terms of coupling strength and

network connectivity.

Definition 7.3.1 (Complete synchronization manifold). The complete synchroniza-

tion manifold S is an algebraic manifold in the state space of the full system wherein

the states of individual systems are identical:

S =
{
x1, . . . ,xn ∈ RN |xi = xj, ∀ i, j = 1, . . . , n

}
.

Definition 7.3.2 (Upper Dini derivative [66]). The upper Dini derivative, also called

the upper right hand derivative, of a real valued function v : R→ R is defined as

D+v(t) = lim sup
h→0+

v(t+ h)− v(t)

h
. (7.4)

It provides an upper bound for right hand derivatives of v.
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Theorem 7.3.3. Consider the system described in (7.1) with a linear diffusive cou-

pling on the first variable (7.2). Assume that (7.1) is strictly semi-passive. Then,

whenever the coupling strength γ and the second smallest eigenvalue of the graph

Laplacian λ2(L) (representing network connectivity) satisfy

γλ2(L) >
N∑
k=1

F1k + h1,

and
N∑
k=1

Fjk + hj < 0 ∀j = 2, . . . , N,

the complete synchronization manifold S is globally asymptotically stable, where Fij’s

and hi’s are functions of system parameters.

Proof. Earlier studies [37] have shown the effectiveness of nonsmooth Lyapunov func-

tions in deriving the critical coupling strength for a complete graph of Kuramoto os-

cillators. Due to our interest in deriving a sufficient condition for synchronization in

terms of a tight lower bound on the coupling strength we follow a similar philosophy,

and introduce the following Lyapunov function:

V0(x) =
N∑
k=1

max
i,j=1,...,n

(xik − x
j
k). (7.5)

The Dini derivative of this nonsmooth Lyapunov function can be expressed as

D+V0(x) =
N∑
k=1

ẋmkk − ẋ
lk
k , (7.6)

where mk and lk are defined as

mk = arg max
i=1,...,n

(
xik
)
,

lk = arg min
i=1,...,n

(
xik
)
.
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As the dynamics of individual systems are identical, we can rewrite the Dini derivative

as

D+V0(x) =
(
um1 − ul1

)
+

N∑
k=1

(
fk(x

mk)− fk(xlk)
)
,

where fk : RN → R represents the k-th component of the vector-valued function f .

Let Li ∈ R1×n denote the i-th row of the graph Laplacian L. Then, we have

um1 − ul1 = γ(−Lm1 + Ll1)x1 = (el1 − em1)
>γLx1

where {e1, e2, . . . , en} constitutes the natural basis for Rn. We can further simplify

this expression in terms of the second smallest eigenvalue of the graph Laplacian by

bounding the product Lx1 as

(el − em)>γLx1 ≤ γλ2(L)(el − em)>x1 = γλ2(L)(xl11 − xm1
1 ).

This gives an expression for the derivative in terms of the internal dynamics and

second smallest eigenvalue of the graph Laplacian:

D+V0(x) =
N∑
k=1

(
fk(x

mk)− fk(xlk)
)

+ γλ2(L)(xl11 − xm1
1 ).

Now we perform a change of coordinates, where wk = xmkk − xlkk > 0 for all k.

Then by separating each function into a linear term and a higher order term as

fk(x
mk) = ak · xmk + gk(x

mk),

we have (
fk(x

mk)− fk(xlk)
)

= ak ·w + gk(x
mk)− gk(xlk).
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This allows us to capture the effect of nonlinearities by putting a bound on gk(x
mk)−

gk(x
lk), and bound the Dini derivative as

D+V0(w) ≤ 1 · Fw + 1 · h̃(β1, β2, . . . , βN)w − γλ2(L)w1.

Here, 1 is the vector of all ones, F ∈ RN×N has rows equal to the ak. The nonlin-

ear behavior is captured by an N × N matrix h̃ , diag{h1, h2, . . . , hN}, where the

functions h1, . . . , hN depend on the bounds β1, . . . , βN introduced in Section 7.2.

By construction, each element of w is positive, so we have D+V0(w) ≤ 0 whenever

γλ2(L) >
1

w1

(
1 · Fw + 1 · h̃(β1, β2, . . . , βN)w

)
.

We can write this as N separate conditions:

γλ2(L) >
N∑
k=1

F1k + h1 (7.7)

N∑
k=1

Fjk + hj < 0 ∀j = 2, . . . , N. (7.8)

Thus, D+V0(w) ≤ 0, and increasing λ2 will not change this property. So we

have found a sufficient condition for local Lyapunov stability of the equilibrium state

w = 0, which is equivalent to the manifold S. Further, there exists a real number

φ > 0 such that D+V0(w) ≤ −φ‖w‖1.

To show that S is attractive, we consider the following integral [55]:

V0(w(t))− V0(w(0)) ≤ −
∫ t

0

φ‖w(t)‖1dt

⇒ V0(w(0)) ≥ V0(w(t)) +

∫ t

0

φ‖w(t)‖1dt.
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As V0(w(t)) ≥ 0 for all t 6= 0 by construction, taking the limit t→∞ we have

V0(w(0)) ≥ φ

∫ ∞
0

‖w(t)‖1dt. (7.9)

So the integral in (7.9) is less than or equal to V0(w(0))/φ, which takes a finite

value, and the integrand is uniformly continuous. By Barbalat’s Lemma, w → 0 as

t→∞. Since xik are bounded for all i and k, this means that S is attractive if there

are trajectories that originate outside the set. Thus, the complete synchronization

manifold S is globally asymptotically stable.

7.4 FitzHugh-Nagumo Network With Identical

External Inputs

The general argument presented in Section 7.3 can be specialized to a particular

oscillator model in order to better understand the bound and to compare it with the

bounds from other methods. Here, we specialize the bound in Theorem 7.3.3 to find

a sufficient condition for synchronization of a network of FitzHugh-Nagumo (FN)

oscillators [47,90].

The FN model is a two-dimensional reduction of the four-dimensional Hodgkin-

Huxley model of the membrane potential dynamics of neurons [59]. It is a compara-

tively simple model, but captures the distinct quiescent, firing, and saturated states

of the system, which depend on the input into the model. We choose to analyze the

FN model due to this combination of simplicity and range of possible dynamics.
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We consider a network of n FN neuronal oscillators. Each FN oscillator i =

1, . . . , n has two states (N = 2) with dynamics modeled as

ẋi1 = xi1 −
xi1

3

3
− xi2 + I i + ui

ẋi2 = ε(xi1 + a− bxi2).

(7.10)

The model parameters ε � 1, a and b are all positive and the same for every oscil-

lator i. The variable xi1 represents the membrane potential and operates at a faster

timescale than xi2, which is the recovery variable. We consider constant external

inputs I i that can be independently assigned to each oscillator in the network.

7.4.1 FN Network as a Strictly Semi-passive System

In [101] it was shown that a single FN neuronal oscillator model with dynamics (7.10)

is strictly semi-passive, and thus a network of FN oscillators is ultimately bounded.

Following [124], a network of FN oscillators with linear diffusive coupling (7.2) was

shown also to be strictly semi-passive. This can be done using a non-negative function

VP =
n∑
i=1

(
1

2
xi1

2
+

1

2ε
xi2

2
)
,

which has derivative satisfying

V̇P ≤
n∑
i=1

xi1u
i

︸ ︷︷ ︸
xT1 u

−
n∑
i=1

(
xi1
3

(
xi1

3 − 3xi1 − 3I i
)

+ bxi2

(
xi2 −

a

b

))
︸ ︷︷ ︸

H(x1,x2)

.

It follows that if a single FN neuronal oscillator model is strictly semi-passive, then

any network of FN oscillators connected by the linear diffusive coupling is also a

strictly semi-passive system with ultimately bounded dynamics [124].
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7.4.2 Synchronization Bound: Nonsmooth Lyapunov Func-

tion

In this section we apply the constructive proof of Theorem 7.3.3 to compute the

corresponding sufficient condition for global asymptotic stability of the complete syn-

chronization manifold S for a network of FN oscillators with dynamics (7.10), identical

constant external inputs I i, and linear diffusive coupling (7.2). From Section 7.4.1,

the system is strictly semi-passive. Following (7.5), the nonsmooth Lyapunov function

is

V (x1,x2) = max
i,j=1,...,n

(xi1 − x
j
1) + max

i,j=1,...,n
(xi2 − x

j
2).

The Dini derivative of this Lyapunov function is D+V (x1,x2) = ẋm1 − ẋl1 + ẋm2 − ẋl2.

When the external inputs are identical, we can follow the general procedure of the

proof and bound D+V (x1,x2) as follows:

D+V (x1,x2) ≤

(
1 + ε+

β2
1

3

)
(xm1 − xl1) + γλ2(L)(xl1 − xm1 )− (1 + bε)(xm2 − xl2).

Here, β1 is the ultimate bound for the x1 variable. Since each oscillator model

has the same parameters, this bound is the same for each oscillator, independent of

its position in the graph. Since the parameters b and ε are always positive, xm2 > xl2.

Thus, −(1 + bε)(xm2 − xl2) < 0 and the condition (7.8) for synchronization is always

satisfied.

To satisfy condition (7.7) we must have

γλ2(L) ≥ 1 + ε+
β2

1

3
= γλ∗m. (7.11)

This provides a sufficient condition for full synchronization of a network of FN oscil-

lators with linear diffusive coupling and identical constant external inputs as a lower
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bound on the product of the coupling strength γ and the second smallest eigenvalue

of the graph Laplacian λ2(L).

7.4.3 Synchronization Bound: Quadratic Lyapunov Function

In this section we use a quadratic Lyapunov function to compute a bound on γλ2(L)

that is sufficient for synchronization of a network of FN oscillators with linear diffusive

coupling and identical inputs. This approach is an application of the procedure out-

lined in [124]. Earlier studies have evaluated similar bounds with quadratic Lyapunov

functions for networks of Hindmarsh-Rose neurons [93].

Theorem 7.4.1. Consider a network of FN oscillators with dynamics (7.10), identi-

cal constant external inputs, and linear diffusive coupling (7.2). Suppose the coupling

strength γ and second smallest eigenvalue of the graph Laplacian λ2(L) satisfy

γλ2(L) >
(ε− 1)2

4bε
+ 1 +

β2
1

3
= γλ∗s. (7.12)

Then the complete synchronization manifold S is globally asymptotically stable.

Proof. Let VQ(w1,w2) = 1
2
(‖w1‖2

2 +‖w2‖2
2) be a positive-definite Lyapunov function,

where w1 and w2 are transformed coordinates that represent the differences between

states in x1 and between states in x2, respectively.

The derivative of VQ(w1,w2) can be computed as

V̇Q(w1,w2) =
1

2

d

dt
‖w1‖2

2 − bε‖w2‖2
2 + εw1 ·w2. (7.13)

Using, ui = −γLx1, w1 · Lw1 ≥ λ2(L)‖w1‖2
2, and |xi1| ≤ β1, we can write

V̇Q ≤

(
1− γλ2 +

β2
1

3

)
‖w1‖2

2 + (1− ε)w1 ·w2 − bε‖w2‖2
2.
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When γλ2(L) = γλ∗s =
(ε− 1)2

4bε
+ 1 +

β2
1

3
, we have

V̇Q ≤ −
(√

bε‖w2‖2 −
|ε− 1|
2
√
bε
‖w1‖2

)2

.

Thus, V̇Q ≤ 0, and increasing γ will not change this property. So we have found a

sufficient condition for Lyapunov stability of the equilibrium state w1 = w2 = 0 (and

thus the complete synchronization manifold S). Further, there is some κ such that

V̇Q ≤ −κ(‖w1‖2
2 + ‖w2‖2

2).

To show that S is attractive, we can evaluate the integral of V̇Q as we did for

the integral of the Dini derivative in the proof of Theorem 7.3.3. This completes the

proof.

7.4.4 Synchronization Bound: Master Stability Function

The Master Stability Function (MSF) approach is commonly used to calculate nec-

essary conditions on coupling for synchronization in oscillator networks [95]. Given

a particular coupling scheme, the MSF approach carries out a local stability analysis

of the linearized dynamics, and derives a necessary condition for synchronization in

terms of a lower bound on the coupling strength. Following the steps presented in

[95], it can be shown that for an undirected network of FN oscillators connected with

linear diffusive coupling, this necessary condition can be expressed as

γλ2(L) ≥ 1− bε− β2
1 . (7.14)

7.4.5 Comparison of Bounds

We first compare the different bounds on γλ2(L) computed above for global asymp-

totic stability of S in the case of a complete network graph of FN oscillators, i.e., there
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is a connection between every pair of oscillators. In this case the graph Laplacian is

L = (n− 1)In − 1n1
T
n ,

and λ2(L) = n.

Our new bound using the nonsmooth Lyapunov function can be compute from

(7.11) as

γn > 1 + ε+
β2

1

3
,

whereas the bound computed using the quadratic Lyapunov function is given by

γn >
(ε− 1)2

4bε
+ 1 +

β2
1

3
.

An earlier work [113], used a contraction analysis, and the corresponding sufficient

condition was given as

γn >
1

ε
.

On the other hand, the master stability function based approach yields the following

necessary condition:

γn ≥ 1− bε− β2
1 .

Whenever ε/(1 − ε) < 1/(2
√
b), our new bound from the nonsmooth analysis is

tighter than the bound from the quadratic Lyapunov function. Additionally, when

ε < 3/(3 + 3ε + β2
1), our new bound is tighter than the contraction theory based

bound as well. For biologically plausible firing behavior of an FN oscillator, numerical

simulations typically use b ∈ [0, 1] and small values of ε (≈ 1
12

), which in turn tends

to result in β1 ≈ 2. In this parameter regime, our nonsmooth analysis yields a

tighter bound compared to the bounds obtained from earlier approaches based on the

quadratic Lyapunov function and contraction theory.
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We next compare the bounds for a general network graph. In Figure 7.1 we

compare the bound from the nonsmooth Lyapunov approach with the bound from

the quadratic Lyapunov function approach by ploting the ratio of λ∗m to λ∗s. The ratio

is plotted for ε ∈ [0, 0.3] and b ∈ [0, 1], which are parameter values commonly used

to provide biologically relevant behavior with the FN model. For these conditions,

λ∗m < λ∗s, and the ratio gets smaller with decreasing ε. This implies that in these

parameter regimes, the bound from our new nonsmooth approach is tighter than the

bound from the quadratic Lyapunov function approach.

Figure 7.1: Bound comparison: Ratio of synchronization conditions for the nons-
mooth and quadratic Lyapunov approaches. For the biologically relevant parameter
ranges plotted, the bound derived from the nonsmooth approach is always tighter.

Comparing the bound from the nonsmooth Lyapunov stability analysis, which

is sufficient for synchronization, with the bound from the MSF approach, which is

necessary for synchronization, provides insight into where the bounds perform well

and how we can improve them in further work [111]. The necessary condition is

γλ2 ≥ 1 − bε − β2
1 , and the sufficient condition is γλ2 ≥ 1 + ε +

β2
1

3
. The difference

between these bounds is ε(1 + b) + 4
3
β2

1 . For models with a small ε parameter, as are

typical, the accuracy of these bounds is limited by the bound on the dynamics, β2
1 .

This suggests that to get closer to a condition that is both necessary and sufficient

for synchronization, we should use a method that does not rely on the bound on the

dynamics.
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7.5 FitzHugh-Nagumo Network with Non-Identical

External Inputs

When the external inputs I i to individual FN oscillators in a network are not the

same, the network separates into synchronized clusters, i.e. groups of oscillators

with identical behavior, depending both on the distribution of external inputs and

on the network structure [12, 121]. Oscillators must be input-equivalent in order for

synchronization to occur [113]. Here, we use the notion of input-equivalence to extend

our analysis to networks of nonlinear oscillators with non-identical constant external

inputs I i.

Definition 7.5.1 (Input-equivalence). Two FN oscillators i and j are input-

equivalent if

I i + ui(t) = Ij + uj(t) ∀t.

7.5.1 Nonsmooth Lyapunov Analysis

We now extend our result from Section 7.4 to a network of FN oscillators with non-

identical inputs. We provide a sufficient condition under which each of a set of

oscillators that are input-equivalent will synchronize as a cluster.

Corollary 7.5.2. Consider a network of FN oscillators with dynamics (7.10), non-

identical constant external inputs, and linear diffusive coupling (7.2). Suppose that

the oscillators can be partitioned into C distinct sets Ck, k = 1, . . . , C such that all

pairs in each set are input-equivalent [113]. Let Lk be the Laplacian of the subgraph

for the oscillators in Ck. Define the cluster synchronization manifold as

SC = {x1, . . . ,xn ∈ R2 : xi = xj, ∀ i, j ∈ Ck, ∀k}.
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SC is globally asymptotically stable if for all k

γλ2(Lk) > 1 + ε+
β2

1,k

3
.

Proof. By input-equivalence, we treat each set of FN oscillators separately. Since

the internal dynamics of each oscillator are identical, we can use the result from

Theorem 7.3.3 for FN oscillators as in (7.11) for each set Ck.

Example 7.5.3 (Cluster Synchronized Graph). We illustrate our result by consider-

ing a network of FN oscillators interacting over undirected graph (refer Figure 7.2)

which can be partitioned into three (C = 3) input-equivalent sets: (1) a cycle graph

Cm, (2) a complete graph Km, and (3) a single central node connected to every el-

ement in both Km and Cm. We simulate such a system with m = 50, and external

Figure 7.2: Graph used in the example illustrated in the case m = 4.

input 0 to elements in Cm, external input 0.1 to the central node, and external input

0.4 to elements in Km. When b = 0.8, ε = 0.08, and γ = 0.1 for all connections, we

observe the dynamics represented in Figure 7.3. All oscillators in the complete graph

synchronize, while those in the cycle graph do not. We calculate the second smallest

eigenvalues of the graph Laplacians for each subgraph, and find that λ2(LK) = 50,

while λ2(LC) = 0.0158. Since the oscillator parameters are homogeneous, β1,k ≈ 2

for both Cm and Km. Thus, the sufficient condition for synchronization is λ∗m = 2.41

for each subgraph, so λ2(LK) is above the synchronization bound, while λ2(LC) is far
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below. In this example, we have used the synchronization condition as a guideline to

design a system that exhibits different types of dynamic behavior.

Figure 7.3: Dynamics of cluster synchronization: The x1 and x2 dynamics for
101 FN oscillators arranged according to the graph structure depicted in Figure 2
with m = 50. Cluster synchronization is apparent in one cluster, but the other input-
equivalent cluster does not synchronize. These results are consistent with the bounds
from Corollary 7.5.2.

Conclusion

We have used a nonsmooth Lyapunov function to determine new sufficient conditions

for synchronization in networks of nonlinear oscillators. This function was previ-

ously used to find tight bounds for synchronization in a complete graph of Kuramoto

oscillators. We provide a general framework and a specialization to the FN model

that illustrates its effectiveness. The bounds reported for the FN model improve on

previously reported bounds as well as the bound we calculate in this work using an

alternative method [113,124]. Finding sufficient conditions for synchronization in sys-

tems with nonlinear coupling, time delays, and heterogeneous node dynamics has been

explored using the quadratic Lyapunov and contraction analyses in [21, 65, 80]. We

expect that these bounds may also be improved with nonsmooth Lyapunov functions.
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Chapter 8

Cluster Synchronization of

Diffusively-Coupled Nonlinear

Systems: A Contraction Based

Approach∗

Zahra Aminzare, Biswadip Dey, Elizabeth N. Davison, and Naomi Ehrich

Leonard

Finding the conditions that foster synchronization in networked nonlinear systems is

critical to understanding a wide range of biological and mechanical systems. How-

ever, the conditions proved in the literature for synchronization in nonlinear systems

with linear coupling, such as has been used to model neuronal networks, are in gen-

eral not strict enough to accurately determine the system behavior. We leverage

contraction theory to derive new sufficient conditions for cluster synchronization in

terms of the network structure, for a network where the intrinsic nonlinear dynam-

∗This chapter appears as Aminzare, Dey, Davison, and Leonard (2018) [4]
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ics of each node may differ. Our result requires that network connections satisfy a

cluster-input-equivalence condition, and we explore the influence of this requirement

on network dynamics. For application to networks of nodes with FitzHugh-Nagumo

dynamics, we show that our new sufficient condition is tighter than those found in

previous analyses that used smooth or nonsmooth Lyapunov functions. Improving

the analytical conditions for when cluster synchronization will occur based on net-

work configuration is a significant step toward facilitating understanding and control

of complex networked systems.

