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Abstract

This dissertation concerns nonlinear feedback stabilization of mechanical systems using
energy-based methods. Nonlinear techniques are appealing because they can yield large
regions of attraction for feedback-stabilized equilibria. Energy-based methods are partic-
ularly attractive for mechanical systems because these methods preserve a physical view
of a system’s dynamics and because they yield Lyapunov functions. For conservative sys-
tems, proof of stability typically requires the existence of a Lyapunov function. For systems
with damping, Lyapunov functions can be used to design feedback dissipation to ensure or
enhance asymptotic stability and to obtain more global conclusions.

Both as a case study of a particular control methodology and as a practical contribution
in the area of underwater vehicle control, we consider stabilization of an underwater vehicle
using internal rotors as actuators. The methodology used to develop stabilizing control laws
consists of three steps. The first step involves shaping the kinetic energy of the conservative
dynamics. For the underwater vehicle, the control term in this step may be interpreted as
modifying the system inertia. In the second step, feedback dissipation is designed based on
a Lyapunov function developed in the first step. In the third step, it is verified that the
effect of external damping due to viscous forces does not destroy the stability results. This
method is applied first to a vehicle whose centers of gravity and buoyancy coincide and then
to a vehicle with noncoincident centers of gravity and buoyancy.

The method of controlled Lagrangians, developed in recent years, is a generalization
of the idea of kinetic energy shaping. The method applies to underactuated mechanical

systems (systems with more degrees of freedom than independent actuators). Motivated

iii
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by the results of the investigation into the effect of external damping on an underwater
vehicle with internal rotors, we study the effect of damping on more general systems which
have been stabilized, in the conservative approximation, using the method of controlled
Lagrangians. A significant result of this inquiry is that, for certain classes of systems,
damping in the unactuated directions enhances stability by driving the unactuated dynamics
to their desired equilibrium value. Damping in the controlled directions may be detrimental
but can be directly compensated for through feedback. Thus, with an appropriate choice of
feedback dissipation, these systems may be asymptotically stabilized even in the presence

of physical damping.
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Chapter 1

Introduction

Autonomous underwater vehicles are enjoying a great deal of attention from ocean scientists,
who envision cost-effective mobile sensor arrays, and from control theorists, who see a rich
test bed for advancing the art of control of mechanical systems. The work presented here

is the result of pursuing two complementary goals:

1. to expand the performance capabilities for a class of underwater vehicles using a novel

type of actuator, and

2. to demonstrate and augment the tools available from geometric mechanics for the

design of stabilizing control laws for mechanical systems.

The former goal is a justified and challenging end unto itself. Traditional underwater vehicle
actuators, such as propellers and fins, provide adequate control authority over a range of
operating conditions. However, the increasingly ambitious requirements of the military,
industry, and ocean scientists are pushing the conventional performance envelope. For
example, the practical implementation of a proposed long-term, unmanned ocean sensing
network [25] will require efficient, durable, and maneuverable vehicles which can resist or

tolerate impairments which are often caused by the harsh ocean environment. Most current
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vehicle prototypes use a traditional arrangement of a single thruster with four actuated tail
fins. A drawback of this arrangement is that fin actuators lose their control authority at
low velocity. While additional thrusters might be added to provide low-velocity control,
these would increase the drag on the vehicle, reducing its efficiency and, therefore, its
endurance. Furthermore, both actuated fins and thrusters are subject to corrosion and
biological fouling. The inherent limitations of conventional actuators lead one to consider
alternative or complementary means of actuation.

Internal actuators are an appealing complement to traditional thrusters and control
surfaces. Controlled movable masses are already used to provide attitude control for a
number of underwater vehicles, notably for underwater gliders such as SLOCUM [66] and
ALBAC (36]. In [45], internal rotors were proposed for the purpose of stabilizing steady,
long-axis translation of a slender vehicle. Movable masses and internal rotors do pose
some design challenges, such as how to deal with saturation and how to size the actuators
under internal space constraints. Previous successes in spacecraft and underwater vehicle
applications help to allay these concerns. The potential benefits of using internal actuators
are great enough to justify investigation.

Actuators which are internal to a vehicle are isolated from the ocean environment and
are therefore less prone to damage, biological fouling, and decay than exposed actuators.
Furthermore, internal actuators do not directly increase a vehicle’s drag. Another practical
benefit is that these actuators preserve the integrity of the vehicle housing; no wiring,
cables, or drive shafts penetrate the hull. Finally, internal actuators do not use relative
fluid motion to exert control and are thus useful at low and even zero velocity, thereby

extending a vehicle’s operating range.
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To derive control laws for the underwater vehicle with internal rotors, one may use
the expanding toolbox of nonlinear techniques available for controlling mechanical systems.
Nonlinear control methods are appealing because, for example, they can lead to stabilizing
control laws which are valid over large regions of phase space. Tools which preserve and
exploit the nonlinear dynamics are particularly attractive. By retaining a physical view of
the system dynamics, as opposed to the common technique of supplanting the dynamics
with a linear system, one preserves prior insight into the uncontrolled dynamics. One might,
for example, make use of stability-enhancing nonlinearities rather than attempt to cancel
them.

For at least two decades, there has been a fecund interplay between nonlinear control
theory and mechanics. Mechanical systems have enjoyed special focus because they are
more readily analyzed than less structured systems. In [20], Brockett introduced the idea of
a Hamiltonian control system. The idea of stabilizing unstable equilibria for such systems
by using feedback to shape the potential energy was proposed in [63]. More recently, this
idea has been extended to underactuated systems [34, 21]. In [43], symmetry-breaking po-
tentials are used to stabilize a system with full configuration symmetry. Alternatively, one
may consider shaping a system’s kinetic energy in order to provide stability. The method of
controlled Lagrangians is an algorithmic approach to kinetic energy shaping [17]. The tech-
nique is particularly appropriate for systems where there is insufficient control authority to
shape the potential energy. The related method of interconnection and damping assignment,
described in [57], builds on the authors’ previous work on passivity-based control. Ideas
based on passivity are appealing for control of mechanical systems since these systems are
inherently passive. (See [56].) In contrast to the method of controlled Lagrangians, which

is algorithmic for a system with admissible structure and inertia properties, the intercon-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nection and damping assignment approach produces a set of partial differential equations
whose solution then implies an admissible control law. While there is no general guarantee
of success, the technique has been applied to an underwater vehicle with the traditional fin
and thruster arrangement (8].

Regardless of the approach to constructing a control law, the problem still remains
to show Lyapunov stability. While there is no general approach to constructing Lyapunov
functions for arbitrary nonlinear systems, there are a few techniques available for mechanical

- systems. Many of these techniques rely on or generalize the Lagrange-Dirichlet theorem on
stability of equilibria of canonical Hamiltonian systems {50]. Briefly, the Lagrange-Dirichlet
theorem states that an equilibrium which is either a local minimum or a local maximum of
the Hamiltonian is stable. See [61] or (48] for a review of the available methods for proving

«  stability of equilibria of mechanical systems. The primary stability analysis tool used in
this dissertation is the energy-Casimir method, which is described in [50].

The basic underwater vehicle model used in this dissertation is ideal in the sense that
the vehicle is treated as a rigid body immersed in an inviscid, irrotational, incompressible,
fluid. Rotors spin within the vehicle under the influence of some ccatrol torque. The control
problem considered is to define a state feedback control law which stabilizes steady, long-
axis translation of an ellipsoidal vehicle. External forces such as viscous dissipation and
thrust are appended to the conservative model in the last step of the control design process.

The ideal (conservative) model of an underwater vehicle generalizes the equations de-
scribing the motion of a spacecraft, a system which has long been a test bed for nonlinear
control theory. In fact, the work of Krishnaprasad [40] and Bloch et al [13] on spacecraft
stabilization using internal rotors inspired the kinetic energy shaping technique pursued

in Chapter 4 for the underwater vehicle. These papers also led to the development of the
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method of controlled Lagrangians. A crucial distinction between spacecraft and underwater
vehicles is the presence of external damping. While a spacecraft is arguably free of external
damping, an underwater vehicle’s dynamics are distinctly affected by the viscosity of wa-
ter. Since the ideal underwater vehicle model neglects viscous effects, analysis and control
design based on this model is insufficient. In particular, one must be concerned that the
effect of physical damping does not destabilize an equilibrium which has been stabilized
for the conservative model [12]. In addition to the development and analysis of stabilizing

- feedback control laws for an underwater vehicle with internal rotors, a primary contribution
of this dissertation is to consider the effect of physical damping on the closed-loop stability
results obtained using the ideal model. This question of “robustness to dissipation” is then
pursued for more general controlled Lagrangian systems.

! Chapter 2 introduces the mathematical and physical fundamentals on which the results
of the dissertation are based. First, a few basic ideas from differential geometry are in-
troduced, such as smooth manifolds and vector fields. The Lie bracket of vector fields,
which is also introduced, has played a primary role in the development of nonlinear control
theory. The important idea of Poisson reduction allows one to express a canonical Hamil-
tonian system with configuration symmetry as a noncanonical Hamiltonian system on a
lower-dimensional phase space. Similarly, Euler-Poincaré reduction may be applied in the
Lagrangian framework. These techniques are relevant here because the underwater vehicle
model used may be written as a reduced Hamiltonian (or reduced Lagrangian) system. The
chapter also recalls certain results concerning stability of equilibria. The energy-Casimir
method for proving Lyapunov stability and LaSalle’s invariance principle are two important
tools used throughout the work. To close the chapter, we summarize the tools and ideas

which arise throughout the dissertation.
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In Chapter 3, a model is introduced for an underwater vehicle with internal rotors.
The model assumes an ellipsoidal vehicle, a very reasonable assumption for the types of
vehicles currently being used to perform ocean sensing. We also introduce a general model
of the viscous forces and torques that a vehicle might experience. A discussion of various
uncontrolled relative equilibria and their stability properties is followed by the results of an
experimental investigation intended to verify theoretical stability predictions and thereby
validate the idealized model on which these predictions were based [42, 45]. In particular,
the experimental results confirm stability predictions indicated for a bottom-heavy spheroid
moving in the direction of gravity and for a spheroid with an internal rotor to provide
gyroscopic stability.

Chapter 4 describes our approach and the results of active stabilization using internal
rotors. We use a three-step approach to design a control law that stabilizes steady long-
axis translation of an ellipsoidal vehicle [69, 68]. In the first step, the vehicle dynamics
are treated as a Hamiltonian system, and a control law is proposed which stabilizes the
desired motion by shaping the kinetic energy of the closed-loop system while preserving the
underlying Hamiltonian structure. Constructive proof of Lyapunov stability relies on the
Hamiltonian nature of the closed-loop system. The resulting Lyapunov function is used in
the second step where we add feedback dissipation to ensure asymptotic stability of the
desired steady motion. Using previous analysis of the uncontrolled dynamics [42, 31] and
physical insight into the closed-loop system dynamics, we choose control gains that yield
large regions of attraction. Finally, in the third step, we check that physical dissipation
does not destroy the results. In fact, for the case where the vehicle’s center of gravity
and center of buoyancy coincide, viscous drag enhances stability of the feedback-stabilized

system by providing global asymptotic stability (even without feedback dissipation). For
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the case of noncoincident centers of gravity and buoyancy, the control design and analysis
is understandably more complicated. The results are only local, but are similar in nature
to the case of coincident centers; physical dissipation tends to enhance stability of the
feedback-stabilized system.

Chapter 5 presents more recent and more general results on the effect of physical and
feedback dissipation on systems stabilized using the method of controlled Lagrangians. For
balance-type systems, such as the inverted pendulum on a cart, the key result is that generic
linear damping in the unactuated directions is beneficial whereas damping in the controlled
directions can be detrimental. Since drag in the controlled direction can be compensated
for directly, appropriate feedback dissipation makes an equilibrium which is stable for the
conservative model asymptotically stable in the presence of damping. A related result is
given for relative equilibria of systems with symmetry.

Chapter 6 recapitulates the major contributions and suggests some avenues for future

investigation.
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Chapter 2

Mathematical Preliminaries:

Lie Groups in Mechanics

This section introduces concepts and tools which are used throughout the work and also
serves to set notation. A coherent development requires some ideas from geometric mechan-
ics and the theory of Lie groups. Ideas from differential geometry are already in general
use among dynamicists and a growing community of nonlinear control theorists. However,
the topic is not yet familiar to the larger control community. Common texts on differen-
tial geometry include those of Spivak [62] and Nomizu [55]. Boothby [19] gives a suitably
thorough, but very readable introduction to the topic. In their development of geomet-
ric control theory, Nijmeijer and van der Schaft [54] review differential geometry with a
convenient balance of brevity and rigor.

As for the use of differeatial geometry in physics, Arnold [6] gives an accessible review of
classical mechanics from a geometric perspective. Abraham and Marsden [1] provide a de-
tailed account of geometric mechanics while Marsden and Ratiu [50] focus on the important

role of symmetry in simplifying and characterizing solutions to a broad range of mechanics
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problems. Both of these latter two references explore various problems of mathematical
physics in which Lie groups naturally arise and each includes a suitable introduction to the
theory of Lie groups. For a more thorough introduction to Lie groups, one might refer to
Warner [65], for example.

In Section 2.1, we introduce some machinery necessary to discuss control of dynamical
systems on smooth manifolds. In Section 2.2, we consider the important special case where
the smooth manifold is a Lie group. Mechanical systems on Lie groups possess a great deal

- of structure which can be exploited in control design and stability analysis. When such
a system exhibits symmetry, or invariance under certain actions, the equations describing
the system motion can simplify considerably. In Section 2.3, we describe the process of
reduction by symmetry. Reduction can be performed in either the Hamiltonian or the

« Lagrangian setting; both perspectives arise throughout the dissertation. Section 2.4 reviews
some well-known facts about stability of equilibria, notably Lyapunov’s two methods for
proving stability and LaSalle’s invariance principle, which extends Lyapunov’s results. The
section also describes an important tool, the energy-Casimir method, for studying stability
of equilibria of reduced Hamiltonian systems. The technique plays a central role in this
work because it provides Lyapunov functions for feedback-stabilized equilibria. Section 2.5

reviews the ideas and techniques most relevant to the dissertation.

2.1 Basic Differential Geometry

This section presents a very brief introduction to differential geometry which parallels the
development in Appendix A of Murray, Li, and Sastry [53]). Their treatment is in turn based
on Boothby [19].

The configuration of a given dynamical system can often be described as a point in
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a smooth manifold. An n-dimensional manifold M is a topological space! which looks
locally like n-dimensional Euclidean space: there is a continuous map with a continuous
inverse, a homeomorphism, from some open neighborhood of each point in M to an open
neighborhood of R*. Let ¢ and ¥ be two such homeomorphisms from two open sets U and
V in M, respectively. Suppose that U and V overlap and define W =UNV. Ifyp~logisa
diffeomorphism (a smooth map with a smooth inverse) from (W) to ¢(W), then the local
coordinate charts (¢, U) and (3, V') are called C* related. The manifold M is said to be

- . smooth if it can be covered by a collection of C* related charts. Such a collection of charts
is called a smooth atlas.

In the special case that M is a submanifold embedded in a Euclidean space of higher
dimension, the notion of a vector tangent to M is intuitive. Let ¢(t) be a smooth curve in
M parameterized over an interval t € (—¢, €) where € > 0. If, for example, ¢ represents time
then c(t) might describe a portion of a trajectory of a dynamical system whose configuration
space is M. The velocity vector é(0) is a vector tangent to M at ¢(0), where ¢é(¢) is the
derivative of c(¢) taken in the ambient Euclidean space. More generally, without considering
M as embedded in a Euclidean space, a tangent vector to M at a point p is given by an
equivalence class of curves passing through p and tangent to each other at that point.

The set of all vectors tangent to M at a point p € M forms a vector space called the
tangent space to M at p and denoted T,M. While an element X, € T,M can certainly
be thought of as a vector tangent to M in the sense described above, it plays a dual role
as an operator. In fact, the tangent space to a manifold is often defined as a vector space
of operators with the tangent vector defined simply as an element of that space, i.e., a

particular operator. Toward this alternative description, let C°(p) denote the space of

!Technically, one requires a Hausdorff topological space with a countable basis. See [2].

10

¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr-_—w- -



smooth functions defined in a neighborhood of a point p € M. The tangent space T,M is

the vector space of linear maps X, : C°(p) — R which satisfy the Leibniz rule,

Xp(f9) = (Xpf)g(p) + f(P)(Xpg),  f.9 € C®(p). (2.1)

Such a map X, is called a derivation at p. A derivation at p defines a unique tangent
vector to M at p. Defining local coordinates (zi,...,z,) on M, one may write X, in a

corresponding basis (312—1, ey 5%) on T,M as

0 0
X et X

This conventional notation underscores the tangent vector’s role as an operator; in coordi-
nates, a derivation corresponds to a directional derivative. When the choice of coordinates
is clear, the tangent vector X, may be written simply as the column vector [X\, ..., X.]T.

The union of all tangent spaces to M forms a 2n-dimensional manifold T M, the tangent
bundle of M. The term bundle reflects the broader geometric notion of a vector bundle. A
vector bundle is a set which can be described as a collection of fibers over a lower-dimensional
base space. Each fiber is a vector space whose elements project to a unique point in the
base space. In the present example, T, M is the n-dimensional fiber over the point p in the
base space M. If M represents the configuration space of a mechanical system, then T'M
represents the system’s velocity phase space. An element (p,X,) € TM is an admissible
configuration/velocity pair.

Having defined the tangent space to a manifold M at a point p, we may define the
cotangent space T, M as the dual space to T, M. Thus, T;M is an n-dimensional vector

space whose elements w, map tangent vectors X, to the real numbers. This natural pairing

11
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between tangent and cotangent vectors is denoted < -,- >: TyM x T,M — R Given
the above basis for T, M, the dual basis on Ty M is denoted (dz,...,dz,) where the basis

elements are defined by the requirement
<dz 0 >=, ,7=1,..,n
iy 3. ~— 0ij, 3] = Ly TR
oz
A cotangent vector wp is written
wWp = w1dzT) + - - - + WpdTn.

When the coordinate choice is clear, w, may simply be written as the row vector [wy, ..., wn].

The union of all cotangent spaces to M forms a 2n-dimensional manifold T*M, the
cotangent bundle of M. If M represents the configuration space of a mechanical system,
then T*M represents the system’s momentum phase space. An element (p,w,) € T*M is
an admissible configuration/momentum pair.

Example: The Simple Pendulum. The configuration of a simple planar pendulum
is uniquely described by a point in the smooth manifold S!, the unit circle. The tangent
space to S! at any given point is the real line R. Each copy of R defines a fiber above a point
in S!. The tangent bundle is diffeomorphic to a cylinder T'S' = S! x R. (See page 164 of
[2].) Any point on the cylinder represents an admissible pendulum angle and velocity. The
cotangent bundle 7*S! is also diffeomorphic to a cylinder; any point in T*S! represents an
admissible pendulum angle and momentum. O

A Riemannian metric on a manifold M is a smooth map that associates an inner prod-
uct < -,- >, to each tangent space T,M. Endowed with such a rﬁetric, M is called a

Riemannian manifold. The Riemannian metric provides a map between the tangent and

12
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cotangent spaces at a given point p € M by identifying with each element X, € T,M a

unique cotangent vector wp :=<K Xp, > € T, M defined by requiring
L Xp,Yp > =<wpY, >

for all Y, € T, M. If M is the configuration space of a dynamical system, such a correspon-
dence between T, M and Ty M defines the relationship between velocity (X,;)and momentum
(wp)-

The differential of a function f at a point p € M is a cotangent vector defined by the
identity

< df(p), Xp >= Xp(f)

« for all tangent vectors X, at p. If z represents local coordinates (z,...,z,) on M, then

df (z) = [%(z),m, —a%f:(a:)] .

If M is a Riemannian manifold, the gradient of the function f satisfies the identity
< gradf, X, > = < df (p), Xp > = Xp(f)

for all X, € T,M. In the simplest case that M is a Euclidean space endowed with the
standard Euclidean metric, one finds that gradf(z) = df (z)7.

As stated previously, the equations describing the motion of a dynamical system may
often be defined with respect to some smooth configuration manifold M. A vector field X
on a manifold M assigns a tangent vector X, to each point p in the manifold. The vector

field is called smooth if X may be written locally as X (z) = [X(z), ..., Xn(z)]T where each

13
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component function is smooth. A curve c(t) is called an integral curve of X if

&(t) = X (c(2))- (2.2)

Equation (2.2) defines the equations of motion for a dynamical system; any system trajec-
tory is an integral curve of X. The flow of a vector field over an interval t € (—¢, €) where
e > 0 is a one-parameter family of maps ¢; : M — M such that ¢.(z) is the unique integral
curve of X passing through z at time t = 0. For a linear vector field, the flow is the familiar
state transition matrix.

Let X be a vector field on M and define for a function f € C®°(M) the new function
Lx f given by

Lx f(p) = Xp(f)-

The function Lx f is called the Lie derivative of f with respect to the vector field X. Given
two smooth vector fields X and Y, one may take successive Lie derivatives of f, for example
Lx(Lyf) or Ly(Lxf). In general, neither Lx(Ly f)(p) nor Ly (Lxf)(p) can be written
as a derivation acting on f at the point p € M. However, Lx(Ly f)(p) — Ly (Lxf)(p) is a

derivation at p. Therefore, the object [X,Y] defined by the function

[(X.Y](f) :== Lx(Ly f) — Ly (Lx ) (2.3)

is a vector field. The operation [-, -] is called the Lie bracket of vector fields.
The space X(M) of all smooth vector fields on a manifold M is a vector space. In fact,
X(M) together with the Lie bracket of vector fields forms a Lie algebra. A Lie algebra V'

is a vector space V endowed with a bilinear, skew-symmetric operator, the Lie bracket [-, -]

14
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on V, which satisfies the Jacobi identity,

([w,v], w] + [[w, u],v] + [[v,w],u] =0 forallu,v,w e V.

In analogy to vector fields on M, there is the dual notion of a covector field, or more
generally of a differential form. A smooth differential one-form a on M assigns a cotangent
vector to each point in the manifold. Locally, a(z) = [@1(z), ---, @n (z)] where each compo-
nent is a smooth function. Considering the natural pairing between tangent vectors and
cotangent vectors, one may think of a as an operator that maps a tangent vector to a real

number. More generally, a differential n-form maps n tangent vectors to a real number.

2.2 Lie Groups and Group Actions

This section is primarily based on the discussion in Marsden and Ratiu [50]. The reader
might refer to that text for a more thorough presentation as well as a number of illustrative
examples of physical significance.

A Lie group G is a group which is also a smooth manifold and for which group multi-
plication and inversion are smooth operations. Only finite-dimensional Lie groups will be
considered in this dissertation. It is helpful to consider the class of Lie groups whose ele-
ments are representable as matrices. The group operation for a matrix Lie group is simply
matrix multiplication.

Since one group element g € G may act on another element A € G on the left or on the

right, one defines left and right translation, respectively,

Ly: G—=G; h—gh

15
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Ry: G—=G; hw—hg

If every group element g commutes with every other element h, then Ly, = R, forallg € G
and the group is called Abelian. Giwen that (left or right) translation maps one point in the
manifold G to another point, the a.ction induces a natural map from the tangent space at

one point to the tangent space at another point,

Tth : ThG —r TghG

ThRg : ThG — Tth.

These maps are referred to as the ttangent lift of left and right translation, respectively, or
more briefly as the left and right ta.ngent map. To compute these maps explicitly, consider
a smooth curve ¢(t) € G defined 'on an interval ¢ € (—e,€) such that ¢(0) = h. Then

¢(0) € TG and one finds that

ThEy(6(0)) = 2 [Lo(e(®)] o

d

ThiR, (¢(0)) = 4t [Rg(c(t))]tzo :

For obvious reasons, the tangent map is also referred to as the derivative map. For a matrix
Lie group, the left (right) tangent map is given by left (right) matrix multiplication.

The left and right tangent ma.ps provide a means of comparing vectors in different
tangent spaces on the same manifold. A vector field X on G is called left invariant under
the action of G if

Th.Lg(X (h)) = X (Lg(h))

16
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TG

TG

G G

Figure 2.1: Comparing a vector field at two points on G.

for every h € G. Figure 2.1 depicts left translation of a point A and the left tangent map of
a vector X (h). The vector field X is left invariant if the two vectors shown at the point gh
coincide for every g and h € G.

Right invariant vector fields are defined analogously. For a dynamical system, left or
right invariance of the vector field defining the equations of motion reflects a symmetry in
the system configuration. Such symmetries are advantageous since they typically allow one
to simplify the dynamic equations.

A given left or right invariant vector field on a Lie group G can be entirely described by
mapping a single vector at a single point to each tangent space using the left or right tangent
map, respectively. For example, if X is a left invariant vector field, one may reproduce the
entire vector field by applying the map T, L4 to the single vector X(e) for each g € G. (By
convention, e denotes the identity element in G.) In fact, one may obtain any left or right
invariant vector field on G by this same process. Given a vector £ € T.G, define a left

invariant vector field X on G as

XE(Q) = TeLg(é)-

17
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This procedure generates the entire set of left invariant vector fields on G. The set of left
invariant vector fields on G is also a vector space, denoted X (G), and is isomorphic to T.G.
The Lie bracket (2.3) of two left invariant vector fields is itself left invariant. Thus, X (G)
is a Lie algebra under the Lie bracket of vector fields. Similarly, the vector space Xg(G) of
right invariant vector fields on G is a Lie algebra. (X,(G) and Xg(G) are Lie subalgebras
of the Lie algebra X(G) of all smooth vector fields on G.) Since both X.(G) and Xg(G)
are isomorphic to T.G, each induces a Lie algebra there by providing a Lie bracket. In the

left invariant case, one defines the Lie bracket of two elements £,n7 € T.G by

€, m] = [Xe, Xq](e) (2.4)

where X, is defined analogously to X¢. The vector space T,G together with the operation
(2.4) constitutes the Lie algebra of G which is denoted g. Elements of the Lie algebra of
a matrix Lie group may also be represented by matrices. In this case, the Lie bracket is
matrix commutation [£,n] = &n — né.

Example: The Lie Algebra of SO(3). The special orthogonal group
S03)={ReR*>*3 | R™'=RT, det(R) = 1}.

describes the set of proper rotations. This Lie group is well-studied within geometric me-
chanics. Besides providing a mathematically rich example, SO(3) is of practical interest
because it is the configuration space for the free rigid body.