8.1 Introduction

Synchronization has been observed and studied in diverse fields. Its presence has

been characterized in symmetric networks of identical mechanical systems or identical

biological systems, as well as those with differing types of individual components

and nonuniform coupling [100]. The role of synchronization has been studied in a

multitude of both natural and engineered settings including collective motion [116],

power-grid networks [89], robotics [91], sensor networks [117], circadian rhythms [141],

bioluminescence in fireflies [119], pacemaker cells in the heart [85], neuronal ensembles

[23], and numerous others. In the human brain, synchronization at the neuronal or

regional level can be beneficial, allowing for production of a vast range of behaviors

[38,81], or detrimental, causing disorders such as Parkinson’s disease [22] and epilepsy

[75]. Applications for control of neural dynamics may involve regulating patterns of

synchronized phenomena among nodes or subsystems that have different intrinsic

dynamics and are connected in an arbitrary network [1, 140]. Most generally, nodes

can be agents in a multi-agent system, compartments in a compartmental system, or

other units that interact with one another in a pairwise framework. Characterizing the

91



emergence and persistence of synchronization in a system with multiple heterogeneous

nodes is the first step towards effective control of desired behavior.

Heterogeneous nodes and nonuniform coupling structure in a network often lead

to complex patterns of synchronization. Under certain conditions, it is possible to

partition the network into clusters of nodes that are synchronized within clusters but

not across clusters. In a cluster synchronized network, nodes in the same cluster will

have similar behavior after a transient. The cluster synchronized network can thus be

reduced to a network where each node corresponds to a cluster, commonly referred to

as the quotient network [24, 113, 115]. The simplified dynamics represent a powerful

tool for facilitating analysis of the dynamics of cluster synchronized systems.

Cluster synchronization has been defined in various ways in the literature. Accord-

ing to one common definition for phase oscillators, clusters are subgroups of oscillators

that share common phases [19, 92]. Recent works (e.g. [13, 130]) have also assumed

similar definition for cluster synchronization. Another definition is based on approx-

imate cluster synchronization, wherein nodes within a given cluster can have slightly

different behaviors [43, 44, 99, 122]. In the present work, we define cluster synchro-

nization as convergence to an invariant manifold, called the cluster synchronization

manifold, on which the states of all nodes in a cluster evolve identically [11, 121].

A necessary condition for cluster synchronization is the existence of an invariant

manifold. In this work, we assume “cluster-input-equivalence”, which ensures exis-

tence of such a manifold. Cluster-input-equivalence was proposed in [51, 125], under

the name “balanced equivalence”, and in [11, Eq. 13]. Subsequently this condi-

tion was used to show existence of an invariant manifold for cluster synchronization

[110,115,123].

Another important problem is the establishment of sufficient conditions that guar-

antee stability of a cluster synchronization manifold. The problem has been well stud-

ied for networks where the dynamics can be described by reduced phase oscillators,
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e.g., [19,92]. The problem has also been studied for networks of more general nonlin-

ear dynamics. For example, in [79, 134] conditions that rely on intra-cluster network

structure have been explored. Specialized network graphs have been considered in

[96]. In [142] time-delay and negative coupling have been explored as mechanisms to

realize cluster synchronization in a network with homogeneous dynamics.

In the present paper, we propose a new sufficient condition for cluster synchroniza-

tion that applies to general network structure and heterogeneous nonlinear dynamics.

The method leverages contraction theory, which has been used to analyze the stability

of invariant dynamics, including cluster synchronization [99]. Here, we use contrac-

tion theory to find a sufficient condition for cluster synchronization that incorporates

a novel measure of connectivity between clusters not found in previous work on the

subject.

Contraction theory is a powerful tool for understanding synchronization phenom-

ena in networked systems. The proper tool for characterizing contractivity for non-

linear systems is provided by the logarithmic norms, or matrix measures [32], of the

Jacobian of the vector field, evaluated at all possible states. This idea is a classical

one, and can be traced back at least to work of D.C. Lewis in the 1940s [76].

Dahlquist’s 1958 thesis under Hörmander used matrix measures to show contrac-

tivity of differential equations, and more generally of differential inequalities, the

latter applied to the analysis of convergence of numerical schemes for solving differ-

ential equations [27]. Several authors have independently rediscovered the basic ideas.

For example, in the 1960s, Demidovič [30, 31] established basic convergence results

with respect to Euclidean norms, as did Hartman [56] and Yoshizawa [143, 144]. In

control theory, the field attracted much attention after the work of Lohmiller and

Slotine [77]. We refer the reader especially to the careful historical analysis given in

[64]. Other useful historical references are [94] and the survey [120]. An introductory

tutorial to basic results in contraction theory for nonlinear control systems is given

93



in [6]. Results on synchronization using contraction-based techniques are described,

for example, in [5, 8, 78, 111,113,135].

The main contributions of the present paper are as follows. We extend contraction

theory to a setting where the nodal dynamics may have heterogeneous intrinsic dy-

namics and the network satisfies the cluster-input-equivalence condition. Using this

extension of contraction theory, we prove new sufficient conditions for cluster syn-

chronization in a network of heterogeneous nodal dynamics. We improve upon our

earlier analysis of synchronization in networks of homogeneous FitzHugh-Nagumo

(FN) oscillators [29], and show that the proposed result yields a tighter bound on the

algebraic connectivity of the associated undirected graph. The bound is a significant

advance over previous results because it incorporates terms that reflect inter- and

intra- cluster network structure.

The paper proceeds as follows. In Section 8.2, we review relevant concepts and

results from the contraction theory literature. In Section 8.3, we present our main

result, an extension of the existing theory to a cluster synchronized setting. In Sec-

tion 8.4, we consider networks of neuronal oscillators, modeled by FitzHugh-Nagumo

and Hindmarsh-Rose dynamics, and demonstrate how the proposed approach pro-

vides sufficient conditions for cluster synchronization. We conclude in Section 8.5.

8.2 A review of contraction theory

In what follows, we review notations, definitions, and main results in contraction

theory that will be applied in later sections.

Definition 8.2.1 (Logarithmic norm [120]). For any matrix A ∈ Rn×n and any given

norm ‖ · ‖ on Rn, the logarithmic norm (also called the matrix measure) of A induced

by the norm ‖ · ‖ is defined by
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µ[A] = lim
h→0+

sup
x 6=0∈Rn

1

h

(
‖(I + hA)x‖
‖x‖

− 1

)
, (8.1)

where I is the identity matrix of size n.

Notation 1. For any 1 ≤ p ≤ ∞ and any n× n positive definite matrix Q, let ‖ · ‖p

denote the Lp norm on Rn, and ‖·‖p,Q denote the Q−weighted Lp norm on Rn defined

by ‖x‖p,Q := ‖Qx‖p. By µp[A], we mean the logarithmic norm of A induced by ‖ · ‖p

and by µp,Q[A], we mean the logarithmic norm of A induced by ‖ · ‖p,Q. Note that

µp,Q[A] = µp[QAQ
−1].

Notation 2. For any matrix A, denote A positive semidefinite as A ≥ 0.

Remark 8.2.2. In Table 8.1, the algebraic expression of logarithmic norms induced

by the Lp norm for p = 1, 2, and ∞ are shown. For proofs, see for instance [32].

Table 8.1: Standard matrix measures for a real n× n matrix, A = [aij].

vector norm, ‖ · ‖ induced matrix measure, µ[A]

‖x‖1 =

n∑
i=1

|xi| µ1[A] = max
j

ajj +
∑
i 6=j

∣∣aij∣∣


‖x‖2 =

 n∑
i=1

|xi|2
 1

2

µ2[A] = max
λ∈spec 1

2
(A+AT )

λ

‖x‖∞ = max
1≤i≤n

|xi| µ∞[A] = max
i

aii +
∑
i 6=j

∣∣aij∣∣


Definition 8.2.3 (Contraction). Consider the following nonlinear dynamical system

on V × [0,∞], where V is a convex subset of Rn. Consider appropriate conditions on

vector field G (e.g. G(x, t) Lipschitz on x and continuous on (x, t)) that guarantee

existence and uniqueness of solutions of

ẋ(t) = G(x(t), t). (8.2)
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Equation (8.2) is contractive if there exist c < 0 and a norm ‖ · ‖ on Rn such that,

for any two solutions x and y of Equation (8.2), the following inequality holds for any

t ≥ 0:

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖. (8.3)

Proposition 8.2.4 (Theorem 1, [6]). Consider Equation (8.2) and assume that G is

a continuously differentiable function on its first variable. Let c := sup(x,t) µ[JG(x, t)],

where µ is the logarithmic norm induced by an arbitrary norm on Rn, and JG is the

Jacobian of G. Then for any two solutions x and y of Equation (8.2), and t ≥ 0,

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖.

In particular, when c < 0, Equation (8.2) satisfies Equation (8.3) and is contractive.

Throughout the paper, we denote the Jacobian of the vector field f(x, t) evaluated

at (x, t) as Jf (x, t), i.e., Jf (x, t) = ∂f
∂x

(x, t).

We consider a network of N nodes, with states {X1, . . . , XN} and intrinsic dy-

namics F i:

Ẋ i(t) = F i
(
X i(t), t

)
.

Here, X i and F i have dimension n ≥ 1. For a fixed convex subset V ⊂ Rn, F i : V ×

[0,∞)→ Rn, defined by F i = F i(z, t), is Lipschitz on z and continuous on (z, t). We

also assume that the nodes are diffusively connected through an undirected weighted

graph G = (V , E) and describe the dynamics of the network as follows:

Ẋ i(t) = F i
(
X i(t), t

)
+
∑
j∈N i

γijD
(
Xj(t)−X i(t)

)
i = 1, . . . , N . (8.4)
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The indices in N i represent the neighbors of node i. Without loss of generality†,

we can assume that the diffusion matrix D is a nonzero diagonal matrix of size n,

D = diag (d1, . . . , dn), where di ≥ 0. The positive constants γij represent the edge

weights of G. The products of the elements in D and the edge weights γij represent

the coupling strengths between the nodes. This allows representation of all possible

diffusive coupling structures by manipulation of the diagonal elements of D and the

edge weights.

Let L = (Lij) be the Laplacian matrix of G:

Lij =


∑

k∈N i γ
ik i = j,

−γij i 6= j, j ∈ N i,

0 otherwise.

(8.5)

We denote the eigenvalues of L as 0 = λ(1) ≤ λ(2) ≤ · · · ≤ λ(N). The second smallest

eigenvalue, λ(2), is called the algebraic connectivity of the graph. This number helps

to quantify “how connected” the graph is. The number of the zero eigenvalues is

equal to the number of connected components of G.

Using the notation of the Laplacian matrix, Equation (8.4) can be written in

closed form:

Ẋ(t) = F(X(t), t)− (L ⊗D)X(t), (8.6)

where X =
(
X1T , . . . , XNT

)T
, F =

(
F 1T , . . . , FNT

)T
, and ⊗ represents the Kro-

necker product.

Definition 8.2.5 (Complete synchronization). Let

S1 :=
{
X ∈ RnN

∣∣ X1 = · · · = XN , X i ∈ Rn
}
.

†If D is not diagonal, an appropriate change of coordinate can render it diagonal.
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The dynamics given in Equation (8.4) synchronize completely if any solution of Equa-

tion (8.4) converges to S1 in an appropriate norm. In other words, let X be a solution

of Equation (8.4). Then there exists a solution X̄ ∈ S1 such that, in an appropriate

norm,

X(t)− X̄(t)→ 0 as t→∞.

S1 is called the synchronization manifold.

We will use synchronization and complete synchronization alternatively.

Definition 8.2.6 (Cluster synchronization). For any 1 ≤ K ≤ N and any 1 ≤

c1, . . . , cK ≤ N such that c1 + · · ·+ cK = N , let

SK :=
{
X ∈ RnN

∣∣ X1 = · · · = Xc1 , . . . , XN−cK+1 = · · · = XN , X i ∈ Rn
}
.

The dynamics given in Equation (8.4) synchronize in clusters if there exists 1 ≤ K ≤

N such that all solutions of Equation (8.4) converge to SK in an appropriate norm.

SK is called the K−cluster synchronization manifold.

The 1−cluster synchronization manifold is the same as the synchronization man-

ifold (Definition 8.2.5).

In the following two propositions, we consider Equation (8.4) with homogeneous

F i = F , and state two sufficient conditions that guarantee that Equation (8.4) syn-

chronizes.

Proposition 8.2.7 (Proposition 1, [7]). Consider Equation (8.4) with homogeneous

F i = F . Assume that there exists a norm on Rn such that

sup
(x,t)

µ[JF (x, t)] < 0. (8.7)

Then Equation (8.4) synchronizes.
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In [113], Proposition 8.2.7 has been generalized‡ to F i with heterogeneous ele-

ments. The work shows that, under some conditions on the weights of the intercon-

nected graph, if each node has contractive dynamics, then Equation (8.4) synchro-

nizes in clusters. In Section 8.4, we provide an example (with FitzHugh-Nagumo and

Hindmarsh-Rose oscillators) that synchronizes in clusters and supports our theory

derived in the next section but does not satisfy the condition provided in [113].

Note that the sufficient condition provided in Proposition 8.2.7 depends only on

the dynamics of each isolated node, namely JF . The next proposition from [8] provides

a sufficient condition for complete synchronization less restrictive than Equation (8.7),

which depends on JF , the diffusion matrix D, and the graph G. It is based on the

weighted L2 norms. For some special graphs, the result has been generalized to

weighted Lp norms [7].

Proposition 8.2.8 (Theorem 4 (modified), [8]). Consider Equation (8.4) with ho-

mogeneous F i = F . Assume that there exists a positive definite matrix P such that

P 2D +DP 2 is also positive definite, and let

c := sup
(x,t)∈V×[0,∞)

µ2,P

[
JF (x, t)− λ(2)D

]
.

Then for any solution X of Equation (8.4) that remains in V N , there exists a solution

X̄ such that

‖X(t)− X̄(t)‖2,IN⊗P 2 ≤ ect‖X(0)− X̄(0)‖2,IN⊗P 2 .

Moreover, if c < 0, then Equation (8.4) synchronizes, i.e., for any pair i, j ∈

{1, . . . , N},

X i(t)−Xj(t)→ 0 as t→∞.
‡The statement of Theorem 3 in [113] is correct; however, the proof needs revision to be complete.
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In the following section, we present the main result of this work – we generalize

Proposition 8.2.8 to heterogeneous F i and provide sufficient conditions for cluster

synchronization.

8.3 Main result: Cluster synchronization

In this section, we provide sufficient conditions on heterogeneous intrinsic dynamics

F i, the graph G, and the diffusion matrix D, that guarantee cluster synchronization

of the network described in Equation (8.4).

Assumption 8.3.1. In the network described by Equation (8.4), we assume that

1. There exist K ≤ N and c1, . . . , cK ≥ 2, such that c1 + · · ·+ cK = N , and

F i1 = · · · = F ic1 =: FC1 , . . . , F
iN−cK+1 = · · · = F iN =: FCK ,

where {i1, . . . , iN} is a permutation of {1, . . . , N}. Without loss of generality,

we can assume:

F 1 = · · · = F c1 =: FC1 , . . . , F
N−cK+1 = · · · = FN =: FCK .

Let C1, . . . ,CK denote K clusters of nodes. The nodes in cluster C1 are defined

by X1, . . . , Xc1 and they all have dynamics FC1, the nodes in cluster C2 are

defined by Xc1+1, . . . , Xc1+c2 and they all have dynamics FC2, etc. For ease of

notation in our calculations, we let

X1
C1

= X1, . . . , Xc1
C1

= Xc1 ,

X1
C2

= Xc1+1, . . . , Xc2
C2

= Xc1+c2 ,

...

X1
CK

= XN−cK+1, . . . , XcK
CK

= XN .

(8.8)
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2. The cluster-input-equivalence condition defined in [11] holds. This implies that

the following edge weight sums are equal: for any two nodes X i
Cr
, Xj

Cr
, (i, j) ∈

Cr,

ηCrCs :=
∑
k∈N i

Cs

γik =
∑
k∈N j

Cs

γjk, (8.9)

where N i
Cs

denotes the indices of the neighbors of node i which are in cluster

Cs.

Assumption 8.3.1 ensures that the K−cluster synchronization manifold is invari-

ant, which is a necessary condition for cluster synchronization.

Next we provide sufficient conditions to show that SK is (globally) stable, i.e.,

any solution of Equation (8.4) converges to SK .

Recall that the network graph is G = (V , E). Denote the subgraph for the nodes

in Cr by GCr = (VCr , ECr). The set VCr consists of all the nodes in Cr and the set ECr

consists of all edges that have both end points in VCr . Then

G =

 K⋃
r=1

GCr

⋃ Ḡ,
where Ḡ = (V , E \ ∪r ECr) is the graph describing connections among the clusters Cr.

Let LCr denote the Laplacian matrix of GCr with eigenvalues 0 = λ
(1)
Cr
≤ λ

(2)
Cr
≤

. . . ≤ λ
(cr)
Cr

and L̄ denote the Laplacian matrix of Ḡ with eigenvalues 0 = λ̄(1) ≤ λ̄(2) ≤

. . . ≤ λ̄(N). In the special case of K = 1, we set λ̄(2) = 0. Then L, the Laplacian

matrix of G, can be written as follows:

L = LC + L̄, (8.10)
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where LC is a block diagonal matrix with the form:

LC =


LC1

. . .

LCK

 . (8.11)

With these definitions, Equation (8.6) can be written as

Ẋ(t) = F(X(t), t)− (LC ⊗D)X(t)− (L̄ ⊗D)X(t). (8.12)

Theorem 8.3.2. Consider Equation (8.4), or equivalently Equation (8.12), with As-

sumption 8.3.1, and let

µ := max
r=1,...,K

sup
(x,t)∈V×[0,∞)

µ2,P

[
JFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
, (8.13)

where P ∈ Rn×n is a positive definite matrix chosen such that P 2D+DP 2 is positive

semidefinite. Then, for any solution X of Equation (8.4) that remains in V N , there

exists X̄(t) such that

‖X(t)− X̄(t)‖2,P ≤ eµt‖X(0)− X̄(0)‖2,P , (8.14)

where P = IN ⊗ P 2 and ‖ · ‖2,P is a P-weighted L2 norm on RnN , defined by

‖x‖2,P :=

∥∥∥∥∥
(∥∥P 2x1

∥∥
2
, . . . ,

∥∥∥P 2xN
∥∥∥

2

)T∥∥∥∥∥
2

,

for any x =
(
x1T , . . . , xN

T
)T
∈ RnN . In particular, if µ < 0, then for any pair of

nodes i, j ∈ Cr, X
i
Cr

and Xj
Cr

satisfy

X i
Cr(t)−X

j
Cr

(t)→ 0 as t→∞.
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Remark 8.3.3. Theorem 8.3.2 provides a sufficient condition for cluster synchroniza-

tion that depends on the dynamics of each isolated cluster JFCr
, the diffusion matrix

D, the structure λ
(2)
Cr

of each subgraph GCr describing connections among the nodes

in cluster Cr, and the structure λ̄(2) of the subgraph Ḡ describing connections among

the clusters. Proposition 8.2.8 is a special case of Theorem 8.3.2 when K = 1 and

λ̄(2) = 0. One can still apply Proposition 8.2.8 to K > 1 clusters to show cluster syn-

chronization. However, Theorem 8.3.2 provides a less restrictive sufficient condition

for cluster synchronization because it makes use of coupling structure both within

and between clusters.

Remark 8.3.4. For systems that satisfy µ < 0, the rate of convergence to the

K−cluster synchronization manifold can be approximated by µ. In addition to the

dependence on the dynamics in each cluster JFCr
and the diffusion matrix D, the rate

of convergence depends on the structure of the coupling within (λ
(2)
Cr

) and between

(λ̄(2)) clusters.

In the proof of Theorem 8.3.2, we need the following key lemmas. We first state

the Courant-Fischer minimax Theorem, from [61].

Lemma 8.3.5. Let L be a positive semidefinite matrix in Rl×l. Let λ(1) ≤ · · · ≤ λ(l)

be l eigenvalues with e1, · · · , el corresponding normalized orthogonal eigenvectors. For

any v ∈ Rl, if vT ej = 0 for 1 ≤ j ≤ k − 1, 1 ≤ k ≤ l, then

vTLv ≥ λ(k)vTv.

Lemma 8.3.6. [6, Lemma 3] Suppose that P is a positive definite matrix and A is

an arbitrary matrix. If µ2,P [A] = µ, then P 2A+ ATP 2 ≤ 2µP 2.

Proof of Theorem 8.3.2
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Let w := X − X̄, where

X =
(
X1

C1

T
, . . . , Xc1

C1

T , . . . , X1
CK

T
, . . . , XcK

CK

T
)T

,

is a solution of (8.4) and

X̄ =
(

(1c1 ⊗ x1)T , . . . ,
(
1cK ⊗ xK

)T)T
,

with xr := 1
cr

∑cr
i=1X

i
Cr

and 1cr ∈ Rcr is a vector of ones. Let w =
(
wT1 , . . . , w

T
K

)T
,

where wr :=
(

(X1
Cr
− xr)T , . . . , (Xcr

Cr
− xr)T

)T
∈ Rcrn, and define

Φ(w) :=
1

2
wTPw =

1

2

K∑
r=1

wTr
(
Icr ⊗ P 2

)
wr .

Since Φ(w) =
1

2
‖Pw‖2

2, to prove (8.14), it suffices to show that

d

dt
Φ(w) ≤ 2µΦ(w).

Let

F(X, t) =
(
F T

C1
(X1

C1
, t), . . . , F T

C1
(Xc1

C1
, t), . . . , F T

CK
(X1

CK
, t), . . . , F T

CK
(XcK

CK
, t)
)T

,

and

F̄(X, t) =
(

(1c1 ⊗ y1)T , . . . ,
(
1cK ⊗ yK

)T)T
where yr =

1

cr

cr∑
i=1

FCr(X
i
Cr , t).
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Standard calculations show that the derivative of Φ is as follows:

dΦ

dt
(w) = wTP

(
F(X, t)− F̄(X, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)w

= wTP
(
F(X, t)−F(X̄, t)

)
+ wTP

(
F(X̄, t)− F̄(X, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)w

= wTP
(
F(X, t)−F(X̄, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)w .

(8.15)

In the second equation, we added and subtracted wTPF(X̄, t), where F(X̄, t) is

written as

F(X̄, t) =
((

1c1 ⊗ FC1(x1, t)
)T
, . . . ,

(
1cK ⊗ FCK (xK , t)

)T)T
.

The last equality holds because wTr (1cr ⊗ In) = 0 implies that

wTP
(
F(X̄, t)− F̄(X, t)

)
=

K∑
r=1

wTr
(
Icr ⊗ P 2

)(
1cr ⊗

(
F T

Cr(xr, t)− y
T
r

))

=
K∑
r=1

wTr

(
1cr ⊗ P 2

(
F T

Cr(xr, t)− y
T
r

))

=
K∑
r=1

wTr (1cr ⊗ In)P 2
(
F T

Cr(xr, t)− y
T
r

)
= 0.

Step 1. We show that

− wTP(LC ⊗D)w ≤ −
K∑
r=1

λ
(2)
Cr
wTr
(
Icr ⊗ P 2D

)
wr . (8.16)
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Since P 2D + DP 2 is positive semidefinite, Cholesky decomposition yields an upper

triangular matrix M such that P 2D +DP 2 = 2MTM . For any r = 1, . . . , K,

−wTr
(
Icr ⊗ P 2

)
(LCr ⊗D)wr = −wTr

(
LCr ⊗ P 2D

)
wr

= −1

2
wTr

(
LCr ⊗

(
P 2D +DP 2

))
wr

= −wTr
(
LCr ⊗

(
MTM

))
wr

= −wTr
(
Icr ⊗MT

)
(LCr ⊗ In) (Icr ⊗M)wr

≤ −λ(2)
Cr

(
(Icr ⊗M)wr

)T
(Icr ⊗M)wr

= −λ(2)
Cr
wTr

(
Icr ⊗MTM

)
wr

= −λ(2)
Cr
wTr
(
Icr ⊗ P 2D

)
wr .

Note that the inequality holds by Lemma 8.3.5. To apply Lemma 8.3.5, we need to

show that (
(Icr ⊗M)wr

)T
(1cr ⊗ In) = 0.

By definition of wr, w
T
r 1ncr = 0 and hence

(
(Icr ⊗M)wr

)T
(1cr ⊗ In) = wTr

(
Icr ⊗MT

)
(1cr ⊗ In) = wTr

(
1cr ⊗MT

)
=

cr∑
i=1

(X i
Cr − xr)

TMT =

 cr∑
i=1

(X i
Cr − xr)

T

MT = 0.

Both P and LC are block diagonal with blocks of same sizes, c1, . . . , cK , so we have:

−wTP(LC ⊗D)w = −
K∑
r=1

wTr
(
Icr ⊗ P 2

)
(LCr ⊗D)wr ≤ −

K∑
r=1

λ
(2)
Cr
wTr
(
Icr ⊗ P 2D

)
wr .

Step 2. We show that

− wTP(L̄ ⊗D)w ≤ −
K∑
r=1

λ̄(2)wTr
(
Icr ⊗ P 2D

)
wr . (8.17)
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The proof is analogous to the previous step.

−wTP(L̄ ⊗D)w = −wT
(
IN ⊗ P 2

)
(L̄ ⊗D)w

= −wT
(
L̄ ⊗ P 2D

)
w

= −1

2
wT
(
L̄ ⊗

(
P 2D +DP 2

))
w

= −wT
(
L̄ ⊗MTM

)
w

= −wT
(
IN ⊗MT

) (
L̄ ⊗ In

)
(IN ⊗M)w

≤ −λ̄(2)wT
(
IN ⊗MT

)
(IN ⊗M)w

= −λ̄(2)wT
(
IN ⊗MTM

)
w

= −λ̄(2)wT
(
IN ⊗ P 2D

)
w

= −
K∑
r=1

λ̄(2)wTr
(
Icr ⊗ P 2D

)
wr .

Step 3. We show that

wTP(F(X, t)−F(X̄, t)) =
K∑
r=1

cr∑
i=1

∫ 1

0

(X i
Cr−xr)

TP 2JFCr

(
xr + τ(X i

Cr − xr)
)

(X i
Cr−xr) dτ.

(8.18)

Note that wTP(F(X, t)−F(X̄, t)) =
∑K

r=1w
T
r

(
Icr ⊗ P 2

)
F̃r(XCr) , where

F̃r(XCr) =
(
F T

Cr(X
1
Cr , t)− F

T
Cr(xr, t), . . . , F

T
Cr(X

cr
Cr
, t)− F T

Cr(xr, t)
)T

.

By the Mean Value Theorem for integrals, for any r = 1, . . . , K,

wTr
(
Icr ⊗ P 2

)
F̃r(XCr) =

cr∑
i=1

(X i
Cr − xr)

TP 2
(
FCr(X

i
Cr , t)− FCr(xr, t)

)
=

cr∑
i=1

∫ 1

0

(X i
Cr − xr)

TP 2JFCr

(
xr + τ(X i

Cr − xr)
)

(X i
Cr − xr) dτ.

Adding over r, r = 1, . . . , K, we obtain Equation (8.18).

107



Note that the sum of the left hand side of Equations (8.16)-(8.18), is equal to dΦ
dt

.

Combining Steps 1-3, we have shown that

dΦ

dt
≤

K∑
r=1

φr,

where for any r = 1, . . . , K,

φr := wTr

(
Icr ⊗ P 2

)
F̃r(XCr)− wTr

(
Icr ⊗ P 2

)(
Icr ⊗ λ

(2)
Cr
D
)
wr − wTr

(
Icr ⊗ P 2

)(
Icr ⊗ λ̄(2)D

)
wr

=

cr∑
i=1

∫ 1

0
(Xi

Cr − xr)
TP 2

[
JFCr

(
xr + τ(Xi

Cr − xr)
)
− λ(2)

Cr
D − λ̄(2)D

]
(Xi

Cr − xr) dτ

≤
cr∑
i=1

2µ

2

∫ 1

0
(Xi

Cr − xr)
TP 2(Xi

Cr − xr) dτ

=
2µ

2
wTr

(
Icr ⊗ P 2

)
wr .

(8.19)

The inequality holds by applying Lemma 8.3.6 to Equation (8.13): we obtain, for any

r = 1, . . . , K, and any (x, t) ∈ V × [0,∞),

P 2

[
JFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
+

[
JTFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
P 2 ≤ 2µP 2.

Summing both sides of Equation (8.19) over r, for r = 1, . . . , K, we obtain the desired

result, dΦ
dt

(w) ≤ 2µΦ(w).

8.4 Applications and numerical examples

In this section, we apply Theorem 8.3.2 to two types of nonlinear neuronal oscil-

lator dynamics: FitzHugh-Nagumo dynamics and Hindmarsh-Rose dynamics. We

then present numerical simulations for heterogeneous networks that include nodal

dynamics of both types. In a second numerical example we show partial cluster

synchronization, which results when γ takes an intermediate value below the bound.
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8.4.1 Application to networks of heterogeneous FitzHugh-

Nagumo neuronal oscillators

Here, we apply Theorem 8.3.2 to a network of N FitzHugh-Nagumo (FN) neuronal

oscillators with graph G. Let (yi, zi)T ∈ R2 be the state of oscillator i and I i be the

external input to oscillator i, for i = 1, . . . , N . yi and zi represent the membrane

potential and the recovery variable, respectively. The input current for oscillator i is

I i. The FN dynamics are

ẏi = f i(yi)− zi + I i + γ
∑
j∈N i

γij(yj − yi),

żi = εi(yi − bizi),

(8.20)

where f i is a cubic function, f i(y) = y− y3

3
− ai, γ > 0, ai > 0, 0 < bi < 1, 0 < εi � 1

are constant, and N i denotes the set of all the neighbors of node i in the net-

work. In the FN model, εi represents the time-scale separation between yi and

zi, which affects oscillation frequency. The model parameter bi controls the shape

of the spike by changing the ratio of the duration of the spike to the refractory

period. Using the notation of Theorem 8.3.2, n = 2, X i = (yi, zi)T , F i(X i, t) =(
f i(yi)− zi + I i, εi(yi − bizi)

)T
, D = diag (γ, 0) is the diffusion matrix, and the γij

are the edge weights on the graph G.

Assume that there exist K ≥ 1 clusters C1, . . . ,CK of FN oscillators such that

ai = aCr , b
i = bCr , ε

i = εCr , and I i = ICr for all FN oscillators i ∈ Cr and all clusters

r = 1, . . . , K.

In what follows we show that, for K = 1 cluster, if γλ(2) > 1, then Equation (8.20)

synchronizes, and, more generally, if K > 1, and for all r = 1, . . . , K, εCr = ε, and

γ
(
λ

(2)
Cr

+ λ̄(2)
)
> 1, then Equation (8.20) converges to its K−cluster synchronization

manifold.
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Proposition 8.4.1. Consider Equation (8.20), with Assumption 8.3.1. For all r =

1, . . . , K, let

γ >
1 + αr

λ
(2)
Cr

+ λ̄(2)
,

where αr =
(εCrp−1/p)

2

4bCr εCr
and p > 0 constant. Then for any pair of FN oscillators

{(yi, zi)T , (yj, zj)T} such that (i, j) ∈ Cr,

yi(t)− yj(t)→ 0, zi(t)− zj(t)→ 0, as t→∞.

In particular, if p = maxr
1√
εCr

, then αr is minimized.

Proof. To apply Theorem 8.3.2, we find a positive definite matrix P such that P 2D+

DP 2 is positive semidefinite and

µ := max
r

sup
(y,z)T∈R2

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
< 0.

Let P = diag (1, p) so that P 2D +DP 2 = diag (2γ, 0), which is positive semidefinite.

Then

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
= µ2

[
P

(
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

)
P−1

]

= λmax


 1− y2 − γλ(2)

Cr
− γλ̄(2) εCrp

2
− 1

2p

εCrp

2
− 1

2p
−bCrεCr


 .

(8.21)

To see this recall that µ2,P [A] = µ2[PAP−1], and, by Remark 8.2.2, µ2[A] =

λmax

[
A+AT

2

]
, where λmax[B] denotes the largest eigenvalue of B. Note that the matrix

shown in the second line, call it B, is the symmetric part of P

(
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

)
P−1.

Standard calculations show that if γ > 1+αr

λ
(2)
Cr

+λ̄(2)
≥ 1

λ
(2)
Cr

+λ̄(2)
then the trace and the
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determinant of B satisfy

Tr[B] = 1− y2 − γλ(2)
Cr
− γλ̄(2) − bCrεCr < 0,

Det[B] = −bCrεCr
(

1− y2 − γλ(2)
Cr
− γλ̄(2) + αr

)
> 0.

Therefore, λmax[B] < 0 and Theorem 8.3.2 yields the desired result.

In Proposition 8.4.1, the parameter γ can be interpreted as the diffusion matrix,

D, that represents the overall strength of graph coupling. For a system of Fitzhugh-

Nagumo oscillators, the sufficient condition depends on a parameter, ε, that controls

the frequency of oscillations through the time scale separation between the voltage

variable and gating variable. In general, as the value of ε for a given cluster is in-

creased, the value of γ needed to guarantee synchronization in that cluster is also

increased. Furthermore, for values of ε in a biologically relevant range (0.02, 0.2),

increasing the minimum ε over all clusters also increases the value of γ required for

cluster synchronization. This indicates that systems with a lower frequency of oscil-

lation synchronize more rapidly than those with higher oscillation frequencies. The

other parameter that influences the sufficient condition for cluster synchronization is

b that controls the ratio of the time over which the neuron is spiking to the refractory

period. As this parameter is increased (for biologically realistic results, it is required

to stay in the range (0, 1)), a smaller overall graph coupling is required to guarantee

cluster synchronization for the entire network.

Remark 8.4.2. In Proposition 8.4.1:
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1. If we assume that, for all r = 1, . . . , K, εCr = ε, then αr = 0 and we obtain a

smaller lower bound for γ, namely

γ >
1

λ
(2)
Ci

+ λ̄(2)
.

2. Non-diagonal P does not give a smaller lower bound for γ. If P is not diag-

onal, the condition for positive determinant is quadratic in terms of γ. This

contradicts the positiveness of γ and so cannot be used to improve the bound

for diagonal P .

3. Theorem 8.3.2 does not require constant system parameters, so it can be used to

derive an analogous condition for a network of FN oscillators with time-varying

parameters.

Remark 8.4.3. In the previous work [29], we showed that for K = 1, if γ ≥ 1+ε+β2/3

λ
(2)
C1

,

where β is the ultimate bound for the y variable, then Equation (8.20) synchronizes.

By Proposition 8.4.1 we have found a smaller lower bound for γ, γ > 1

λ
(2)
C1

, that

guarantees synchronization.

8.4.2 Application to networks of heterogeneous Hindmarsh-

Rose neuronal oscillators

Here, we apply Theorem 8.3.2 to a network of N two-dimensional modified

Hindmarsh-Rose (HR) neuronal oscillators with graph G. Let (yi, zi)T ∈ R2 be the

state of oscillator i for i = 1, . . . , N . yi and zi represent the membrane potential

and the recovery variable, respectively. The input current for oscillator i is I i. The
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two-dimensional HR dynamics are

ẏi = gi(yi) + zi + I i + γ
∑
j∈N i

γij(yj − yi),

żi = δi(1− 5yi
2 − zi),

(8.22)

where gi(y) = −yi3 + ciyi
2
, γ, ci > 0, 0 < δi � 1 is a parameter that determines the

time-scale separation between the fast and slow dynamics, and N i denotes the set of

all the neighbors of node i in the network. Using the notation of Theorem 8.3.2, n = 2,

X i = (yi, zi)T , F i(X i, t) =
(
gi(yi) + zi + I i, δi(1− 5yi

2 − zi)
)T

, D = diag (γ, 0) is

the diffusion matrix, and the γij are the edge weights on the graph G.

Assume there exist K ≥ 1 clusters C1, . . . ,CK of HR oscillators such that ci = cCr ,

δi = δCr , and I i = ICr for all HR oscillators i ∈ Cr and all clusters r = 1, . . . , K.

Proposition 8.4.4. Consider Equation (8.22), under Assumption 8.3.1. For all

r = 1, . . . , K, let

γ >
1

λ
(2)
Ci

+ λ̄(2)
max

{
−(2cCi − 5)2

4(25δCip
2 − 3)

+
1

4δCip
,
c2
Ci

3
− δCi

}
, (8.23)

where p is a constant that satisfies 0 < p <
√

3
25δCi

. Then for any pair of HR

oscillators {(yi, zi)T , (yj, zj)T} such that (i, j) ∈ Cr,

yi(t)− yj(t)→ 0, zi(t)− zj(t)→ 0, as t→∞.

In particular, if p = maxr
3

5δCr (5+|2cCr−5|) , then the first argument of the max operator

in Equation (8.23) is minimized and takes value
(5+|2cCr−5|)2

12
.
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Proof. To apply Theorem 8.3.2, we find a positive definite matrix P such that P 2D+

DP 2 is positive semidefinite and

µ := max
r

sup
(y,z)T∈R2

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
< 0.

Let P = diag (1, p) so that P 2D +DP 2 = diag (2γ, 0), which is positive semidefinite.

Then

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
= µ2

[
P

(
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

)
P−1

]

= λmax


 −3y2 + 2cCry − γλ

(2)
Cr
− γλ̄(2) 1

2p − 5δCrpy

1
2p − 5δCrpy −δCr


 .

(8.24)

We denote this matrix as C.

If γ(λ
(2)
Cr

+ λ̄(2)) >
c2Cr

3
− δCr , then we have

γ
(
λ

(2)
Cr

+ λ̄(2)
)

+ δCr >
c2
Cr

3
>
c2
Cr

3
− 3

(
y − cCr

3

)2

= −3y2 + 2cCry.

Therefore, the trace of C satisfies

Tr[C] = −3y2 + 2cCry − γλ
(2)
Cr
− γλ̄(2) − δCr < 0.

Further, if γ >
−(2cCr−5)2

4(25δCrp
2−3)

+ 1
4δCrp

, then, under the condition that p2 < 3
25δCr

, the

determinant of C satisfies

Det[C] = −δCr
(
−3y2 + 2cy − γλ(2)

Cr
− γλ̄(2)

)
−
(

1

2p
− 5δCrpy

)2

> 0.

Therefore, λmax[C] < 0 and Theorem 8.3.2 yields the desired result.
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8.4.3 Numerical examples

Example 8.4.5. In this example, we consider the network of 17 neuronal oscillators

shown in the left panel of Figure 8.1. This network can be grouped into three different

clusters based on the individual nodal dynamics:

(i) Cluster C1 (orange circles): six FN oscillators; a
C1

= 0.5, b
C1

= 0.1, I
C1

= −2,

and ε
C1

= 0.08;

(ii) Cluster C2 (green squares): seven HR oscillators; c
C2

= 2, I
C2

= 2, and δ
C2

= 0.02;

(iii) Cluster C3 (blue triangles): four HR oscillators; c
C3

= 3, I
C3

= 4, and δ
C3

= 0.01.