To determine the Lie algebra associated with SO(3), one examines the tangent space to

the group at the identity. The identity element in SO(3) is the 3 x 3 identity matrix which

18
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is denoted Z. Differentiating the relationship RTR = T gives
RIR+RTR=(RTR)T + RTR =0,

so RTR is skew-symmetric. Evaluating at the identity, one finds that the Lie algebra

corresponding to SO(3) is the space of 3 x 3 skew-symmetric matrices,
s0(3) = {A eR¥3 | AT = —A}.

One may identify so(3) with R® by means of an operator * defined by the identity
Zy =z xy for z,y € R®. Let Q = RTR. Emphasizing the connection between the group
SO(3) and rigid body dynamics, the matrix Q, or equivalently the vector Q, is called the
body angular velocity. Since SO(3) is a matrix Lie group, the Lie bracket on so(3) is matrix
commutation, as mentioned previously.

A left invariant vector field on SO(3) can be obtained by applying the tangent map to

left translation to an element 2 € so0(3),
Xo(R) =TzLrQ = RQ
for each R € SO(3). This is the same vector field describing the time evolution of R,

R = X4(R) = RQ.

Notice that the Lie bracket of vector fields (2.3) is a differential computation whereas

(2.4) is an algebraic computation. Thus, certain problems on X;(G) may be simplified by

19
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“transferring” those problems to g. As an example, determining nonlinear controllability
of a given system typically involves computing Lie brackets of the various vector fields
describing the controlled system dynamics. However, if the configuration manifold is a Lie
group and the vector fields are left invariant, the question of controllability can be answered
through much simpler algebraic computations.

Since an element £ € g induces a left invariant vector field X on G and this vector field
induces a flow on G, there is a natural correspondence between elements in g and elements
in G. Let ¢¢(t) denote the integral curve of X which passes through e at time ¢ = 0. The
ezponential map takes t£ € g (for some t € R) and returns ¢.(¢) € G. For a matrix Lie

group, the exponential map is a matrix exponential,

expt§=§:g—§—?i.

n=0

The exponential map is a diffeomorphism between a neighborhood of 0 € g and a neighbor-
hood of e € G. One may thus think of g as providing a local coordinate chart for G at the
identity. But, by translation, any element in G can be reached from a neighborhood of the
identity so this local chart extends to form an atlas on G. The inverse of the exponential
map (where it is defined) is appropriately referred to as the logarithmic map.
Example: The Exponential Map from so(3) to SO(3). An element £ € s0(3)
corresponds to the element of SO(3)
A Y o Y
exa(@ = > O
The exponential map of € is a rotation about the vector Q of magnitude [|||. (See [53]

for a proof as well as a simpler formula due to Rodrigues.) O
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It has already been shown how Lie groups act on themselves by translation. More
generally, one may consider the action of a Lie group G on a smooth manifold M. A
left action of G on M is a smooth mapping ® : G x M — M such that ®(e,z) = z
and ®(g, ®(h,z)) = ®(Lgh,z) for all z € M and all g,h € G. A right action is defined
analogously. The orbit of an action ® through a point z € M is the subset of M which can

be reached from z under the action @,
- Orb(z) = {2(9,2) | g € G} - (2.5)
A group G of actions which leave a point z € M invariant is called an isotropy group,
G::={g€ G| 2(g9,z) =z} (2.6)

The action ® is called free if G, = {e} for every £ € M. That is, the action is free if
®(g,z) leaves no point £ € M fixed whenever g # e. The action is called proper if the
corresponding map ®:G x M — M x M defined by <i>(g, z) = (z,®(g,z)) is proper. (If G
and M are finite-dimensional, “properness” of ® implies that ®~!(K) is compact for any
compact subset K C M x M.)

For finite-dimensional Lie groups, the set of orbits of a free and proper action & defines
a bundle structure on M. In this case, each orbit is a fiber over a point in the base or
orbit space M /G, which is itself a smooth submanifold of M. As a rather trivial example,
suppose M = G and the action is left translation. Then Orb(g) = G since any other point
h € G can be reached by the action Ljg-:. In this case, M/G = G/G is a single point.
More interesting examples will follow in this and later sections.

Following are some important Lie group actions.
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1. G acting on G: Left or right translation, Ly or R,.
2. G acting on G: Conjugation, I := Lg o Ry—1.
3. G acting on g: Adjoint action, Ady = TeI,.

4. G acting on g*: Coadjoint action, Ad;-l = (Tely-1)" where * denotes the linear

algebraic dual. That is, < Ad;_la,ﬁ >=<a,Ad,1{>forallaecg”and{€g.

Note that each of the actions 2 through 4 ultimately derives from simple translation. The
conjugation operator 2, also called the inner automorphism, is a generalization of the simi-
larity transformation in matrix algebra. Since I; maps the identity element back to itself,
the tangent map to I, at the identity maps elements in g back into g. This map 7./, defines
the adjoint action on g. The coadjoint action of G on g* is given by the dual of the adjoint

1

action of g7 on g for g € G.

The adjoint action is particularly useful for computing the Lie bracket on g; differenti-
ating Adgyn with respect to g at the identity in the direction & gives the Lie bracket [£,7].

Given an element £ € g, one may define the operation

ade(") :==[§,]: g~ 8 (2.7)

The notation underscores the relationship between the adjoint action and the Lie bracket

on g. One may also define the operation

adg(-) : g" = g°

22
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as the linear algebraic dual of ade:
< adg(p),n > = < p,adg(n) > (2.8)

where £, €gandp € g’
Example: The adjoint action of SO(3) on so(3). Let € € so(3)and let R, (t) be
a curve in SO(3) such that R;(0) = T and R1(0) = ©,. By the definition of the adjoint

action on page 22,

AdpQly = Tx(LroRp-1){4y
= L (RRI®RT) im0
dt =

= RORT (2.9)

for an element R € SO(3).
To compute the Lie bracket on so(3), suppose that Ry(t) € SO(3) satisfies R2(0) =T
and Ry(0) = €,. Differentiating AdR2f21 with respect to time at ¢ = 0 gives the Lie

bracket,

.4 - d -
[0, 1] =adg, (@) = — (ReRY) im0
= 200 - 0.

As anticipated, the Lie bracket on s0(3) is matrix commutation. More conventionally, one

identifies s0(3) with R3 and defines the operator adg : R® — R3. Recognizing that

(2, )] = Q2 x Q,

23
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it follows that

adgz(ﬂl) = 92 x ﬂl = Q2Q1

and therefore that

adq(-) =2 (2.10)

for Q € R3. We can find adg from equation (2.8),

. <adh, Q1,0 > = < Q,adg,0 >
= Q- (R x )
= —(N2 xN)-03
= (—0) - Q5.
Thus, we find that
adh(-) = —Q. (2.11)

Orbits corresponding to the actions described on page 22 are also of interest. For
certain conservative mechanical systems, for example, the system dynamics on the complete
momentum phase space can be reduced to canonical Hamiltonian dynamics on the (smaller
dimensional) coadjoint orbits. This process of reduction is discussed in Section 2.3.

Example: The coadjoint action of SO(3) on so(3)* and the coadjoint orbits.

Using the definition 4 on page 22 and the identity

R&#RT = Rz
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for R € SO(3) and = € R?, one may compute that the coadjoint action of SO(3) is

Ad}-. (XT) = RIIRT (2.12)

where IT € so(3)*, the dual of the Lie algebra so(3).
Using the definition (2.5) of the orbit of an action, the coadjoint orbit of SO(3) through

the point IT € so(3)* is the subset of s0(3)* given by

Orb(flT) = {Ad%-.(II)| R € SO(3)}
= {RIIRT | R € SO(3)}

= {RII| Re€ SO(3)}. (2.13)

Identifying RII with the vector RII, one finds that the coadjoint orbit through IT comprises
all rotations of the vector II. Thus, the coadjoint orbit through IT is identified with the
sphere of radius [[IT]j]. The orbit space s0(3)*/SO(3) is the set of nonnegative real numbers,
each of which corresponds to the radius of a sphere defining a coadjoint orbit. Marsden
and Ratiu [50] are careful to point out that this orbit space is not a manifold and, in fact,
that the coadjoint action of SO(3) is not free since 0 € s0(3)* is a fixed point under the
coadjoint action. O3

As indicated before, an element £ € g induces a one-parameter family of group elements
by means of the exponential map exp ¢£. In turn, the family exp t£ induces a flow on M
through the action ®. Define for £ € g the map ®(exp t&,-) : M — M. This map is a flow

on M. The vector field on M corresponding to this flow is called the infinitesimal generator
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of the action corresponding to £ and is denoted &ar(z):
d
£01(z) = - ®(exp t€, )| - (2.14)

Thus & (z) gives the velocity of the integral curve ®(exp t§, z) at the point z € M.
Example: Infinitesimal generator of right translation on SO(3). Let M =
G = SO(3) and € = Q € s0(3). Consider the action of right translation on M so that

®(g,h) = Rgh for g,h € G. Then ®(exp tQ, R) = R exp t§2 and by the definition (2.14),

d [R exp tfl] = RS.

€so@)(R) = T o

Thus the infinitesimal generator of right translation corresponding to Q is the left invariant

vector field Xﬁ. O

2.3 Reduction by Symmetry

Suppose that the configuration of a system of interest corresponds to a point £ in an n-
dimensional manifold M. Then the system state is an element (z,v) in the velocity phase
space TM. Locally, the configuration and velocity are given by the coordinate pair (g, q)
where ¢ = [¢!,...,q"]T is the vector of local coordinates. By definition, the system is a
Lagrangian dynamical system with Lagrangian £(q, q) if any trajectory (q(t), g(t)) over a

time interval ¢ € [to, ;] satisfies Hamilton’s principle,

ty
0=3 / £(a, g)dt
to

26
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where the variations are smooth curves in M with fixed endpoints. In this case, the system

dynamics are described by the Euler-Lagrange equations

doc_oc _
dt 8¢t dgt

(2.15)

for i = 1,...,n. When speaking of mechanical systems, one is typically interested in so-
called “natural Lagrangian systems” for which the Lagrangian is simply kinetic energy
minus potential energy and the kinetic energy is quadratic in velocity. (Kinetic energy is
given by a Riemannian metric on the configuration manifold.)

Equivalently, one may write the system dynamics in Hamiltonian form. First, define
the momentum conjugate to g,

s 0L OC

p = [’aF, “ey a—q;;] (2.16)

The pair (g, p7) is the coordinate representation of the system state expressed as an element
in T*M. More conventionally, one simply writes this pair (g,p). If definition (2.16) can
be solved uniquely for g(q,p), the Lagrangian is called regular or nondegenerate. Given

a nondegenerate Lagrangian £, the Hamiltonian H(q, p) is the Legendre transform of the

Lagrangian
H ) = qu ~-L 3 ] l N .
(a:p) = ( (¢,4)) 2
Hamilton’s equations are
. 0H - OH .
pPi = —_3?’ qt = 3_1)1 fori=1,...,n. (2.17)

The 2n equations (2.17) are equivalent to the n Euler-Lagrange equations (2.15).
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Equations (2.17) are a special case of a more general family of Hamilton’s equations.
This larger family is most easily described using the Poisson bracket. Let P denote a smooth
manifold. A Poisson bracket {-,-} on P is a Lie bracket on the vector space C*°(P) which

is also a derivation in each argument,

{FG,H} = {F,H}G + F{G, H}.

If such an operation exists, then P is referred to as a Poisson manifold.
Referring to equations (2.17), T"M is a Poisson manifold under the Poisson bracket

(given here in local coordinates)

G = o on: ~ pi o0
Alternatively, one may write
Vo F VG
Vo F VoG

where J is the 2n-dimensional symplectic matriz

0. I,

The symplectic matrix encodes all of the information defining the Hamiltonian structure
on T*M. The generalization of the symplectic matrix to a Poisson manifold P is a skew-

symmetric 2-tensor A which may depend on the state 2 € P. The Poisson tensor A(z)
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defines the Poisson bracket
oF 8G

0zt 8z7°

{F,G} = A7(2)

Thus, all of the information describing the Hamiltonian structure on P is encoded in the
single tensor A(z). Alternatively, given a Poisson bracket one may compute the Poisson
tensor by substituting the coordinate functions F = 2* and G = 27.

A Poisson bracket on a manifold P, together with a Hamiltonian H, defines a unique

vector field Xy on P by the requirement that

Xy(F)={F,H} forall FeC®P). (2.18)

The vector field Xy is called the Hamiltonian vector field because it describes the Hamil-

* tonian dynamics on P. In coordinates,

ii = XH(z,-) = {Zi,H}.

For example, in the canonical case that P = T™M one may write equations (2.17) as

¢ ={¢,H} pi={p,H}  fori=1,..,n. (2.19)

More generally, the rate of change of any function F € C*°(P) along the flow of the

Hamiltonian vector field is,

If {F,H} = 0 then F is conserved along the flow. By skew-symmetry of the Poisson bracket,

the Hamiltonian H is constant along trajectories of Xpg. If {F,G} = 0 for any function
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G € C*°(P) then the conserved quantity F' is referred to as a Casimir function. As will bre
discussed shortly, conserved quantities play a crucial role in stability analysis.
There is an important connection between the Poisson bracket on P and the Lie bracket

of vector fields. Referring to definition (2.18) of a Hamiltonian vector field, one may show

X{F,G} = —[XF, XG].

Using this identity and the fact that C°°(P) is a Lie algebra under the Poisson bracket, ome
may show that the set of Hamiltonian vector fields Xgam(P) is a Lie subalgebra of X(P).

If a candidate Poisson bracket on a manifold P fails to satisfy the Jacobi identity, then
C(P) is not a Lie algebra under this bracket and the bracket cannot be called a “Poisso-n
bracket”. If the candidate bracket satisfies all other criteria for a Poisson bracket, then thze
Hamiltonian system defined by the bracket is called almost Poisson [22].

Many physically interesting systems can be described as systems on Lie groups. Consider
the class of systems for which a configuration is given by an element in some Lie group G.
A subclass of these systems is invariant under left or right translation and this invariance
leads to a simplified set of dynamic equations. Even for those systems which do not exhibat
invariance, or symmetry, greater insight into the dynamics often follows from considering a-n
invariant system as a special case. Since a system which is invariant under right translation
can be transformed into a left invariant system, there is no further loss of generality in
considering only left invariant dynamics.

For a Lagrangian or a Hamiltonian system on a Lie group G, left invariance of thse
dynamics is equivalent to left invariance of the Lagrangian or the Hamiltonian. A function

Fr : TG — R is left invariant if the function evaluated at any point in T'G is equal to thxe
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function evaluated at any other point reachable by left translation, that is, if
Fr(Lgh,ThyLgv) = Fr(h,v) (2.20)

for all g € G and all (h,v) € TG. Left invariant functions on T*G are defined analogously.
More generally, one may consider functions which are only invariant under the action of

some subgroup of G.

The following theorem relates left invariant Lagrangian dynamics on the 2n-dimensional

space TG to “reduced” dynamics on the n-dimensional space TG/G ~ g.

Theorem 2.3.1 (Marsden and Ratiu [50]) Let G be a Lie group and let L : TG — R
be a left invariant Lagrangian. Let [ : g — R be its restriction to the identity. For a curve

o g(t) € G, let £(t) = TyeyLy(r)-1 - §(t). Then the following are equivalent:
1. g(t) satisfies the Euler-Lagrange equations for L on G;

2. the variational principle

5 [ £(g(®),9(t))dt = 0
holds, for variations with fized endpoints.

8. the Euler-Poincaré equations hold,

d §l L a1

where the functional derivative 3‘% is the unique element of g* satisfying

8l L1
(86 3¢ ) = lim Z0(E +36) ~ L))
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4. the vartational principle

6/l(§(t))dt =0

holds on g using variations of the form
66 =1 +[£,n},
where 1 vanishes at the endpoints.

Thus, left invariant Lagrangian dynamics on T'G reduce to the Euler-Poincaré equations
on g. These equations are obtained by restricting the variations (dg,dg) on T'G to 6 on g
subject to the identity &(£) = Tg(yLge)-1 - 9(£)-

Example: The free rigid body. Consider a rigid body whose orientation is described
by a matrix R € SO(3) which maps a body-fixed coordinate frame to an inertial coordinate
frame. In other words, R transforms a vector expressed in body coordinates into the

corresponding vector expressed in inertial coordinates. Recall from Section 2.2 that

where €2 is the vector representing the body angular velocity.
Let I denote the positive definite, symmetric inertia tensor for the rigid body relative

to the body-fixed coordinate frame. The matrix I maps so(3) to so(3)*,
H=I0¢ 50(3)".

As a result, I induces a metric < -,- > on s0(3) by means of the pairing between so(3)
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and s0(3)* as follows,

<Q,0> =<Q I0>=0-IO.

The metric on s0(3) in turn induces a Riemannian metric on SO(3). Recognizing that

the kinetic energy of the rigid body is % < 2, >, the Lagrangian on TSO(3) is simply

LR, R) = % < RTR,RTR>

B According to equation (2.20), £ is a left invariant function on T7"SO(3). The restriction of

L(R, R) to TrSO(3) is

() =T, Q)=-<N,0>= %Q - IQ. (2.22)

N

By Theorem 2.3.1, the reduced equations of motion, the Euler-Poincaré equations, for the

free rigid body are
d 6l él

*

dteq R
where we have identified so(3)* with R3. Substituting from (2.22) and (2.11) gives the

familiar Euler equations for the free rigid body,

d
Z(I9) = (I2) x Q.

As described in Theorem 2.3.1, left invariant Lagrangian dynamics on T'G reduce to
dynamics on TG/G ~ g. Similarly, canonical left invariant Hamiltonian dynamics on TG

reduce to Poisson dynamics on T*G /G =~ g*.
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Theorem 2.3.2 (Marsden and Ratiu [50]) Let G be a Lie group and let H : TG — R
be a left invariant Hamiltonian. Let h : g* — R be the restriction of H to T;G. For a curve
p(t) € T;(t)G, let p(t) = (T;(t)Lg(t)—l) -p(t) be the induced curve in g*. Assuming that g(t)

satisfies the differential equation

oh
gé'/.L

§=T.L
where 1(0) = p(0), the following are equivalent:

1. p(t) is an integral curve of Xp; i.e., Hamilton’s equations hold on T*G;

2. for any smooth function F defined on T*G, F = {F, H} where {-,-} is the canonical

Poisson bracket on T*G;

3. u(t) satisfies the Lie-Poisson equations

dp .
2 = 2den/out (2.23)

4. for any smooth function f defined on g*, we have

f={f h}g: (2:24)

where the reduced Poisson bracket {-,-}g- is defined by restricting the canonical bracket

acting on left invariant functions on T*G to the space g*. Ezplicitly,

{f1 h}g' (“) = - </“7 ad&h/Jy%> (2’25)

for p € g*. (The minus sign is a consequence of left invariance. A right invariant

Hamiltonian leads to a similarly defined bracket without the minus sign.)
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The Euler-Poincaré equations are obtained by restricting the form of the variations used
when Hamilton’s principle is applied on g. The Lie-Poisson equations are obtained by
restricting the canonical Poisson bracket on T*G to g*.

Example: The free rigid body. Consider once again the rigid body and recall the
definition

n=I%c s0(3)".
Just as I induces a metric on so(3), its inverse induces a dual metric on so(3)*,

—

KILM >a) =<ILIT'IO>= O -I"'IL

The Hamiltonian H on T*SO(3) may be computed directly from L£(R,R) by choosing

¢ coordinates for SO(3) and performing the Legendre transform. Furthermore, since £ is left
invariant, the resulting Hamiltonian is necessarily left invariant. The restriction of H to
T7rSO(8) is

- 1 . A 1 _
h(ID) = 2 K ILIL oo = FIL-T I

Identifying so(3)* with R3, Theorem 2.3.2 indicates that the Lie-Poisson equations for

the free rigid body are

%:ad;,n=_ﬁxn=nxn. (2.26)

The dynamics (2.26) preserve the magnitude of IT; the function %II-H is a Casimir for this
system. This observation follows more easily if one considers the reduced Poisson bracket

on so(3)*. Continuing to identify so(3)* and R3, one may write the Poisson bracket
{F,G} :=VnF- I VoG
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for smooth functions F and G on so(3)*. Since the gradient of %I’I -II is in the null space
of the Poisson tensor II, this function Poisson commutes with any other function. It can be
shown that the three scalar equations (2.26) may be further reduced to symplectic dynamics
on the 2-dimensional coadjoint orbit, the sphere of radius ||TI||, whenever IT # 0. O
It has been mentioned that a system defined on a Lie group G may be invariant under
the action of some subgroup of G. In this case, the system does not exhibit full G-symmetry
and one cannot fully reduce the dynamics from TG to g*. However, some reduction may
- » be possible by considering the full dynamics on an augmented space, a semidirect product

of G with some other space. Semidirect product reduction is described in [51].

2.4 Stability of Equilibria

Of principal concern in the study of any dynamical system are the stability properties of
its equilibria. Consider a system whose configuration is described by the manifold M and

whose dynamics evolve according to a vector field X on M,
z=X(z), =z€eM. (2.27)

A point z, € M is an equilibrium point if X (2.) = 0. An equilibrium z, is called stable if
trajectories starting near z. remain close. This idea is made more precise by the following

definition.

Definition 2.4.1 (Stability, Asymptotic Stability, Instability) An equilibrium z. of

the dynamics (2.27) is

e stable if for any positive scalar € there is a positive scalar § such that any trajectory
satisfying ||z(0) — ze|| <  also satisfies ||2(t) — z.|| < € for all time t > 0.
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3

e asymptotically stable if it is stable and z(t) — z, as t = oo.
e unstable if it is not stable (i.e., if there is e value € for which no § exists).

In situations where the dynamics involve time explicitly, one must consider uniformness of
stability (i.e., whether the stability properties depend on the initial time). Only autonomous
systems are considered here.

Two methods for studying stability, both attributed to Lyapunov, are the so-called
“indirect” and “direct” methods. The indirect method involves examining the spectrum of

the linearization of X at z..

Theorem 2.4.2 (Lyapunov’s Indirect Method [37]) An equilibrium z. of the dynamics

(2.27) is

e asymptotically stable if each point in the spectrum of the linearization of X at z, lies

in the open left half of the complez plane.

o unstable if any point in the spectrum of the linearization of X at z. lies in the open

right half of the complex plane.

If each point in the spectrum lies in the closed left half plane, the equilibrium is called
spectrally stable. If the linearized system is stable (i.e., spectrally stable with an independent
eigenvector associated to each eigenvalue with zero real part), then z, is called linearly stable.
Linear stability is stronger than spectral stability but is not sufficient to prove stability of
ze. For example, the system z = z3 has a linearly stable equilibrium at z = 0. However,
this equilibrium is actually unstable.

For a canonical Hamiltonian system, the eigenvalues of the linearized dynamics are dis-

tributed symmetrically in the complex plane under reflection about the real and imaginary
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axes. Thus any given eigenvalue is either located at the origin of the complex plane or
is a member of a real conjugate pair, a purely imaginary conjugate pair, or a symmetric
quartet of eigenvalues. Linear analysis can therefore predict instability for an equilibrium
of a Hamiltonian system but cannot predict stability.

Lyapunov’s direct method involves finding an energy-like function V, called a Lyapunov

function, which is positive definite and whose rate is negative semidefinite.

Theorem 2.4.3 (Lyapunov’s Direct Method [37]) Suppose there is a function V' which

has a strict minimum, say zero, in a neighborhood D of z,. That is, suppose

V(z) =0 and V(z)>0 forallz€ D — {ze}-

Then the equilibrium z. is stable if

V(z) <0 forallzeD.

The equilibrium z. is asymptotically stable if

V(z) <0 forallze D - {ze}-

An obvious challenge in applying Lyapunov’s direct method is constructing the function
V. There is no truly general procedure for constructing a Lyapunov function although, for
physical systems, the energy is often a good candidate.

LaSalle’s invariance principle extends Theorem 2.4.3 allowing one, in some cases, to

conclude asymptotic stability even if V is only negative semidefinite.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.



Theorem 2.4.4 (LaSalle’s Invariance Principle [37]) Let Q C D be a compact set that
is positively invariant with respect to the dynamics (2.27). Let E = {z € Q | V(z) = 0}
and let M be the largest invariant set contained in E. Then all trajectories starting in Q

approach M as time goes to infinity.

Essentially, the proof involves observing that, since V' is bounded below and nonincreasing,

V — 0 as t — oco. But V cannot remain zero unless z € M. Therefore, z(t) must go to M.
Corollary 2.4.5 If M = {z.} then z. is asymptotically stable.

In the reduced setting of an Euler-Poincaré or Lie-Poisson system, the term “equilib-
rium” is somewhat ambiguous since an equilibrium of the reduced equations corresponds
to a nonequilibrium trajectory in the full phase space. This trajectory is actually a group
orbit corresponding to an “equilibrium velocity”. The orbit, or rather any point on the
orbit, is referred to as a relative eguilibrium.

Since Euler-Poincaré and Lie-Poisson equations describe conservative dynamics, stabil-
ity of a relative equilibrium cannot be proven using Lyapunov’s indirect method. However,
there are procedures for constructing Lyapunov functions for stable equilibria of these sys-
tems. In the Hamiltonian (Lie-Poisson) setting, one relevant technique is the energy-Casimir

method described in [50]. The method involves the following steps:

1. Define the “augmented Hamiltonian” He = H + ®(Cj,¢;) where ® is an arbitrary
smooth function of its arguments. The constants C; are Casimirs and the constants

¢; are any remaining conserved quantities.

2. Impose conditions on the first derivative of ® evaluated at the equilibrium such that

the equilibrium is a critical point of Hg.
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3. Impose conditions on the second derivative of ® evaluated at the equilibrium such

that He is definite.

Since Hg is definite about the equilibrium and is constant, stability of the equilibrium of
the reduced dynamics follows by Theorem 2.4.3. (If the second variation of H¢ evaluated at
the equilibrium is negative definite, one may simply take V' = —Hg.) For the Hamiltonian
system, stability of the equilibrium follows regardless of whether it is a maximum or a
minimum of Hg. If the Hamiltonian system models a physical process, one must be more
concerned about whether the equilibrium is a maximum or a minimum because of the effect
of damping. If, for example, the equilibrium is a maximum and damping decreases the
value of Hg, then dissipation actually destabilizes the equilibrium.

Having proven stability of the reduced dynamics, one may assert that the relative equi-
librium of the unreduced dynamics is relatively stable modulo G. This means that while the
dynamics are stable in the sense that momenté stay close to their equilibrium values, some
drift may occur in the system configuration. The issue of drift in the study of stability of
relative equilibria is addressed by Patrick [58] for the case where G is compact. His results

are extended by Leonard and Marsden [44] to include systems on noncompact Lie groups.

2.5 Summary

A fundamental theme of this dissertation is Lyapunov-based stabilization. A Lyapunov
function candidate encodes a system’s dynamics in a single scalar function. Lyapunov’s
direct method reduces the problem of proving stability of the whole system to analyzing
this one function. If the function is parameterized by control gains, the analysis yields
conditions on the control parameters for closed-loop stability. One may use the resulting

Lyapunov function to estimate the region of attraction of the feedback-stabilized equilib-
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rium. Furthermore, if the Lyapunov function was constructed for a conservative system
model, it can then be used to study the effect of additional forces, such as physical and
feedback dissipation.

While Lyapunov techniques can be challenging for arbitrary systems, mechanical systems
naturally lend themselves to Lyapunov-based control design. In Chapters 3 and 4, we treat
an underwater vehicle as a Lie-Poisson (reduced Hamiltonian) system and use the energy-
Casimir method to study stability of relative equilibria for the uncontrolled and feedback-
controlled system. When considering feedback, the approach gives conditions on the control
gains for closed-loop stability and the resulting Lyapunov function provides an estimate of
the region of attraction. We then use the Lyapunov function to design feedback dissipation
to provide asymptotic stability and to characterize the effect of physical damping. LaSalle’s
invariance principle plays an important role in this analysis. In Chapter 5, we use a similar

approach to study a class of systems in the Lagrangian framework.
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Chapter 3

Underwater Vehicle Dynamics

This chapter develops and discusses a dynamic model of a rigid body with internal rotors
immersed in a fluid. Under certain assumptions on the fluid, the dynamic equations are
Lie-Poisson. Stability of relative equilibria may be studied using the energy-Casimir method
and we give a number of previous and new stability results based on this approach. We
focus on stability of long-axis translation for an ellipsoidal vehicle.

One assumption underlying the Lie-Poisson model is that the fluid is inviscid. A real
underwater vehicle is subject to viscous forces which can greatly affect the dynamics. It
is important to understand the limitations of the Hamiltonian model and to not be misled
by results based on conservative system analysis. For example, while one expects that a
stable equilibrium of a Hamiltonian system will be asymptotically stable in the presence of
damping, this is not necessarily the case. (America’s first satellite, Explorer I, provides a
spectacular example [47].) To demonstrate the applicability of our conservative underwater
vehicle model for studying stability of steady translation, we present experimental results
which verify theoretical predictions.

In Section 3.1, we describe the vehicle model, including a somewhat general model of
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the viscous force and torque. Section 3.2 presents stability results for an immersed ellipsoid
translating along a principal axis. Section 3.3 describes an experimental investigation of

the stability criteria presented in Section 3.2.

3.1 Underwater Vehicle Equations of Motion

In this section, we describe the vehicle model and the open-loop equations of motion. Sec-
tion 3.1.1 presents the equations of motion for a neutrally buoyant vehicle modeled as a
rigid body immersed in an ideal fluid. In Section 3.1.2, internal rotors are included as ac-
tuators in the system model. In Section 3.1.3, a general model is presented for the forces

and torques due to viscous drag.

3.1.1 Rigid Body in an Ideal Fluid

Rigid Body Kinematics. Consider a coordinate frame described by the orthonormal
vectors (ej, ez, e3), which is fixed to a rigid body. The rigid body is oriented in some
way with respect to an inertial coordinate frame, described by the orthonormal vectors
(2,7, k). The configuration space for the rigid body is the Euclidean group, SE(3), of rigid
transformations. An element in SE(3) is given by the pair (R,b) where R € SO(3) is the
proper rotation matrix that maps body coordinates into inertial coordinates and b € R3
is the vector from the origin of the inertial frame to the origin of the body frame. (See
Figure 3.1.) The pair (R, b) thus describes the vehicle’s position and orientation in inertial
space.

The left action of SE(3) on itself is given by

L(R1 ,bl)(R21 bg) = (R1R27 R1b2 + b].) (3.1)
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where (Ry,b;) and (Rj,bs) are two elements in SE(3). An element of SE(3) may be

represented as a madtrix,

for (R,b) € SE(3).
To see how SE(3) relates the inertial and body-fixed coordinate frames, let Tipertial be
the position of a point in space with respect to the inertial coordinate frame. Let Zpody
- be the position of the same point with respect to the body-fixed coordinate frame. Then,

using the matrix representation,

Tinertial R b Thody

I

1 0 1 1

If @ and v represent the angular and translational velocity of the rigid body expressed

in body coordinates, then

- . (3.2)

Equation (3.2) describes the rigid body kinematics.

The pair (€2, v) is an element in the Lie algebra se(3) of the Euclidean group; the right-
most matrix in equation (3.2) is its matrix representation. As pointed out in Section 2, the
Lie bracket for a matrix Lie algebra is simply matrix commutation. Therefore, one may

easily verify that
[(Q21,v1), (2, v2)] = (2182 — 220, Q102 — Qov1) (3.3)
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Figure 3.1: Kinematics of a rigid body.

for two elements (21, v;) and (22, v2) in se(3). Physically, the Lie bracket on se(3) expresses
how infinitesimal rotations and infinitesimal translations commute.

The Reduced Dynamics and Kirchhoff’s Equations. Kirchhoff’s equations pro-
vide a finite-dimensional dynamic model of a neutrally buoyant rigid body translating and
rotating in an infinite volume of fluid. A body is said to be neutrally buoyant when the
weight of the displaced fluid is equal to the weight of the body. The fluid is assumed to
be irrotational, incompressible, inviscid and at rest at the infinitely distant boundary. (Ap-
pendix A briefly reviews the derivation of Kirchhoff’s equations, as given by Lamb [41].)
While these assumptions are restrictive, there are situations where Kirchhoff’s equations
provide a useful model of the dynamics of an underwater vehicle. For example, the equations
are particularly suitable when considering streamline motion of a slender vehicle. External
forces such as viscous effects and external control inputs can be appended to this basic
model as external forces.

Kirchhoff’s key simplification was to treat the combined body/fluid system as a single

dynamical system so that the fluid force acting on the body’s surface need not be computed.
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The kinetic energy of the combined body/fluid system is

Q I D Q

v DT M v

where the 6 X6 generalized inertia matriz is symmetric and positive definite. The component
matrices of the generalized inertia represent the sum of contributions from the rigid body

and from the fluid,
I=ILy+Ify, M=mI+ Mg D=mr+ Dy.

The matrix Irp is the vehicle inertia, computed with respect to the body-fixed coordinate
frame, and Iy is the added inertia from the potential flow model of the fluid dynamics.
The scalar m is the vehicle mass, T is the 3 x 3 identity matrix, and My is the added
mass matriz associated with the fluid. The vector r is the location of the vehicle center of
gravity (CG) in body coordinates and Dy represents added inertial coupling terms which
arise from asymmetries in the vehicle’s external shape.

The added mass and inertia terms depend on the external shape of the vehicle, the
density of the fluid, and the choice of body-fixed coordinate frame. These terms simplify
tremendously for a body with three planes of symmetry. Throughout this dissertation, the
underwater vehicle is modeled as an ellipsoid. The origin of the body coordinate frame is

! fixed at the center of buoyancy (CB), which is the center of mass of the fluid displaced by
the ellipsoid. The body coordinate axes are fixed along the ellipsoid principal axes. For an
ellipsoidal vehicle with this choice of body coordinates, Iy and My are diagonal and Dy = 0.

Let L; be the length of the ith principal axis of the ellipsoid. For a nonaxisymmetric vehicle,
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one may assume without loss of generality that L1 > Ly > L3. Then, M = diag(m,m2, m3)
where m < mo < mg. If the vehicle mass is uniformly distributed, then the CG coincides
with the CB so that » = 0. In this case, I = diag(l;, Is, [3). The inertia elements may be
ordered I3 > Iy > Iy or Is > I3 > I, or I, > I} > I3, depending on the relative lengths
of the ellipsoid axes [42, 31]. Throughout the dissertation, only vehicle configurations for
which the inertia matrix I of the vehicle is diagonal will be considered. However, cases
where the CG and CB do not coincide will be considered.

- When r = 0, gravity plays no role in the dynamics. In the absence of external forces,
the dynamics are given by the Euler-Lagrange equations on the 12-dimensional velocity
phase space TSFE(3), the tangent bundle of SE(3). The Lagrangian is the kinetic energy,

X [ e I o Q
‘ L(R,b, RS, Rv) = 5 . (3.4)

v 0 M v

where R and b have been replaced according to equation (3.2).! Recalling the definition

(2.20) of a left invariant function, one may verify that

L(L(g 5 (R,b), T(rs)L(r5(RQ Rv)) = L(RR,Rb+b, RRQ, RRv)

= L(R,b,RQ, Rv)

for any (R,b) € SE(3) and thus L is a left invariant Lagrangian. The system therefore
exhibits full SE(3) symmetry and the equations of motion reduce to Euler-Poincaré equa-

tions on the 6-dimensional space se(3), the Lie algebra of SE(3). Alternatively, one may

!To write the Euler-Lagrange equations, one should choose “generalized coordinates” and write the
Lagrangian in terms of these coordinates and their velocities. The body velocity (€2, v) does not represent
the rate of change of a valid set of generalized coordinates.
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define the reduced Hamiltonian and write Lie-Poisson equations on se(3)*, the dual of se(3).

Define the conjugate momenta to © and v, respectively, as

According to Lamb [41], Lord Kelvin identifies the components IT and P as the impulsive
couple and force necessary to generate the motion of the body-fluid system instantaneously
from rest. The system impulse varies as the momentum of a finite dynamical system and
will therefore be referred to simply as the system momentum.

The Hamiltonian (restricted to the cotangent space of SE(3) at the identity) is

H = %n- o+ %P -M™'P. (3.5)

Using Theorem 2.3.2, and computing the operator ad* on se(3)* from its definition (2.8),
the reduced equations are

I II P
= VH. (3.6)

Equations (3.6) are a less familiar expression of Kirchhoff’s equations,

I = IIxQ+Pxwv

P = PxQ. (3.7)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s



More generally, the Poisson bracket of two differentiable functions F and G on se(3)* is

-~ ~

n p
{F,G}a,p)=VF - VG (3.8)

0

Since the functions

Cl (H3 P)

SIPJ?  and

= CQ(H,P) = II-P

Poisson commute with any other function, these are two independent Casimirs. When
P # 0, the Poisson tensor in equation (3.8) has maximal rank (four). Its null space
is spanned by VC; and V(C;. Physically, the two Casimirs reflect the conservation of
inertial linear and angular momentum. To make this observation more clear, let © denote
the system’s inertial angular momentum vector and let p denote the inertial translational
momentum vector. As noted in [42], these vectors are related to the body coordinate

momenta as follows,

m = RII+bxp

Assuming that no external forces or torques act on the body/fluid system, the equations of

motion in inertial space are simply

=0 p=0. (3.9)
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Examining the Casimirs C| and C>, one finds that

1
C,==-P-P=-p-RRT =3P P

N —
DO

and that

Co=II-P=(r—bxp)-RRTp=m=-p.

In the reduced system, only these two scalar conserved quantities remain from the vector
conservation laws (3.9).

Allowing a Gravitational Torque. Typically, a vehicle’s CG and CB do not coincide.
In practical settings, an underwater vehicle is trimmed so that the CG is below the CB
for stability. In the conservative model, the effect of gravity is to break the full SE(3)
symmetry so that the dynamics are no longer invariant under arbitrary translations and
rotations. However, the dynamics remain invariant under translation and under rotations
about the direction of gravity. Using semidirect product reduction, the equations of motion
may once again be written on a reduced phase space. (See [42].)

Kirchhoff’s equations describe the motion of a neutrally buoyant vehicle for which the
(equilibrating) forces of buoyancy and gravity act at the same point. If the CG and the CB
do not coincide, however, then the downward-pointing gravitational force and the upward

pointing buoyant force create a gravitational torque. Let

I'=RTk

be the unit vector pointing in the direction of gravity, expressed with respect to the body
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1

Figure 3.2: Vehicle with noncoincident CG and CB.

frame. The gravitational torque about the body coordinate origin is

Tgravity =r x mgll. (3.10)

When r # 0, the Lagrangian includes the effect of the gravitational torque (3.10), as
well as the inertial coupling D = mr,

. Q I D Q
L(R,b, R,b) = = : +r-(mgRTk).  (3.11)

2 v DT M v
When r = 0, this Lagrangian reduces to the original one (3.4). While £ given in (3.11) is
not left invariant under the action of SE(3), it is left invariant under the action of SE(2) xR,
a Lie subgroup of SE(3). As described in [42], the Hamiltonian dynamics on T*SE(3) can
be reduced to Lie-Poisson dynamics on s*, the dual of the Lie algebra of the semidirect
product S = SE(3) x, R®. The 12-dimensional canonical Hamiltonian dynamics reduce to

9-dimensional Lie-Poisson dynamics.
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The Hamiltonian restricted to s* is

1| I I mr \ II
H(II, P,T) = 5 . — 7 -mgll (3.12)
P —mr M ) P
and the Lie-Poisson equations on s* are
II IL PT
P |=|P o o |VH (3.13)
I I oo

In later sections concerning a vehicle with a noncoincident CG and CB, it will be assumed
that = = «yeg where -y is a scalar parameter with units of length. It will also be assumed that
the vehicle mass is distributed in such a way that the inertia matrix I remains diagonal.
(Note, for example, that an ellipsoid with uniformly distributed mass and an additional
point mass along a principal axis has a diagonal inertia matrix.)

There are three independent Casimirs for the system described by equations (3.13),

GLP,T) = PP,
Co(IL, P,T) = %nru{ and

Ci3(IL,P,T) = P-T.

Notice that IT-P = 7r-p is no longer conserved, as it is when » = 0, because the gravitational
torque destroys conservation of inertial angular momentum 7. The magnitude of P is still
constant, however. The vector I' has unit magnitude by definition, so C5 obviously must

be conserved. The third Casimir, C3 = P -T = p - k, is the component of translational
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momentum in the direction of gravity.
Equations (3.13) describe a conservative model of the system dynamics. More generally,
one might be interested in the effect of external forces such as viscous drag or external

controls. Such forces may be included as generalized forces as follows,

II = OxQ+P xv+r xmgl + Tother
P = PxQ+ Foher
- I' = I'xQ (3.14)

where T other and Foener are external torques and forces not due to gravity or buoyancy.

3.1.2 Internal Rotors

In this section, the vehicle model is extended to include three internal rotors which serve as
actuators. The configuration space for the underwater vehicle with three internal rotors is
SE(3) x T3. The first factor describes the orientation of the vehicle and the second factor

describes the relative spin angles of the internal rotors. Left translation is given by
L(Rr, by,01) (B2, b2, a2) = (R R2, R1b2 + by, a1 + «2)

for two elements (Ry, b1, a;) and (R, bo, as) in SE(3) x T3.

Several simplifying assumptions are made concerning the rotor shape and configuration.
Each rotor is axisymmetric and spins about its symmetry axis under the influence of a
control torque. The rotors are mounted orthogonally within the vehicle so that each rotor’s
spin axis is aligned with a body coordinate axis. The CG of the three internal rotors is

assumed to coincide with the vehicle CB. This assump&on would be satisfied, for example,
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Figure 3.3: Vehicle with three internal rotors.

if each “rotor” is actually a balanced rotor pair, as shown in Figure 3.3.
Let the diagonal matrix with diagonal elements (J%, Ji, Ji) be the inertia matrix of the

- rotor which spins about the ith body coordinate axis (i = 1,2, or 3). Define
Aj=ILi+J}+J?+J3, j=1,2, and3.

The inertia of the vehicle/fluid system with the rotors locked in place is A = diag(A, A2, Az).
It is also convenient to define the matrix of rotor moments of inertia about their respective
spin axes: Jr = diag(J},J3,J3). Let I = diag([},I2,I3) = A — Jy; this matrix represents
the body/fluid portion of the locked inertia.

Suppose that the “spin angle” of the ith internal rotor relative to the body is «; and
define the vector of rotor spin angles a = [, ag,a3]T. Let Q, = [Qr,, QTZ,Q,.S]T = & be
the vector of rotor relative angular velocities, as depicted in Figure 3.3.

The Lagrangian for the body/fluid /rotor system is the total kinetic energy

Q A mr J; Q
A 1
L(R,b,a, R, Rv,Ny) = 5 v | —md M 0 v
Qp Jg 0 J; Q.

Here, we have redefined the vehicle mass m as the combined mass of the ellipsoid and the
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three internal rotors. This mass m iss still assumed to be equal to the mass of the displaced
fluid, i.e., the vehicle is still neutrall-y buoyant. The Lagrangian is left invariant under the
action of SE(3) x T? so, in the absense of external forces or torques, the dynamics reduce to
Lie-Poisson equations on the dual of the Lie algebra of this group. The reduced Lagrangian,

defined on the 9-dimensional reducead velocity phase space, is

L9 A mr J Q

1
(o) =53] @ || —m¢ M o || o
Q. Jr o J Q,

We redefine the body coordinate momenta IT and P to reflect the contribution of the

internal rotors and introduce [, the bmomentum conjugate to €2,.:

P = —mrQ+ Mo,

[ = J(Q+0).

Here, IT and P are the total angulaar and linear momentum vectors, respectively. The ith
component of { is the total momentwum of the ¢th rotor about its spin axis.

Using either Euler-Poincaré or L.ie-Poisson reduction, one finds that

II = OxQ+Pxwv

P =PXQ

I = o (3.15)
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This system possesses five Casimirs: C(IL, P,l) = %HPH?, Co(I1, P,l) =II- P, and each
component of [.
The rotor angular momenta, the components of I, are coupled to the equations for II

and P through the body angular velocity

Q=Ir'tm-i.

We are interested in using the internal rotors to control the vehicle dynamics. Suppose that
three motors mounted within the vehicle exert control torques on the internal rotors. Then
the third equation of (3.15) becomes

l=u (3.16)

where u = (uy,us,u3)T and u; is the torque applied to the ith internal rotor about its spin
axis. In general, ! will no longer be conserved, however C; and C; are conserved for any
choice of u. This observation reflects the fact that internal actuators cannot affect the total
inertial momentum.

In the more general case that the vehicle CG and CB do not coincide, symmetry is
partially broken. As in Section 3.1.1, the reduced dynamics may be obtained through

semidirect product reduction:

II = OIxQ+Pxv+rxmgl

P = PxQ

' = I'xQ

I = u. (3.17)
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The qua-ntities CI(H1 P':lvr) = %”‘puzv C2(H7 Pvlar) = %”I‘llza and C3(H7 P,l, r) =P-T

are conserved for any choice of control u.

3.1.3 Viscous Forces

This section describes a model for the viscous fluid forces. It is assumed that the torque due
to viscous forces acting on the vehicle takes the form fq(2,v) where fq(-,-) has continuous
partial derivatives and fo(€2,v) = 0 if and only if € = 0. Similarly, the damping force is
. given by f,(Q,v) where fy,(-,-) is C! and f,(€2,v) = 0 if and only if v = 0. For example,

a simple drag model which satisfies these assumptions is given in [29]:

e; - fa(Q,v) = —(a; + a;|%|)Q;

(3.18)
e: - fu(2,v) = —(b; + bilvil)v;
where all of the coefficients are positive constants.
One expects that the force of drag will oppose velocity in the sense that
Q- fa(@,v) < 0 (2 #0)
v-fu(R,v) < 0 (v #0)
We make the stronger assumption that drag grows at least linearly with velocity,
Q;e;- fa(R,v) < —iQQf < 0 (i=1,2,3 and Q; #0)
: (3.19)
vie;- fu(S2v) < —f 7 < 0 (:=1,2,3 and v; #0)
where f, and f = are positive scalars. For the example drag model (3.18), one could choose

any iﬂ; satisfying 0 < iﬂ,— < a; and any iui satisfying 0 < L}i <b;forz=1,2, and 3.

A vehicle which is symmetric about its 1-2 and 1-3 planes will experience no lift or side
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force when translating steadily along its 1-axis (i.e., at zero angle-of-attack and zero sideslip

angle). For any scalar c,

e;- fu(0,ce1) =0, for 7 = 2 and 3. (3.20)

Note that the symmetry assumption does not prohibit a symmetric wing or empennage.
This chapter concerns stability of steady vehicle translation. In the presence of drag,

steady translation requires a constant motive force. Therefore a constant, body-fixed force

Fihrust is included to counter the drag force at equilibrium. The equations of motion, with

viscous forces and thrust included explicitly, are

I = OIxQ+P xv+r xmgl + fa(,v)
P = Px Q+fv(ﬂ,v) + Fihrust
]:-‘ = PXQ

I = u (3.21)

3.2 Stability of Relative Equilibria

In this section, we review a number of published stability results for the underwater vehicle
and we also present some new stability results. In previous work on underwater vehicle
stability, Holmes et al [31] present a comprehensive investigation of stability of relative
equilibria for an immersed ellipsoid with uniformly distributed mass. (They also show
how one might use the global system dynamics to perform interesting maneuvers. The
idea of using nonlinear dynamics to advantage is a major motivation for nonlinear control

design.) Leonard [42] considers stability of a vehicle which is translating along and possibly
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rotating about an ellipsoid principal axis; the paper introduces a Lie-Poisson model for a
bottom-heavy underwater vehicle which is the basis for the model presented in Section 3.1.1.
Pursuing questions regarding stability of a bottom-heavy underwater vehicle, Leonard and
Marsden [44] consider the issue of drift in the configuration variables for Lie-Poisson systems
on noncompact Lie groups. In particular, they consider cases where the Poisson tensor loses
rank at the equilibrium. While the energy-Casimir method may be used to prove stability
for such “nongeneric equilibria,” the nature of the stability must be carefully interpreted.
- Leonard and Marsden show for a bottom-heavy underwater vehicle that one may expect drift
in the noncompact (translational) directions but not in the compact (rotational) directions.
Other work on stability of bottom-heavy, immersed bodies includes that of Kozlov [38,
39], who considered a heavy, planar body falling under its own weight in a fluid with
. constant circulation, and Rubanovskii [60], who studied stability of precessional motions of
a translating, bottom-heavy body.
Section 3.2.1 reviews the equilibria for an underwater vehicle with coincident centers of
buoyancy and gravity as well as some stability results. Section 3.2.2 gives a similar review

in the case that the center of gravity lies along the shortest ellipsoid principal axis.

3.2.1 Coincident Centers of Gravity and Buoyancy

This section discusses stability of relative equilibria for the uncontrolled underwater vehicle
with the internal rotors locked in place. Assume that no viscous forces act on the vehicle
and that the CG and CB coincide (r = 0). Equivalently, consider the model (3.7) where
the inertia matrix I is replaced by A. This system has several families of relative equilibria
[31]. There are three two-parameter families of relative equilibria corresponding to steady

translation along and rotation about vehicle principal axes. Following [31], we refer to these
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as “pure mode” equilibria. For example, a pure 1 mode equilibrium is given by

0, PY
.=| o |. P.=]| o (3.22)
0 0

where the subscript “e” denotes an equilibrium value. If (Q.,v.) = (Q%e1,v%1), then
19 = A,Q9 and PP = m2?.

- It was shown in [31] that, depending on the ordering of moments of inertia, Aj, A2, and
A3, there may also exist non-principal axis steady motions referred to as “mixed mode”
equilibria. For example, when A2 > A; > Az or A2 > A3z > Ay, a mixed 2-3 mode

equilibrium is given by

0 0
— _ . m3 — M2
He - :’:P A2P20 b Pe - Pg ’ p= m2m3(A2 _ Ag) . (323)
A3Py Py

The equilibrium (3.23) describes translation along an axis in the body 2-3 plane and rotation
about a different axis in the same plane.

Stability of relative equilibria can be studied using the energy-Casimir method [50]. Of
particular interest is stability of the pure 1 mode equilibrium (3.22). Since the l-axis is
the longest vehicle axis, this equilibrium is a practical (streamlined) motion. Applying the

energy-Casimir method with P # 0 indicates that (3.22) is stable provided
1 /1 1\/OoN\’_ 1/1 1
— (=== (= — (= -= 24
Ay (A,— Al) (P{’) N <m1 mi) (3:24)
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for both ¢ = 2 and i = 3. (See [31] for the proof.) The right-hand side of (3.24) will always
be positive and the left-hand side will always be negative for ¢ = 2. Thus, the equilibrium
will never satisfy these conditions. Indeed, Holmes, Jenkins, and Leonard [31] show by
spectral analysis that the equilibrium is unstable for small magnitudes of the ratio EE} 2

In fact, it is well known that steady translation of a non-rotating ellipsoid along its long
axis through a fluid is unstable. This instability can be understood physically by considering
the flow around the vehicle when it is slightly perturbed from the equilibrium motion. A
pressure gradient results that tends to turn the vehicle so that its blunt side faces the flow.

In the special case of a prolate, axisymmetric ellipsoid, if the body rotates about its
symmetry axis with sufficient angular velocity (with the internal rotors locked in place),
the equilibrium will be stable. Consider a prolate spheroid with principal axis lengths

Ly = Lo < L3. As one would expect, the mass and inertia elements satisfy m; = ma > m3

and I} = I > I3 and we assume that the rotors are identical so that A1 = Ay > As.

Proposition 3.2.1 (Leonard [42]) The equilibrium defined by translational velocity v =

ve = [0,0,v3]T and angular velocity Q@ = Q. = [0,0,Q3]7 is stable provided

A308)? 1 1
BBl > (- mad). (3.25)

Lamb [41] showed spectral stability under condition (3.25). However, spectral stability

is only a necessary condition, not sufficient, for stability. The steady motion of Proposi-

*The authors also show that the equilibrium is linearly stable for a sufficiently high ratio %§ provided
. 13
Az > A2 > Aror A2 > Az > Ay, If As > Ay > As, then, depending on the relative mass and inertia
U]
parameters, linear stability may or may not be possible for some range of nonzero %ﬁ—. In any case, the
1

energy-Casimir method fails to provide sufficient conditions for nonlinear stability.
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tion 3.2.1 is unstable if the reverse of inequality (3.25) is satisfied.

Rather than spin the vehicle, as suggested by condition (3.25), one might place an
axisymmetric rotor within the vehicle with its spin axis aligned with the body symmetry
axis. let a denote the spin angle of such an internal rotor relative to the body. Let Jiotor
be the moment of inertia of the rotor about its spin axis and let A represent the total

body/fluid inertia with the internal rotor locked in place.

Proposition 3.2.2 (Leonard and Woolsey [45]) Consider an azisymmetric vehicle with

a single internal rotor driven to a constant angular rate & and suppose that v = 0. The

T

equilibrium defined by translational velocity v = v, = [0,0,v3]7 and angular velocity 2 =

Q. =[0,0,0Q9]7 is stable provided

(ASQg + Jl‘otord)2
4A,

> (=~ m—l—l)(msvg)z. (3.26)

Thus it is possible to stabilize long axis translation by spinning the body about its symmetry

axis, by spinning an internal rotor, or by a combination of the two.