The second smallest eigenvalues of the Laplacian of the three intra-cluster subgraphs

and the inter-cluster subgraph are λ
(2)
C1

= 1.83, λ
(2)
C2

= λ
(2)
C3

= 2, and λ̄(2) = 0.262,

respectively. It follows directly from Propositions 8.4.1 and 8.4.4 that the clusters

will synchronize if γ satisfies the following inequality:

γ > max
p∈(0,

√
6)

1 + 31.25( p
12.5
− 1

p
)2

λ
(2)
C1

+ λ̄(2)
,

12.5
p
− 1

2p2−12

λ
(2)
C2

+ λ̄(2)
,

1.3133

λ
(2)
C2

+ λ̄(2)
,

25
p
− 1

p2−12

λ
(2)
C3

+ λ̄(2)
,

2.99

λ
(2)
C3

+ λ̄(2)

 .

(8.25)

For p = 2.4, γ > 4.6 provides a sufficient condition for cluster synchronization. As

shown in Figure 8.1, the network indeed stabilizes to three synchronized clusters when

γ = 4.7.

Example 8.4.6. In this example we consider a large network of 200 FN oscillators

illustrated in the left panel of Figure 8.2. The network is obtained through intercon-

nection of two clusters:

(i) Cluster C1 (magenta squares): A complete graph of 100 FN oscillators; aC1 = 0.9,

bC1 = 0.5, IC1 = 2.0, and εC1 = 0.08;

(ii) Cluster C2 (green triangles): A star graph of 100 FN oscillators; aC2 = 0.7,

bC2 = 0.8, IC2 = 0.3, and εC2 = 0.08.

Each node in the first cluster is connected to a unique node in the second cluster
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Figure 8.1: Cluster synchronization in a network of 17 heterogeneous neuronal os-
cillators shown on the left: six FitzHugh-Nagumo oscillators (orange circles) with
a

C1
= 0.5, b

C1
= 0.1, I

C1
= −2, ε

C1
= 0.08, seven Hindmarsh-Rose oscillators (green

squares) with c
C2

= 2, I
C2

= 2, δ
C2

= 0.02, and four Hindmarsh-Rose oscillators (blue
triangles) with c

C3
= 3, I

C3
= 4, δ

C3
= 0.01. The states converge to the 3-cluster

synchronization manifold for γ = 4.7.

with coupling strength 0.25. Note that the cluster-input-equivalence condition holds

in this case. For this network λ
(2)
C1

= 100, λ
(2)
C2

= 1 and λ̄(2) = 0. By choosing γ = 0.02

such that γ > 1/
(
λ

(2)
C1

+ λ̄(2)
)

but γ < 1/
(
λ

(2)
C2

+ λ̄(2)
)

we do not obey the sufficient

condition. However, numerical simulation (Figure 8.2) shows that the magenta clus-

ter (C1) synchronizes nevertheless as suggested by the fact that γ > 1/
(
λ

(2)
C1

+ λ̄(2)
)

is

satisfied. Our future work will explore more along this direction.

8.5 Conclusion

In this paper, we consider the patterns of synchronization that emerge in networks

where individual nodes may have different intrinsic nonlinear dynamics. We lever-

age the cluster-input-equivalence condition, developed in [11,125] and extended with

a useful graph-theoretical perspective in [115], to provide a starting framework for

proving sufficient conditions for synchronization within clusters based on properties

of the nodes and network structure. By adopting an approach based on contraction

theory [3], our work proves a new sufficient condition for cluster synchronization,

and provides its characterization in terms of the intra-cluster network structure and
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Figure 8.2: Synchronization of only one (magenta) of two clusters in a large network
of heterogeneous FN oscillators when the coupling strength takes an intermediate
value. There are 100 oscillators in one cluster connected through a star graph (green
triangles) and 100 oscillators in a second cluster connected through a complete graph
(magenta squares). The network on the left illustrates the connections between clus-
ters (in gray) in the case of 5 oscillators in each cluster.

the inter-cluster network structure. The inter-cluster network structure has not been

explicitly used in previous works on finding sufficient conditions for cluster synchro-

nization; our work improves on sufficient conditions by incorporating significantly

more information about network structure.

Another key contribution of our work is an improvement on previous sufficient

conditions for cluster synchronization [29] in networks with heterogeneous intrinsic

dynamics. We have detailed an approach to finding sufficient conditions for syn-

chronization independent of nonlinear model and network structure. However, the

strict requirements imposed by studying complete synchronization within clusters

that manifest in the cluster-input-equivalence condition limit the amount of hetero-

geneity in the nodal dynamics and asymmetry in the network that can be addressed.

Future generalizations of our results should include relaxations of the complete syn-

chronization requirement which would allow for more complex and realistic network

configurations. A concrete first relaxation would be to combine the robustness result

for contracting systems, as in [99], with the results from this work to study a system

perturbed from a cluster-input-equivalence state by Brownian noise.
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Chapter 9

Mixed-Mode Oscillations and

Phase Locking in Coupled

FitzHugh-Nagumo Model

Neurons∗

Elizabeth N. Davison, Zahra Aminzare, Biswadip Dey, and Naomi Ehrich

Leonard

We study the dynamics of a low-dimensional system of coupled model neurons as

a step towards understanding the vastly complex network of neurons in the brain.

We analyze the bifurcation structure of a system of two model neurons with unidirec-

tional coupling as a function of two physiologically relevant parameters: the external

current input only to the first neuron and the strength of the coupling from the first

to the second neuron. Leveraging a timescale separation, we prove necessary con-

∗This chapter appears as Davison, Aminzare, Dey, and Leonard (2019) [28]. In Chapter 3, a
mistake in the condition for MMOs is described and Figure 3.4 depicts an update to Figure 9.3 with
the correct condition.
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ditions for multiple timescale phenomena observed in the coupled system, including

canard solutions and mixed mode oscillations. For a larger network of model neurons,

we present a sufficient condition for phase locking when external inputs are hetero-

geneous. Finally, we generalize our results to directed trees of model neurons with

heterogeneous inputs.

Efforts to gain insight into the complex dynamics of the brain benefit from a

detailed understanding of neurons and their interactive dynamics. We study a system

of two model neurons where the first neuron receives a constant external input and the

second neuron receives an input from the first neuron. Systems of two coupled model

neurons exhibit rich dynamical patterns that can represent large networks comprised

of two distinct clusters. This makes them fascinating in their own right and useful

as a starting point for studying more general networks. Using bifurcation theory, we

find bounds on external input and coupling strength that predict firing, mixed mode

oscillations, and phase locking. We extend these conditions to more general networks.

Our results provide foundations for investigating the interplay between structure and

external stimuli in networks of neurons.

9.1 Introduction

The study of model neurons has a rich history, dating back to the pioneering work

of Hodgkin and Huxley [59] on the action potential in the squid giant axon. A two-

dimensional model that captures salient qualities of the four-dimensional Hodgkin-

Huxley model was developed independently by FitzHugh [46,47] and by Nagumo[90].

In this model, commonly known as the FitzHugh-Nagumo (FN) model, one variable

represents the membrane potential and the other represents a gating variable. A
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constant external input to the FN model neuron can produce quiescent behavior

(a low-voltage stable equilibrium point), firing (a stable limit cycle), or saturated

behavior (a high-voltage stable equilibrium point). The FN model neuron captures

realistic neuronal behavior such as spike accommodation, bistability, and excitability

[63].

A system of two coupled neurons can represent a larger network of neurons that

cluster into two groups in which neurons within each group synchronize but neurons

in different groups do not. A cluster synchronized network can be reduced to a

quotient network [113,115] by leveraging balanced conditions on coupling and graph

structure [123], as well as bounds on coupling strength [4, 29]. A system of two

FN model neurons with gap junction diffusive coupling (two-FN system) has been

studied numerically and analytically in the symmetric case[20,60], where both neurons

receive the same external input and are coupled bidirectionally (undirected coupling).

Gap junction diffusive coupling is modeled as a difference between the membrane

potentials of the two model neurons multiplied by a parameter that represents the

coupling strength. The two-FN system has also been studied numerically[60] in a

context where the intrinsic properties of both models are the same but the neurons are

coupled unidirectionally (directed coupling). Here, we add to the existing literature

by analytically describing the bifurcation structure of the directed two-FN system

in terms of two parameters, the external input to the first model neuron and the

unidirectional coupling strength from the first model neuron to the second.

The FN model neuron is a classic example of a fast-slow system, and the coupled

pair of FN model neurons exhibits rich dynamics characterized by the timescale sepa-

ration. Under certain conditions on external input and coupling strength, the system

exhibits canard solutions, which are solutions that pass from a stable to an unstable

manifold in the slow system and stay near the unstable manifold for a long time

relative to the slow system timescale [15, 72, 126]. Canard solutions result from the

121



presence of two distinct types of folded singularities, stable folded nodes and folded

saddles. In particular, stable folded nodes give rise to robust families of canard solu-

tions [126,137]. When combined with a suitable return mechanism, canard solutions

can lead to mixed mode oscillations (MMOs), which are periodic oscillations that

alternate between canard-driven oscillations and a relaxation oscillation [84]. The

existence of canards and MMOs has been described for systems in four dimensions

[14,126], systems with two slow variables and two fast variables [128], and generalized

systems in arbitrary finite dimensions [138]. The folded saddle node of type I (FSN I)

and folded saddle node of type II (FSN II) have been identified as mechanisms for the

onset of MMOs in fast-slow systems [26, 33, 34, 71, 84]. We leverage these results to

determine the regions of parameter space where canards and MMOs may be present

in the directed two-FN system, which has two slow variables and two fast variables.

Canard-induced MMOs have been studied analytically in numerous systems in-

cluding chemical reactions [87,98], the Hodgkin-Huxley neuronal model [109], cortical

grid cells [108], and a self-coupled FN model neuron [35]. In a two-FN system, the

onset of firing, as coupling strength is increased, can be characterized by the appear-

ance of canard solutions, and by MMOs, as the coupling is increased further. The

existence of canard solutions in a two-FN system was first proven using nonstandard

analysis in the case of model neurons with identical parameters [129]. Necessary con-

ditions were found in terms of a model parameter that controls the slope of the linear

nullcline of the system. Conditions for different stability types of folded singularities

were found in terms of the same model parameter in a slightly modified, but still

symmetric, model [48]. Here, we fix the corresponding parameter within the range

where canard solutions may be present and find conditions for existence of canard-

induced MMOs in terms of two parameters that break symmetry: external input and

coupling strength.
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A condition for the onset of MMOs in a two-FN system was shown as an applica-

tion of a method developed to study MMOs in systems with two fast variables and

two slow variables [69]. There are no symmetry requirements and the main result is

a necessary condition for MMO onset in terms of a parameter corresponding to the

input to one of the neurons. In the spirit of this work, we prove explicit necessary

conditions for existence of canard solutions and MMOs in the directed two-FN sys-

tem in terms of both the external input and the coupling strength. First, we take

the singular limit of the system, and obtain necessary conditions on the bifurcation

parameters for existence of transcritical bifurcations. The transcritical bifurcations

in the singularly perturbed system delineate regions in parameter space where MMOs

exist in the original system.

We show, further, that the original system admits Hopf bifurcations within a

distance of order ε around the point in the parameter space where the singularly per-

turbed system admits transcritical bifurcations. This we use to derive novel bounds

for phase-locking in representative networks of model neurons. Phase locking is a

generalization of synchronization where the phases of oscillating models remain sep-

arated by a constant offset, while amplitudes and waveforms may vary [107]. A

common phenomenon in nature, phase locking has been studied in cardiac rhythms

[49,54,132], in the firing patterns of squid axons [82], in two coupled phase oscillators

[67], in local field potential measurements of neurons in the human brain [114, 136],

and in the brain as a mechanism for coordination between groups of neurons [133].

Finally, we consider the more general problem of n FN model neurons linked by

unidirectional gap junction diffusive coupling in a directed tree, with heterogeneous

coupling strengths and heterogeneous external inputs. As in the directed two-FN

system, this can represent a class of large networks that contain cluster synchro-

nized groups of model neurons and satisfy conditions on graph structure [123] and

connectivity[4, 29] so they can be reduced to a quotient network [113, 115]. An anal-
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ogous problem with homogeneous coupling strength has been analyzed in detail in

the strong coupling limit where the dynamics are reduced using singular perturba-

tion theory[83]. Here, we leverage an analysis of the singular perturbation of the

directed two-FN system to provide necessary conditions for the existence of MMOs

and sufficient conditions for phase locking in the original n-FN system.

Our contributions towards understanding the dynamics of networked nonlinear

model neurons are as follows. First, we explain how the bifurcation structure of the

directed two-FN system relates to the bifurcation structure of the reduced, singularly

perturbed system that is used to study canard solutions. This is critical because

the reduced system can be used to explain features of the original system and the

original system can be used to understand the reduced system. Second, we provide

necessary conditions for canards and MMOs in the directed two-FN system in terms

of two model parameters; this is an extension of the conditions found in terms of one

parameter in the literature. Third, we provide a sufficient condition for phase locking

given heterogeneous external inputs in the directed two-FN system. We generalize

these conditions to directed trees of FN model neurons.

The paper is organized as follows. In Section 9.2, we review the standard analysis

of a single FN model neuron and give a biophysical rationale for bounds on model

parameters used throughout the paper. In Section 9.3, we define the directed two-FN

system and find conditions for Hopf bifurcations. In Section 9.4, we compute the

singular perturbation of the directed two-FN system. We prove necessary conditions

for the transcritical bifurcations in the singularly perturbed system and canards and

MMOs in the original system in Section 9.5. In Section 9.6, we generalize the results

to directed trees of FN model neurons. We provide a numerical example to illustrate

our results.
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9.2 Single FitzHugh-Nagumo model neuron

The FN model is a two-dimensional simplification of the four-dimensional Hodgkin-

Huxley (HH) model that retains conceptually relevant properties of the activation and

deactivation dynamics of the neuronal action potential. By letting y and z represent

the membrane potential and a slow gating variable, respectively, its dynamics are

given by
dy

dt
= ψ(y)− z + I,

dz

dt
= ε(y − bz),

(9.1)

where ψ(y) is a cubic polynomial. For our purposes, we use ψ(y) = y − y3

3
− a. In

this model, I corresponds to an external input, 0 < ε � 1 is a positive timescale

separation constant, and a and b are positive constants.

The FN model is far simpler to analyze than the full HH model due to the lower

dimension. Despite the lower dimension, the FN model captures key characteristics

of the HH model and a range of physiologically meaningful regimes and behaviors

[63, 106]. The FN model is a suitable choice for network analysis because it is both

dynamically rich and analytically tractable.

Hopf bifurcations are distinguishing features of the FN model dynamics. A Hopf

bifurcation occurs when the variation in a parameter leads to the appearance or

disappearance of an isolated limit cycle from an equilibrium point and a simultaneous

change in stability of the equilibrium inside the limit cycle. In a supercritical Hopf

bifurcation, the limit cycle is stable, while in a subcritical Hopf bifurcation, the limit

cycle is unstable.

A necessary condition[103] for the FN model to exhibit distinct quiescent, firing,

and saturated regimes is the existence of a unique equilibrium point for all values of

the bifurcation parameter I. In this paper we assume the following:
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Assumption 9.2.1. Parameters a, b, and ε are such that the FN model (9.1) has a

unique equilibrium point for all values of I ≥ 0. This results in conditions 0 < a < 1

and 0 < b < 1.

The condition on a corresponds to a simple voltage offset requirement and the

condition on b corresponds to a requirement that the slope of the linear nullcline of

(9.1) must be greater than that of the cubic nullcline of (9.1).

By Assumption 9.2.1, there is one equilibrium point for all values of I. There are

six key features in the bifurcation structure of the FN model as the external input

parameter, I, is varied:

I = I0sn As I is increased from zero, stable and unstable limit cycles appear through

a saddle node bifurcation of limit cycles at I = I0sn for some I0sn > 0, while

the unique equilibrium point is stable. The large limit cycles are relaxation

oscillations. The bifurcation at I0sn defines the beginning of the firing regime

and the small region of bistability.

I = I0c As I is increased slightly, through the point I = I0c[16, 53], there is a region

of bistability during which there occurs a canard explosion, which is an abrupt

transition from small limit cycle oscillations to larger limit cycle oscillations.

The unique equilibrium point is still stable. By Ref. [88], the saddle node of

limit cycles and the canard explosion occur at essentially the same parameter

value, i.e., I0c ≈ I0sn. We calculate an approximation to I0c later in this section.

I = I0 As I is increased further, through a subcritical Hopf bifurcation at I = I0,

where I0 > I0c, the unstable limit cycles disappear, the stable equilibrium point

becomes unstable, and the large stable limit cycles remain. The bifurcation at

I0 defines the end of the small region of bistability.

I = I1 For I0 < I < I1, for some I1 > 0, there are only an unstable equilibrium

point and the large stable limit cycle oscillations. At I = I1, through another
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subcritical Hopf bifurcation, the equilibrium becomes stable and small unstable

limit cycles appear. The bifurcation at I1 defines the beginning of a second

small region of bistability.

I = I1c For I1 < I < I1c, the equilibrium is stable and there is again a region of

bistability characterized by a canard explosion with the unique equilibrium point

stable[16,53]. We calculate an approximation to I1 later in this section.

I = I1sn As I is increased slightly, through the point I = I1sn, there is another saddle

node bifurcation of limit cycles. The bifurcation at I1sn defines the end of the

firing regime and the second small region of bistability. By Ref. [88], the saddle

node of limit cycles and the canard explosion occur at essentially the same

parameter value, i.e., I1sn ≈ I1c.

Figure 9.1 depicts the bifurcation diagram of the FN model when I is varied.

The following proposition from Ref. [53] describes the stability of the unique equi-

librium point of (9.1) given Assumption 9.2.1 and conditions on I for Hopf bifurca-

tions.

Proposition 9.2.2. (Ref. [53]) Let Assumption 9.2.1 hold. Then, there exists I0 < I1

such that the equilibrium point is stable for I < I0 and, as I increases, it will undergo

a transition to an unstable equilibrium point through a Hopf bifurcation at I0. As I is

increased further it will undergo a transition from unstable to stable through a second

Hopf bifurcation at I1.

We review the approach to analyzing stability of the limit cycles arising from the

Hopf bifurcations following the methods of Chapter 3 of Ref. [53] and the application

to the FN model in Ref. [39]. We generalize the approach to networks of FN model

neurons in later sections.
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Figure 9.1: Bifurcation diagram for a single FN model drawn with a numerical con-
tinuation software tool [36] for a = 0.875, b = 0.8, and ε = 0.08. Green corresponds
to stable equilibrium points or limit cycles and red corresponds to unstable equilib-
rium points or limit cycles. For most values I < I0, the FN model is in the quiescent
regime. For I0sn ≈ I0c < I < I0, the FN model is in the firing regime since it con-
currently exhibits a stable equilibrium point, small unstable oscillations, and larger
stable oscillations. The FN model is always in the firing regime when I0 < I < I1.
For I1 < I < I1c ≈ I1sn, the FN model is also in the firing regime since it con-
currently exhibits a stable equilibrium point, small unstable oscillations, and larger
stable oscillations. For all other I > I1, the FN model is in the saturated regime.

The dynamics at a Hopf bifurcation at the origin of a two-dimensional system can

be written as  dx1

dt
dx2

dt

 =

 0 −ω

ω 0


 x1

x2

+

 F (x1, x2)

G(x1, x2)

 , (9.2)

such that F and G satisfy F (0, 0) = G(0, 0) = 0 and DxF (0, 0) = DxG(0, 0) = 0

where DxF is the Jacobian of F with respect to x and x = (x1, x2)>.

Definition 9.2.3 (Cubic coefficient [53, 57]). Consider the system (9.2). The coef-

ficient of the cubic term of the Taylor expansion of the RHS of (9.2) is expressed

as

α =
1

16
(Fx1x1x1 + Fx1x2x2 +Gx1x1x2 +Gx2x2x2)

∣∣∣∣
(0,0)
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+
1

16ω
(Fx1x2(Fx1x1 + Fx2x2)−Gx1x2(Gx1x1 +Gx2x2)

− Fx1x1Gx1x1 + Fx2x2Gx2x2)

∣∣∣∣
(0,0)

, (9.3)

where Fx1x2 denotes
∂2F

∂x1∂x2

, and so on.