3.2.2 Noncoincident Centers of Gravity and Buoyancy

Here, we consider stability of relative equilibria for the uncontrolled system with r = yes3.
For this vehicle configuration, the CG lies along the 3-axis of the body coordinate frame. If
v > 0, then the vehicle is “bottom-heavy,” meaning that the CG is below the CB when the
body frame coincides with the inertial coordinate frame. The dynamics are described by the
model (3.14) with T other = 0 and with Foeher = 0. The relative equilibria for this system

and their stability properties are studied in some detail in [42]. For a nonaxisymmetric
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ellipsoid, there are two categories of steady translational equilibria, those for which the
vehicle spins about and translates along its 3-axis parallel to the direction of gravity, and
those for which the vehicle translates (without spinning) along a direction in the body 1-3
or 2-3 plane.

When considering a vehicle with r # 0, we will refer to an equilibrium of the form

0 P? 0
I, = mypo |, Pe= 0 , Te=1 0 (3.27)
m) 1
0 0 1

as a “pure 1 mode” equilibrium. The equilibrium (3.27) corresponds to pure translation
(i.e., translation without rotation) along the body l-axis: (€2, v.) = (0, %el). The pure
2 mode is defined likewise. Pure mode equilibria as defined here are a special subclass of a
more general family of pure translation equilibria (4.68) described in Section 4.2.1. We will
be particularly interested in pure 1 mode equilibria.

Recalling the axis length ordering L; > L, > L3, it was shown in [42] via the energy-
Casimir method that pure 2 mode equilibria can be made Lyapunov stable by setting

7>L(L__1__) (P9)2 > 0.
mg \m2 m3

Thus, by making the center of gravity sufficiently low relative to the center of buoyancy,
intermediate axis translation in the horizontal plane can be stabilized. However, the pure
1 mode equilibrium is unstable for any choice of yv. While gravity stabilizes the vehicle
in pitch and roll, the gravitational torque cannot counter the vertical component of fluid

torque which tends to turn the vehicle (in the horizontal plane) away from the equilibrium.
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Figure 3.4: Bottom-heavy prolate spheroid with an internal rotor.

Considering once again the case of a prolate spheroid (L; = Lo < L3), motion parallel
to the direction of gravity can be stabilized by spinning the vehicle or by placing the CG
sufficiently low along the axis of symmetry or by a combination of both. Assume that

r = ez so that the center of gravity is a distance |y| along the vehicle’s symmetry axis.

Proposition 3.2.3 (Leonard and Marsden [44]) The equilibrium defined by transla-
tional velocity v = ve = [0,0,v3]7 and angular velocity @ = Q. = [0,0,Q3]T is stable

provided
A309)? 1
4 (1\(.13_ (37217)2> > (E

m,

) (msaf)™ (3.28)

mgy +

Note that it is possible to pick v large enough that angular velocity is unnecessary for
stability. That is, if the spheroid is sufficiently “bottom-heavy,” it can translate stably
at speed v) parallel to the direction of gravity. In contrast, it is also possible to spin a
top-heavy (v < 0) vehicle fast enough that axial translation parallel to gravity is stable.

If necessary, the gyroscopic contribution to the vehicle’s stability may be provided in

whole or in part by an internal rotor. Spectral analysis gives the following intuitive result.
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Proposition 3.2.4 Suppose that an azisymmetric rotor aligned with the vehicle’s symmetry
azis is driven at a constant relative rate &. The equilibrium defined by translational velocity
v = v, = [0,0,v3]7 and angular velocity @ = Q. = (0,0, Qg]T with Te = eg is spectrally
stable provided

(A3 + Jrotordr)? 1

1 1 0\2
. (A1 - En;:?z) > (m3 ml)(m3u3) . (3.29)

mgy +

While spectral stability does not imply nonlinear stability, the results of [42] make it rea-
sonable to conjecture that nonlinear stability would hold under condition (3.29) with strict
inequality. Proposition 3.2.4 suggests that it is possible to stabilize long axis translation
parallel to the direction of gravity by spinning the body about its symmetry axis, by spin-
ning an internal rotor, by lowering the CG relative to the CB, or by a combination of all of

these.

3.3 Experimental Investigation of Stability

While global dynamic models are indeed useful in developing nonlinear control strategies,
underwater vehicle models based on potential flow analysis, such as Kirchhoff’s model or
slender body approximations, are accurate only for streamlined bodies moving near the
streamline direction. For other motions, the effect of viscosity is significant if not dominant.
Still, Kirchhoff’s model accurately (and globally) describes the dynamics of a body in an
inviscid, irrotational fluid and thus provides a useful starting point for control designers.
This section describes an experimental investigation of the stability predictions of Sec-
tions 3.2.1 and 3.2.2. In particular, we consider steady translation of a prolate spheroid (a

slender, axisymmetric ellipsoid) along its symmetry axis. If the body’s CB and CG coin-
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cide, such a motion is an equilibrium of the dynamic equations regardless of the direction
of travel. According to Proposition 3.2.1, stability of this motion depends on the body’s
fineness ratio (the ratio of length to diameter) and the equilibrium values of translational
and angular momentum. If the CG is some distance |y| along the symmetry axis from the
CB, then steady translation along the symmetry axis parallel to the direction of gravity is
a steady motion. Stability of this equilibrium depends on the parameters above as well as
the “bottom-heaviness” parameter 7y, as described in Proposition 3.2.4.

Section 3.3.1 discusses the effect of viscosity on the flow over a prolate spheroid and
on the stability predictions. Section 3.3.2 describes the experimental apparatus used to
verify the stability predictions. In Section 3.3.3, we present some quantitative analysis of

the experiments performed and discuss the results.

3.3.1 Viscous Flow Over a Prolate Spheroid

Kirchhoff’s equations rely on the assumption of an inviscid fluid which “slips” along the
body surface. In reality, viscosity requires that the fluid velocity match the velocity of the
body at its surface. As a result of this so-called “no slip” condition, there develops over the
body surface a. boundary layer through which the fluid velocity changes from zero relative
velocity at the surface to the relative free stream velocity. This boundary layer begins at
the forward stagnation point (where the free stream has been brought to rest relative to
the body) and grows along the surface to a point where it can no longer grow under the
ambient conditions. The boundary layer then either “separates” from the body causing a
turbulent wake or “transitions” into a turbulent boundary layer which continues to grow
more or less as before. A turbulent boundary layer will also separate at some point but,

for a streamlined body, typically leaves a much smaller wake than a separating laminar
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boundary layer.

The two major mechanisms by which viscosity retards a body’s motion through a fluid
are skin friction and pressure drag. Skin friction refers to the viscous stress exerted directly
on a body’s surface. Pressure drag refers to a retardant force due to a lower fluid pressure
in the body’s wake. The lower pressure in the wake results from an energy loss to viscous
dissipation. For a streamlined body, there is a tradeoff between these two drag mechanisms:
while skin friction is greater for a turbulent boundary layer than for a laminar one, pressure
drag decreases with the size of the wake. For very slender bodies, skin friction can be a
dominant concern, but pressure drag is more important for less slender bodies.

An indicator of the tendency of a laminar boundary layer to transition into a turbulent
one is the dimensionless Reynolds number, Re = % where U is the body velocity, L is
the body’s length, and v is the kinematic viscosity of the fluid. For a slender spheroid,
a. turbulent boundary layer typically develops when Re > 2.5 x 10° [67]. Of the two
possibilities, a laminar-then-turbulent boundary layer or separating laminar flow, the former
is closer to the ideal case of potential flow; because of the smaller wake, potential theory
is valid in a larger region of the flow. In the experiments to be described in Section 3.3.2,
Re is of order 10* so that we expect the less ideal case of a separating laminar boundary
layer. If the theoretical stability predictions hold for the less ideal case of subcritical flow,
one would expect them to hold for supercritical flow, as well. In this sense, the experiments
give conservative results.

Figure 3.5 illustrates the development and separation of the boundary layer for two
spheroids of different fineness ratio. (The fineness ratio is the ratio of the largest cross-
sectional width to the length.) The spheroids are both 6 inches in length and are immersed

in a channel of water flowing from left to right at 0.10 £ 0.03 m/s. Note the accumulation
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Figure 3.5: Subcritical flow (from left to right) over a 2.5:1 and 2:1 spheroid.

of dye tracer which indicates the line of separation. Separation occurs later on the more
slender spheroid. This suggests that potential low models streamlined motions of slender
bodies better than bluff body motions. We therefore expect better agreement between
theory and experiment for the spheroids with higher fineness ratios.

Note that the boundary layer shown in Figure 3.5 separates along a circular cross sec-
tion of the spheroid. When the vehicle is slightly perturbed from axial translation, axial
symmetry of the flow is broken and the boundary layer no longer separates along a circular
perimeter of the spheroid. Nor does the boundary layer separate along an elliptical cross
section of the body, as one might expect. Calculations and experiments described in [26]
and [27] underscore the complexity of steady, laminar flow over a prolate spheroid whose
symmetry axis is inclined at some “angle-of-attack” to a steady flow. The motion of a
free spheroid in a fluid is more properly described by unsteady flow; unsteady flow over a
maneuvering spheroid is a topic of current research. (See [67] and references therein.)

Putnam et al [59] describe two semiempirical models for the fluid forces and moments
on a slender body of revolution at nonzero angle-of-attack. Both models, one due to Allen
[3, 4] and the other due to Hopkins [32], combine the force and moment predictions from

slender body theory with an additive “correction” which is based on a semiempirical model
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Figure 3.6: Asymmetrically separating flow.

of the drag on a cylinder in a cross flow. While neither model considers the full complexity
of steady flow over an axisymmetric body at incidence, both models give good agreement
with experimental measurements of the resulting forces and moments [59].

For the purpose of this investigation, it is chiefly important to note that the flow over
an inclined spheroid separates earlier on the leeward side. The resulting asymmetric wake
actually tends to stabilize axial translation because the lower pressure in the wake tends
to realign the body’s symmetry axis with the free stream [59]. The idea is illustrated in
Figure 3.6, where the force F represents the net force on the spheroid due to the lower
pressure aft of the line of separation. The force F' imposes a torque which tends to realign
the body’s symmetry axis with the flow. Of course, Figure 3.6 is only a cartoon intended
to depict the effect of the separating wake. It does not show the effect of the flow forward
of the line of separation; the flow in this region is well-approximated by inviscid theory.
The effect of separation will not generally dominate the destabilizing torque predicted by
potential flow theory, but it will attenuate that effect. Further, it is reasonable to conjecture
that viscous drag will enhance stability once the motion has been stabilized by lowering the
CG and/or by spinning an internal rotor.

It is more difficult to describe the effect of viscosity on stability when the spheroid itself
spins. The flow of a viscous fluid over an axisymmetric object spinning about its symme-
try axis has been the subject of a number of theoretical and experimental investigations.

Luthander and Rydberg [64], Hoskin [33], and Fadnis [28] studied the effect or spin rate on
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boundary layer development over a sphere and the resulting effect on drag. The essential
observation about the effect of spin rate on a spheroid’s motion is that the boundary layer
separates earlier with increasing angular velocity leading to an increasingly broad turbu-
lent wake. Consequently, the drag is greater at increased spin rates. There are also more
subtle concerns such as the influence of the Magnus effect on a spinning spheroid which
is perturbed from axial translation. This phenomenon has been studied by Martin {52],
for example. See Liberzon [46] and references therein for a discussion of the effect of the

Magnus force on stability of a spinning and translating body of revolution.

3.3.2 Experimental Setup

To study the stability criteria presented in Section 3.2, several spheroids of varying fineness
ratio were fabricated for testing in a 5 foot x 3 foot x 1.5 foot water tank. Two types of
spheroid were created; the first type allows for variation of the CG while the second type
contains an adjustable-speed internal rotor. A launch device was constructed to provide
the experimental bodies with a desired initial axial velocity in the vertical direction. The
launch device can also provide a desired initial spin rate about a spheroid’s symmetry axis.

To quantify the experimental stability analysis, position and orientation were measured
using an image-based tracking system. A commercial video camera was placed with the line
of sight orthogonal to the tank’s flat glass wall. The camera view included a direct view of
the test trajectories and a side view reflected through a 45° mirror. Also contained within
the camera view was a red light-emitting diode which was placed at a known location to
serve as a fiduciary point for the analysis. Recorded test footage was digitized using a Silicon
Graphics Indigo2 workstation and analyzed using an image-processing routine developed to

measure the body’s position. Figure 3.7 shows the negative of a sample image from an
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Figure 3.7: Sample frame from experimental footage.

experiment. For details about the tracking algorithm, see [35].

We first describe the experimental setup for the spheroids with an adjustable CG. We
then describe the experimental setup for the spheroids with an internal rotor.

Spheroid with an Adjustable CG. Recall from condition (3.28) that two independent
parameters affect stability for a given spheroid translating at speed v§ along its long axis in
the direction of gravity: the “bottom-heaviness” -y and the angular rate Q3. When v =0,

the critical angular rate 3 = Q. for a given velocity v] is given by

Proposition 3.2.3 implies that steady symmetry-axis translation will be stable provided

Q9] > |Q¢|- When QF = 0, the critical CG location v = 7, is

In this case, Proposition 3.2.3 indicates that steady symmetry-axis translation (without
rotation about the symmetry axis) will be stable provided v > 7.. In principle, one could

explore stability in terms of the two parameters v and Q3. In reality, such an investigation
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[ Fineness [ m (g) | msug () [ m1 (g) [ ms (g) [ L1 (kg m?) | Iz (kg m”) |

4:1 116 25.0 215 125 2.0E-4 1.5E-5
3:1 206 31.7 372 232 3.7TE-4 4.9E-5
2.5:1 322 38.1 520 346 5.3E-4 1.1E-4
2:1 463 45.6 789 560 8.1E-4 2.5E-4

Table 3.1: Mass and Inertia Properties.

is complicated by the problem of maintaining a steady spin rate. While experiments were
performed at varying spin rates, it was found that the angular rate decayed too quickly to
give credible stability results. We therefore consider only the case where Q3 = 0 and explore
stability in terms of the single parameter -y.

A series of experiments was performed using four spheroids of equal length but with
differing fineness ratios. The spheroids were each 15 cm (6 in) in length with fineness ratios
of 4:1, 3:1, 2.5:1, and 2:1. The spheroids were milled from machinable polyethylene using a
computer-numerically controlled machine. They were bored and ta.ppeci along the symmetry
axis and a slug of threaded stainless steel was inserted to trim the vehicles’ mass and to
allow for variation of the bottom-heaviness parameter v. The relevant mass and inertia
properties are given in Table 3.1 for the case of coincident CG and CB. The displaced
mass is m and mg)ug is the mass of the stainless steel slug. In reality, each spheroid was
trimmed to be slightly heavy when submerged, i.e., the actual mass is slightly more than
the displaced mass m.

A launch mechanism was constructed to provide the appropriate initial velocity and an
adjustable spin rate. The mechanism consists of a keyed shaft spinning at the desired rate
within a loose collar. The shaft mates to the end of a spheroid. A small permanent magnet
embedded in the shaft tip attracts a ferrous tablet embedded in the spheroid holding the

body in place before it is launched. When triggered, the shaft drops, accelerating towards
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[ Fineness [ v./(v3)® (s®/cm) [ ] (cm/s) [ ~c (cm) |
4:1 0.00045 17+ 1 0.13 £ 0.02
3:1 0.00043 21 +1 0.19 £ 0.02
2.5:1 0.00039 16 £1 0.10 £ 0.02
2:1 0.00035 17+1 0.10 & 0.02

Table 3.2: Critical Values of v given v3.

a mechanical stop which is placed such that the shaft and spheroid approach the body’s
terminal velocity. The spheroid slides off of the shaft under its own momentum.

The spheroids were trimmed to be slightly heavy when submerged in order to obtain the
terminal descent velocity indicated in Table 3.2. Also shown is the critical parameter value
v for the given equilibrium velocity v$. In general, the 2:1 ellipsoid is the “least unstable”
in steady translation in the sense that -y, is smallest for a given value of v3. The 4:1 ellipsoid
is the most unstable.

Spheroid with an Internal Rotor. As mentioned, it was not possible to obtain
steady or nearly steady motions for Q # 0; the body angular rate decayed too quickly.
One solution would be to use spin fins, as found, for example, on ballistic missile reentry
vehicles. However, the effect of spin fins on an axisymmetric body in a flow is not limited to
their contribution to the body’s symmetry axis spin rate; it would be difficult to separate
the stabilizing effect of spin rate from the viscous moment exerted by the fins and the
validity of condition (3.28) would be obscured.

Rather than spin the body, one may provide angular momentum using an internal
rotor. An actuated rotor overcomes the difficulty of maintaining a steady spin rate and also
simplifies the viscous effects (at least to the extent that viscous flow over a non-spinning
spheroid is “simple”).

The experimental internal rotor (Figure 3.8) is a modified commercial yaw rate gyroscope
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AN

Figure 3.8: Experimental Internal Rotor.

[ Fineness [ v (cm/s) [ v (cm) | & (rad/s) |
3:1 25 +£1 0.24 £ 0.04 | 240 £ 10
2.5:1 25 +1 0.24 £0.04 | 240 £ 10

Table 3.3: Critical values of ¢ given v and vj.

designed for use with radio-controlled model aircraft. An adjustable voltage regulator allows
for variation of the spin rate. The moment of inertia of this rotor about its spin axis is
Jrotor = 4.0E — 6 kgm?. The mass and inertia characteristics of the spheroid with internal
rotor are practically identical to those listed in Table 3.1. The 4:1 spheroid was not used in
the internal rotor experiments because the rotor was too large to be contained within that
body. The 2:1 spheroid was not used because the angular momentum range for the rotor
was insufficient to resolve the critical condition for stability. (See the remarks concerning
the 2.5:1 spheroid at the end of Section 3.3.3.)

The spheroids created for the rotor experiments allowed for very little CG variation, so
v was held constant. Table 3.3 gives the critical internal rotor spin rate ¢, for stability at
the indicated speed and the indicated value of v. The equilibrium velocity v was chosen
to place the critical spin rate within the physically realizable range of the internal rotor.

The critical spin rate &, was computed for the two spheroids from condition (3.29) of

Conjecture 3.2.4. As indicated in Table 3.3, the values of &, were essentially equal.
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Figure 3.9: Experimental data for the 4:1 ratio spheroid: v = 0.

3.3.3 Experimental Results

For each spheroid with an adjustable CG, a series of experiments was performed in which
the parameter v was varied. At each value of v, at least three tests were recorded, digitized,
and analyzed. The analysis involved using an image-based tracking algorithm to measure
the spheroid position from experimental footage.

Figures 3.9, 3.10, and 3.11 show representative experimental data from tests of the 4:1
fineness ratio spheroid. At the top of each figure is a time series of images taken from the
experimental footage. Below the series of images are three plots showing the estimated

position of the spheroid center (shown as circles). Also shown in these plots is the position
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Figure 3.10: Experimental data for the 4:1 ratio spheroid: v = ..

predicted by simulation using the ideal (inviscid) equations of motion. The initial conditions
for the simulations were estimated from experimental data. Because the image processing
routine could not reliably predict the spheroid’s orientation, only position data are shown.

Figure 3.9 shows an experiment in which the CG and CB coincide. The images at kthe
top of the figure clearly show the spheroid diverging from the initial long-axis translat3on
motion. The spheroid rotates to the point where it is translating more or less along a
minor axis. Note from the comparison of actual and simulated data that the velocity of £he
spheroid decreases significantly and that simulations do not correctly predict the direction

in which the spheroid motion diverges.
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Figure 3.10 shows an experiment in which the value of <y is the critical value predicted
from theory. The motion of the spheroid is obviously much less divergent than in Fig-
ure 3.9. (Note the much smaller scale on the plots of z and y.) The motion observed in
this experiment appears stable. In fact, the critical value of v was fairly difficult to resolve
experimentally. Experiments with <y slightly smaller and slightly larger than <. were prac-
tically indistinguishable from the experiment shown in Figure 3.10. These motions were
characterized by slight attitude oscillations about the desired equilibrium of steady long-
axis translation. Note from the simulated data that inviscid theory over-predicts the lateral
motion of the spheroid. This is consistent with the predictions of translational drift given
in [31].

Figure 3.11 shows an experiment in which v is twice the critical value predicted from
theory. The motion of the spheroid is very close to the desired motion and the attitude
oscillations are much smaller than those in Figure 3.10.

Quantitatively gauging stability of a motion from experimental data is somewhat sub-
jective. Because of the finite extent of the test tank, there is a range of v over which stable,
critically stable, and unstable motions are practically indistinguishable. This observation
impacts how finely the critical value of v may be resolved through experiment.

Assuming that the initial condition is identical for each experiment, a reasonable measure
of instability is the integral of the spheroid’s lateral excursion from its launch point. Suppose

that a spheroid is launched at time £y, and that the spheroid nears the bottom of the tank

at time ty. Let

e= %/ttf z(7)2 + y(7)2dr

where L is a characteristic length, say the length of the spheroid. An unstable motion

will typically result in a large lateral excursion, and thus a large value of e, whereas a
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Figure 3.11: Experimental data for the 4:1 ratio spheroid: v = 2.
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Figure 3.12: Integral deviation e versus CG displacement.

stable motion will not. The “metric” e is not a true measure of instability because it does
not involve the complete vehicle state, including attitude and velocities. Measuring the
complete state was not experimentally feasible and, in any case, the integral deviation e is a
suitable indicator of the spheroid’s adherence to or divergence from equilibrium. Figure 3.12
shows the lateral deviation e for the indicated values of v/, for each spheroid tested. Each
data point represents an average value of e for the set of tests performed at the indicated
parameter value.

As one would expect, the deviation e generally diminishes as the CG is lowered relative
to the CB (as -y/~. increases). This trend is particularly evident for the spheroid with a 4:1
fineness ratio. Once again, we note that potential flow theory, on which the stability results
are based, is most applicable to a slender body moving in the streamline direction. It follows
that the stability prediction should be most accurate for the most slender spheroid. It is

certainly true for each spheroid tested that the steady translation is stable when v > 7..
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Figure 3.13: Comparison of 3:1 spheroid experiments with an internal rotor.

However, it is apparent in Figure 3.12 that the critical value of -y is not well-resolved and
could be somewhat lower than that indicated by theory. In this sense, the potential flow
analysis proves to give conservative stability estimates.

For the experiments involving an internal rotor, it proved more difficult to quantitatively
gauge stability. The integral deviation e was roughly equal for a series of tests which were
qualitatively quite distinct. Shown in Figure 3.13 are three series of images taken from
the experimental footage of the 3:1 fineness ratio test series. In both the 3:1 and 2.5:1
tests, the CG was well below the CB. It was therefore necessary to launch the body at
higher velocity than in the previous tests in order to place the critical rotor speed for
stability within the achievable range. Figure 3.13 seems to indicate that the equilibrium
is unstable when the internal rotor is not spinning. The body immediately diverges from
the equilibrium, undergoing a comparatively large excursion. It is important to note that
as the body diverges, it slows and begins to realign with the direction of gravity. This

limiting behavior must not be confused with stability; the body does, in fact, diverge from
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the equilibrium of steady long-axis translation. On the other hand, with sufficient angular
momentum provided by the internal rotor, the body falls stably along its long axis (with
a very minor pitch oscillation evident in the reflected view). For the 2.5:1 spheroid, the
body’s qualitative behavior is somewhat less varied over the range of internal rotor spin
rates. While the internal rotor provided the same amount of angular momentum in both
test series, there was a more marked effect on the dynamics of the more slender 3:1 spheroid.
This is certainly reasonable, as the internal rotor represents a greater contribution to that
spheroid’s total inertia.

In conclusion, translation of a prolate spheroid along its symmetry axis can be stabilized
in at least two distinct ways. In an inviscid fluid, the body may be gyroscopically stabilized
by spinning it about the symmetry axis at a sufficiently high angular rate. This approach
may not be feasible in a viscous fluid, however gyroscopic stability can be provided internally
by means of a spinning rotor. If the spheroid moves in the direction of gravity, it may also be
stabilized by lowering the CG relative to the CB. Experiments indicate that condition (3.28)
gives a conservative estimate of the critical “bottom-heaviness” -y for stability.

These experiments also verify the intuition that physical damping should enhance sta-
bility by making it asymptotic. Pure long axis translation motions which are predicted to
be stable using an ideal system model, are seen to be asymptotically stable in experiment.
The intuition that damping enhances stability is certainly not always true, however. (See
[47], for example.) The effect of damping on stability predictions based on conservative
system analysis continues to be a concern in the following chapter, where we consider an
alternative use of internal rotors for underwater vehicle stabilization. This alternative use
of internal rotors does not involve gyroscopic stabilization, but rather provides stability

through momentum exchange.
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Chapter 4

Feedback Stabilization Using Internal

Rotors

In this chapter, we consider active stabilization of underwater vehicle dynamics through
feedback control of a set of internal rotors. As mentioned in Section 2.5, Lyapunov-based
control design is a major theme of the dissertation, and it is the focus of this chapter in
particular. We consider a Hamiltonian model of the underwater vehicle with internal rotors
and prescribe feedback which preserves this Hamiltonian structure. The energy-Casimir
method provides a control-parameterized Lyapunov function for steady long-axis translation
as well as conditions on the gains for closed-loop stability. The Lyapunov function is then
used to design asymptotically stabilizing feedback dissipation, to estimate the region of
attraction, and to examine the effect of physical damping, which is ignored in the original
design.

The approach comprises three steps:
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1. Apply feedback to the conservative system which preserves the
Hamiltonian structure and shapes the kinetic energy such that

steady, long-axis translation is stable.

2. Using the Lyapunov function developed in Step 1, design feed-

back dissipation to asymptotically stabilize the equilibrium.

3. Examine the effect of physical damping on stability and, if nec-

essary, modify the feedback dissipation from Step 2 to ensure

asymptotic stability.

In Section 4.1, we apply this procedure to an ellipsoidal vehicle with coincident centers
of gravity and buoyancy. In Section 4.2, we do the same but allow the CG to be located at

any point along the shortest ellipsoid principal axis.

4.1 Coincident Centers of Gravity and Buoyancy

In this section, a feedback control law is developed for the three internal rotors in order
to stabilize steady long axis translation for a vehicle with coincident centers of gravity and
buoyancy. Following the method outlined above, the control law provides kinetic energy
shaping and energy dissipation. The idea of stabilizing an underwater vehicle with internal
rotors by shaping the kinetic energy was first proposed in [45]. Closed-loop stability is proven
by using the modified energy to construct a Lyapunov function for which the equilibrium
is a maximum. The second step is to add feedback dissipation to drive the value of the
Lyapunov function to its maximum value and thereby asymptotic stabilize the equilibrium
[69]. In this step, observations about the global dynamics inform the choice of control gains

leadiug to a large estimated region of attraction. Finally, in the third step, viscous forces
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are included in the model and their effect on stability is considered [68]. Although the
equilibrium of interest is a maximum of the modified energy, viscous forces tend to increase
this modified energy. Thus, drag serves to enhance stability. In fact, a family of equilibria
corresponding to the desired steady motion (with the internal rotors spinning at arbitrary

constant velocity) is shown to be globally attractive.

4.1.1 Stabilization of Steady Long Axis Translation

Bloch et al [13] showed, for a spacecraft with a single internal rotor, that angular momentum
rate feedback yields Hamiltonian closed-loop dynamics. The closed-loop Hamiltonian is a
modification of the Hamiltonian for the original uncontrolled system. The control gain
appears as a factor in the closed-loop kinetic energy metric, so the control effectively shapes
the inertia and, therefore, the kinetic energy. Since the closed-loop system is Hamiltonian,
stability of equilibria can be studied using the energy-Casimir method. In this way, it was
shown that steady intermediate axis rotation of a spacecraft can be stabilized using a single
internal rotor spinning about the spacecraft’s major axis.

With » = 0 and neglecting viscous forces for now, the equations of motion for an

underwater vehicle with internal rotors are

I = NIxQ+Pxw
P = PxQ

[ = u (4.1)

With the goal of obtaining a closed-loop Hamiltonian system with control-modified inertia,

84

L
:

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



define the feedback control law

u = KII

= K((AQ+ J-Q2;) X Q2+ Mv x v)

(4.2)

where K is a 3 x 3 matrix of control gains. For reasons that will be made clear, we choose

K = KT such that K and I commute. A simple choice that satisfies the requirements is

K = dia'g(kla k2, k3)'

Remark 4.1.1 The idea of stabilizing an unstable motion by shaping the kinetic energy has

evolved into a general procedure known as the method of controlled Lagrangians [14, 15, 17].

The control law given here, first proposed in [45], was conceived as a natural progression

. from the results of [13] on spacecraft spin stabilization. However, the control law can also be

derived as an application of the method of controlled Lagrangians. The method of controlled

Lagrangians for Euler-Poincaré systems is discussed briefly in Section 5.3 where the question

of the effect of physical dissipation on closed-loop stability is addressed more generally. For

an underwater vehicle with coincident CG and CB, equation (5.70) is precisely the control

law (4.2).

Since [ = u = KTI, the vector quantity I — KTI is conserved. It is convenient to change

variables from (II, P,!) to (IL, P, () where

¢=(Z-K) 'l - KIL).

(4.3)

(The gain matrix K will be chosen such that k; # 1 for ¢ = 1,2, and 3 so that { is
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well-defined.) Define the “controlled inertia matrix”

Ix = diag(Ik,,Ix,,Ix,) = (T - K)™'I. (4.4)

This matrix is symmetric, under the assumption that K = K7 commutes with I, and
it bas units of inertia. Indeed, the matrix Ix plays the role of inertia for the closed-loop
system. Thus the effect of the control parameters is to modify the closed-loop inertia. From

the definitions of IL, I, ¢, and Ik,

Q=Ix (I -¢).

The closed-loop equations of motion are

I = OxQ+Pxv
P = PxQ

¢ = o (4.5)

As intended, equations (4.5) describe Lie-Poisson dynamics,

-

II II P o
P |=| P o o |VHk. (4.6)
¢ 0 0 O

The new Hamiltonian Hy depends on the control gains and is a modification of the kinetic
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energy of the uncontrolled system:

Hic(IL P,¢) = 2(1 = ¢) - Ix " (I~ ¢) + 5P - M~'P. (@7

Compare Hy, for example, with the Hamiltonian (3.5) for the vehicle without internal

rotors. The functions Ci(IL, P,{) = 3||P|2 and Co(IL, P,¢{) = II - P, as well as each

component of ¢, are five independent Casimirs for this system.

Observe that pure mode equilibria of the uncontrolled system, such as the equilibrium

(3.22), are also equilibria of the closed-loop system with ¢, || IL. || P.. We focus on the

three-parameter family of pure 1 mode equilibria

I} PP ¢?
O.=| o |, Pe=}| o0 |. ¢.=| 0o |- (4.8)
0 0 0

IfQ, = Q‘l’el and v, = vje; are the equilibrium body angular and linear velocity vectors,
then IT9 — ¢¥ = Ix, Q9 and P? = mv). These equilibria correspond to vehicle translation
along and rotation about the long axis with the 1-axis rotor spinning at a constant rate.

Since the closed-loop system is Lie-Poisson, the energy-Casimir method can be used to
determine conditions for closed-loop stability of relative equilibria.

Theorem 4.1.2 (Coincident Centers - Lyapunov Stability.) Letsign(/g,) = sign(Ig;)

Then, the relative equilibrium (4.8) with PP # 0 will be Lyapunov stable if for i = 2 and

1=3

1 1 1
T;: — mi). (4.9)

Ig, I, (PP)?

1 1 1 mo — ¢0\? L@ —¢P)¢?
) F

Ik, - Ik,
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Proof: Define the Lyapunov function candidate
He = Hx(IL P, () + ®(C1, C2, (1, (2, (3) (4.10)

where (; = (- e; for 7 = 1,2, and 3. To prove nonlinear stability, the function & should be
chosen so that the equilibrium is a minimum or a maximum of Hg. That is, we require that
the first variation D Hg be zero at the equilibrium and that the second variation D?Hg,
when evaluated at the equilibrium, be positive or negative definite. A straightforward cal-
culation (see Appendix B) shows that, if the control gains are chosen so that Ix, > 0 and
Ix, > 0 and the inequality (4.9) holds, then ® can be found such that the equilibrium (4.8)
is a minimum of Hg. By the energy-Casimir method, one may conclude that the equilib-
rium (4.8) is stable. If Ix, < 0 and Ig, < 0 and (4.9) holds, then @ can be found such
that (4.8) is 2 maximum of H¢. Again, one may conclude stability by the energy-Casimir
method. In both cases, ® can be chosen as a second order polynomial. The augmented
Hamiltonian Hs should be interpreted as a Lyapunov function. OJ

When ¢? = 0, conditions (4.9) revert to conditions (3.24) with I replaced by Igx. Of
course, since I'g is parameterized by the control, it may be modified such that conditions
can be satisfied.

Practically, the case where ¢} = 0 is less interesting than the case Q9 = (I — ¢?)/Ix, =
0; in the latter case the vehicle does not spin. If Q) = 0, the conditions (4.9) become

1 1 1
0>——(———) i =2and 3. (4.11)
Ig, \m1 my;

Since m; < mg < mg, conditions (4.11) will hold only when Ig, <0 and Ig, < 0.
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Corollary 4.1.3 Choose k; > 1 so that Ig, <0 for @ = 2 and 3. Then steady translation

along the vehicle long azis with zero body angular rate is Lyapunov stable.

Proof: The proof is a special case of the proof of Theorem 4.1.2 as applied to the equilibrium

(4.8) with II9 = ¢?. A Lyapunov function is:

_ 1 1 1 1
Ho(II,P,¢) = Hk(ILP,¢) = —Ci+350(C1 = 5(PN))* + po(Ca — I P)(Cr = 5(P1)?)
1 1 1 1
+503(C2 — o PY)? + 5P35(CL— m9)? + 504(22 + §P5C§' (4.12)

where the constants pi, p2, £3, P3.5, P4, and ps are chosen to satisfy

mo \?
< —3P3( L ) 3

(PD)
()
p2 = —pP3 =y )
, PP
p3 < L
’ I, (P?)?
p3(PP)?
5 < )
pas 1 — p3lk, (PP)?
e < 07
ps < 0.

The equilibrium is a mazimum of Hg. For details about the construction of this Lyapunov
function, see Appendix B. O

Note that the stability conditions (4.11) do not involve Ig,. In fact, these conditions
hold even if k; = 0 and I, = Ay = [, that is, even if there is no rotor about the l-axis.
Thus, for the conservative model, steady long-axis translation may be stabilized using only

two internal rotors.

Remark 4.1.4 If, in addition to I, <0 and Ix, < 0, one chooses k1 > 1 so that Ig, <0
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(and consequently Ix < 0), then one may choose

042 0 1
1+(H1) Hl) =0, p4<0, p5<0.

PL= —'3P3—W1 p2 = —p1 ﬁla y P3 = —W, P35
(4.13)
In later sections, for reasons concerning the effect of physical dissipation, it is assumed that

Ix < 0. The Lyapunov function (4.12) with the constants p; given by (4.18) is used to

prove asymptotic stebility under dissipative feedback.

- Remark 4.1.5 For the control (4.2), the set
FA={ILP,{|A=IL=0I3=(=_( =0}

and its cyclic permutations are invariant. With Ixc < 0, the pure 2 and pure 3 mode equilib-
ria are unstable (saddle points). However, restricted to F1, the pure 2 mode is stable. This
observation is relevant in Section 4.1.2 where the region of attraction of an asymptotically

stabilizing control law is considered.

4.1.2 Asymptotic Stabilization

Here, following step 2 in the method outlined on page 83, feedback dissipation is applied
such that steady long-axis translation is stabilized in the absence of drag. The approach,
first considered in [69], builds on the results of Section 4.1.1 in the sense that the Lyapunov
function developed for the conservative system is used to generate the asymptotically stabi-
lizing dissipative feedback control law. The proof of asymptotic stability relies on LaSalle’s
invariance principle. The approach gives an estimate of the region of attraction and condi-

tions on the control parameters to broaden this estimated region.
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By Corollary 4.1.3, choosing Ig; <0 (¢ = 1,2, and 3) stabilizes the equilibrium

m Py I
I, = 0 , Pe= 0 y Ce= 0 . (4.14)
0 0 0

Recall that the equilibrium (4.14) corresponds to vehicle translation along the body 1-axis
without rotation but with the l-axis rotor spinning. Since the closed-loop system (4.5) is
Hamiltonian, stability is not asymptotic. To asymptotically stabilize the equilibrium (4.14),
an undetermined dissipative feedback term is appended to the original control law. Return-

ing to the equations of motion (4.1), replace u with

u = us+ (T - K)ug

= KO+ (- K)ug (4.15)

where ug; = KII is the stabilizing control law discussed in Section 4.1.1 and w4 represents
a dissipative control term which remains to be chosen. Again, make the change of variables

(I1, P,l) — (II, P,¢) with ¢ = (T — K)~ (I — KTI). The equations of motion become

II = OxQ+Pxvw
= PxQ

¢ = ug. (4.16)

With ug = 0, the equations (4.16) reduce to the conservative equations (4.5). The

function Hg given by equation (4.12) with p; given by (4.13) (s = 1,2,3,3.5,4, and 5) is a
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natural Lyapunov function candidate for studying stability of the equilibrium (4.14) of the

dissipative equations (4.16). One may easily compute

I 0

d - = . dHs _ -1

(EH([:. =VHyg - P = aC -uqg = | —Ik (H - C) + e tUd
¢ P5C3

where p4 and ps are the constants defined in the proof of Corollary 4.1.3. Taking

ug=Kg | -Ik "I -+ | ps (4.17)

Ps5(3

. with Kg >0 makes 2H¢ >0.

Noting that C; = || P||> and C, = II - P are conserved for equations (4.16) (regardless
of the choice of ug), let Dy = {(I1, P, ¢) | %IIPII2 = C,II-P = C,} represent the invariant
leaf on which the dynamics (4.16) evolve.! If we is some compact, positively invariant
subset of Dg then, by LaSalle’s invariance theorem, solutions starting in we go to the

largest invariant set M contained in the set E = {(I, P,{) € ws | %FI(;) = 0}.

Lemma 4.1.6 For any we C D¢, the largest invariant set M contained in the set £ =

{(IX,P,¢) € Dy | zdzf?(p = 0} contains only closed-loop equilibria.

!While the closed-loop equations (4.16) with feedback dissipation (4.17) are no longer Lie-Poisson, the two
Casimirs C (P, II) and C2(P, II) still define a subspace of the reduced phase space on which the dynamics
evolve. The terminology reflects the observation that coadjoint orbits of a Lie-Poisson system are often
symplectic leaves of a foliation of the reduced momentum phase space.
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Proof: If %f{q; =0 then ug = 0 and

0

I (I-Q) == pe

[ &

which is constant since C = uq = 0. Therefore,
Q=(Z-K)"'I1-¢) =0,

so IT = 0 and

P x v = —II x @ = constant.

« If 2 = 0, then P = 0 and the system is in equilibrium. Otherwise, the vectors P,v,II, and
Q are coplanar. (See Figure 4.1.) Now, since Q2 is constant, the second equation of (4.16)
o

implies

P(t) = e~ P(0).

(The exponential map is discussed briefly on page 20.) Thus, P(¢) is a rotation of P(0)
about the vector 2. Unless P and 2 are parallel, P would rotate out of the plane containing
P, v, II, and Q. It follows from these observations that P,v,II, and € are coplanar if and
only if P and € are collinear, in which case P = 0. O

The equilibrium conditions are

0 = IIxQ+Pxvw (4.18)

0 = PxQ (4.19)
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Pxv

Figure 4.1: Geometric view: II1=0 and IT x Q # 0.

0

0 = Ka|-Q+| 50 (4.20)

P563

From (4.19) we have = oP for some real . Equation (4.18) then gives

0 = (IkQ+¢) xQ+PxM™'P

= [(*Ixg —M™ )P +al] x P

or

(®Ix — M Y)P +af =BP (4.21)

for some real 8. Using (4.20) to eliminate {2 and (3 from (4.21), one sees that the condition

for an equilibrium of the closed-loop system is that real-valued parameters o and 3 exist

such that _ } _ )
(—azfm +omr ,3) Py ady
(= (Ix + L+L+p)p|=| 0 | (4.22)
-(—az(fxs-l-p%)-{-mLs'i-ﬂ)Pa_ i 0 |

From (4.20), Q; = 0 at equilibrium. Since Q = aP, any equilibrium for which P # 0
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must have a = 0, i.e., zero body angular velocity. For any such equilibrium,
1 .
(-n; +pB)P; =0 for i=1,2, and 3. (4.23)

Since m; < ma < ma, equations (4.23) hold only when 8 = —le and P, = P; = 0. Thus,
pure long axis translation (4.14) is the only possible equilibrium for which P; # 0. Pure 2
mode and pure 3 mode equilibria also exist for the closed-loop system and are described in
Remark 4.1.7 below. Note that, since (4.8) are the only equilibria for which P; # 0, there
can be no mixed 1-2 or 1-3 mode equilibria. (See Section 3.2.1.)

Now suppose that P} = 0. Subtracting P> times the third equation from P; times the
second equation of (4.22) indicates that an equilibrium satisfies

[—az ((Ixz + ;1;) — (Ixs + ;1-5-)> + (i -~ i)] PPy =

ma2 m3

If P, # 0 and P; # 0, there is a mixed 2-3 mode equilibrium provided

1 L
2_ ma m3

- ((IKz + 314‘) - (IK:s + pLs)) >0

a4

The terms Ik,, Ik,, pa, and ps are all control parameters which we have required only to be

negative. Choosing these parameters such that

1 1
I, + — < Ig, + — 4.24
: P4 ? Ps ( )

prohibits a real solution for @ and thus prohibits mixed 2-3 mode equilibria.

Remark 4.1.7 If Q # 0, then the pure 2 mode equilibria are a two-parameter family of

95

N
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prvku e



the form

II. = (1 +p4IK2)Ce = Hg ez, P.= Pg €2,

where C, = £(P2)? and Cs = (I3PY). If = 0, the pure 2 mode eguilibria satisfy I, = ¢,

and P, = P ey where C, = %Pe - P, and Cy =11, - P.. But from equation |

4.20), we

know that (o = (3 = 0 for equilibria with & = 0. This means that Il. - P, = 0, so these

equilibria are possible only if Co = 0. In this degenerate case (i.e., when Co = 0), pure 2

mode equilibria lie in the union of the two-parameter family described above (for 2 # 0)

and the two-parameter family of the form

O.=¢. =0%e;, P.=Pes.

Pure 8 mode equilibria are defined analogously.

Having found a dissipative control law and characterized the closed-loop equilibria, it

remains to find a region of phase space within which trajectories converge to the desired

equilibrium (4.14). The approach taken here is to define a compact, positively invariant set

that contains no equilibria other than the desired one. Asymptotic stability may then be

studied in the context of LaSalle’s invariance principle. This approach was first applied in

[69].

Define a constant cp = —(—ni—l - ,—,11—2-)01 > 0. Let

we = {(II, P,¢) € Do|Hp > (1 — €)cp}

(4.25)

where 0 < € « 1. The set wg is positively invariant because He < 0 is nondecreasing.

Furthermore, the equilibria (Ile, Pe,{,.) and (—II,, — P, —(,), with II., P., and ¢, given
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by (4.14), are the only equilibria in we. We also note that we excludes states for which
P, =0 because Hp < —(;1-1- - mLz)Cl whenever P, = 0. In fact, we is the disjoint union
of two compact, positively invariant subsets. Let we, = {(II, P,{) € we | P, > 0} and let
we_ = {(II, P,{)}) € we | P, < 0}. Then we = we, (Jws_. Each of these two subsets is
positively invariant since wg is positively invariant and no trajectory can pass through both
wg, and we_ without leaving we. Furthermore, each subset contains a single closed-loop

equilibrium. For example, wg, contains the equilibrium (IL, P, ¢,) where Pf > 0.

Theorem 4.1.8 (Coincident Centers - Asymptotic Stability) Suppose C # 0. Then

any solution to the equations (4.16) which starts in we . at time t = 0 with ug given by (4.17)

goes to
Cg/\/ 201 2C Cz/\/ 2C
II. = 0 y Pe= 0 » Ce = 0 (4'26)
0 0 0

as t — oo. If the solution starts in we_, then it goes to (—II,, —P.,—(,) as t — oo.

Proof: The proof is an application of LaSalle’s invariance theorem. (]

Theorem 4.1.8 indicates that the body angular velocity goes to zero as do the angular
velocities of the 2-axis and 3-axis internal rotors. The vehicle goes to an equilibrium of
the form (4.14) which corresponds to pure translation along the long axis with the 1l-axis
internal rotor spinning at some generically nonzero rate. The magnitudes of the equilibrium
values of I, P, and { are determined by the conservation laws.

Notice from the definition (4.12) of Hg (with parameter values given by (4.13)) that

the size of the regions wg, and we_ may be increased by appropriate choice of the control
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parameters. Recall that wg is defined by a lower bound on the value of He. Noting that

Hi = (I-¢) I~ I~ )+ 2P -M~'P

1 1
= - —v-M
2Q IKQ+2'U v,

choosing Ik, (for z = 1,2, and 3), p4, and ps to have small magnitude makes the magnitude
of Hp smaller at given values of 2, (5, and (3. Thus, the range of values that Q, (s,
and (3 can take within the sets we, and we_ is larger. These guidelines, together with
condition (4.24), indicate how to choose control parameters to shape the closed-loop phase

space so that the asymptotically stable equilibrium (4.26) has a large region of attraction.

4.1.3 Viscous Forces and Global Asymptotic Stabilization

In this section, we perform step 3 of the method outlined on page 83, i.e., we consider
the effect of physical damping on the previous stability results and modify the feedback
dissipation as necessary to ensure asymptotic stability. We apply the control law (4.15)
to an underwater vehicle model which includes viscous forces and torques. The open-loop

equations of motion are given by (3.21) with » =0,

IO = IxQ+ P xv+ fa(2,v)
P = Pxn+fv(ﬂ,v)+fthrust

I = u (4.27)

(When r = 0, T plays no role in the dynamics and may be ignored.) For the conservative

system, as discussed in Section 4.1.1, the control law indicated by the method of controlled
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Lagrangians is

u = KII (4.28)

= KIIxQ+ P xv). (4.29)

When considering the dissipative equations (4.27), the control law (4.28) becomes

u=K((IIx Q+ P x v+ fa(2,v)). (4.30)

Again, this control law makes [ — KTI a conserved quantity. The conservation law is useful
for proving nonlinear stability. This approach was considered in [68], where it was shown
that the desired equilibrium of the resulting closed-loop system is destabilized by drag, as
one might expect for an equilibrium which is an “energy maximum?”. The detrimental effect
of drag was compensated for by choosing an appropriate dissipative feedback control law.
Here, the original velocity feedback control law (4.29), developed for the conservative
system model, is applied instead of (4.30). The desired closed-loop equilibrium is still a
maximum of the function Ay given by (4.12). In this case, however, drag tends to increase
the modified energy, driving the state to the desired equilibrium asymptotically. In fact, one
can view the compensatory feedback dissipation formulated in [68] as undoing the harm done
by choosing the control law (4.30). (See Remark 4.1.11 at the end of this section.) Under
the control law (4.29), physical dissipation naturally enhances stability. As an additional
benefit, (4.29) requires neither acceleration measurements nor a model of physical damping.
The construction of the Lyapunov function Hg relied on several conservation laws which
are broken when physical dissipation is introduced. Neither the modified energy Hg nor

the two Casimirs C, = %P - P and Cy = II - P are conserved in the presence of drag.
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Furthermore, the choice of feedback (4.29) introduces no controlled conserved quantities,
i.e., ¢ is no longer conserved. In fact, ‘—;‘-‘t-IZTQ becomes indefinite in the presence of viscous
forces and thus Hg can no longer serve as a Lyapunov function. Still, this function does
provide a useful starting point for proving stability of the system with damping. In this
section, a semidefinite Lyapunov function is formed by dropping some of the terms in Hg
which destroy the definiteness of %FI@. This semidefinite function allows a characterization
of a crucial portion of the system dynamics leading to a global asymptotic stability result.

Once again, let

u = us+ (T — K)ug

KMIxQ+Pxv)+(T—K)ug (4.31)

and make the change of variables (I, P, 1) — (II, P,¢) where ¢ = (Z — K)~}(Il — KII). In

these variables, the closed-loop equations of motion are

I = IIxQ+P xv+ fa(2,v)
P = PXQ'*‘fv(vi)'*'J:thrust

¢ = —(T-K)'Kfa(Q,v)+ua (4.32)

Since steady translation along the vehicle long axis requires a propulsive force to counter
drag, a constant body-fixed force Fpryst is introduced to maintain the desired equilibrium.

Given a desired steady velocity v, = 71e; with £, = 0, choose

Fihrust = —fv(0,ve)- (4.33)
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This constant external force is equal and opposite to the drag at the desired equilibrium
velocity. Assumption (3.20) implies that thrust is aligned with the vehicle 1-axis.

Given a desired equilibrium speed 9; > 0, a crucial requirement is that thrust and drag
equilibrate (when © = 0 and v2 = v3 = 0) in such a way that v; — 9,. This requirement

leads to the restriction that v satisfy
(vy —D1)e1 - (fv(0,v1e1) — fu(0,71€1)) <O (4.34)

with equality if and only if v; = ¥;. Assumption (4.34) requires that, when the vehicle
translates along its long axis, the magnitude of drag is larger (smaller) than the magnitude
of thrust when the vehicle moves faster (slower) than #;. For the example drag model (3.18),
condition (4.34) places no restriction on the choice of ;. More generally, one might expect
a small range of inadmissible equilibrium speeds in the neighborhood of the critical speed
for boundary layer transition, where the drag force can decrease with increasing speed [30].

Because the terms in Hg (given in (4.12)) which are quadratic make the rate %FL(, indef-
inite when drag is introduced, we truncate these terms to obtain the negative semidefinite

function

1 1 _ 1 _ 1
V(IL,P,{) = Hg(IL,P,{) - —Ci = (I - )T Ix "' (T - ¢) + sPT(M ™' — —I)P.
my 2 2 my
(4.35)
This is the function one would obtain by applying steps 1 and 2 of the energy-Casimir
method, outlined on page 39, to the equilibrium (4.14). The desired equilibrium is a critical

point of V' but is not a strict maximum.
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{vg)Q=0, v, =0, ;= o}

N\

Figure 4.2: The negative semidefinite function V.

\'%

Written in (€2, v, ) coordinates, the function V is

171 1 1/1 1

_1q. i1 1 2 1(1 1 2
V(2,00 = 30 T+ 1 (= ) ma+ 5 (2 - ) o).

‘ Since I < 0 and m; < my < mg3, V is negative definite in the coordinate directions
corresponding to Qi, 22, Q3,v2 and v3. The function is depicted in Figure 4.2 where the
“line” of maxima corresponds to Q; = Qy = Q3 = vy =v3 =0 (i.e., to V =0).

Differentiating (4.35) gives

. av . v . ov .
V.= sg@ M+tap Pt ¢
= n-ﬁ+<v———1—P).P—n-¢
my

3 o
= 0 (@~ K fa(@0) ~ua) + 3 Ty e (£,(,0) - £2(0,02).

=2

Define the dissipative feedback

ug = —K4Q, K4>0. ' (4.36)
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Under assumptions (3.19) and (3.20) on the form of drag, V is positive semidefinite:

3

; 1 m; —m

V23 (‘1 L fo 0 Kaa+ T ‘)L,,l_v?) >0 (4.37)
i=1

and V = 0 if and only if €2, v, and v3 are all zero. Since V is bounded above and
nondecreasing, V-0 asymptotically in time. In fact, V converges even with K4 = 0.

It can further be shown that V converges to zero exponentially. Define the nondimen-

ks

sional vector 6T = [%QT, ’—gf, |- Then V = %&TE& where

51

1

5 2
( Ll) Ix 0
= 2 1 1
z o (mov1) (,,Tz ml) 0 <0
0 (ma5)? (2 - %)
Therefore
1
0>V > -bl&|? where b= -7 minZy (4.38)
1

and T is the ith diagonal element of £. From equation (4.37), V > 67 Y&, where

N2 (.. f fa, f
(-Z—‘;) (dlag(“_ﬁnklu TR ) + Kd) 0
Y = (mz2—m,)5?
0 2 — 1)Uy ivz 0
(m3—m1)ﬁ2]
0 my £v3
Thus, X > 0 and it follows that
V >algl2>0 where a =min Yy (4.39)
1
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and Y; is the 7th diagonal element of Y. From equations (4.38) and (4.39),
- a _ 2 _ g
vz s elel?) - (3) v

b

So V decays to zero exponentially,
0> V(t) > V(0)e 5. (4.40)
Having bounded V one may bound ||&||, and thereby bound {|2]|, |[v2| and |v3]|. Let
d= —% max Y.