Proposition 9.2.4 (Theorem 3.4.2 (modified) [53]). The system ẋ = f(x, µ), admits

a Hopf bifurcation for the parameter value µ = µ0 at an equilibrium point x = 0 if

1. Dxf(0, µ0) has a pair of pure imaginary eigenvalues and no other eigenvalues

with zero real parts.

2.
∂

∂µ
<(λ(µ))

∣∣∣∣
µ=µ0

6= 0, where <(λ) denotes the real part of the eigenvalue λ.

3. The cubic coefficient of the Taylor expansion of f , denoted by α and defined in

Definition 9.2.3, is nonzero.

Furthermore, if α < 0, the Hopf bifurcation is supercritical, while, if α > 0, the Hopf

bifurcation is subcritical.

The cubic coefficient is also called the first Lyapunov coefficient. For the FN

model, the cubic coefficient is given by

α =
1

8

(
2b− b2ε− 1

1− b2ε

)
.

In this paper we choose parameters that ensure Assumption 9.2.1 holds and the

bifurcations are subcritical Hopf (α > 0); these yield biologically realistic dynamics

[10, 104]. We fix a = 0.875, b = 0.8, and ε = 0.08, and we consider I ≥ 0 as a

bifurcation parameter.

The value of the bifurcation parameter I where canards exist near each Hopf

bifurcation is close to the respective saddle node bifurcation of limit cycles and can

be found following Ref. [17]. Let f represent the dynamics of (9.1) and let F and G
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be defined as in (9.2) for (9.1) where x1 = y and x2 = z. Following Equation (3.23)

of Ref. [17] we compute

Iic = Ii − 8
a1

Fxxδi
ε+ O(ε2), i = 0, 1,

where Ii is the value of I at the Hopf bifurcation,

a1 =
1

16
(Fyy(FzGyy − FyyGz) +Gy(FyzFyy − FzFyyy)),

and

δi =
∂

∂I

[
Tr (Dxf(p, I))

]∣∣∣∣
I=Ii

.

For the FN model (9.1), I0c = I0− 0.09ε+ O(ε2) and I1c = I1 + 0.09ε+ O(ε2). So

canards exists for I0c < I < I0 and for I1 < I < I1c, as illustrated in Figure 9.1.

9.3 Directed two-FN model neuron system

The directed two-FN model neuron system is shown in Figure 9.2. The first model

neuron is denoted A and it receives external input I. The second model neuron is

denoted B and it receives no external input. The coupling is unidirectional from A

to B, with coupling strength γ. A and B have the same intrinsic dynamics, i.e., the

same values of a, b, and ε as defined above. We let I and γ be bifurcation parameters.

A Bγ

I

Figure 9.2: A directed network of two FN model neurons, A and B. A receives an
external input I and there is a unidirectional coupling from A to B with strength γ.
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The two-FN system can be used to study cluster synchronized graphs containing

two clusters. In this case, the dynamics can be reduced to a simplified quotient

graph [112, 115]. When there are many more model neurons in one cluster than the

other, the coupling from the large cluster to the small cluster is much stronger than

the coupling from the small cluster to the large cluster. Thus, we can disregard the

coupling from the small cluster to the large cluster and the simplified graph can be

approximated by the directed two-FN system.

The equations for the directed two-FN system are

dyA
dt

= ζA(yA, zA, yB, zB) = yA −
y3
A

3
− a− zA + I, (9.4a)

dzA
dt

= ε ξA(yA, zA, yB, zB) = ε (yA − bzA), (9.4b)

dyB
dt

= ζB(yA, zA, yB, zB) = yB −
y3
B

3
− a− zB + γ(yA − yB), (9.4c)

dzB
dt

= ε ξB(yA, zA, yB, zB) = ε (yB − bzB). (9.4d)

Here, yA (yB) is the membrane potential of A (B) and zA (zB) represents a slow

gating variable in A (B).

The bifurcation structure of directed and undirected two-FN systems have been

studied extensively from a numerical perspective [60]. The bifurcation structure of

the undirected system has been studied through analytical methods that leverage

symmetry-based arguments or assume symmetric or near-symmetric FN models [20,

48, 129]. In contrast we examine the system with asymmetry in both the external

input and the coupling.

We begin by classifying the behavior of the two model neurons A and B in the

I-γ parameter space, as shown in Figure 9.3. Let IiA, IicA ≈ IisnA for i = 0, 1 be the

points associated to the FN model A for lower and upper Hopf bifurcations, canard

explosions, and saddle node bifurcations, as defined in Section 9.2. Regions (1)-(7)

are described as follows:

131



(i) For I < I0cA, both A and B will be quiescent at a stable equilibrium point. This

corresponds to region (1) of Figure 9.3. See Section 9.5.1 for details.

(ii) For I > I1cA, A becomes saturated and, as γ varies, there are three distinct

behaviors for B. See Section 9.5.2 for details. For I > I1cA, there exist I0cB(I)

and I1B(I) such that

(a) For γ < I0cB(I), B is quiescent. This corresponds to region (2) in Figure

9.3.

(b) For I0cB(I) < γ < I1B(I), B is firing. This corresponds to region (3) in

Figure 9.3.

(c) For γ > I1B(I), B is saturated. This corresponds to region (4) in Figure

9.3.

(iii) For I0cA < I < I1cA, A is firing and there are three distinct behaviors for B:

(a) When γ > 1 − bε, B is phase locked with A, where the phases of the

oscillating models remain separated by a constant offset, while amplitudes

and waveforms may vary. This corresponds to region (5) of Figure 9.3. See

Section 9.5.3 for details.

(b) When γ < 1 − bε and I is below a curve, denoted by I∗(γ), MMOs or

small canard oscillations may be present. This corresponds to region (6) of

Figure 9.3. See Section 9.4 for the derivation and Section 9.5.4 for details.

(c) When γ < 1− bε and I is above I∗(γ), B is firing and is phase locked with

A. This corresponds to region (7) of Figure 9.3. See Section 9.4 for the

derivation and Section 9.5.4 for details.

In Section 9.4 we study the system (9.4) by applying geometric singular per-

turbation techniques. Leveraging fast-slow dynamics of (9.4), we reduce it to a two-

dimensional singular limit. We analyze the resulting second-order dynamics and draw

conclusions about canards and MMOs for the original dynamics (9.4) in Section 9.5.

132



Figure 9.3: Regions of behavior of the directed two-FN system (9.4) in the I-γ pa-
rameter space. Boundaries between regions are identified in the key. In regions (3),
(5), (6), and (7), shaded gray, there is a stable limit cycle such that either A or B
is firing. In region (3), with cross hatching, only B is firing. In regions (5) and (7),
in darker gray, there is phase locking. In region (6), in light gray, A is firing and B
may exhibit canard solutions. All boundaries are computed analytically. HH denotes
a Hopf-Hopf bifurcation and GH denotes a generalized Hopf bifurcation.

9.4 Fast-slow phenomena in the directed two-FN

system

In this section, we assume A is firing and study the onset of firing in B as γ increases.

This corresponds to region (6) of Figure 9.3. We begin by providing definitions of

canards and MMOs, which are observed numerically at the transition from quiescent

to firing in B as shown in Figure 9.4. For a general fast-slow system expressed as

dy

dt
= f(y, z),

dz

dt
= εg(y, z),

(9.5)

y ∈ Rm are fast variables, z ∈ Rn are slow variables, and 0 < ε� 1 is the timescale

separation parameter. The singular limit corresponding to ε = 0 is called the layer

system,
dy

dt
= f(y, z), where the slow variables z are parameters in this limiting

system.
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Definition 9.4.1 (Critical manifold). Given system (9.5) with ε = 0,

C =
{

(y, z) ∈ Rm ×Rn : f(y, z) = 0
}

is called the critical manifold and corresponds

to the equilibrium points of the layer system.

Definition 9.4.2 (Normal hyperbolicity). A subset Ch ⊂ C is called normally hyper-

bolic if all the points of Ch are hyperbolic equilibrium points of the layer system, i.e.,

if Dyf has no eigenvalues with zero real part. Ch is called attracting (respectively,

repelling) if the eigenvalues have negative (respectively, positive) real part. Ch is a

saddle if it in neither attracting nor repelling.

Definition 9.4.3 (Fold points[139]). Denote the set of points in C that are not nor-

mally hyperbolic (Dyf has at least one eigenvalue with zero real part) as

L :=


(y, z) ∈ C

∣∣∣∣∣∣∣∣∣∣∣
rank(Dyf(y, z)) = m− 1

l ·D2
yf(y, z)(r, r) 6= 0

l ·Dzf(y, z) 6= 0


,

where l and r are corresponding left and right eigendirections of Dyf . L denotes the

fold points of the critical manifold C. L locally divides the critical manifold C into

subsets with different stability properties.

Definition 9.4.4 (Canard). A solution of (9.5) is called a canard if it stays within

O(ε) of a repelling branch of the critical manifold for a time that is O(1) on the slow

timescale, τ1 = tε.

Definition 9.4.5 (Mixed mode oscillation (MMO) [72]). Periodic solutions of (9.5)

with peaks of substantially different amplitudes are called MMOs. Canard solutions

often comprise the small oscillations present in MMOs.

Definition 9.4.6 (Phase locking). Two oscillating signals are said to be phase locked

if the phases of the signals remain separated by a constant offset.
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An example of a canard solution, MMOs, and phase locking found in the directed

two-FN system are shown in Figure 9.4.

Figure 9.4: Example of (a) canard solutions, (b) MMOs, and (c) phase locking ob-
served in simulation of the directed two-FN system. In all plots yA is in blue and yB
is in magenta. (a) For I = 1 and γ = 0.05, yB follows a canard solution exhibited
as small oscillations with the same frequency as the firing of model neuron A. (b)
For I = 1 and γ = 0.08, yB exhibits MMOs where the small oscillations are a canard
solution. (c) For I = 1.4 and γ = 1.03, yA and yB exhibit phase locking, i.e., they fire
at a constant phase offset, even though the amplitude of the spikes and the waveforms
are different.

One of our goals is to show the existence of canards and MMOs in the two-FN

system. In what follows we review how the equilibrium points and the fold points of a

fast-slow system play important roles in the existence of canards and MMOs. To this

end, we study the behavior of the slow system on the critical manifold, which is called

the reduced system. By Fenichel Theory, the equilibrium points of the full system

lie within an O(ε) neighborhood of the equilibrium points of the reduced system.

However, the solutions of the reduced system blow up in finite time at the fold points.

To remove these solutions, we study the desingularized system, which is obtained from

the reduced system by an appropriate time rescaling. The equilibrium points of the

desingularized system are within an O(ε) neighborhood of the equilibrium points of

the full system and the fold points.
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In the slow timescale τ1 = tε system (9.5) becomes

ε
dy

dτ1

= f(y, z),

dz

dτ1

= g(y, z).

(9.6)

For this system, the singular limit corresponding to ε = 0 is called the reduced system

which is the differential algebraic equation corresponding to the slow dynamics
dz

dτ1

=

g(y, z) defined on the critical manifold C. Note that the full and reduced systems

have the same equilibrium points.

To derive the desingularized system we first differentiate f(y, z) = 0 with respect

to τ1 to get

(Dyf) · dy
dτ1

+ (Dzf) · dz
dτ1

= 0. (9.7)

Multiplying both sides of (9.7) by adj(Dyf), the adjugate (or the transpose of the

cofactor matrix) of Dyf , gives

− det (Dyf)
dy

dτ1

= adj(Dyf)(Dzf) · g(y, z). (9.8)

This system is singular when det (Dyf) = 0, namely at fold points. This means that

standard existence and uniqueness results do not hold at the fold points. However,

rescaling time in (9.8) by dτ1 = − det (Dyf)dτ2 yields the desingularized system

dy

dτ2

= adj(Dyf)(Dzf) · g(y, z). (9.9)

Note that to obtain the corresponding flows of the reduced system from the desin-

gularized system, due to the time scaling dτ1 = − det (Dyf)dτ2, the direction of the

flows of the desingularized system must be reversed on branches where det (Dyf) > 0.

The desingularized system (9.9) has two types of equilibrium points, which are

called ordinary and folded singularities, respectively.

136



Definition 9.4.7 (Ordinary singularity). An equilibrium point of the desingularized

system is an ordinary singularity if it corresponds to an equilibrium point of the

reduced system and lies within an O(ε) neighborhood of an equilibrium point of the

full system. Conditions for an ordinary singularity are

g(y, z) = 0, det (Dyf) 6= 0, adj(Dyf)(Dzf) · g(y, z) 6= 0.

Definition 9.4.8 (Folded singularity). An equilibrium point of the desingularized

system is a folded singularity if it corresponds to a fold point of the reduced system.

Conditions for a folded singularity are

det (Dyf) = 0, adj(Dyf)(Dzf) · g(y, z) = 0.

Suppose that the desingularized system (9.9) possesses a stable folded singularity

y∗ that is a node. Let the eigenvalues of the linearization of (9.9) at y∗ be λs and λw,

where λs < λw < 0. The trajectory tangent to the eigendirection corresponding to λs,

called the strong singular canard, corresponds to a trajectory in the full system that

passes through a point close to y∗ from the attracting branch to the repelling branch of

the critical manifold. It creates a funnel such that all the trajectories in the full system

that enter the funnel pass through the same point from the attracting branch to the

repelling branch of the critical manifold. It was shown [137] that these trajectories

rotate about the eigendirection corresponding to λw, called the weak singular canard,

and eventually leave the funnel and jump away from the point near y∗ [26]. If there

exists a return mechanism to return these trajectories back to the funnel, then MMOs

occur[34,71].

The remainder of this section details the calculations involved in the transforma-

tion of (9.4) into a two-dimensional desingularized system.
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In Section 9.5, we show conditions on I and γ such that the desingularized system

possesses a stable folded node and thus a strong singular canard. We also explain the

existence of a return mechanism and provide conditions for regions where MMOs are

possible.

9.4.1 The critical manifold and fold points of the directed

two-FN system

The critical manifold of system (9.4) with ε = 0 is

C =

yA, yB, zA, zB
∣∣∣∣∣∣∣∣
zA = yA −

y3
A

3
− a+ I

zB = yB −
y3
B

3
− a+ γ(yA − yB)

 , (9.10)

By Fenichel’s Theorem, the slow dynamics of the two-FN system (9.4) will lie O(ε)

away from Ch, the normally hyperbolic submanifold of C, on a normally hyperbolic

slow invariant manifold Cε with the same stability properties as Ch. [72, 139]

We next identify fold points by checking the three conditions that determine

the set L from Definition 9.4.3. The first eigenvalue of Dyζ is 1 − y2
A, with left

and right eigenvectors l1 =
(
1, (γ − y2

A + y2
B)/γ

)
and r1 = (0, 1)>. The second

eigenvalue of Dyζ is 1 − y2
B − γ, with left and right eigenvectors l2 = (0, 1) and

r2 =
(
1, (−γ + y2

A − y2
B)/γ

)>
.

The first condition is satisfied, i.e., rank(Dyζ) = 1, if either 1 − y2
A = 0 or

1− y2
B − γ = 0, but not both. The second condition is satisfied if

l ·D2
yζ (r, r) = l ·

 −2yA 0 0 0

0 0 0 −2yB


 r

r

 6= 0.

138



For each eigenvalue, the condition becomes yB
(
(1− y2

A)− (1− y2
B − γ)

)
6= 0, which

is satisfied if the first condition is satisfied and yB 6= 0. The third condition is always

satisfied.

9.4.2 Desingularization of the directed two-FN system

According to (9.9), the desingularization of the reduced system of the two-FN system

is

dy

dτ2

= adj(Dyζ)(Dzζ) · (y − bz), (9.11)

or equivalently,

dyA
dτ2

= ρ1(yA, yB) = −(1− y2
B − γ)(yA − bzA),

dyB
dτ2

= ρ2(yA, yB) = γ(yA − bzA)− (1− y2
A)(yB − bzB),

(9.12)

where zA and zB are defined as

zA = yA −
y3
A

3
− a+ I,

zB = yB −
y3
B

3
− a+ γ(yA − yB).

(9.13)

In what follows we study the stability type of the ordinary singularity and the

folded singularities of (9.12). These points correspond to the equilibrium point and

the fold points of the two-FN system, respectively. However, due to the time reversal

step, the stability in the desingularized system is not identical to the stability of the

full system.

By Definition 9.4.7 the ordinary singularity in (9.12) satisfies

y − bz = 0, det (Dyζ) 6= 0, adj(Dyζ)(Dzζ) · (y − bz) 6= 0.
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Figure 9.5 depicts regions in I-γ parameter space according to the local stability of the

ordinary singularity. Changes in stability in (9.12) correspond to Hopf bifurcations

in (9.4). However, the curves in I-γ space that delineate the different signs of the real

parts of the eigenvalues are slightly different from the Hopf bifurcation curves because

predictions from singular perturbation analysis are accurate up to O(ε). In regions

where A and B are both quiescent or saturated (dark gray), the real parts of both

eigenvalues are positive and the ordinary singularity is an unstable equilibrium. In

regions where both A and B are firing (light blue), the real parts of both eigenvalues

are negative and the ordinary singularity is a stable equilibrium. In regions where

either A or B is firing (light gray), the ordinary singularity is a saddle.

Figure 9.5: Regions in the I-γ parameter space distinguishing local stability of the
ordinary singularity in the desingularized system (9.12). Dark gray indicates an
unstable node, light blue indicates a stable node, and light gray indicates a saddle.
The Hopf bifurcations and distinguishing features of the original two-FN system (9.4),
the boundaries in Figure 9.3, are plotted for comparison as five curves.

By Definition 9.4.8 the folded singularities of (9.12) satisfy

det (Dyζ) = 0, and adj(Dyζ)(Dzζ) · (y − bz) = 0,

or equivalently

(1− y2
B∗ − γ)(1− y2

A∗) = 0, (9.14a)

(1− y2
B∗ − γ)(yA∗ − bzA∗) = 0, (9.14b)

140



(1− y2
A∗)(yB∗ − bzB∗)− γ(yA∗ − bzA∗) = 0. (9.14c)

(9.14a) is satisfied when yA∗ = ±1 or yB∗ = ±
√

1− γ. If (9.14b) and (9.14c) are

satisfied but (9.14a) is not satisfied, the corresponding singularity is an ordinary

singularity.

First consider the case in which yA∗ = ±1. By (9.14b)-(9.14c), either zA∗ = 1
b
yA∗

or γ = 0 and yB∗ = ±1. If zA∗ = 1
b
yA∗ then, by (9.13), I = ±1

b
∓ 2

3
+ a. Thus, we do

not consider the case yA∗ = ±1 further, since either γ = 0 or I is independent of γ.

When yB∗ = ±
√

1− γ, we use (9.13) to solve (9.14c) for yA∗, which is equivalent

to solving the cubic equation

β3y
3
A∗ + β2y

2
A∗ + β1yA∗ + β0 = 0, (9.15)

where

β0 = bγ(I − a) + yB∗ + b

(
−yB∗ +

y3
B∗
3

+ a+ γyB∗

)
,

β1 = −γ,

β2 = −yB∗ + b

(
yB∗ −

y3
B∗
3
− a− γyB∗

)
,

β3 =
2bγ

3
.

The solutions of (9.15) for yA∗ as a function of γ and I are given by

yA∗,k = − 1

3β3

(
β2 + Ck +

β2
2 − 3β1β3

Ck

)
,
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where, for k = 1, 2, 3,

Ck =

(√
−3− 1

2

)k−1(
σ −

√
−27β2

3∆

2

)1/3

,

∆ = 18β3β2β1β0 − 4β0β
3
2 + β2

2β
2
1 − 4β3β

3
1 − 27β2

3β
2
0 ,

σ = 2β2
2 − 9β3β2β1 + 27β2

3β0.

If ∆ > 0, there are three real solutions, i.e., three folded singularities, and, if ∆ < 0,

there is one real solution, i.e., one folded singularity.