Then,

l&l® < ZIVI < <[V (0)]e™5*

&l -
&l -

and ||&|| decays exponentially,

5]l < Xe™z(3) (4.41)

where X = /|V(0)|/d.

It must be shown that the remaining dynamics are well-behaved. In fact, v, goes to the
desired speed 7; and the rotor velocities remain bounded. To establish the first observation,
define the set Myiscous = {(IL, P,¢) | @ = 0,v2 = vz = 0}. Referring to the equations of
motion (4.32) with Fiprye defined by (4.33) and ug defined by equation (4.36), it should

be clear that the rotor velocities are constant on Migcous Since II and ¢ are constant there.
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In fact, the only nontrivial dynamics on Myiscous are governed by the following equation,
. 1 -
0= e (fv(0,v1e1) — f+(0,01€1)). (4.42)

But under assumption (4.34), when @ = 0 and v = v3 = 0, the drag and thrust forces
equilibrate in such a way that v; — ;. More precisely, %(m — ;)2 is a Lyapunov function
on Myiscous SO, for trajectories contained in Myiscous, U1 goes to U7 asymptotically.

It has been shown that all trajectories go to Myiscous and that all trajectories within
Myiscous £0 to an equilibrium of the desired form (4.14). As trajectories approach Myiscous:
Q — 0, v2 = 0, and v3 = 0 and the rate of change of v; is well-approximated by equation
(4.42). One may conclude that € — 0 and v — v, asymptotically. Furthermore, this is

true globally.

Remark 4.1.9 If, instead of the constant thrust Fiprse = —fu(0,71€1), one were to

choose

Finrust(v1) = fu(0,v1e1) — 6(vy — U1)ey

with some positive constant x, then v, would converge to U, exponentially on Miscous. For
this choice of thrust, (2, v) is globally ezponentially stable to (0,v.). Implementing this
propulsive force requires ezact knowledge of the vehicle drag when (Q2,v) = (0,viey1). For
streamline motions such as the equilibrium considered here, accurate drag models can be

obtained experimentally [30].

It remains only to show that ||| is bounded. Since £ — 0 exponentially, both II

and ¢ go to J.Q, exponentially. Thus, it is sufficient to show that ||II|| or [[{]| is bounded.
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Consider the following inequality

d (1 _ o\ da . i
< (5He1) =nenggien = ¢-&

= ¢ (- -K)"'Kfa(Q,v) + KaQ)

For the feedback-stabilized system, there is a positive constant N (which depends on the

- initial conditions) such that

[ fa (2, v)[| < N

To define N, observe that fo(f2,v) is continuous and is therefore bounded on a compact

set B C {(R2,v) | @ # 0}. Let

- el
N=se™ar

In addition to being compact, the set B should be positively invariant to ensure that
condition (4.44) remains valid as (€2, v) converges. To define a suitable set B, begin with the
set By = {(,v) | V > —cp, } where cg, > 0 is a scalar constant. Since V' is nondecreasing,
B, is positively invariant. However, V' does not involve vy, so B; is not compact. Instead,
B is defined as the intersection of B; with another positively invariant set described below.

Consider the effect of thrust and drag on the translational momentum. The rate of

change of C, = ||P||? is

4 (%”P“?) =P-P =P (£(2,0) - £(0,v)).
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Using the conditions (3.19), it follows that

3
d (1
z(allpuz) < =2 mif, % — P fo(0,v)

i=1
< —min| ==
i m;

Thus, if || P|| is large, C; is decreasing. In other words, there is some maximum speed which

) I PI? + | £ (0, ve) 1 Pl-

the vehicle can sustain. Choose a scalar constant cp, satisfying

l ”fv(o"ve)”
o2 e
o (5

Another positively invariant set is therefore

CB, >

Bo = {P| JIPI? < max (ca, JIPOI?} ).

B = B; N By is a compact, positively invariant set on which equation (4.45) holds. Fur-
thermore, by choice of the constant cp,, B may be chosen to contain any given initial
condition.

By the inequality (4.43),
d
¢l = (T - K)T'K||IN + | Kal)[[2] when |[¢]| # 0.

Using the bound on ||€2|| and integrating the above inequality from 0 to ¢ > 0, one obtains

an explicit bound on (|},

K@ < 201 - K)KIN +[1Kal) (£) X + 1O
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= o - K)-1K||N+||Kdn)( )\/v<0)/ +Ic)]

To minimize the bound on |[{|| for a given drag model, we should choose control gain

matrices K and Kg4 such that

(T - K)- 1K||N+|1Kdu)( )7

is small. Furthermore, choosing the control such that b/a is as small as possible maximizes
the rate at which ||o|| converges to zero. From the definitions of b and a in (4.38) and
(4.39), respectively, the definition of I in (4.4), and recalling that m; < ma < mg3, the

ratio b/a is smallest when

k| < (_”1 - ——) (m3L1)? i=1,2,3 (4.46)
m1 ™m
and
A i {Gr —dmit, }
Amin(Kd) = (4.47)

1
max { - —kin}

where Aqin(-) denotes the smallest eigenvalue. Contrary to conditions (4.46) and (4.47),
1
—((Z — K)"!K||N + || K.
\/E(II( ) l 1 Kall)

is smallest when we choose K4 small and Ix large. A reasonable compromise is to choose
the control so that conditions (4.46) and (4.47) are just satisfied. This choice will ensure that
the bound on [[¢(%)|| is as small as possible, subject to the requirement that [[o| converge

as rapidly as possible (with the convergence rate governed by the fluid drag).
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The closed-loop equations of motion under the feedback control law

u=K({IxQ+Pxuv)—(T—K)Ks0 (4.48)

II = IxQ+Pxv+ fa(R,v)
P = PXQ-l-fv(ﬂ,v)—f,,(O,ve)

¢ = —(T-K)'Kfa(Q,v)—- K. (4.49)

Theorem 4.1.10 (Coincident Centers with Viscosity - Global Asymptotic Sta-
bility) Equations (4.49) with (T — K) <0, K diagonal, and Kq > 0 describe a system for

which the state remains bounded and asymptotically approaches an equilibrium

He = H: Pe = mlﬁlelr Ce = f[ (4'50)

regardless of initial condition.

The vehicle’s translational and angular velocity will always approach the desired values
ve = U1e; and Qe = 0, although the final equilibrium value of IT and { will vary with
initial condition. When € is zero, ¢ corresponds to the rotor angular momentum. While
it is not expected that the internal rotors will each be driven to zero angular velocity with

this choice of control, at lease these angular velocities will be bounded.

Remark 4.1.11 The control law u = KII with T — K < 0 effectively changes the sign
of the vehicle inertia. Physically, this means that external torques will tend to turn the

vehicle in the opposite sense. The effect of any torque which would drive the uncontrolled

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vehicle away from the desired (unstable) equilibrium is reversed by the feedback control law.
If II includes a contribution from viscosity, which ordinarily tends to decrease the vehicle’s
angular velocity, the feedback control law reverses its effect as well so that drag tends to
increase angular velocity. If the viscous torque is simply excluded from the feedback control
law, as in equation ({.29), its effect will not be reversed and drag will continue to decrease

angular velocity.

Remark 4.1.12 Recall from equations (3.7) that
D=IIxQ+P xv.

Comparing this with Euler’s equations for a freely rotating rigid body, one may view the
‘ term P X v as a torque due to the fluid. Were the vehicle not immersed in a fluid, the
mass matriz M would become a scalar (times the identity), P x v would be zero, and one
would recover the unforced Euler’s equations. In fact, the “fluid torque” P X v is the source
of instability for long azis translation; it tends to turn the vehicle away from the desired
equilibrium. Suppose we choose a control law to reverse this effect. Consider the feedback

control

u=kP xv (4.51)

where k is a scalar control gain. Define the change of variables from (II, P,l) to (IL, P, §)

where

1
§ =7 (1—kID) (4.52)

with k # 1. The definition of £ follows the definition of § in (4.3) with the gain matrizc K
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replaced by a scalar gain k. Define

£ = —TFIx Q. (4.53)

Since | = u # kII, the new momentum £ is not conserved. Still, equations ({.58) describe

Hamiltonian dynamics. Define the Hamiltonian

Hy(IL P,€) = ;(IL ~ )L~ (M~ €) + - P- M~'P. (454)
Then
II I P o
P|l=|P o o V H. (4.55)
3 0 0 £n

Since the bracket operation implied by equation (4.55) does not satisfy the Jacobi identity,
this system is not Lie-Poisson. Rather, it is “almost Poisson” as discussed in [70, 22].
The functions C; (11, P,§) = %”PII2 and Co(IL, P,€) =IL. P are Casimirs for this system
(i.e., the gradients of these functions are in the null space of the tensor in equation (4.55)).
Choosing the control gain k > 1 along with suitable feedback dissipation asymptotically

stabilizes steady long azis translation when drag is absent [70]. Analogous to the results of
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this section, it can also be shown that asymptotic stability is enhanced by viscous forces so

that dissipative feedback is unnecessary in the presence of drag.

4.2 Noncoincident Centers of Gravity and Buoyancy

This section treats the more general case of an underwater vehicle whose CG lies along the
shortest ellipsoid principal axis. In particular, it is assumed that » = yez with = a scalar
constant; in this case, the CG lies along the body coordinate 3-axis. As in Section 3.2.2,
we are principally interested in steady translation of the vehicle along its long axis. This
equilibrium is of practical interest and is unstable for the uncontrolled system. Even though
a low CG (v > 0) can provide a restoring torque in pitch and roll, the fluid tends to cause
the vehicle to yaw away from the equilibrium.

Following the method outlined in the introductory comments to Chapter 4, we break
the control design into steps. In the first step, we shape the kinetic energy in much the same
way as in Section 4.1.1. While the approach leads to satisfiable stability conditions, the
control law does not preserve the naturally stabilizing effect of a low CG. (Recall that the
gravity torque on a bottom-heavy vehicle ordinarily tends to stabilize the vehicle in pitch
and roll.) We therefore modify the control law slightly to take advantage of the stabilizing
gravity torque. The resulting closed-loop system can be interpreted as a Hamiltonian system
with a modified kinetic energy, a modified potential energy, and a modified structure. The
system is almost Poisson.

We break this system into a series of two subsystems, the first of which is Lie-Poisson.
We use the energy-Casimir method to find conditions for stability of this first subsystem
and then design feedback dissipation to asymptotically stabilize it. We then verify that the

remaining subsystem is well-behaved in some sense. Finally, we move on to step 3 of the
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procedure on page 83 and consider the effect of physical damping.

Section 4.2.1 treats the system without physical damping. Section 4.2.2 extends the

analysis to include the effect of drag.

4.2.1 Asymptotically Stabilizing Steady Long Axis Translation

Recall from Section 3.1.1 that gravity breaks the full SE(3) symmetry for a bottom-heavy
underwater vehicle. The reduced dynamics no longer evolve on se(3)*, but may be ob-
tained through semidirect product reduction as described in [42]. The method of controlled
Lagrangians for systems with full configuration symmetry, such as the underwater vehicle
with coincident CG and CB, can be extended to systems with semidirect product symmetry.
This is also carried out by Chang and Marsden [24] for the reasonably simple example of a
heavy top with internal rotors. In that example, gravity breaks the system symmetry ex-
actly as it does for a bottom-heavy underwater vehicle. The uncontrolled dynamics evolve
on a reduced semidirect product space and the method of controlled Lagrangians carries
through essentially as described in [10]. See Section 5.3 for a brief review of the method of
controlled Lagrangians as it applies to Euler-Poincaré systems.

Recall from equation (3.21) that the conservative dynamics for an underwater vehicle

with noncoincident CG and CB are described by the equations

II = OIxQ+P xv+rxmgl

P = PxQ
I' = T'xQ
[ = u. (4.56)
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Define the matrices A, B, and C as the block ccmponents of the inverse generalized

inertia for the rigid body (see Section 3.1.1),

-1
A BT I m#

B C -mr M
(The notation follows that of [42].) One may easily verify that
- A = AT = (I + (m#)M ' (m#))™!
B = Cm#)It

= M~ '(m#)A

C = CT =M+ (m#) I '(mr)~ N (4.57)

If the CG is located along a body principal axis, A and C are diagonal. When r = ~eg,

1 1
A = diag (al,ag, —) and C =diag (cl, co, —) . (4.58)
I3 m3
where
] I
a = 771211111("'-"!)'z > 0 and G = my [2—(m’1)§ > 0
— _ I
a; = _J—Tmllgr—r—l(m'y) > 0 cy = —_L—ng[;—(m—y)' > 0.

Referring ahead to Section 5.3, the method of controlled Lagrangians provides the kinetic
energy shaping feedback control law (5.70) for systems such as the underwater vehicle with

internal rotors. Using notation to be introduced in Chapter 5, the control law (5.70) for an
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underwater vehicle with nomcoincident CG and CB is

‘u.=[ua]=|:k: (%-a—%l;)] = [Dab(fbcgchﬂa] I'I
P
. A BT II
= (K, o0
( ) B C P

Disregarding the notation feor now, it is important only to note that the matrix K may be

freely chosen. Substituting for B from (4.57),

u = K (Aﬂ+BTP)
= KA (n ~ (mi')M‘IP>

= K((ILxQ+P xv+r xmgl) - (mé) M~ (P x Q)). (4.59)

Define the control gain matzix K = KA. As in Section 4.1, the control effectively modifies
the kinetic energy metric. Because the closed-loop energy metric must be symmetric, we
once again choose K = K% to commute with I. We also require that K commutes with
A. A simple choice which satisfies these requirements is K = diag(k;, k2, k3). Note that
when r = 0, (4.59) reduces to the control law (4.2) chosen in Section 4.1.1.

Define the change of vamiables (IL, P,I",l) — (II, P,T, ) where
C=Z-K)'(I-KM-mitM~'P)). (4.60)

There should be no notatiomnal confusion since ¢ defined in equation (4.60) reduces to the

previous definition (4.3) w.hen r = 0. The body angular and translational velocity are
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related to IT, P, and ¢ by

Q A BT I-K K(@m#)M™! m—<
= (4.61)
v B C 0 T P
Define the control-modified matrix components of the generalized inertia,
Ax = AT -K)
. Bx = M7 '(m#)Agk
Cxk = CM +(m#) I 'K(m#)M™L. (4.62)
Then, for r = yes, equation (4.61) may be written more compactly as
Q Ax BgT I—¢
= . (4.63)
v B Cgk P
The closed-loop equations of motion are
II = OIxQ+Pxv+rxmgl
P = PxQ
I = I'xQ
¢ = O. (4.64)

These equations describe Lie-Poisson dynamics with respect to a new Hamiltonian Hg,
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which includes a control-modified kinetic energy term:

1| H—-¢ Ak BgkT Im-¢
Hg(IL P, T, () = 3 . —r-mgl. (4.65)

P B Ck P

Equations (4.64) may be written

() (a et o)

P P o 0O
= VHg. (4.66)

\¢) \o oo
There should be no confusion between this Hamiltonian Hg and the one defined in Sec-

tion 4.1.1 since (4.65) reduces to (4.7) when r = 0. There are six independent Casimirs,
1 1
CI(H1 P’rv C) = 5”17”2’ CQ(H’ P’I‘a C) = E”I‘”21 03(H1 P7 r1 C) =P r’

and each component of ¢.

The dynamics (4.66), and the original open-loop dynamics (4.56), are very rich, ex-
hibiting several families of relative equilibria which were first identified by Leonard [42].
Anticipating a control law which drives the body angular rate to zero, we review only the

equilibria for which € = 0. These equilibria satisfy

P, xve+1rxmgle=0. (4.67)
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Equation (4.67) can be used to solve for I, in terms of v, and r,

. =6r+ T X (Muve X ve)

mgr-r

where |§| is determined from the identity ||T'[|> = 1. As discussed in Appendix C, choosing
T = ves gives two five-parameter families of relative equilibria for which © = 0. The five
equilibrium parameters are ¢?,¢?, ¢ and P? and P where the two families correspond to
i = 1 or 2. The remaining component of the equilibrium momentum P, is zero. Explicitly,

the two families are given by

I, = (mf) M 'P.+¢,, P.=Ple;+Ples, (.= ¢ |, and

1 1 POPY\?2 1 1Y\ POP?
re=ﬂ:\/ —((———) : 3) e3+(—-——> —“ 3e;, i=1lor2 (4.68)
m3 m;/ mgy m3 m; /) mgy
where it is assumed that
0po\ 2
1_(<L_L) ﬂ) > 0.
m3 my/ mgy

Of particular interest is the family of equilibria for which the vehicle translates along its
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long axis in the horizontal plane,

0 ¢t V2C; 0 ¢t
II, = %11 2C + Cg y Pe= 0 ; L= 0 ’ Ce = Cg
0 ¢ 0 1 9

(4.69)

Since the equilibrium (4.69) corresponds to the particular case that C3 = 0, we assume that
r LP.

Because Cj is conserved regardless of the control law, the assumption implies that C3 = 0
for all time. Even when C3 = 0, relative equilibria may exist for which the vehicle translates
in a body principal plane but not along a body principal axis. As it is shown in Appendix C,
these “gliding equilibria” exist only under certain conditions on the magnitude of . Since
we are interested in making the equilibrium (4.69) asymptotically stable within as large a
region of attraction as possible, we choose v to eliminate these other equilibria. Specifically,

we choose v such that

2
(mgv)? > 4C? (mig - r_:z,—> for i=1and?2. (4.70)

In this case, the only equilibria for which 2 = 0 correspond to pure translation along a
vehicle principal axis.
Applying the energy-Casimir method to the equilibrium (4.69) gives conditions on K

and < for stability.

Theorem 4.2.1 Let k; > 1 fori=1,2, and 3 and let v < 0. Then the relative equilibrium
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(4-69) with Cy # 0 is Lyapunov stable.

Proof: A Lyapunov function, which is negative definite about the equilibrium, is

H\[l = HK(I-L P7r7 C)+‘I,(Clv 02) C37€1:C27C3)
1 1 , 1
= Hk(IL P,T,¢) - m_lcl +mgyCa + E‘Ilule(cl - '2‘(1:'{))2)2 +

S Tae(Gr — 0 + 3 ¥ssle(Ga — )% + 3 sslelGa — €92

where ¥;jle < 0 for 7 = 2,4,5, and 6. To verify this statement, observe that the desired

equilibrium (4.69) is a critical point of Hy:

(DHy)e - (8IL, 6 P, 8T, 6C) = () - 6TL + (v — m“l—IP + U1fe(Cr — %(P{))Q)P)e -6P
| Tasle(Cr — ¢])
+(—mgr + mg L)e - 0T + | =2+ | Wys]o(Ca — ¢9) .6¢ =0

lI’66'45((3 - C:?)

e

for all variations 61X, P, 0T, and §¢. Since Hy is conserved in the absence of physical or
feedback dissipation, Lyapunov stability follows if (4.69) is a maximum or a minimum of

Hyg. The matrix of the second variation of Hy, evaluated at the equilibrium, is

/ Ag BT 0 —Ay \
Br Cr— I+ TplP.P] 0 0
0 0 mgvT 0

\ —Ap 0 0  Ag +diag(Tasle, Ussle, Yosle) )

This matrix is negative definite provided v < 0, k; > 1 for 7 = 1,2, and 3, and ¥l < 0
for 7 =2,4,5,and 6. O
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Interestingly, the stability proof requires that the CG be above the CB (i.e., that v < 0).
This is somewhat counterintuitive; one would ordinarily expect stability to be at least
partially improved when the CG is below the CB. For example, it was shown in [42] that
steady translation of the vehicle along its intermediate axis in the horizontal plane is stable
without control so long as v > 0. That stability under the given control law might require a
relatively high CG implies the internal rotors will be “balancing the inverted vehicle” as well
as stabilizing steady translation. Intuitively, this seems rather inefficient and impractical.

There is, however, a simple physical explanation for the odd stability result of Theo-
rem 4.2.1. It is related to the observations of Remark 4.1.11. Since the control u represents
a torque applied to the internal rotors, a reaction torque —u acts on the vehicle (less the
rotors). Consider the control law (4.59) with k; > 1. One may interpret this control law as
tending to reverse the effect of torques acting on the vehicle. In particular, the destabilizing
effect of the term P x v is reversed. However, the effect of gravity (i.e., the torque r x mgI)
is also reversed, even though gravity ordinarily plays a useful role when the CG is below
the CB.

Accordingly, rather than pursue the control law (4.59) further, consider the following

modified version,

u=k(MIxQ+P xv)—miM ' (PxQ))+(1-k)(¢*xQ—1a) (4.71)

where k is a scalar gain and the term @ represents a dissipative feedback term to be de-
termined. The control law (4.71) is a modification of (4.59) that does not involve the

gravitational torque r x mgI'. The resulting closed-loop system is

II = OxQ+Pxv+rxmgl
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P = PxQ

I' = I'x

mgk
1-k

¢ = ¢x0— rxD—i@ (4.72)

The equilibria (4.69) of the original closed-loop system (4.64) are also equilibria of the

system (4.72) when @ = 0.

Remark 4.2.2 Let 4 = 0. While equations (4.72) do not describe Lie-Poisson dynamics,

the closed-loop system is almost Poisson (see Remark 4.1.12):

( II A\ II P 1-kL o )
P P 0 0 0
= VH;, (4.73)
r 1-kI o 0 —kI*
\¢/ \ o o i <)
where the new Hamiltonian Hy. is
1 I—-¢ Arx BT II-q mg
H.,(I1,P,I’',¢) = 5 - =1 _kr -T. (4.74)p
P B, Cg P

Ag, By, and Cy are defined as in equations (4.62) with K replaced by kZ. Here the controd
parameter k appears in both the kinetic and potential energy terms. Thus, we may view the
control as shaping the potential energy as well as the kinetic energy. Potential shaping for

underwater vehicles is discussed in [43].

The functions

1 1
C]_(H,P,I‘, C) = §“P|I27 and 02(]:[7 P,F, C) = 5“1‘”2
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Figure 4.3: Closed-loop system as a series connection.

are two Casimirs. In addition, P -T and T - { are conserved, although these are not
Casimirs. Unfortunately, applying the energy-Casimir method to the equilibrium (4.69)
using the Hamiltonian (4.74) does not easily provide conditions on k and < for nonlinear

- stability.

A useful way to analyze the system (4.72) is to consider it as a series of two subsystems
which may be studied in sequence. The first subsystem corresponds to the vehicle dynamics

while the second describes some combination of the vehicle and internal rotor dynamics.

Let
I=II-¢. (4.75)
Then
Q Ar BpT II
= X (4.76)
v Bk Ck P

The closed-loop equations of motion become

o= fIxn+va+1"_‘gerr+a

P = PxQ

I' = I'xQ

; mgk -

¢ = Cxﬂ—l_erl‘—u. (4.77)

The dissipative feedback control law for @ will be chosen as a function only of II, P, and
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T'. The closed-loop system may therefore be broken into two subsystems, ¥; and ¥,, which

are interconnected in series as shown in Figure 4.3. The subsystem dynamics are given by

i1 OxQ+Pxv+22rxC+1a
Xy P |= PxQ (4.78)
r 'xN
and
; mgk -
PIPI C=Cxﬂ—1_er1"—u- (4.79)

The subsystem ¥, is a forced Lie-Poisson system and ¥, is a forced, linear time-varying
system. To show stability of the desired equilibrium (4.69), we first define asymptotically
stabilizing dissipative feedback for the corresponding equilibrium of ;. We then show that
the resulting control law is, in fact, locally exponentially stabilizing and therefore does not
cause the ¥, states to become unbounded.

Asymptotic Stability of 3;. Here, we essentially pursue step 2 of the method de-
scribed on page 83 for the subsystem ;. We add a dissipative feedback term @(II, P,T')
to the control law (4.71) to ensure asymptotic stability of ;.

Equations (4.78) may also be written

i o P2 i T
P |=| P 0 o0 |VH:+]| o0 |1 (4.80)
r I o0 o0 0
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where H; has been redefined in terms of IT, P, and T,

- . -

_ 1 II Ar By II mg

Hy(IL P,T) = 5 : i —
Br Ck P

r-T. (4.81)

Three independent Casimirs of the unforced system are
~ 1 - _
C\(IL, P,T) = S|IP||*, C(ILP,T) = %lll“llz, and C3(II,P,T')=P-T.

In fact, these quantities are conserved regardless of the choice of . Choosing & = 0, for
the moment, one may use the energy-Casimir method to find conditions on the parameter

v and the control gain k£ such that the equilibrium (corresponding to (4.69))

0 2C, 0
I, = ™y AC, |2 Pe= 0 , Te=1] 0 (4.82)
my
0 0 1

is Lyapunov stable. Of course, the Lyapunov function constructed for ¥; will not prove
stability of the entire system because we have ignored the ¢ dynamics. However, one may
use this Lyapunov function to develop a dissipative control law which drives £; to the
equilibrium (4.82) asymptotically. With convergence of £, assured, it can then be verified
that ¥5 is well-behaved.

Define the augmented Hamiltonian

Hy(II, P,T) = Hy +4%(C1, C2, C3),

where Hj is given by (4.81) and % is a function to be determined. Applying the energy-
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Casimir method shows that, for £ > 1, v > 0, and ¥!! < 0, the function

- 1 m 1 1 1 2
Hy(fL, P,T) = Hy — ——Cy + I‘% (ca + 5) + 5w (C1 - 5(139)2) (4.83)

has a strict maximum at the equilibrium (4.82). Thus (4.82) is a stable equilibrium of ;.

Now suppose @ 7 0. Then

d -
EH,I, =0 -u. (484)
Choosing
u = K40
= Ky4(AcI + BT P) (4.85)

with K4 > 0 makes di’t-Hw > 0. Since Hy is bounded above and nondecreasing, %Hw -0

as t — oo.
Lemma 4.2.3 £ Hy =0 if and only if T is at equilibrium with £ = 0.

Proof: From equations (4.84) and (4.85), 2 = 0 when %Hw =0 and therefore P = 0 and
I’ = 0. Also, since

=0 = AT+ B, TP,

it follows that f[ =0.0
Along the lines of the development in Section 4.1.2, one may find a compact, positively

invariant set which contains only the desired equilibrium. Define a constant
m m
cy = max {Hw(—;;}eh V2Ciez, e3), Hw(;n-;zez, V2C,ey, -83)} .
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The former argument in the definition of ¢y, is the value of Hy, when the vehicle translates
purely along the 2-axis. The latter argument is the value of Hy when the vehicle translates
“upside-down” along the l-axis. Neither of these equilibria is desirable and neither is

contained in the compact, positively invariant set
wy = {(fL, P,T) | Gs = 0, Hy(fL,P,T) > (1 — ey, }

where 0 < € <« 1. In fact, wy contains only two equilibria for which @ = 0. These
correspond to “forward” and “reverse” l-axis translation (with the CG below the CB).