The Jacobian of (9.12) for the folded singularities with yB∗ = ±
√

1− γ has the

form:

Dyρ(yA∗, yB∗) =

 0 2yB∗ξA

γ+2yA∗ξB −(1− y2
A∗)

 ,

where ρ = (ρ1, ρ2)>, ξA = yA∗ − bzA∗, and ξB = yB∗ − bzB∗. To classify each folded

singularity, we use the trace and determinant of the Jacobian, which are

Tr (Dyρ(yA∗, yB∗)) = −(1− y2
A∗),

det (Dyρ(yA∗, yB∗)) = −2yB∗ξA (γ + 2yA∗ξB) .

When det (Dyρ(yA∗, yB∗)) > 0, the real parts of the eigenvalues have the same sign,

so the singularity is a folded node or focus. The stability can be determined by

looking at the sign of the trace. When det (Dyρ(yA∗, yB∗)) < 0, the real parts of the

eigenvalues have opposite signs, and the singularity is a folded saddle.

Figure 9.6 depicts regions in I-γ parameter space according to the local stability

of the folded singularities. The white regions in this figure correspond to values of I

and γ where the given folded singularity does not exist in the desingularized system

(9.12) (i.e. ∆ < 0).
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Figure 9.6: Regions in the I-γ parameter space distinguishing local stability of the
three folded singularities corresponding to yB∗ = −

√
1− γ (top, middle, and bottom

plots on the left) and the three folded singularities corresponding to yB∗ =
√

1− γ
(top, middle, and bottom plots on the right). In white regions, the folded singularity
does not exist. In dark gray regions, the folded singularity is unstable. In light gray
regions, the folded singularity is a saddle. In light blue regions, the folded singularity
is stable.

9.5 Dynamics by region

In this section, we apply the analytical results for the desingularized system (9.12) to

draw conclusions about the original system (9.4). In so doing we provide details of

the computations used to produce Figure 9.3 and the characterization of each of the

seven regions, as described in Section 9.3. We prove the stability of limit cycles of

the Hopf bifurcations in model neuron B. We prove necessary conditions for MMOs

and sufficient conditions for phase locking in terms of I and γ.

In the following proposition, we compute the value of the unique equilibrium point

of (9.4), when Assumption 9.2.1 holds, and its stability as a function of I and γ.
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Proposition 9.5.1. Consider the directed two-FN system (9.4) and let Assumption

9.2.1 hold. For any fixed I and γ, there exists a unique equilibrium point denoted by

p∗ = (yA∗(I), zA∗(I), yB∗(I, γ), zB∗(I, γ)). Then,

1. p∗ is nonhyperbolic if I and γ satisfy

σ1(I, γ) = 1− bε− y2
A∗ = 0,

or σ2(I, γ) = 1− bε− γ − y2
B∗ = 0,

(9.16)

where σ1 is the sum of the first two eigenvalues of the Jacobian of (9.4) evaluated

at p∗ and σ2 is the sum of the second two eigenvalues of the Jacobian of (9.4)

evaluated at p∗.

2. p∗ is hyperbolic if I and γ do not satisfy (9.16). If σ1(I, γ) < 0 and σ2(I, γ) <

0, p∗ is attracting. If σ1(I, γ) > 0 and σ2(I, γ) > 0, p∗ is repelling. If

σ1(I, γ)σ2(I, γ) < 0, p∗ is a saddle.

Proof. Solving for the equilibrium point of (9.4), we first compute yA∗ as a function

of I as

yA∗ =

(
3(I − a)

2
+

√
(3(I − a))2

4
+ b̃3

)1/3

+

(
3(I − a)

2
−
√

(3(I − a))2

4
+ b̃3

)1/3

,

(9.17)

where b̃ = 1
b
− 1. Similarly, by leveraging (9.17), we can write yB∗ as a function of I

and γ as

yB∗ =

(
3(γyA∗ − a)

2
+

√
9(γyA∗ − a)2

4
+
(
b̃+ γ

)3
)1/3

+

(
3(γyA∗ − a)

2
−
√

9(γyA∗ − a)2

4
+
(
b̃+ γ

)3
)1/3

. (9.18)

Then zA∗ = 1
b
yA∗ and zB∗ = 1

b
yB∗.

144



We compute the linearization of (9.4) around p∗. We let νA = (yA, zA), νB =

(yB, zB), and ξ = (ζA, εξA, ζB, εξB). The Jacobian of (9.4) evaluated at p∗ is

D(νA,νB)ξ(p∗) =



1− y2
A∗ −1 0 0

ε −bε 0 0

γ 0 1− y2
B∗ − γ −1

0 0 ε −bε


.

The linearization is block triangular, so the eigenvalues of the Jacobian are the

union of the eigenvalues of the diagonal blocks. This means that local stability can

be determined through linearization of each FN model separately. The eigenvalues

for the first and second blocks are

λ1,2 =
1

2

(
1− bε− y2

A∗
)
± 1

2

√
(1− bε− y2

A∗)
2 − 4ε(1− b+ y2

A∗b),

λ3,4 =
1

2

(
1− bε− γ − y2

B∗
)
± 1

2

√
(1− bε− γ − y2

B∗)
2 − 4ε(1− b+ y2

B∗b+ bγ).

The sign of the real part of the eigenvalues will be determined by the sign of the

first term. The first term of λ1,2 is zero when σ1(I, γ) = λ1 + λ2 = 1− bε− y2
A∗ = 0.

The first term of λ3,4 is zero when σ2(I, γ) = λ3 + λ4 = 1− bε− γ − y2
B∗ = 0. Thus,

p∗ is nonhyperbolic when σ1 = 0 or σ2 = 0.

The stability of p∗ when σ1σ2 6= 0 is derived from the signs of the real parts of

the eigenvalues of D(νA,νB)ξ.

Remark 9.5.2. The one-dimensional manifolds of nonhyperbolic equilibrium points

in I-γ space, {(I, γ) : σ1(I, γ) = 0 or σ2(I, γ) = 0}, correspond to the points where A

and B undergo Hopf bifurcations.

Remark 9.5.3. The corresponding flows of the full system and desingularized sys-

tem have opposite sign when det (Dyf) > 0 due to the time rescaling step, dτ1 =
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− det (Dyf)dτ2. One consequence is that when the ordinary singularity in the desin-

gularized system is an unstable node, the unique equilibrium in the full system is stable.

Likewise, when the ordinary singularity in the desingularized system is a stable node,

the unique equilibrium point in the full system is unstable.

9.5.1 Quiescence: Region (1)

Given the two-FN system (9.4) and Assumption 9.2.1, if I < I0cA then A converges

to a single stable equilibrium point, (yA∗, zA∗), which is quiescent. The value yA∗,

independent of γ, is too low to induce firing in B, i.e., B is quiescent.

To fully understand the behavior of B, we examine the desingularized system

(9.12), which has seven singularities for the parameter values in region (1). These

include one unstable ordinary singularity (corresponding to the unique stable equi-

librium point), one unstable folded node, two stable folded singularities, and three

saddle folded singularities.

Due to the presence of a stable folded node when γ is close to 1 and I < I0,

robust families of canards that compose small oscillations of B could arise for these

parameter values in the original system (9.4) in region (1) as described in Section 9.4.

9.5.2 Hopf bifurcations in B: Regions (2), (3), and (4)

For the two-FN system (9.4), if I > I1cA then A is saturated. We prove conditions

for when B will be quiescent, firing, or saturated and provide illustrative examples

of the desingularized system nullclines and phase plane for representative parameter

values.

Proposition 9.5.4. Consider the two-FN system (9.4) and Assumption 9.2.1. Let

I > I1cA and γ < 1− bε. There exist two curves of Hopf bifurcations defined by

I1B,0B(γ) = b̃yA∗± +
y3
A∗±

3
+ a,
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where

yA∗± = ±1

γ

(
1

3
(1− εb− γ)3/2 +

(
b̃+ γ

)√
1− εb− γ + a

)
.

The bifurcation structure of B in the small parameter range around the transition

from quiescent to firing is analogous to the single FN model in Section 9.2. There is a

saddle node bifurcation of limit cycles at I = I0sn(γ), canard explosion at I = I0cB(γ),

and Hopf bifurcation at I = I0B(γ). B transitions from firing to saturated through a

supercritical Hopf bifurcation at I = I1B(γ).

Moreover, there exists γ∗ such that, for I < I0B(γ∗), the following holds. If γ < γ∗,

the Hopf bifurcation at I0B(γ) is subcritical and, if γ > γ∗, the Hopf bifurcation at

I0B(γ) is supercritical.

Proof. The Hopf bifurcations in B occur at nonhyperbolic equilibrium points, which

are yB∗± = ±
√

1− γ − bε by Proposition 9.5.1.

Substituting yB∗± = ±
√

1− γ − bε and (9.4d) into the equilibrium solution for

(9.4c) gives the critical values

yA∗± = ±1

γ

(
1

3
(1− εb− γ)3/2 +

(
b̃+ γ

)√
1− εb− γ + a

)
.

Substituting yA∗± and (9.4b) into (9.4a) gives the values

I1B,0B = b̃yA∗± +
y3
A∗±

3
+ a.

For a fixed γ, we check the conditions of Proposition 9.2.4 for the bifurcation

parameter I. First, we transform (yB∗, zB∗) to the origin (0, 0), by introducing y0 =

yB − yB∗ and z0 = zB − zB∗. With this change of variables, the dynamics of B
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(9.4c)-(9.4d) can be expressed as

dy0

dt
= (1− γ − y2

B∗)y0 −
y3

0

3
− y2

0yB∗ − z0,

dz0

dt
= ε(y0 − bz0),

(9.19)

and the Jacobian of (9.19) evaluated at the origin is

JB(0, 0) =

 1− y2
B∗ − γ −1

ε −bε

 .

Now we apply Proposition 9.2.4.

Condition 1 of Proposition 9.2.4: This condition holds because Tr(JB(0, 0)) = 0

at the bifurcation values I = I0B and I = I1B.

Condition 2 of Proposition 9.2.4: The second condition holds as well because

∂

∂I
<(λ3,4(I))

∣∣∣∣
I=I0B,1B

6= 0,

where λ3,4 are given in the proof of Proposition 9.5.1.

Condition 3 of Proposition 9.2.4: The cubic coefficient α of the Taylor expansion

of (9.4c)–(9.4d) (Definition 9.2.3), which determines whether the Hopf bifurcation is

subcritical or supercritical [53], is

α =
1

8

(
2b− 2bγ − b2ε− 1

1− b2ε

)
.

At γ = γ∗, α = 0 and B undergoes a “generalized Hopf”, or Bautin, bifurcation,

depicted in Figure 9.3 as the point GH[50, 127]. For γ > γ∗, α < 0 and the limit

cycles resulting from the Hopf bifurcations are stable (supercritical). Otherwise, the

limit cycles are unstable and the bifurcations are subcritical, as for A.
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Remark 9.5.5. For the two-FN system (9.4), given Assumption 9.2.1, if A is satu-

rated, then B transitions from quiescent to firing to saturated as a function of I and

γ.

In region (2), the desingularized system (9.12) has seven singularities, one ordinary

singularity and six folded singularities. The ordinary singularity is unstable, and

there are three unstable folded singularities and three folded saddles. This is a region

where A is saturated and B is quiescent, so the full two-FN system has a unique

stable equilibrium point.

In region (3), the desingularized system (9.12) has seven singularities for small γ,

and five singularities for large γ.

The transition from seven to five singularities occurs through a saddle node bifur-

cation between a folded saddle point and an unstable folded singularity. The ordinary

singularity is a saddle and the unique equilibrium point of the full system is also a

saddle.

In region (4) the desingularized system (9.12) can have one, three, five, or seven

singularities. Parameter choices for (9.12) in which γ > 1, which corresponds to

γ > 1 − bε in the two-FN system, result in one singularity. Since γ > 1 for (9.12)

in region (4), the folded singularities corresponding to yB∗ = ±
√

1− γ no longer

exist. The ordinary singularity is unstable and the unique equilibrium point of the

full system is stable.

9.5.3 Phase-locking: Region (5)

Consider the two-FN system (9.4) with I0cA < I < I1cA such that A is firing. Region

(5) corresponds to this range of I and γ > 1− bε. For I0A < I < I1A and γ > 1− bε,

the linearization of (9.4) around the equilibrium point p∗ has two eigenvalues λ1,2

with positive real part, and two eigenvalues λ3,4 with negative real part. Thus, B will

follow the limit cycle from A.
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Remark 9.5.6. For the two-FN system (9.4), given Assumption 9.2.1, if A is firing

and γ > 1− bε, B is firing and A and B are phased locked.

For the desingularized system (9.12), γ > 1 and the singularities at yB∗ =

±
√

1− γ no longer exist. The ordinary singularity is a saddle and the unique equi-

librium point of the full system is also a saddle. Note that there are still folded

singularities corresponding to yA∗ = ±1, but they are the points, I0A and I1A, where

the stability changes in the ordinary singularity.

9.5.4 Mixed mode oscillations: Regions (6) and (7)

Now consider the two-FN system (9.4) when I0cA < I < I1cA and γ < 1− bε. In this

case a range of dynamics is observed in simulation. For γ << 1, the influence of A

is small, so B exhibits only small oscillations that stay close to (yB∗, zB∗). As γ is

increased, the influence of oscillation A can be large enough to yield a mixed mode

oscillation (MMO), see Figure 9.4(b). As γ is increased further and the influence of

A becomes increasingly strong, B approaches firing at the same frequency as A.

To better understand these transitions, we study the bifurcation diagrams and

phase planes of the desingularized system (9.12). We prove necessary conditions for

the existence of MMOs as a function of I and γ.

In region (6) there are seven singularities for the desingularized system (9.12),

seen in Figures 9.7(a) and 9.7(b). In this region, the ordinary singularity of the

desingularized system (9.12) is a saddle (corresponding to a saddle in the full system),

whereas the folded singularities include three saddles, one stable folded singularity,

and two unstable singularities. Trajectories, nullclines, and singularities are shown in

Figure 9.7(a) for parameters in region (6). Co-existence of the stable folded node and

a global return mechanism due to the S-shaped critical manifold allows existence of

canard-induced MMOs in this region of parameter space for the two-FN system [34].
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Figure 9.7(b) zooms in on the area around the ordinary singularity and stable

folded node for the same parameter values as Figure 9.7(a). Critical features for

canard existence are present in this region. An unstable manifold of the ordinary

singularity, which is a saddle, connects to the stable folded node, shown in red. The

strong singular canard of the stable folded node is shown in green, and the stable

manifold of the ordinary saddle singularity is shown in blue. All trajectories between

the stable manifold of the ordinary singularity and the stable manifolds of the two

folded saddles to the right of the stable folded node will be funneled to the stable

folded node, and thus will pass from the attracting to repelling parts of the critical

manifold in the full system. This results in the family of canard solutions seen in the

full system.

In region (7) there are seven singularities. In this region, the ordinary singularity of

the desingularized system (9.12) is stable (corresponding to an unstable equilibrium

in the full system), whereas the folded singularities include four saddles and two

unstable singularities. As a consequence, canard-induced MMOs do not exist in the

two-FN system, and both A and B are firing and phase-locked.

We next compute the boundary between regions (6) and (7), shown by I∗ in Fig-

ure 9.3. The boundary is defined by points at which there is a transcritical bifurcation

between the ordinary singularity and a folded singularity, called FSN type II bifur-

cation, where the ordinary singularity transitions from a saddle to a stable node and

the folded singularity transitions from a stable node to a saddle. This transcritical

bifurcation is a known location for the onset of MMOs, [69] so computing I∗ gives

necessary conditions for the existence of MMOs. Figure 9.7(c) depicts the phase plane

near the ordinary singularity at the transcritical bifurcation. The strong stable ca-

nard trajectory and connecting unstable manifold of the ordinary singularity are no

longer present. Figure 9.7(d) depicts the phase plane near the ordinary singularity as
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Figure 9.7: Nullclines and phase planes for the desingularized system (9.12) near
the boundary between regions (6) and (7). For all panels, the folded singularities
are shown as smaller circles and the ordinary singularity is a larger circle. Green
represents a stable singularity, gray represents a saddle, and red represents an unstable
singularity. Trajectories of the system are shown in black. The yA (blue dashed) and
yB (pink dashed) nullclines are also shown. Panels (a) and (b) show the phase plane
for I = 0.9 and γ = 0.4 (in region (6)) for differing ranges of yA and yB. Panel
(b) shows the stable (blue) and unstable (red) manifolds of the ordinary singularity,
which is a saddle, along with the strong canard (green) associated with the stable
folded node. Panel (c) shows the phase plane for I = 1.0633 and γ = 0.4 on the
boundary between regions (6) and (7). Panel (d) shows the phase plane for I = 1.3
and γ = 0.4 in region (7), where A is firing and B is phase locked with A in the
two-FN system (9.4). The stable (light blue) and unstable (light red) manifolds of
the folded saddle are shown.

I is increased beyond the transcritical bifurcation. In this region, there is no longer

a stable folded node.

Proposition 9.5.7 (Theorem 3.4.1 (modified) [53]). A system ẋ = f(x, µ), admits

a transcritical bifurcation at (x0, µ0) if

1. Dxf(x0, µ0) has a simple 0 eigenvalue with right eigenvector v and left eigen-

vector w.

2. wD2
xµf(x0, µ0)v 6= 0.

3. wD2
xf(x0, µ0)(v>,v>)> 6= 0.
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Proposition 9.5.8. Consider the desingularized system (9.12) with fixed γ < 1 and

let

I∗(γ) =
1

3b3γ3

(√
1− γ +

2b 3
√

1− γ
3

− ba

)3

+ a. (9.20)

Then system (9.12) admits a transcritical bifurcation at (p, I∗(γ)), where p =

(yA∗, yB∗)
> is an ordinary singularity of (9.12), i.e., p solves (9.14b) and (9.14c).

Proof. To show the transcritical bifurcation, we apply Proposition 9.5.7 to (9.12).

The Jacobian, Dyρ, of (9.12) is

 −(1− y2
B − γ)(1− b+ by2

A) 2yB(yA − bzA)

γ+2yA(yB − bzB) −(1− y2
A)(1− b+ by2

B + bγ)

 .

Condition 1 of Proposition 9.5.7: Evaluating the Jacobian of (9.12) at (yA, yB)> = p

and I = I∗ gives

Dyρ(p, I∗) =

 0 0

γ −(1− y2
A∗)

 ,

which has a zero eigenvalue with a left eigenvector w = (1, 0) and a right eigenvector

v =
(

1, γ
−(1−y2A∗)

)>
.

Condition 2 of Proposition 9.5.7: Taking the derivative of Dyρ with respect to I

and evaluating at (yA, yB)> = p and I = I∗ gives

D2
yIρ(p, I∗) =

 0 −2byB∗

0 0

 .

Then, multiplying D2
yγρ(p, I∗) from left by w and from right by v, we have

w
(
D2

yγρ(p, I∗)
)
v =

2bγyB∗
1− y2

A∗
,
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which is always nonzero.

Condition 3 of Proposition 9.5.7: Evaluating D2
yρ at p = (yA, yB)> and I = I∗

gives

D2
yρ(p, I∗) =

 0 2yB∗(1− s) 0 2yA∗

2yB∗(1− s) 0 2yA∗ −2yB∗s

 ,

where s = b(1 − y2
A∗). Then, multiplying D2

yρ from left by w and from right by

(v>,v>)>, we have

w
(
D2

yρ(p, I∗)
) v

v


=
−2γ

1− y2
A∗

(
yB∗(1− b(1− y2

A∗)) + yA∗
)
, (9.21)

which is also nonzero as shown in Figure 9.8.

Figure 9.8: Regions in the I-γ parameter space distinguishing the sign of (9.21).
In the light blue regions, the sign is positive. In the light gray regions, the sign is
negative. At the boundaries, the sign becomes zero. For all (I, γ) pairs on I∗ (shown
by the green dashed line), the sign of (9.21) is nonzero, except where I∗ intersects
I1A. The bifurcation at the intersection is a codimension two bifurcation.

A necessary condition for canard-induced MMOs is the existence of a stable folded

node with a return mechanism, since the family of canard solutions that form the

small oscillations are only found in this context [18, 69]. The stable folded node has

a corresponding family of canard solutions because there are many trajectories that
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cross from the attracting to the repelling branch of the critical manifold through

the stable folded node. Furthermore, the return mechanism is required for MMOs

because, after each relaxation oscillation or canard trajectory, the dynamics must

return near the singularity in order for the MMO to persist.

Global return mechanism: For all coupling strengths γ < 1−bε, the projection

of the critical manifold in one fast and two slow dimensions is S-shaped, with two

attracting branches connected by a repelling branch in the center and two fold lines.

The relaxation oscillations in this setting provide a global return mechanism for the

system [34,69].

Stable folded node: In the directed two-FN system, MMOs are only possible

for I < I∗(γ), since that is where there is a stable folded node.

Remark 9.5.9. Consider the two-FN system (9.4). For I0cA < I < I∗(γ), this system

exhibits MMOs and if I∗(γ) < I < I1cA, it exhibits phase locking.

Remark 9.5.10. A special case of the transcritical (FSN II) bifurcations occurs when

γ and I satisfy I∗(γ) = I1A. In this case, there is a codimension two bifurcation where

the real parts of the eigenvalues of the linearization of (9.12) about the ordinary sin-

gularity and the eigenvalues of the linearization of (9.12) about the folded singularity,

yB∗ = −
√

1− γ, are equal to zero. The codimension two bifurcation is illustrated by

the orange star in the bifurcation diagram of (9.12) in Figure 9.9(a), for γ = 0.22. If

we fix I0cA < I < I1cA and decrease the value of γ below the codimension two value,

then MMOs are always possible.

To highlight the location of the transcritical bifurcation (FSN II) and compare to

features in Figure 9.3, we show it as the blue star in the bifurcation diagram of (9.12)

in Figure 9.9(b). Here, by treating I as the bifurcation parameter, and maintaining

γ fixed at value 0.4, we can observe that the ordinary singularity transitions from

unstable (thick dashed red) to saddle (thick gray) at I = I0A (red star). Simulta-

neously, a stable folded singularity (thin green) becomes a folded saddle (thin gray)
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Figure 9.9: This figure shows the bifurcation diagrams of the desingularized system
(9.12) with bifurcation parameter I for two different values of γ. The insert shows the
locations of the two diagrams (dashed lines correspond to the I-axis) in I-γ parameter
space matching Figure 9.5. (a) When γ = 0.22, the desingularized system admits a
codimension two bifurcation (orange star) where the ordinary singularity remains
a saddle, while one folded singularity switches from a stable folded singularity to
an unstable folded singularity and the other switches from a folded saddle to an
unstable folded singularity. (b) When γ = 0.4, a transcritical bifurcation (FSN II)
occurs between the ordinary singularity and a folded singularity (blue star). For this
choice of γ, the desingularized system admits another folded singularity (unstable
folded singularity) at yA∗ ≈ 6, which is not shown in either figure.

and a folded saddle becomes an unstable folded singularity (thin dashed red). The

concurrent existence of a stable folded node and a folded saddle allows for composite

canards, which are trajectories that follow canard solutions of at least two different

folded singularities and produce complex small-amplitude oscillations [97].

At I = I∗(γ) (blue star), derived in Proposition 9.5.8, the ordinary singularity

and a folded singularity swap stability properties in a transcritical bifurcation, which

can be classified as an FSN II bifurcation. Also, this FSN II bifurcation in the

desingularized system (9.12) corresponds to the generalized Hopf bifurcation in the

two-FN system (9.4). For I > I∗, (9.4) exhibits phase locking and MMOs are no

longer possible.

At I = I1A (magenta star), the ordinary singularity returns to a saddle and two

folded saddles become two unstable folded singularities. For I > I1A, phase locking
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in (9.4) is no longer possible. We also note that when I is just above I1A, one folded

saddle merges with an unstable folded singularity through a saddle node bifurcation.

9.6 Directed Tree of FN model neurons

In this section, we consider an extension of the previous results to a directed chain of

coupled FN models. We leverage the connection between the desingularized system

and the directed two-FN system to find sufficient conditions for phase locking.

Consider a system of k FN model neurons with dynamics

ẋ = f(x, I,γ),

where x ∈ R2k, I ∈ Rk−1, and γ ∈ Rk−1. All FN models receive an external input

except for the last in the chain. Then, by allowing heterogeneity in the external

inputs and coupling strengths, the linearization around the equilibrium point can be

expressed as

Dxf =



J1 02×2 02×2 02×2 · · · 02×2

Γ1 J2 02×2 02×2 · · · 02×2

02×2 Γ2 J3 02×2
. . .

...

...
. . . . . . . . . . . . 02×2

02×2 02×2
. . . Γk−2 Jk−1 02×2

02×2 02×2 · · · 02×2 Γk−1 Jk


,

where the first diagonal block is given by

J1 =

 1− y2
1 −1

ε −bε

 ,

157



and the subsequent diagonal blocks are given by

Ji =

 1− y2
i − γi−1 −1

ε −bε

 , i ∈ {2, . . . , k}.

The blocks on the lower diagonal are

Γi = γi

 0 1

0 0

 , i ∈ {1, . . . , k − 1}.

Due to the lower block triangular structure of the linearization, local stability of

the equilibrium can be determined by studying the eigenvalues of the diagonal blocks.

Similar to the analysis at the beginning of Section 9.5, we begin by solving for the

equilibrium point. The equilibrium of the first model neuron is given by

y1∗ =

(
3(I1 − a)

2
+

√
(3(I1 − a))2

4
+ b̃3

)1/3

+

(
3(I1 − a)

2
−
√

(3(I1 − a))2

4
+ b̃3

)1/3

.

The equilibrium of the i-th model neuron is given by

yi∗ =

3Ĩ

2
+

√
(3Ĩ)2

4
+
(
b̃+ γi−1

)3


1/3

+

3Ĩ

2
−

√
(3Ĩ)2

4
+
(
b̃+ γi−1

)3


1/3

,

where Ĩ = γi−1yi−1∗+Ii−a, i ∈ {2, . . . , k}. The eigenvalues of the individual diagonal

blocks are

λ1,2 =
1

2

(
1− y2

1∗ − bε
)
± 1

2

√
(y2

1∗ + bε− 1)2 − 4ε(1− b+ y2
1∗b),

λ2i−1,2i =
1

2

(
1− y2

i∗ − γi−1 − bε
)
± 1

2

√
(y2
i∗ + γi−1 + bε− 1)2 − 4ε(1− b+ y2

i∗b+ γi−1),
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where i = 2, . . . , k. The Hopf bifurcations in the i-th model neuron occur at

IH± = ±1

3
(1− γi−1 − bε)3/2 ±

√
1− γi−1 − bε

(
b̃+ γi−1

)
− Ĩ . (9.22)

As a directed tree can be decomposed into a collection of directed chains, these

results generalize to directed trees as well. In Figure 9.10, we illustrate with the

directed chain that starts with the light orange FN model and is directed to the right

to the cyan FN model. The first FN model (light orange) receives an input I = 1.2,

which ensures that it is firing. The coupling strength to the second FN model (dark

orange) with input I = 0.4 ensure that the second FN model is in region (6) where

MMOs are possible. However, in this case no MMOs are exhibited. The coupling

strength to the third FN model (dark cyan) with zero input ensure that it too is in

region (6). In this case, MMOs induced by canards are exhibited. The active signal

has frequency half that of the first and second FN models. As a result, the input to

the fourth FN model (cyan) is an MMO; this case was not covered in our two-FN

system analysis. The fourth FN model responds to incoming canards with almost no

activity and incoming spikes with a small canard. The frequency of the small canards

in the fourth FN model is the same as the frequency of the active signal of the third

FN model.

9.7 Discussion

In this work, we study a system of two FN model neurons in a setting where the

first FN model has a constant external input I, the second FN model has no input,

and there is a unidirectional coupling with strength γ from the first FN model to the

second. We study and rigorously characterize all of the different regions of dynamic

behavior for the two-FN system in I-γ space. We prove new necessary conditions in

terms of both I and γ for the existence of canards and MMOs. We leverage this result
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Figure 9.10: Panel (a) depicts a directed tree graph of FN model neurons with het-
erogeneous external inputs Ii. All edge weights have coupling strength γ = 0.07. A
representative chain is selected and indicated by vertices with colors matching simu-
lation results, which are shown in panel (b). The frequency of the cyan FN models is
half of the frequency of the orange FN models.

to find a similarly new sufficient condition for phase locking and extend to systems

of FN models in directed tree networks. We illustrate for a directed chain of four FN

models, where canards, MMOs, and frequency halving is observed as predicted.

Further investigation of the two-FN system is needed to determine the threshold

between MMOs and canard solutions without MMOs, which have been observed

in simulation. This threshold has been studied numerically, as well as the chaotic

behavior at the boundaries between types of MMOs, e.g., in [60]. An analytical

understanding of the threshold phenomena involved in the onset of firing in systems

of FN models would add significantly to the literature on canards and MMOs.

Future directions include consideration of more diverse graph structures that in-

clude loops within the graph and a more detailed analysis of the MMOs in these

systems. General results have been found for finite dimensional fast-slow systems,

which could be applied in this context [138]. Incorporating heterogeneous model pa-

rameters is another area of future investigation. Changing ε changes the frequency

of oscillation and the timescale of the FN model, so a network of FN models with
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differing values of ε would be a compelling system for exploring canard phenomena

in three or more distinct timescales.
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Appendix A

First and Second Lyapunov

Coefficients for the Desingularized

Two-FN System at γ = 0

A.1 Derivatives of F (η1, η2) and G(η1, η2)

To compute the Lyapunov coefficients of (9.12) at the Hopf bifurcation at γ = 0, we

first compute the partial derivatives of F (η1, η2) and G(η1, η2) up to fifth order. The

functions F (η1, η2) and G(η1, η2) are given by

 F (η1, η2)

G(η1, η2)

 =




c2η22

η1 + yB∗ − b

(
η1 + yB∗ −

(η1 + yB∗)
3

3
− a

)
+2cη2yA∗

η1 − b(η1 − η31
3
− η21yB∗ − η1y2B∗

)


1

c
η21

cη2 + yA∗ − b

(
cη2 + yA∗ −

(cη2 + yA∗)
3

3
− a+ I

)
+

1

c
2η1yB∗

cη2 − b(cη2 − c3η32
3
− c2η22yA∗ − cη2y2A∗

)





.
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Fη1

∣∣∣∣
0

= (2cη2yA∗ + c2η2
2)
(
1− b+ bη2

1 + 2bη1yB∗ + by2
B∗
)∣∣∣∣

0

= 0,

Fη1η1

∣∣∣∣
0

= (2cη2yA∗ + c2η2
2)(2bη1 + 2byB∗)

∣∣∣∣
0

= 0,

Fη1η1η1

∣∣∣∣
0

= (2cη2yA∗ + c2η2
2)(2b)

∣∣∣∣
0

= 0,

Fη1η1η1η1

∣∣∣∣
0

= Fη1η1η1η1η1

∣∣∣∣
0

= 0,

Fη1η2

∣∣∣∣
0

= (2cyA∗ + 2c2η2)
(
1− b+ bη2

1 + 2bη1yB∗ + by2
B∗
)∣∣∣∣

0

= 2cyA∗,

Fη1η2η2

∣∣∣∣
0

= 2c2
(
1− b+ bη2

1 + 2bη1yB∗ + by2
B∗
)∣∣∣∣

0

= 2c2,

Fη1η2η2η2

∣∣∣∣
0

= Fη1η2η2η2η2

∣∣∣∣
0

= 0,

Fη1η1η2

∣∣∣∣
0

= (2cyA∗ + 2c2η2) (2bη1 + 2byB∗)

∣∣∣∣
0

= 4cbyA∗yB∗,

Fη1η1η2η2

∣∣∣∣
0

= (2c2) (2bη1 + 2byB∗)

∣∣∣∣
0

= 4c2byB∗,

Fη1η1η2η2η2

∣∣∣∣
0

= 0,

Fη1η1η1η2

∣∣∣∣
0

= (2cyA∗ + 2c2η2) (2b)

∣∣∣∣
0

= 4cbyA∗,

Fη1η1η1η2η2

∣∣∣∣
0

= (2c2) (2b)

∣∣∣∣
0

= 4c2b,

Fη1η1η1η1η2

∣∣∣∣
0

= 0,

Fη2

∣∣∣∣
0

= 2c2η2

η1 + yB∗ − b

(
η1 + yB∗ −

(yB∗ + η1)3

3
− a

)
+ 2cyA∗

η1 − b

(
η1 −

η3
1

3
− η2

1yB∗ − η1y
2
B∗

)∣∣∣∣
0

= 0,

Fη2η2

∣∣∣∣
0

= 2c2

η1 + yB∗ − b

(
η1 + yB∗ −

(yB∗ + η1)3

3
− a

)∣∣∣∣
0

= 2c2q,

Fη2η2η2

∣∣∣∣
0

= Fη2η2η2η2

∣∣∣∣
0

= Fη2η2η2η2η2

∣∣∣∣
0

= 0.
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Gη1

∣∣∣∣
0

=
1

c
2η1

cη2 + yA∗ − b

(
cη2 + yA∗ −

(cη2 + yA∗)
3

3
− a+ I

)
+

1

c
2yB∗

cη2 − b

(
cη2 −

c3η3
2

3
− c2η2

2yA∗ − cη2y
2
A∗

)∣∣∣∣
0

= 0,

Gη1η1

∣∣∣∣
0

=
2

c

cη2 + yA∗ − b

(
cη2 + yA∗ −

(cη2 + yA∗)
3

3
− a+ I

) =
2r

c
,

Gη1η1η1

∣∣∣∣
0

= Gη1η1η1η1

∣∣∣∣
0

= Gη1η1η1η1η1

∣∣∣∣
0

= 0,

Gη1η2

∣∣∣∣
0

= (2η1 + 2yB∗)
(

1− b
(
1− c2η2

2 − 2cη2yA∗ − y2
A∗
))∣∣∣∣

0

= 2yB∗,

Gη1η2η2

∣∣∣∣
0

= (2η1 + 2yB∗)
(
2c2bη2 + 2cbyA∗

)∣∣∣∣
0

= 4cbyA∗yB∗,

Gη1η2η2η2

∣∣∣∣
0

= (2η1 + 2yB∗)
(
2c2b

)∣∣∣∣
0

= 4c2byB∗,

Gη1η2η2η2η2

∣∣∣∣
0

= 0,

Gη1η1η2

∣∣∣∣
0

= 2
(

1− b
(
1− c2η2

2 − 2cη2yA∗ − y2
A∗
))

= 2,

Gη1η1η2η2

∣∣∣∣
0

= 2
(
2c2bη2 + 2cbyA∗

)∣∣∣∣
0

= 4cbyA∗,

Gη1η1η2η2η2

∣∣∣∣
0

= 4c2b,

Gη1η1η1η2

∣∣∣∣
0

= Gη1η1η1η2η2 = Gη1η1η1η1η2

∣∣∣∣
0

= 0,

Gη2

∣∣∣∣
0

= (η2
1 + 2η1yB∗)

(
1− b

(
1− c2η2

2 − 2cη2yA∗ − y2
A∗
))∣∣∣∣

0

= 0,

Gη2η2

∣∣∣∣
0

= b(η2
1 + 2η1yB∗)

(
2c2η2 + 2cyA∗

)∣∣∣∣
0

= 0,

Gη2η2η2

∣∣∣∣
0

= 2c2b(η2
1 + 2η1yB∗)

∣∣∣∣
0

= 0,

Gη2η2η2η2

∣∣∣∣
0

= Gη2η2η2η2η2

∣∣∣∣
0

= 0.
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A.2 Computation of the first Lyapunov coefficient

In this section, we calculate the first Lyapunov coefficient, also known as the cubic

coefficient. By Definition 9.2.3, the first Lyapunov coefficient is

α =
1

16
(Fx1x1x1 + Fx1x2x2 +Gx1x1x2 +Gx2x2x2)

∣∣∣∣
(0,0)

+
1

16ω
(Fx1x2(Fx1x1 + Fx2x2)−Gx1x2(Gx1x1 +Gx2x2)

− Fx1x1Gx1x1 + Fx2x2Gx2x2)

∣∣∣∣
(0,0)

. (A.1)

The sign of the cubic coefficient determines whether the Hopf bifurcation is subcritical

or supercritical. We use the derivatives of F (η1, η2) and G(η1, η2) computed in Section

A.1. Recall that r = yA∗ − b
(
yA∗ −

y3A∗
3
− a+ I

)
, q = yB∗ − b

(
yB∗ −

y3B∗
3
− a
)

, and

ω2 = −4yA∗yB∗qr. For the desingularized system at γ = 0 at the folded singularities

yA∗ = ±1 and yB∗ = ±1, the cubic coefficient is

α =
1

8
(c2 + 1) +

1

4ω

(
c3yA∗q +

yB∗r

c

)
,

=
1

8

(
4y2

B∗r
2

ω2
+ 1

)
+

1

4ω

(
8y3

B∗r
3

ω3
yA∗q −

ω

2

)
,

=
1

8

(
4y2

B∗r
2

−4yA∗yB∗qr
+ 1

)
+

2y3
B∗r

3yA∗q

16y2
A∗y

2
B∗q

2r2
− 1

8
,

= 0.
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A.3 Computation of the second Lyapunov coeffi-

cient

In this section, we calculate the second Lyapunov coefficient when α = 0. By Defini-

tion 4.2.3, the second Lyapunov coefficient for the system x = Ax + F (x, γ) is

β =
1

12ω
Re(g32) +

1

12ω2
Im

[
g20ḡ31 − g11 (4g31 + 3ḡ22)− 1

3
g02 (g40 + ḡ13)− g30g12

]

+
1

12ω3

Re

g20

(
ḡ11(3g12 − ḡ30) + g02

(
ḡ12 −

1

3
g30

)
+

1

3
ḡ02g03

)

+g11

(
ḡ02

(
5

3
ḡ30 + 3g12

)
+

1

3
g02ḡ03 − 4g11g30

)+ 3Im (g20g11) Im(g21)


+

1

12ω4

{
Im
[
g11ḡ02

(
ḡ2

20 − 3ḡ20g11 − 4g2
11

)]
+ Im (g20g11)

[
3Re(g20g11)− 2|g02|2

]}
.

Here, we perform the calculations to obtain the second Lyapunov coefficient for the

desingularized two-FN system when γ = 0, which is written as

dη

dt
= T−1Dyρ(0, 0)

∣∣∣∣
γ=0

Tη + T−1h(Tη).

Here, A = T−1Dyρ(0, 0)

∣∣∣∣
γ=0

T =

 0 −ω

ω 0

 , ω = 2
√
−yA∗yB∗qr, and

T−1h(Tη) =

 F (η1, η2)

G(η1, η2)

 =




c2η22

η1 + yB∗ − b

(
η1 + yB∗ −

(η1 + yB∗)
3

3
− a

)
+2cη2yA∗

η1 − b(η1 − η31
3
− η21yB∗ − η1y2B∗

)


1

c
η21

cη2 + yA∗ − b

(
cη2 + yA∗ −

(cη2 + yA∗)
3

3
− a+ I

)
+

1

c
2η1yB∗

cη2 − b(cη2 − c3η32
3
− c2η22yA∗ − cη2y2A∗

)





.
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We choose vectors s and p such that s is an eigenvector of A that corresponds to

the eigenvalue λ and p is an eigenvector of A> that corresponds to the eigenvalue λ̄

as follows

s = p =
1√
2

 1

−i

 .

For ease of computation, we compute each order of terms separately.

Second order terms

We begin by calculating the second order terms g20, g11, and g02 and disregarding the

terms of F and G derivatives that were found to be zero in section A.1. First, we

compute

g20 = 〈p,B2(s, s)〉 = p̄>B2(s, s) =
1√
2

(
1 i

) B2
1(s, s)

B2
2(s, s)

 .