The set wy is actually the union of two compact, positively invariant subsets
wy, = {(IL, P,T) €Ewy | P-e; > 0}

and

Wy _ ={(fI,P,P) GW¢IP'€1 <0}.

The proof of this observation follows similarly to the discussion preceding Theorem 4.1.8.
The only equilibrium for which & = 0 that is contained in wy, is the desired equilib-
rium (4.82). By LaSalle’s invariance principle, (4.82) is asymptotically stable.

It still remains to show that the system ¥, is well-behaved. While { certainly goes
to zero as (fI,P,I") - (%1162, v2C,e1,e3), one would prefer an explicit bound on the
states . Such a bound can be obtained locally by linearizing the dynamics (4.78) and
checking that (4.82) is locally exponentially stable. Given an exponential convergence rate
for (II, P,T'), an explicit bound on ¢ may be computed as in Section 4.1.3.

Linearizing the closed-loop system %; (i.e., the system (4.78) with the dissipative control
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law (4.85)) about the equilibrium (4.82) gives

ST = T1.6Q+ P.bo — M7P.6P + 1218369 + K469

SP = P60

where dx represents the difference between = and its equilibrium value. Define
o =T, »T, rT|T (4.86)

The linearized dynamics written in terms of the body velocity are

* A ((my€5) M P, + Ka) + BiTP. Aw(P.— M7'P.M) Ax (79E)
86 =| By ((m1&3)M 'P.+ Kq) +CeP. Bu(P.-M-'P.M) B (295) | %

-~

I 0 0
(4.87)

For simplicity, let Kq = diag(kq,,kd,,kd;)- Then the characteristic polynomial of the

linearized system is

A2 + i d + p2) (A + p3X® + pad? + ps) + pe) (4.88)
i where
: pr = —a2(l —k)kq,
i
11
pe = a (mm —(1—k) (— - —) (P{’)2)
my m3
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ps = -8 (v aks)
Hy = —1I—3k (m_lf - T—nl—z) (P))? + aymgy
+a1(l—;3’“ﬁ ((mﬁ (n% - %)2 (PO)? + Ky, 1%)
ps = —aizE (—(1 —~ Kk (;i—l - L) e+ (mgv)kdz)
pe =~ gy (- L) py.

The three zero roots of (4.88) correspond to the Casimirs C1, C>, and C3, which are con-
served under any choice of control @(II, P,T).

Since it has already been required that £ > 1, v > 0, and k4, > 0 for ¢ = 1,2, and 3, the

quadratic term

(A% + A + p2)

has roots with negative real part. Using the Routh-Hurwitz stability criterion (see [23] and
references therein), one may find a compatible range of control parameters k, kg, , kg,, and

v such that the roots of the quartic term
(At + 3% + g A + ps) + pe)

also have negative real part. In addition to requiring that each coefficient p3, 4, p5, and pe

be positive, the Routh-Hurwitz criterion requires that

paps —ps > 0 (4.89)

pspaps — pf — pepy > 0. (4.90)

One may check that condition (4.89) is satisfied when £ > 1, v >0, and k5, >0 fori =1
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and 3. Condition (4.90) is investigated in Appendix D where explicit conditions on the
dissipative control gains kq; are obtained. Under these conditions, the six nonzero roots of
the characteristic polynomial (4.88) have negative real part. Thus, one may ensure that
when C3 = 0, the equilibrium (4.82) is locally exponentially stable.

Define the dimensionless vector & = [£2Q7T, £vT,T7|T and let &, denote the equilib-

rium value of & corresponding to the equilibrium (4.82). Then, there exist positive constants

X and )\g such that, locally
165 = l|& — Fell < Xe (4.91)

The convergence rate —\g is determined by the nonzero roots of (4.88). These roots depend
on the parameters k, v, and K4. One might be tempted to choose the parameters such
that Ao is as large as possible so that & converges quickly. However, such a choice could
adversely affect the rotor dynamics; it could lead to large steady-state rotor velocities.

Asymptotic Stability of ;. Referring to equation (4.79),

< (G1e17) =neighan = ¢-¢

= ¢- (Cxﬂ—— g::er‘ Kdﬂ)

< el (["‘g”’“

les x T + ||Kduunn) (4.92)

The term in parentheses on the right-hand side of (4.92) converges to zero exponentially
for small values of || — &¢||. Inequality (4.91) gives a bounding envelope on [eg x I'|| and

I1€2||. Thus, whenever ||| # O,

21t < (|25 e x Tl + Il ) < e (499)
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where X > 0 depends on X in equation (4.91) and on the terms |mgvk / (1—k)| and || K4]|.
Along the lines of the analysis in Section 4.1.3, the inequality (4.93) may be integrated to
give the bound

X
<@l < o

Clearly one would like to have X small and \g large. However, these goals may be contra-

dictory and a trade-off might have to be made as in Section 4.1.3.

Theorem 4.2.4 Consider the closed-loop system (4.77) with & = KgQ0 where Kq =
diag(kq, , kd,, kds)- Suppose k > 1, v >0, and kg, >0 (2 = 1,2, and 3) have been chosen to

satisfy (4-70) and (4.90), as in Appendiz D. Assume that C3 = 0. Then the equilibrium

0 Vv2C, 0
f-[e = %}\/201 » Pe= 0 , Le= 0
0 0 1

of the subsystem I, is asymptotically stable within wy . Furthermore, the equilibrium is

locally ezponentially stable and ¢ is bounded and goes to a constant.

4.2.2 Viscous Forces and Asymptotic Stability
Here, viscous forces are included in the system model as described in Section 3.1.3. Under
the control law (4.71), the equations of motion become

mg

= OxQ+P
II II x4+ xv+1__k

rxI + -l%k'fn(ﬂ’”)
_.1 f k(mf')M—l(fv(n7v) - fv(O,'Ue)) +u

P = PXQ-Ffv(ny'U)_fv(oave)
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' = I'xQ

k k(r x mgl + fa (2, v)

¢ = (xQ -

—m ML (£o(R,v) - £2(0,v.))) — & (4.94)

where v, = v1e; is the desired velocity. We thus consider stability of the equilibrium

0 ¢? m17, 0 ¢t
He = muvy + Cg b} Pe - O ] re = 0 1 Ce = C20
0 ¢ 0 1 ¢

(4.95)
As in Section 4.2.1, we break the system into subsystems ¥; and ¥5 and consider the
two subsystems separately. X, corresponds to the first nine equations of (4.94) while ¥,

corresponds to the last three equations.

Asymptotic Stability of ¥;. Recall the modified Hamiltonian for the conservative

system (4.80),

HMﬁJ{P%:% es-T.

. T .
i) [ 4 Be 13 G IR

1—&
P

Br Ci

Recall that the feedback control law (4.71), with dissipative feedback term (4.85), lo-
cally asymptotically stabilizes the equilibrium (4.82) for the 3, subsystem without external

damping provided

: k>1, v>0 and Kg>0.

In that case, the function H, given by (4.83) is a Lyapunov function for the subsystem

: ¥1. When viscous forces are included, the Lyapunov rate %Hd. becomes indefinite. To
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circumvent this problem, define the negative semidefinite function

e 1 mgy 1
= - C = .
H,(IL, P,T") = H; - 1+ I—% (C’z + 2) (4.96)

by omitting the term in Hy which is quadratic in C;. The rate of change of Hy is

~ 1 . mg’y .
Rl = Q- - —Pj- 2T (r—e3)-I
H, = Q 1'I+<'v mlp) P+ (T — e3)

= 0 (12 pfa@.0) ~ Tt M (S(@,0) ~ £0,0.) +)

+ (v _ milp) (Fo(2,0) — £4(0,0.)).

Substituting P = (—m#)Q2 + Mv and defining

o = (-m) (TZgM ™+ T (£u(09) - £u(0,00) (4.97)

%Ew —Q- (Ti—kfn(n,v) + a) + (v _ mile) (Fo(2,0) = F0(0,ve)) + Q- (4.98)

Suppose that

4 = Kq€d + ¢ sign(2 - ) (4.99)

with K4 > 0 and ¢ > 1. The former term of (4.99) dissipates rotational kinetic energy while
the latter term is intended to dominate the last term of (4.98) ensuring that £ H, > 0. To

see this, recall the conditions on fq(€2,v) and f,(£2,v) given in Section 3.1.3,

28, = 0 ({Zfa@0) + Kad) + (v - Mo ) - (5(29) - £(0,v0)
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+ (- + +<|€2 - p|)
3

3
1 m-
2 o2 o (1——m]1)ivivf+(¢—1)lﬂ-<pl20.
=1 j=2

Assume, as in Section 4.1.3, that the equilibrium speed v; is chosen such that

(vi —91)er - (fv(0,v1€1) — fu(0,71€1)) <O (4.100) -

with equality if and only if v; = ;. (Recall that, for typical underwater vehicle flight
conditions, this requirement essentially restricts the choice of u; to exclude speeds in the

range of the critical speed for boundary layer transition.) Then the following proposition

holds.

. Proposition 4.2.5 £H, =0 if and only if
I = (m#)ve, P=Mv, and T = tes.

Proof: From equation (4.98) with @ given by (4.99), one finds that %FI,/, = 0 if and only if

Q =0 and v, = v3 = 0. Therefore, by assumption (3.20),

51 = = (fol(0) — £1(0,00)) - ex. (4.101)

Since @ = 0, we must have

=0 = A ([Leax T = T2 m@EM (£,(R,0) - £(0,v0)))

+BkT(f‘U (Qa ‘U) - f‘!)(07 ve))

? = 3 i kAk (mgyes x T — (myes) M~ (fu(R,v) — fu(0,ve))) . (4.102)
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But T is constant when €2 = 0, so from (4.102)

mgyes x T' = constant = myez x M~ (fu(2,v) — fv(0,v¢))
= 2L ((£o(0) — £o(0,0.)) - e1) e2
1

= myvies. (4.103)

It follows from (4.101) and (4.103) that ©; is constant. But, by assumption on the choice of
equilibrium speed 1, one finds that & (v, —%)? < 0. Since (v; —#1)? is bounded below and
nonincreasing, it follows that ¥, is constant if and only if it is zero, in which case v = 7;.
Equation (4.103) then implies that T || eg. O

Once again, it remains to show that the system ¥, is well-behaved. First, it is shown

that the desired equilibrium
II. = (m#)(ie1), P, =m;71e;, and T =e3 (4.104)

of ¥, is locally exponentially stable. This result is then used to obtain a bound on (.
Exponential stability of ¥; is shown by linearizing the closed-loop system (4.94) about
the equilibrium (4.104). A few definitions will be convenient. Let o be as defined in (4.86)

and let
/

ﬁxQ+va+1—"i9,;er‘+Kdﬂ
fo(o) = PxN

T'xQ

The vector field fo(o) expresses the system dynamics in the absence of viscous forces and
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moments. The additional viscous effects are expressed by the vector field

e fa(,v) — Le(m#) M (£, (2, v) — £4(0,v.)) +<sign (R - ¢) @
fl(o') = f‘u(n7v) "‘fv(oyve)

0

where ¢ is as defined in (4.97). The linearization of the dynamics (4.94) is then

) ' \ 66 = (% + %)esa (4.105)
where —g—-}ﬂe is the state matrix in equation (4.87). Assuming that the parameter conditions
described in Section 4.2.1 are satisfied, g%hg has three zero eigenvalues, corresponding to
the Casimirs Cy, Ca, and C3 of the inviscid dynamics, and six eigenvalues with negative real
part.

Now consider the vector field f; (o). Its linearization involves the linear approximations

of the viscous moment and force. Since fo(€2,v) and f,(Q,v) are C!,

_ afﬂ(nav) afﬂ(ﬂ,'v)
fa(Q,v) = ETY) . 00 + 50 . dv + ho.t. and
_ 05 0)| 50 , Aul@0)
fo(,v) = fu(0,ve) + —5o—| 80+ ——F——| §v+ hot.
By assumption, fq(0,v) = 0 for all v, so
dfa(.0)| _,
v e ’
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Furthermore, assumption (3.19) implies that

ofa(@v)| _o .. fs(®v)

3 e g0l <%

Note that the term in f;(o) involving ¢ must disappear in the linearization. (To circum-
vent smoothness problems, one may replace the discontinuous signum function with a C!
approximation, for example, a very steep sigmoid.)

Proceeding with the linearization, one finds that

A BT afadv)
af e ’ 0
R 3f,(Q.v) 3fu(2,v)
e |, B C fvan ) f”av . (4.106)
0 0

It can be shown that the upper left submatrix in the state matrix of (4.106) is Hurwitz
under the assumptions on fq(€2,v) and f,(92,v). Thus ggle has three zero eigenvalues
and six eigenvalues with negative real part.

In the presence of viscous forces, C; and C3 are no longer conserved. Therefore, one
expects that two of the zero eigenvalues from %gie will disappear in the presence of damping.
On the other hand, C; is always conserved since ||T'|| = 1 by definition. If the spectrum of
the state matrix for the linear system (4.105) has a single zero eigenvalue (corresponding
to conservation of [[T']|) and eight eigenvalues with negative real part, then the desired
equilibrium (4.104) is locally exponentially stable. Local boundedness of ¢ then follows by

a similar argument to the one used at the end of Section 4.2.1.

Theorem 4.2.6 (Noncoincident Centers with Viscosity - Exponential Stability)

Consider the closed-loop system (4.94) with @ given by (4.99). Suppose k > 1, v > 0, and
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ks, >0 (i = 1,2, and 3) have been chosen to satisfy (4.90). Furthermore, suppose that the
state matriz for the linear system (4.105) has all eigenvalues with negative real part save

for a single zero eigenvalue. Then the equilibrium

0 U1 0
ne = O 1 Ve = 0 1 re - 0
0 0 1

of the subsystem Iy is locally exponentially stable while ¢ is bounded and goes to a constant.

It is notable that the simple drag model (3.18) satisfies the requirement on the spectrum
of the state matrix in (4.105). Exponential stability of steady long-axis translation under

this drag model is evident in the simulations shown in the next section.

4.3 Simulations

Numerical simulations were performed for a vehicle modeled as a neutrally buoyant ellipsoid
with axis lengths L; = 0.4572 m (18 inches), L, = 0.3048 m (12 inches), and L3 = 0.1524
m (6 inches). Given the density of water p = 1000 kg/m?, the elements of M are m; = 13.2
kg, mo = 15.2 kg and m3 = 25.6 kg. Each internal rotor is modeled as a pair of rigidly
coupled thin disks each of mass my;s = 0.25 kg and radius 7 = 0.0254 m (1 inch) spinning
about a given principal axis. Each disk is located a distance d = .0381 m (1.5 inches) along
the principal axis from the vehicle CB in either direction. (See Figure 3.3 in Section 3.1.2.)

First, consider the results of Section 4.1. Assume that the vehicle mass is uniformly
distributed (except for the internal rotors) so that the CG and CB coincide (r = 0). It is

desired to stabilize the vehicle in steady translation (2, = 0 rad/s) along its long axis with
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the equilibrium velocity v =0.1 e; m/s.
As shown in Section 4.1, the desired equilibrium may be stabilized by the feedback

control law

u=KIIxQ+P xv)+ (T -K)ug (4.107)
with ug4 given by equation (4.17):

0

- . Ug = Kd _IK_I(H - C) + p4C2

ps(3

The control gain matrix K = diag(4.3, 8.5, 10) so that I'xr = diag(—0.0176, —0.0171, —0.0169)
kg-m?2. The dissipative control gain matrix is Kq = diag(0.1,0.1,0.05) We also choose
ps = —2 and ps = —5. One may verify that these choices satisfy the requirements derived
in the preceding analysis.

Figure 4.4 on page 144 shows the closed-loop response to an initial perturbation from

the desired equilibrium:

Q0) = (0.01,0.01,0.01)T rad/s,
v(0) = (0.09,0.02,0.02)7 m/s and, (4.108)

Q.0 = (1,1,1)T rad/s.

For the given initial velocities, Hg = —0.0053 J initially. Since w = {(II, P,{) € D | Hp >

(1 —€)ce } where cp = — (- — -1-)C; = —0.0090 J and 0 < € < 1, the initial state is in the

my me

compact, positively invariant set we, = {(IL, P,{) € w | P, > 0} for € small enough.

Figure 4.4 shows v approaching the desired velocity. Because P,(0) > 0, vy approaches
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+v/2C;/m; = 0.1 m/s. Recall that the system asymptotically approaches an equilibrium
corresponding to pure long-axis translation but that the final magnitude of v; depends on
the (constant) value of C;. In this simulation, the final value of v; is as desired only because
C, is the appropriate value for that equilibrium speed. On the other hand, C; =II- P is
not zero, so there will always be some nonzero angular momentum in the direction of the
translational momentum P. As can be seen in Figure 4.4, all components of the body and
rotor angular velocity approach zero except for €2, which takes the appropriate magnitude
dictated by the value of Cs.

Simulations suggest that the region of attraction estimate wg . is conservative. Generi-
cally, trajectories beginning outside w converge either to the equilibrium contained in we,
or the equilibrium contained in wg_.

Drag is modeled according to the example model (3.18) in Section 3.1.3. The drag
coefficients are a; = 107® Ns, @; = 1 Ns?, b; = 107% Ns/m, and b; = 1 Ns?/m for i = 1,2,
and 3. These values are somewhat arbitrary, although they yield moments and forces that
are of the appropriate order for a vehicle of the given size moving at 0.1 m/s. Additionally,
these coefficients reflect the expectation that the dominant effect of drag is quadratic in
velocity at moderate vehicle speeds.

Choosing the control law (4.107), with uq4 given by (4.36), stabilizes steady translation
for the vehicle subject to drag. Figure 4.5 on page 145 shows the closed-loop response to
the initial condition (4.108) under the given control parameter choices. The velocities v
and Q approach the desired values while each rotor’s angular velocity approaches a nonzero
constant. This last observation is in contrast to the results shown in Figure 4.4 where the
2 and 3-axis rotor velocities returned to zero (and the l-axis rotor velocity approached a

constant dictated by the initial angular momentum). With drag present, the rotor velocities
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do not approach zero. Furthermore, the magnitude of the excursion in rotor velocity is larger
in the case where drag is present. (This is especially evident in the plot of Q,.) One way to
reduce the rotor velocities would be to increase the rotor inertia. Perhaps more important
than observations about rotor velocity is the observation that the control torques are all
quite small. Figure 4.5 also shows the value of the semidefinite function V' given in (4.35).
As expected, V converges monotonically to its maximum value. A key observation is that
drag does not destabilize the desired equilibrium. In fact, the body velocity (2, v) would
- - converge as desired even if K4 =0.

Turning now to the results of Section 4.2, the vehicle model is modified by setting
r = veg where v > 0. That is, the vehicle CG is a distance v below the CB. The drag-free
case is considered first. The “bottom-heaviness” parameter v = 0.002 m. The feedback

. control law is given by (4.71)
u=k(IIxQ+P xv)—mitM (P xQ))+(1-k)(¢{xQ—a)

where @ = K4§2. The control gains are k£ = 1.5 and K4 = diag(0.12,0.11,0.10). The initial
conditions are the same as above with the additional condition I'(0) = (—0.19, —0.60,0.78)T
which corresponds to an initial “pitch angle” of roughly 11° and an initial “roll angle”
of —37°. The initial value of I was chosen to be consistent with the assumption that
C3=P-T'=0.

Figures 4.6 and 4.7 show the simulation results. Note that the initial condition is outside
the set wy ; the boundary of this region is denoted by the line Hy = cy. The value ¢y is
the energy H, for pure 2-mode translation (at the same values of Cy,C>2, and C3). The

region of attraction estimate is clearly conservative.
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Figures 4.8 and 4.9 show the results of a simulation which includes the viscous force

model. Once again, the control law used is (4.71). However, % is chosen according to (4.99),

2 = KqQ + ¢ sign(2 - o)

where ¢ = 2 and ¢ is given by (4.97). In the presence of drag and thrust, 2-mode transla-
tional equilibria disappear, although the inverted 1-mode equilibrium remains, limiting the
obtainable region of attraction. The value of the Lyapunov function at this equilibrium is
denoted by the line Hy = cy,.

The response shown in Figure 4.8 is more damped than that in Figure 4.6, which is
understandable given the presence of physical damping in the latter case. Otherwise, the two
simulations are quite similar. This similarity is due in part to the identical choice of initial
conditions. If C3 were different from zero,‘there would be a marked difference in the two
closed-loop responses. Since Cj3 is conserved for the system without external damping, the
system state would not converge to pure long-axis translation. The angular velocity would
approach zero, but the system would approach a “controlled equilibrium” corresponding to
non-principal axis translation. The equilibrium would be a controlled equilibrium in the
sense that a constant, nonzero control torque would be required to sustain the motion with
the result that at least one rotor would continually accelerate.

When viscous forces are included in the model, they destroy conservation of C3 so that
it is no longer necessary to restrict attention to motions for which C3 = 0 (Theorem 4.2.4).
Steady long-axis translation in the horizontal plane for the closed-loop system subject to
viscous dissipation is indeed locally exponentially stable. For this reason, the assumption

that C3 = 0 in our treatment of the conservative system model was not overly restric-
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tive. Locally, physical damping drives the closed-loop system to a state for which C3 =0

regardless of the initial condition.
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Figure 4.4: Closed-loop response to a perturbation: r = 0, no drag.
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Figure 4.5: Closed-loop response to a perturbation: r = 0, drag included.
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Chapter 5

Controlled Lagrangians and Dissipation

Chapter 4 concerned feedback stabilization of an underwater vehicle with internal rotors
by kinetic energy shaping. The control law introduced for a vehicle modeled by Kirchhoff’s
equations was based on an idea proposed by Bloch et al [13] for a spacecraft with an internal
rotor. Their idea of modifying the kinetic energy metric through feedback was generalized
in [17] and the resulting technique was dubbed the method of controlled Lagrangians. The
technique is an algorithmic approach to stabilization by kinetic energy shaping.

While Kirchhoff’s model of an underwater vehicle is a very useful starting point for
control design, practical application demands that one consider the effect of viscous damping
on the resulting closed-loop system. Concern over the effect of dissipation on the feedback-
stabilized underwater vehicle in Chapter 4 led to an investigation of the effect of damping
on more general controlled Lagrangian systems. In this chapter, we analyze the effect
of physical damping on controlled Lagrangian systems. We give conditions under which
appropriate feedback dissipation can asymptotically stabilize an equilibrium which is stable
for the conservative, closed-loop model.

In Section 5.1, we review the key ideas of the method of controlled Lagrangians and
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introduce some new terminology which is useful for understanding the effect of external
forces other than the control (i.e., physical and feedback dissipation forces). In Section 5.2,
we consider the effect of damping on a class of controlled Lagrangian systems which includes
“balance” problems such as the inverted pendulum on a cart. We also present numerical and
experimental results. In Section 5.3, we consider the effect of damping on Euler-Poincaré

systems.

5.1 Review of the Method of Controlled Lagrangians

The method of controlled Lagrangians is a technique for stabilizing a class of underactuated
Lagrangian mechanical systems with symmetry {10, 11, 14, 15, 16, 17, 18]. The method
provides a feedback control law which preserves the Lagrangian structure but which shapes
the kinetic energy of the closed-loop system. Because the closed-loop system is constructed
so that it has Lagrangian dynamics, any of a variety of stability analysis techniques can
then be used to find conditions on control gains for closed-loop stability. Energy methods
are particularly attractive for this purpose since they can provide Lyapunov functions which
are useful for estimating regions of attraction and for studying robustness.

This section reviews the method of controlled Lagrangians as developed by Bloch,
Leonard, and Marsden. Where relevant, we make observations or introduce expressions

which simplify the analysis of physical and feedback dissipation.

5.1.1 The Modified Lagrangian

Suppose that a Lagrangian mechanical system is defined on an (n + r)-dimensional config-
uration space @ and that the uncontrolled system dynamics are invariant under the action

of an n-dimensional Abelian Lie group G. More specifically, we assume that G acts freely
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and properly on Q and that the Lagrangian is invariant under this action. Locally, the
system state can be described by an element in G and an element in the complementary
space Q/G, referred to as the shape space. (It is perhaps helpful to consider the case of
a trivial fiber bundle Q@ = S x G, although the setting is more general.) If the control
forces enter in the symmetry (G) direction, the method of controlled Lagrangians provides
a choice of control such that the closed-loop system derives from a new Lagrangian (called
the controlled Lagrangian) whose kinetic energy metric is a parameterization of the origi-
nal metric. Choosing the parameters effectively shapes the kinetic energy. (See [10] for a
discussion of potential energy shaping in this context.)

To understand the nature of the controlled Lagrangian, it is helpful to first recall some
facts about velocity and kinetic energy. At any point ¢ € @), one may decompose a tangent
vector v, € T4Q into a component which is tangent to Orb(g), the G-orbit through the
point ¢, and a component which is the metric orthogonal to this first component. The
space ToOrb(q) is referred to as the vertical space at g, Very, and its metric orthogonal
complement is the horizontal space at q, Hor,. The projections of a tangent vector v, onto
Ver, and Horg are denoted Ver v, and Hor vg, respectively. The decomposition is uniquely

defined in terms of the kinetic energy metric g(-,-) by requiring that

9(vq, wq) = g(Hor vy, Hor wg) + g(Ver vg, Ver wy). (5.1)

for every v,, wy € TyQ. The decomposition may be thought of as a splitting of the velocity
vector into a component in the group direction and a component in the shape direction.

Define local coordinates 8% for G (a = 1,...,n) and z% for Q/G (a = 1,...,7) so that
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M Q/G

Figure 5.1: Decomposition of T;Q into horizontal and vertical subspaces.

v = (2, 6%) is the local expression for velocity. The kinetic energy is given locally by

1 cey . s 1 <.
. T = Egaﬁ:z:"‘:z:’s +gab:z:°9b + EgabG“Gb

where go8,gab, and gqp are the local components of the kinetic energy metric g(-,-). Ac-

cording to the requirement (5.1), the velocity v decomposes as follows,

Verv = (0,8°+ g*°gasz®) (5.2)

Horv = (2% —¢*gas3®) (5.3)

where, according to convention, g% represents the inverse of gq;. Note that Ver v = (0, 9“)

and Hor v = (£%,0) if and only if there is no kinetic energy coupling between G and Q/G.