The components of the multilinear function B are

B2
1(s, s) =

2∑
j,k=1

∂2F (η, 0)

∂ηj∂ηk

∣∣∣∣
0

sjsk =
2∑
j=1

sj

(
∂Fη1
∂ηj

∣∣∣∣
0

s1 +
∂Fη2
∂ηj

∣∣∣∣
0

s2

)
,

= s2
1Fη1η1

∣∣∣∣
0

+ 2s1s2Fη1η2

∣∣∣∣
0

+ s2
2Fη2η2

∣∣∣∣
0

,

B2
2(s, s) =

2∑
j,k=1

∂2G(η, 0)

∂ηj∂ηk

∣∣∣∣
0

sjsk =
2∑
j=1

sj

(
∂Gη1

∂ηj

∣∣∣∣
0

s1 +
∂Gη2

∂ηj

∣∣∣∣
0

s2

)
,

= s2
1Gη1η1

∣∣∣∣
0

+ 2s1s2Gη1η2

∣∣∣∣
0

+ s2
2Gη2η2

∣∣∣∣
0

.

(A.2)
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In Section A.1, we found that Fη1η1

∣∣∣∣
0

= Gη2η2

∣∣∣∣
0

= 0, so we can disregard those terms.

Plugging (A.2) into the expression for g20 gives

g20 =
1√
2

(
1 i

)
−iFη1η2

∣∣∣∣
0

− 1

2
Fη2η2

∣∣∣∣
0

1

2
Gη1η1

∣∣∣∣
0

− iGη1η2

∣∣∣∣
0

 ,

=
1√
2

(
−iFη1η2

∣∣∣∣
0

− 1

2
Fη2η2

∣∣∣∣
0

+
i

2
Gη1η1

∣∣∣∣
0

+Gη1η2

∣∣∣∣
0

)
.

For the g02 term, s̄1s̄2 = −s1s2, so we can use the calculations above to obtain

g02 = 〈p,B2(s̄, s̄)〉 =
1√
2

(
1 i

)
iFη1η2

∣∣∣∣
0

− 1

2
Fη2η2

∣∣∣∣
0

1

2
Gη1η1

∣∣∣∣
0

+ iGη1η2

∣∣∣∣
0

 ,

=
1√
2

(
iFη1η2

∣∣∣∣
0

− 1

2
Fη2η2

∣∣∣∣
0

+
i

2
Gη1η1

∣∣∣∣
0

−Gη1η2

∣∣∣∣
0

)
.

Finally, s1s̄2 = −s̄1s2, so the cross terms cancel for g11.

g11 = 〈p,B2(s, s̄)〉 =
1√
2

(
1 i

)
−1

2
Fη2η2

∣∣∣∣
0

1

2
Gη1η1

∣∣∣∣
0

 ,

=
1√
2

(
−1

2
Fη2η2

∣∣∣∣
0

+
i

2
Gη1η1

∣∣∣∣
0

)
.

Third order terms

The gij in the equation for β where i + j = 3 are g30, g03, g12, and g21. We compute

the expressions for these three quantities in terms of the derivatives of F and G in

168



this section. First,

g30 = 〈p,B3(s, s, s)〉 = p̄>B3(s, s, s) =
1√
2

(
1 i

) B3
1(s, s, s)

B3
2(s, s, s)

 .

The B3
i are computed in the following

B3
1(s, s, s) =

2∑
j,k,l=1

∂3F (η, 0)

∂ηj∂ηk∂ηl

∣∣∣∣
0

sjsksl,

B3
1(s, s, s) = Fη1η1η1

∣∣∣∣
0

s3
1 + 3Fη1η1η2

∣∣∣∣
0

s2
1s2 + 3Fη1η2η2

∣∣∣∣
0

s1s
2
2 + Fη2η2η2

∣∣∣∣
0

s3
2,

Note that B3
2(x, y, z) is B3

1(x, y, z) with the difference that G(η1, η2, γ) replaces

F (η1, η2, γ). Recall from Section A.1 that Fη1η1η1

∣∣∣∣
0

= Fη2η2η2

∣∣∣∣
0

= Gη1η1η1

∣∣∣∣
0

=

Gη2η2η2

∣∣∣∣
0

= 0. Furthermore, s2
1s2 =

−i
2
√

2
and s1s

2
2 =

−1

2
√

2
. This results in

g30 =
3

4

(
1 i

)
−iFη1η1η2

∣∣∣∣
0

− Fη1η2η2
∣∣∣∣
0

−iGη1η1η2

∣∣∣∣
0

−Gη1η2η2

∣∣∣∣
0

 ,

=
3

4

(
−iFη1η1η2

∣∣∣∣
0

− Fη1η2η2
∣∣∣∣
0

+Gη1η1η2

∣∣∣∣
0

− iGη1η2η2

∣∣∣∣
0

)
.

Similarly, we compute g03 = 〈p,B3(s̄, s̄, s̄)〉. Again, we can use the formula for B3
i

as computed above

B3
1(s, s, s) = 3Fη1η1η2

∣∣∣∣
0

s̄2
1s̄2 + 3Fη1η2η2

∣∣∣∣
0

s̄1s̄
2
2,

169



where the substitution Fη1η1η1

∣∣∣∣
0

= Fη2η2η2

∣∣∣∣
0

= Gη1η1η1

∣∣∣∣
0

= Gη2η2η2

∣∣∣∣
0

= 0 has already

been made. Furthermore, s̄2
1s̄2 =

i

2
√

2
and s̄1s̄

2
2 =

−1

2
√

2
. This results in

g03 =
3

4

(
iFη1η1η2

∣∣∣∣
0

− Fη1η2η2
∣∣∣∣
0

−Gη1η1η2

∣∣∣∣
0

− iGη1η2η2

∣∣∣∣
0

)
.

The next third order term we compute is g12 = 〈p,B3(s, s̄, s̄)〉. The B3 terms are

B3
1(s, s, s) = Fη1η1η2

∣∣∣∣
0

(2s1s̄1s̄2 + s2s̄
2
1) + Fη1η2η2

∣∣∣∣
0

(s1s̄
2
2 + 2s2s̄1s̄2),

where the substitution Fη1η1η1

∣∣∣∣
0

= Fη2η2η2

∣∣∣∣
0

= Gη1η1η1

∣∣∣∣
0

= Gη2η2η2

∣∣∣∣
0

= 0 has already

been made. Furthermore, 2s1s̄1s̄2 + s2s̄
2
1 =

i

2
√

2
and s1s̄

2
2 + 2s2s̄1s̄2 =

1

2
√

2
. This

results in

g12 =
1

4

(
iFη1η1η2

∣∣∣∣
0

+ Fη1η2η2

∣∣∣∣
0

−Gη1η1η2

∣∣∣∣
0

+ iGη1η2η2

∣∣∣∣
0

)
.

The final third order term we compute is g21 = 〈p,B3(s, s, s̄)〉. The B3 terms are

B3
1(s, s, s) = Fη1η1η2

∣∣∣∣
0

(2s̄1s1s2 + s̄2s
2
1) + Fη1η2η2

∣∣∣∣
0

(s̄1s
2
2 + 2s̄2s1s2),

where the substitution Fη1η1η1

∣∣∣∣
0

= Fη2η2η2

∣∣∣∣
0

= Gη1η1η1

∣∣∣∣
0

= Gη2η2η2

∣∣∣∣
0

= 0 has already

been made. This value for g21 is

g21 =
1

4

(
−iFη1η1η2

∣∣∣∣
0

+ Fη1η2η2

∣∣∣∣
0

+Gη1η1η2

∣∣∣∣
0

+ iGη1η2η2

∣∣∣∣
0

)
.
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Fourth order terms

The gij in the equation for β where i + j = 4 are g40, g31, g22 and g13. We begin by

finding

g40 = 〈p,B4(s, s, s, s)〉 = p̄>B4(s, s, s, s) =
1√
2

(
1 i

) B4
1(s, s, s, s)

B4
2(s, s, s, s)

 .

B4
1 is computed in the following. Note that B4

2 is just B4
1 with G substituted for F .

B4
1(s, s, s, s) =

2∑
j,k,l,m=1

∂4F (η, 0)

∂ηj∂ηk∂ηl∂ηm

∣∣∣∣
0

sjskslsm,

B4
1(s, s, s, s) = Fη1η1η1η1

∣∣∣∣
0

s4
1 + 4Fη1η1η1η2

∣∣∣∣
0

s3
1s2 + 6Fη1η1η2η2

∣∣∣∣
0

s2
1s

2
2 + 4Fη1η2η2η2

∣∣∣∣
0

s1s
3
2

+ Fη2η2η2η2

∣∣∣∣
0

s4
2.

We input the relations Fη1η1η1η1

∣∣∣∣
0

= Fη2η2η2η2

∣∣∣∣
0

= Gη1η1η1η1

∣∣∣∣
0

= Gη2η2η2η2

∣∣∣∣
0

= 0,

s3
1s2 = − i

4
, s2

1s
2
2 = −1

4
, and s1s

3
2 =

i

4
. This results in the expression

g40 =
1

4
√

2

(
1 i

)
−4iFη1η1η1η2

∣∣∣∣
0

− 6Fη1η1η2η2

∣∣∣∣
0

+ 4iFη1η2η2η2

∣∣∣∣
0

−4iGη1η1η1η2

∣∣∣∣
0

− 6Gη1η1η2η2

∣∣∣∣
0

+ 4iGη1η2η2η2

∣∣∣∣
0


=

1

4
√

2

(
−4iFη1η1η1η2

∣∣∣∣
0

− 6Fη1η1η2η2

∣∣∣∣
0

− 6iGη1η1η2η2

∣∣∣∣
0

− 4Gη1η2η2η2

∣∣∣∣
0

)
,

where we substitute Fη1η2η2η2

∣∣∣∣
0

= Gη1η1η1η2

∣∣∣∣
0

= 0 from Section A.1.

Next, we compute g31 = 〈p,B4(s, s, s, s̄)〉 by first finding B4(s, s, s, s̄) as follows

B4(s, s, s, s̄) = Fη1η1η1η2

∣∣∣∣
0

(s3
1s̄2 + 3s2

1s2s̄1) + Fη1η1η2η2

∣∣∣∣
0

(3s2
1s2s̄2 + 3s1s

2
2s̄1)

+ Fη1η2η2η2

∣∣∣∣
0

(3s1s
2
2s̄2 + s3

2s̄1),
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where Fη1η1η1η1

∣∣∣∣
0

= Fη2η2η2η2

∣∣∣∣
0

= Gη1η1η1η1

∣∣∣∣
0

= Gη2η2η2η2

∣∣∣∣
0

= 0 has already been made.

We find (s3
1s̄2 + 3s2

1s2s̄1) = (3s1s
2
2s̄2 + s3

2s̄1) = −2i and (3s2
1s2s̄2 + 3s1s

2
2s̄1) = 0, so the

expression for g31 becomes

g31 =
1

4
√

2

(
1 i

)
−2iFη1η1η1η2

∣∣∣∣
0

− 2iFη1η2η2η2

∣∣∣∣
0

−2iGη1η1η1η2

∣∣∣∣
0

− 2iGη1η2η2η2

∣∣∣∣
0


=

1

4
√

2

(
−2iFη1η1η1η2

∣∣∣∣
0

+ 2Gη1η2η2η2

∣∣∣∣
0

)
.

To find g13, we apply the relationships (s̄3
1s2 + 3s̄2

1s̄2s1) = −(s3
1s̄2 + 3s2

1s2s̄1) and

(3s̄1s̄
2
2s2 + s̄3

2s1) = −(3s1s
2
2s̄2 + s3

2s̄1). Thus,

g13 = −g31 =
1

4
√

2

(
2iFη1η1η1η2

∣∣∣∣
0

− 2Gη1η2η2η2

∣∣∣∣
0

)
.

The final fourth order term we compute is g22. After applying Fη1η1η1η1

∣∣∣∣
0

=

Fη2η2η2η2

∣∣∣∣
0

= Gη1η1η1η1

∣∣∣∣
0

= Gη2η2η2η2

∣∣∣∣
0

= 0, we obtain

B4(s, s, s̄, s̄) = Fη1η1η1η2

∣∣∣∣
0

(2s2
1s̄1s̄2 + 2s1s2s̄

2
1) + Fη1η1η2η2

∣∣∣∣
0

(s2
1s̄

2
2 + s2

2s̄
2
1 + 4s1s2s̄1s̄2)

+ Fη1η2η2η2

∣∣∣∣
0

(2s1s2s̄
2
2 + 2s2

2s̄1s̄2).

The coefficients are found to be (2s2
1s̄1s̄2 + 2s1s2s̄

2
1) = (2s1s2s̄

2
2 + 2s2

2s̄1s̄2) = 0 and

(s2
1s̄

2
2 + s2

2s̄
2
1 + 4s1s2s̄1s̄2) = 2. Inputting these to the expression for g22 gives

g22 =
1

4
√

2

(
2Fη1η1η2η2

∣∣∣∣
0

+ 2iGη1η1η2η2

∣∣∣∣
0

)
.
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Fifth order terms

There is only one term gij with i + j = 5 to compute in the expression for β. It can

be written as g32 = 〈p,B5(s, s, s, s̄, s̄)〉. The multilinear function B5(s, s, s, s̄, s̄) is

B5
1(s, s, s, s̄, s̄) =

2∑
j,k,l,m,n=1

∂5F (η, 0)

∂ηj∂ηk∂ηl∂ηm∂ηn

∣∣∣∣
0

sjsksls̄ms̄n,

B5
1(s, s, s, s̄, s̄) = Fη1η1η1η1η2

∣∣∣∣
0

(2s3
1s̄1s̄2 + 3s2

1s2s̄
2
1)

+ Fη1η1η1η2η2

∣∣∣∣
0

(s3
1s̄

2
2 + 6s2

1s2s̄1s̄2 + 3s1s
2
2s̄

2
1)

+ Fη1η1η2η2η2

∣∣∣∣
0

(3s2
1s2s̄

2
2 + 6s1s

2
2s̄1s̄2 + s3

2s̄
2
1)

+ Fη1η2η2η2η2

∣∣∣∣
0

(3s1s
2
2s̄

2
2 + 2s3

2s̄1s̄2),

where we set Fη1η1η1η1η1

∣∣∣∣
0

= Fη2η2η2η2η2

∣∣∣∣
0

= Gη1η1η1η1η1

∣∣∣∣
0

= Gη2η2η2η2η2

∣∣∣∣
0

= 0 as found

in Section A.1. Solving for the coefficients, we obtain

g32 =
1

8

(
1 i

)
−iFη1η1η1η1η2

∣∣∣∣
0

+ 2Fη1η1η1η2η2

∣∣∣∣
0

− 2iFη1η1η2η2η2

∣∣∣∣
0

+ Fη1η2η2η2η2

∣∣∣∣
0

−iGη1η1η1η1η2

∣∣∣∣
0

+ 2Gη1η1η1η2η2

∣∣∣∣
0

− 2iGη1η1η2η2η2

∣∣∣∣
0

+Gη1η2η2η2η2

∣∣∣∣
0


=

1

8

(
2Fη1η1η1η2η2

∣∣∣∣
0

+ 2Gη1η1η2η2η2

∣∣∣∣
0

)
,

where the relations Fη1η1η1η1η2

∣∣∣∣
0

= Fη1η2η2η2η2

∣∣∣∣
0

= Gη1η1η1η1η2

∣∣∣∣
0

= Gη1η2η2η2η2

∣∣∣∣
0

= 0

and Fη1η1η2η2η2

∣∣∣∣
0

= Gη1η1η1η2η2

∣∣∣∣
0

= 0 have been substituted following the results from

Section A.1.

Computing the gij

In this section, we find expressions for the gij calculated above in terms of the desin-

gularized two-FN system parameters by incorporating the values of the derivatives
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from Section A.1. The expressions for of the gij where i+ j = 2 are

g20 =
1√
2

(
−i2cyA∗ − c2q + i

r

c
+ 2yB∗

)
,

g02 =
1√
2

(
i2cyA∗ − c2q + i

r

c
− 2yB∗

)
,

g11 =
1√
2

(
−c2q + i

r

c

)
.

The expressions for the gij where i+ j = 3 are

g30 =
3

2

(
−4icbyA∗yB∗ − c2 + 1

)
,

g03 =
3

2

(
−c2 − 1

)
,

g21 =
1

2

(
c2 + 1

)
g12 =

1

2

(
4icbyA∗yB∗ + c2 − 1

)
.

The expressions for the gij where i+ j = 4 are

g40 =
1√
2

(
−10icbyA∗ − 10c2byB∗

)
,

g31 =
1√
2

(
−2icbyA∗ + 2c2byB∗

)
,

g13 =
1√
2

(
2icbyA∗ − 2c2byB∗

)
,

g22 =
1√
2

(
2c2byB∗ + 2icbyA∗

)
.

Lastly, for i+j = 5, the expression for the gij of interest in calculating β is g32 = 2c2b.

Computing β

In this section, we substitute the expressions for the gij into the expression for β from

Equation (4.6). The sign of β determines the stability of the limit cycles that arise

from the degenerate Hopf bifurcation. We also incorporate the relations y2
A∗ = 1,
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y2
B∗ = 1, ω = 2

√
−yA∗yB∗qr, ω2 = −4yA∗yB∗qr, and c = 2yB∗r

ω
and simplify using

symbolic Matlab operations to obtain the following expression:

β = (q2r2 + 4q2 − 16r2 + 4q2ryA∗ − 6q3r2yB∗ + 2qryA∗yB∗ + 3q2r3yA∗ − 7qr2yB∗

− 2q2ryA∗ − q3ryA∗yB∗ + 32bqr2yB∗ + 11qr3yA∗yB∗ + 7q2r2 − 7qr2yB∗ − 6qryA∗yB∗

+ 8bq2r2 + 32bqr2yB∗)(192
√
−yA∗yB∗qrq3ryA∗yB∗)

−1.

We can evaluate this expression for each of the four folded singularities of interest

at γ = 0 to determine what type of degenerate Hopf bifurcation occurs. Given our

parameter choices to satisfy Assumption 9.2.1, I0A > 0 and I1A > 0. We also use

b = 0.8 here; b can however be kept general in the expression above and be used as

an additional bifurcation parameter. The results for each point are summarized here.

We denote the second Lyapunov coefficients βxx where x ∈ {−,+} and signifies to

which singularity the coefficient corresponds.

• (yA∗, yB∗) = (−1,−1) =⇒ q = I0A, r = I0A − I. The point undergoes a

degenerate Hopf bifurcation when I > I0A. Evaluating with b = 0.8, we find

that there is a value of I, which we denote I∗−, such that β−− < 0 ∀ I0A <

I < I∗− and β−− > 0 ∀ I > I∗−. The degenerate Hopf bifurcation switches

from supercritical to subcritical at I∗−, which is a Hopf bifurcation of higher

degeneracy.

• (yA∗, yB∗) = (+1,−1) =⇒ q = I0A, r = I1A − I. The point undergoes a

degenerate Hopf bifurcation when I < I1A. Evaluating with b = 0.8, we find

that there is a value of I, which we denote I∗+, such that β+− > 0 ∀ 0 < I < I∗∗

and β+− < 0 ∀ I∗+ > I > I1A. The degenerate Hopf bifurcation switches

from subcritical to supercritical at I∗+, which is a Hopf bifurcation of higher

degeneracy.
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• (yA∗, yB∗) = (−1,+1) =⇒ q = I1A, r = I0A − I. The point undergoes

a degenerate Hopf bifurcation when I < I0A. Evaluating with b = 0.8, we

find that β−+ < 0 ∀ I < I0A. The degenerate Hopf bifurcation at (−1,+1),

when it exists, is supercritical. The small limit cycles emerging from the Hopf

bifurcation are stable and exist when γ < 0.

• (yA∗, yB∗) = (+1,+1) =⇒ q = I1A, r = I1A − I. The point undergoes

a degenerate Hopf bifurcation when I > I1A. Evaluating with b = 0.8, we

find that β++ < 0 ∀ I > I1A. The degenerate Hopf bifurcation at (+1,+1),

when it exists, is supercritical. The small limit cycles emerging from the Hopf

bifurcation are stable and exist when γ > 0.
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