The decomposition can be thought of as block diagonalization or “completing the square,”

1 . s 1 .
Ega,ga:axﬁ + gabx"‘ab —+ 59,,,,6“9"

1 o 1 ] .
= -2-gaa$°‘xﬁ ~ 59ab(9*Gea®) (9" 9ap ")
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1. . N , ,
+3ab (50“9” + §%geat®0® + §(g“°gcaz°)(g"dgdﬁx5 ))

1 a1 s s .
= (908 — 9aa9®gsp) P + 59a5(6% + §%°gead®) (6" + 9%%gap2?). (5.4)

Equation (5.4) is simply the coordinate expression of equation (5.1).
The decomposition of the tangent space can also be understood in the context of the
mechanical connection [49]. The mechanical connection « is a Lie-algebra valued, horizontal

one-form, i.e., a map from T'Q to g which annihilates the vertical component of velocity,
a(vg) = a(Hor vy) € g.

In local coordinates, the infinitesimal generator [a(vq)]q corresponds to (0, g%®gas®). This
term appears as a velocity “shift” in the expressions (5.2) and (5.3).

The first step in defining the controlled Lagrangian involves shifting the horizontal space.
Specifically, one defines a new connection by appending a Lie-algebra valued, horizontal
one-form 7 to the mechanical connection a giving a new horizontal space Hor.. Thus, one

obtains a new decomposition

vy = Horyvg4+ Verrv,

= (Hor vq — 7(vq)) + (Ver vq + 7(vy)).

Figure 5.2 depicts the role of « in the original decomposition and the analogous role of
in defining the new decomposition.

The controlled Lagrangian is defined as

1
Lrgp(v) = 2 (90 (Horrvg, Horrvg) + gp(Verrvg, Verrug)) — V(g) (5.5)
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TQ

" l Ver(v)
Ve Ver(vo)
] -
Hor(vy)
a(vy)

Figure 5.2: Original and modified horizontal and vertical decompositions.

where g, and g, are parameterized modifications of the kinetic energy metric on horizontal
and vertical vectors, respectively, and V' (q) is the potential energy. Under certain conditions
on the parameters 7, o, and p, the closed-loop equations are simply Lagrange’s equations
for L+, The conditions are referred to as “matching” conditions. They ensure that no
additional inputs are necessary in uncontrolled directions in order to effect the closed-loop
dynamics. These conditions typically leave freedom in some of the parameters 7,0, and p,
which then play the role of control gains.

Two assumptions are made in order to give the controlled Lagrangian a useful and

manageable structure. First, it is assumed that g, = g on the original horizontal space,
9o (Hor vy, Hor wg) = g(Hor vgq, Hor wy).
Second, g, is chosen such that the original horizontal and vertical spaces are orthogonal,
95 (vg, wq) = go(Hor vy, Hor wy) + go(Ver vy, Ver wy).
Under these conditions, as shown in [17], the controlled Lagrangian (5.5) becomes

Lrgp(v) = L(v + [r(v)]o) + %ga-(['r('v)]Q, [r(v)]o) + %w(Ver-,(v),VerT(v)) (5.6)
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where @ = (g, — g). In Section 5.1.2, we review the general criteria for matching and
stabilization as discussed in [16, 17, 18].

A subclass of systems which are eligible for the method of controlled Lagrangians can
be treated under the simplifying assumption that p® + 0% = g% where pg, and o, are
local components of g, and g,, respectively. This assumption is appropriate, for example,
for the rotary inverted pendulum and for a class of Euler-Poincaré systems (16, 18]. For
another subclass, one may choose g, = g and the last term of (5.6) vanishes. This latter
special case is treated by the First Matching Theorem of [17]. Matching and stabilization

for both of these cases are reviewed in Section 5.1.3.

5.1.2 The General Matching Conditions

Assume that the Euler-Lagrange equations hold for a mechanical system with Lagrangian
a a pa 1 a8 -anb 1 nanb (o3
L(z*,2%,6%) = 59ap%"E + GabT®0° + §gabﬂ 6° —V(z%). (5.7)

with g independent of 6. A control effort u, enters in this symmetry direction so that the

equations of motion are

4oL 9L _
dt 9z fzx
d 8L
dtage @ (5:8)

The method of controlled Lagrangians provides a technique for stabilizing an equilibrium

(z%, 2%, éa)e = (zZ,0,c¢) (5.9)
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for the uncontrolled system (5.8), where c is a constant. We will be particularly interested
in the case where ¢ = 0. For balance systems such as inverted pendula, one typically finds
that 2 is a local maximum of the potential V' (z®). Because the control does not enter
in the % direction, it is not possible to shape the potential energy in such a way that
the equilibrium becomes a potential minimum. The approach then is to shape the kinetic
energy in such a way that the equilibrium becomes a kinetic maximum. There naturally
arises a concern over the effect of physical damping in such a scheme and this question is
the focus of Section 5.2.

Under certain conditions, the method of controlled Lagrangians provides a control law

U, and a modified Lagrangian L., ,(z%, %, 6%) for which the closed-loop equations become

d3Lrgp OLrg,

‘ dt 9z= oz =0
d L
zz—a‘éliﬂ = 0. (5.10)

The conditions under which this is possible ensure that the open-loop system matches the
closed-loop system in the sense that no unavailable control authority is required to effect
equations (5.10).

In coordinates, equation (5.6) for the controlled Lagrangian becomes

L;s,(z%,2%,0%) = L(z%,2%6%+152%) + 50,,(,7';732:"‘:1:‘3

1 . . : .
+§wab (0“ + (9%°gea + T;).'z&) (91’ + (gbdgdﬁ + 7',%’):1:‘9 )

1 L . 1 ..
E(gr,a’,p)aﬂxazﬂ + (g‘r,a',p)abxaeb + E(gr,o',p)abeaeb - V(-'Ea)- (5.11)

where e = pap — gap- The tensors oy and pgp and the one-form 7§ provide freedom in
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modifying the Lagrangian. Some freedom is removed by requiring that the closed-loop equa-
tions be consistent with the open-loop control authority. After the “matching conditions”
are satisfied, the modified Lagrangian can be used to derive closed-loop stability criteria.
Any remaining freedom in the parameters can then be used to satisfy these criteria.

Equation (5.11) defines the coordinate form of the modified kinetic energy metric g, ,p-
To simplify notation, define the matrix forms of g and gr s p,

. M — [gaﬂ] [gab] and My, = [(gr,zr,p)aﬁ] [(gr.zr,p)ab]

[gaﬁ] [gab] [(gr,a',p)aﬁ] [(gT,d,p)ab]

The matching conditions are derived by comparing equations (5.8) and (5.10) and choos-
ing uq, 7, go, and g, so that (5.8) and (5.10) are identical. Since the control u, appears in the
open-loop equations (5.8), this process not only gives conditions under which the equations
match but also gives the feedback control law. For notational convenience, we define an

“Euler-Lagrange operator” £: for a state variable y and a Lagrangian L, let

d 0L oL

0= ZagE " ayE

The open-loop equations, written explicitly in coordinates, are

. P y
R R TV R IV
[Eg (L)) [éb] [éb]
_ ECa + 970376° + 19016°0° — V(a7) ) | | ° | (5.12)
0 ['U-a]
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Solving for acceleration and substituting into the desired closed-loop equations (5.10) gives

[g:r." (L-r,a,p)] _ d (M ) [.’I:ﬂ] . Mr M—l
= a T2, P ) o.p N
[83“ (L‘r,cr,p)] [eb]
_i(M) [2P] + [Eg? (%Qwa':’rg‘;ﬂ + gp270° + Lgo6°6° — V(a:'Y))]
dt [0’6] .

(52 (3065758 + (Gr.00)15376° + (gr.0,0)es66" = V(a7))| 613
- ) 0 )
As stated in [16], four conditions which, for the appropriate choice of control law, make
the right-hand side of (5.13) zero are
Assumption GM-1. 78 = —g%g;,.
Assumption GM-2. 6*¥ (04,0 + Gade) = 29°Gad,a-

Assumption GM-3. wg o = 0.

Assumption GM-4. Letting {3 = g%°¢gca,
Tg,& - T.?,a + pbawac(cg,é' - Cdg,a) - pbagac,JPdedaC; - pbagac,a'r,sa =0.

According to convention, commas in subscripts denote partial derivatives. Conditions

GM-1 through GM-4 are referred to as the “general matching conditions” to distinguish

them from a set of simplified conditions which will be introduced shortly. Using condition

GM-1, the coordinate form of the modified kinetic energy metric becomes

(g'r,a-,p)aﬂ = gap + gacUCd(gde - ade)aefgfﬁ + gac(QCd - GCd)(Pde — Gde) (gef - Uef)gfﬁ

cd

(g'r,er,p)ab = gaclg —UCd)pdb (5.14)
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(g‘r,a',p)a.b =  Pab-

Using the fact that the closed-loop momentum conjugate to 8¢ is conserved by construc-

tion, and referring to (5.11), one may compute the control law as follows,

d dL
dt gga

_ d aL‘r’g,p b . ﬂ b cd cd - ﬂ
= —{_a;—-l_ (gabe + gaBZ )_ (Pabo +Pac(g -0 )gdﬂx )

dt

d . )
= —= {(Pab — gap) 6° + (pac(g"d — o) g4p — gaﬂ) 8 } : (5.15)

Equation (5.15) gives the control in terms of velocities and accelerations. Alternatively,
setting (5.13) to zero and solving for u, eliminates the accelerations giving the control law
in terms of the coordinate velocities. It is assumed throughout that the basic control law is
in this velocity form. Thus, this part of the control law will be unaffected when additional
forces such as physical and feedback dissipation are included.

The principal goal of the method of controlled Lagrangians is to stabilize equilibria.
Because conserved quantities are useful in studying stability of equilibria, we define the

controlled conserved quantity

¥ aLTO’ N c .
Jo = —39-_‘0-_12 = Pab (Gb + (gbc ~a® )gcaza) . (5.16)

The desired equilibrium (5.9) will be stable under the control law (5.15) provided the control-

modified energy

- 1 1 -~ =~
Ergp(z®, % J,) = EAmg:i:a:i:ﬁ + §pabJaJ,, + V(z%) (5.17)
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is definite as a function of £ and z®. Since z& is typically a local maximum of the amended
e

potential

Vu(xa; ja) = %Pabjajb + V (z%),

one usually requires that A,g be negative definite at the equilibrium (see the discussion on
page 157). In this case, the equilibrium (5.9) is a local maximum of the control-modified
energy Erq -

The tensor A,pg is the coordinate form of the modified horizontal kinetic energy metric

go- As shown in Appendix E.1,
Ao = gap — gaza.(gab - O'ab)gbﬁ- (5.18)

The energy E. ., is simply the Routhian corresponding to L; s ,. It is treated as a function
of the % variables alone because the J, dynamics are trivial in the conservative setting and
can be ignored. When genexalized forces representing physical and feedback dissipation are
introduced, however, J, will no longer be conserved and E. ., will be treated as a function

of J,, as well.

5.1.3 Special Cases of Matching

As mentioned at the end of Section 5.1.1, there are subclasses of systems which are eligible
for the method of controlled Lagrangians for which the matching conditions simplify. Two
such simplifying cases are considered in this section. In both cases, the modification to g,,
the vertical component of the modified kinetic energy metric, is restricted. The first simpli-
fying case is relevant to Euler-Poincaré systems and also to a benchmark nonlinear control

example, the pendulum on a rotor arm. The second simplifying case is also applicable to a
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number of systems of physical interest.
Case 1: p2 = g — g9,

In this case, the feedback control law (5.15) simplifies to
d .
Ug = % ((pab - gab)ob) . (5.19)

Substituting for o4 in equation (5.14), the modified energy metric defining the controlled

Lagrangian (5.11) becomes

[908] [9as]
Mf,a',p = - (5~20)

[gaﬁ |

To verify (5.20), it is helpful to note that
Gab — Oab = Gac(0™ — §°*)0db = —GacP™ O dp-

This simplifying case applies to the particular example of a pendulum on a rotor arm,
which was considered in [16]. It is also appropriate for Euler-Poincaré systems as discussed
in [18]. For Euler-Poincaré systems, symmetry implies that the components of the original
kinetic energy metric are constant. To preserve this symmetry in the closed-loop system, the
parameter p,;, must also be chosen constant. In this case, the general matching conditions
GM-1 through GM-4 reduce to the two “Euler-Poincaré matching conditions”

Assumption EP-1. 78 = —g%g,,.

Assumption EP-2. g% + po® = gab,

Case 2: pgp = gab-

This class of systems is the subject of the First Matching Theorem given in [17]. In this

case, conditions GM-1 through GM-4 reduce to the following three matching conditions.

-
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1. Tg = _Uabgba1
2. g% (dbc,a + gbc,a) = 2gabgbc,a:
3. 145 6o ™ g“bgbc,a'rg =0.

Under these conditions, the control law

d s .
Ug = 4 kgabo'bcgcaxa) (5.21)

gives the desired Euler-Lagrange equations with

. . 1
Lro(z%,2%,0%) = L(z%,1%,0° —0%gyai®) + Egaaa'abgbg:i:“'i:ﬂ —V(z%)

1 . s 1 .
- 5(97,6)0/33&3'3 + (gr,a)abmaeb + §(gr,a)abeaeb -V(z*) (5.22)

where the components of the controlled kinetic energy metric are

(g‘r,o')aﬁ = Gop t gaaUab (gpc — O‘bC)O'Cdggd
(9re)ab = ac(g® — o) gas (5.23)
(9ro)ab = Gab-

Under certain assumptions on the parameters o, and 75 and on the original kinetic energy
metric, the matching conditions simplify further. The “simplified matching conditions” are
Assumption SM-1 g, = 0gg for constant o,
Assumption SM-2 gg o =0,
Assumption SM-3 72 = —1g%g,,,

Assumption SM-4 goe 8 = 9Ba,a-
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Under the simplified matching conditions, the components of the controlled kinetic en-

ergy metric in equation (5.22) reduce to

l—0
(g‘r,tr)aﬁ = Gap + TQQagabgﬁb
l1—-0o
(g'r,a)ab = - p= gab (5.24)
(g‘r,a')ab =  Gab-

- Example systems which are subject to the simplified matching conditions include the

planar pendulum on a cart and the spherical pendulum on a hockey puck [17].

5.2 Dissipation and General Matching Systems

In this section, we consider the impact of damping on “balance” type controlled Lagrangian
systems, i.e., systems for which the desired equilibrium is a maximum of the potential energy.
It is assumed that the equilibrium is stable for the conservative, closed-loop system. An
important negative result concerning the effect of generic physical damping shows that one
may not simply use a Lyapunov function developed for the conservative system model and
expect to prove asymptotic stability. However, a semidefinite modification of the Lyapunov
function indicates that asymptotic stabilization may be possible in cases, an observation

which is verified through local analysis.
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5.2.1 The Effect of Generalized Forces on the Modified Energy

To determine how physical and feedback dissipation affect the feedback-controlled sys-

tem (5.8) with u, defined by (5.15), consider the more general open-loop equations:

d9L _oL _ o
dtdze 9z = ¢
L
%Sga — e+ P (5.25)

- The generalized forces F, and F, might represent physical dissipation, propulsive forces,

etc. We consider stability of the equilibrium (5.9) with ¢ = 0:
(z®,3%,6%)e = (2£,0,0).

We also assume that F,, = F, = 0 at equilibrium.

Since E;s, is a Lyapunov function in the conservative setting, it is worthwhile to
continue to study stability using this control-modified energy. However, when generalized
forces are present, the controlled Lagrangian L, s, no longer yields the correct closed-loop
equations. To find the correct closed-loop equations (in terms of L;,,) and the effect of
dissipation on stability, it is convenient to first express the accelerations £% and 6% explicitly.

Define

B&ﬁ = Gap _gabgabgaﬂ >0
By = Gab — gaagaﬁgﬂb >0
165 "
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so that the inverse of the kinetic energy metric may be written

BaB —BoY e cb
ML — [B<] [—B*"gycg®’] _ (5.26)

[-B*99""]  [B]

Solving the open-loop equations (5.25) for acceleration gives

[:'l-:a] _ { d [‘TB]
= M — —(M)
. ] oo
+ [3% (%g'yﬁffﬂ:izﬂ + g'yb-’iﬂéb + %gd’écéb - V($7))] + LFl } (5.27)
0 [ub + Fb]

When F, and F, are zero, the closed-loop dynamics, under the control implied by the
method of controlled Lagrangians, correspond to unforced Euler-Lagrange equations for
L+ ,. More generally, under this same control law, the closed-loop equations become

‘9:1:‘x L-rzr P P
Ceellradl || BT ] S | )

(L) @) ]

(3% (3(0r)28375 + (9rop)16270° + $(grap)esb6® — V() |

0

F’Y
= M, M (5.28)

F.
Here, we have observed that in the presence of the generalized forces F,, and Fj,, the only
nonzero contribution on the right will be due to those forces. The forces enter via the

accelerations £% and 6%.
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Recall that an equilibrium of the conservative, closed-loop dynamics is stable provided
a -« 1 - f 1 ab 7 T @

is definite about the equilibrium (5.9). When dissipation is introduced, J, is no longer
conserved and so its dynamics must also be considered. Assume that there is a function

U (J,) such that

= 1 1 65 3 =
Eryop,%(2%,8%, Ja) = S Aapi®i’ + 5% Jody + V(%) + U (o)

2

is definite. Without loss of generality, assume that E.,, ¢ is negative definite. Then,
for stability in the presence of dissipation, we require that f—tET,,,,p‘q, be at least positive
semidefinite. Using the accelerations computed in (5.27) and the fact that J, is conserved

when dissipation is absent, one finds

d . .
—J. = E (pabab + pab(gbc - ch)gcaza)
= pabBbc (_gcagaﬂFﬂ + Fc) + Pa.b(gbc - ch)gcaBaﬁ (Fﬁ - gBdgdeFe)
= Pab (_Bbcgcagaﬂ + (gbc - O'bc)gcaBaB) Fg

+Pab (B"e - (g% — 0”°)gcaB°‘ﬂgﬁdg“e) F..

As in [16], we simplify notation by defining the quantities

Dab — gab_*_o,acgcaBaﬂgﬁegeb (5.29)
k8 = Dayo%gcaB®P. (5.30)
167

|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-



2}

]
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

Using these definitions and identities (E.4) and (E.5) from Appendix E.2, one finds that

d
EJ = pap D*(F. — k2 F,,). (5.31)
Therefore,
d d (1 ) ab 7 av 8\Il
— == — —_— J - =
thT’a—,p,\p o <2Aaﬁ$ P + p” J) aJa

) °(F.— kC Fp)

oz
= £%A,5BP7 (F-y - g»/bg“Fc) ( Pab
= aAagBﬁ'yF — £%gae D® Fb + (J +pab—) Dec (FC — ngg) (5.32)

where we note without proof that
AopBP79109% = gaa D™. (5.33)

Remark 5.2.1 Feedback dissipation with no physical damping. Suppose that F, =

0 and that F, can be specified. Choosing
; = v
F, = kdisspbe (—gc.,a:-“f +J + p,,.d—~) (5.34)
0J4
with kg,’;ss > 0 makes a‘%ET,U,p,'I' > 0 and stability can be studied using LaSalle’s tnvariance
principle.

This observation is consistent with previous results concerning asymptotic stabilization
using feedback dissipation (and in the absence of physical damping) [17]. Notice that the
function ¥ appears in the dissipative feedback control law. Thus, freedom in choosing ¥

may be exploited in shaping the closed-loop dynamics.
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When the system is subject to physical damping, asymptotic stabilization is more subtle.

The following proposition illustrates one of the difficulties.

Proposition 5.2.2 Assume that the system is subject to physical dissipation in the unac-

tuated directions and that the dissipative force opposes velocity,

{ <0 (£ #0),
i F,
= (& = 0).

Then there is no force F, which makes % E.,, 4 nonnegative.

Proof. To prove the proposition, rewrite equation (5.32) as

d . = ov . ~ ov
‘ EET,U,p,\II = (111‘3[‘404935’7 - (Ja + Paba_j.b> DackZ) F’y + (—xagaa. + J, +pab5—j;) Dach.
(5.35)
Suppose that, at an instant,
= . av
Ja = gaa.’L‘a - paba_L (5.36)

where ¢ # 0. Then, at that instant, the latter term of (5.35) is zero and

d .
a—t‘ET,a',p,‘Il = z¢ (Aaﬁ - gaaaabgbﬁ) Bﬂ7F7

Proposition 5.2.2 indicates that Er ., ¢ cannot be a Lyapunov function when there
is physical dissipation of this sort. However, it may be possible to obtain stability results

using a semidefinite function based on E; 5, w. If pgp is constant (as in the case of simplified
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matching and Euler-Poincaré matching), then the second and fourth terms of
1 ca-B, L ab7 ;7 o -
Ergpw = §A0g:z: z’ + §p Jodp + V(z%) + U (J,),

are conserved when F, = F, = 0. Thus, the function

— 1
Erg,= §Aaﬂ¢°a:-ﬂ + V(z%) (5.37)

is also conserved when F, = F, = (. Furthermore, by assumption, this function is negative

semidefinite at the equilibrium. For nonzero F, and Fj,, one finds that

d - .
T Eras = E®AapBPTFy — £%gaq D Fy. (5.38)

Suppose that there is no damping in the actuated directions (¥, = 0) but that the
unactuated directions are subject to linear dissipation F, = — alg.'i:ﬁ where d,ps is positive

definite. From equation (5.38),

d - . .
T Brap = —i%Aap B dyi¥. (5.39)

Since (—Aqp)B?7d,y is a product of positive definite matrices, one expects that £E. ., is

non-negative. Assuming this is so, a‘%ET‘a,p must converge to zero, since Er s, is bounded

above. Therefore, £* converges to zero and, referring to equation (5.31), J, goes to a

constant. Furthermore, the rate of convergence can be modified by choosing

Fy = —Dgyd®gcp2® (5.40)
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where d2 is a dissipative feedback gain matrix. Choosing d% positive definite augments
the rate %Ef,,,,p, potentially yielding faster convergence of £ to zero.
Local analysis yields a much more definitive stability result. Changing coordinates from

(z=, £%,0%) to (z%,%%,J,), we now consider the equilibrium

(z%, &%, Ja)e = (22,0,0). (5.41)
The linearized dynamics are
5%V
~a ay B af _ cb
0z = — (A 8:1:78:1:‘9)36:8 + B*?(6Fg — ggcg® 0 Fp)

6Jo = pacD?P(8Fy — kP SFg)

We assume that 6F, = —d,g0i? where dog > 0. We also assume that any physical damping

in the actuated directions can be exactly cancelled so that §F, may be specified. Suppose

0F, = gang:cgcﬁJj:ﬂ - Dabpbcgcdd.d]edje- (5.42)

where ng and J‘}b are control parameters. The complete closed-loop linear dynamics are

[62¢] 0 T 0 (62
z] |=| A B C [62%] |- (5.43)
[5.?,,] 0 D E [afa]
where
82V
= |—Ae7
A [ A 9z719zh L
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B = [—B‘”(d,,ﬂ + gre zgda)]
C = [B"61e6Dacrgsnd?]
D = [pacD™(k]dys +94ed 95)|
E = [-gud?] .

Since we have assumed that the equilibrium is a maximum of the potential and that
control parameters have therefore been chosen such that A,gle < 0, we expect that A < 0.

Also, if ciﬁ_.d > 0 then we expect B < 0. The characteristic polynomial of the submatrix

(5.44)

is

|IA2Z — AB — A|.

A corollary of a theorem due to Bellman [9] indicates that (5.44) is Hurwitz when d2 > 0.

Proposition 5.2.3 (Bellman) Consider three square matrices A, B, and C of equal di-

mension. [ffi >0, B>0, and C > 0, then the only root of the polynomial
INA+22B+C| =0

with nonnegative real part is A = 0.

Thus, assuming that A < 0 and B < 0, the matrix (5.44) is Hurwitz. This result follows
from Proposition 5.2.3 and the observation that, because A is invertible, the matrix (5.44)

is invertible and thus has no zero eigenvalues. Conditions on Jjb must now be found under

¥ 172
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which the entire closed-loop state matrix given in (5.43) is Hurwitz. One common approach

to this sort of problem is to use the Routh-Hurwitz method [23].

Theorem 5.2.4 (Local Exponential Stability) Consider the equilibrium (5.41) and the
linearized dynamics (5.48). Suppose that A <0 and B < 0. Choosing er to make the state

matriz Hurwitz yields local exponential stability of the equilibrium (5.41).

Remark 5.2.5 One might reasonably ezpect that a necessary condition for the state matriz

- to be Hurwitz is that E be Hurwitz and therefore that Jﬁb should be chosen positive definite.
In the examples considered here, such a choice of cf‘}b corresponds to positive Ja feedback.

The conditions on control parameters for stability require that —Dg,p®©g.q > 0. Therefore,

when (:Zﬁb > 0, the net result of the latter term of the dissipative control law (5.42) is to feed

| back J, with a positive gain. Feeding back J. with a positive gain effectively counters the

dissipation in the controlled directions.

Remark 5.2.6 The group variable 8% does not approach a specified value because the control
law preserves the system symmetry. Adding an appropriate symmetry-breaking potential
control law (i.e., a fictitious spring force) would presumably yield local exponential stability

to a particular point [10].

In Section 5.2.2, the approach described here is applied in simulation to the example of a
planar pendulum on a cart. Section 5.2.3 presents the results of an experimental application

to a variant of this problem, the pendulum on a rotor arm.

5.2.2 Example: The Pendulum on a Cart

The classic problem of a planar pendulum on a cart was treated in [17] under the simplified

matching conditions described in Section 5.1.3. There it was shown that, in the conservative

|
|
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setting, the inverted equilibrium is stabilized by the control law indicated by the method of

controlled Lagrangians. Furthermore, feedback dissipation can be applied to asymptotically

stabilize the equilibrium. Here, we show that one may asymptotically stabilize the inverted

equilibrium even when the pendulum/cart system is subject to generic physical damping.
Using the same notation as in [17], the Lagrangian is

6 ml® mlcosd 6
—mglcos @,

$ mlcos@ M +m $
where s represents the cart location and 6 represents the pendulum angle. The configuration
space is Rx S! where R represents the cart location and S! represents the pendulum angle.
This system exhibits symmetry under the action of G = R, that is, under translations of

the cart.

Figure 5.3: Pendulum on a cart.

In the conservative setting, the open-loop equations of motion for this system are

d oL JL

diog a8 -
dt 85
174
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where u represents a control force applied to the cart. It was shown in [17] that when

1 { misind(§cosf —6?)
S , 5.45
= e U(I—Mzm(l—;)cosze (5.49)

the closed-loop dynamics derive from the controlled Lagrangian

. _ 2 -
1] € mi2 + & :(sz:f)e —1—;"-ml cos @ 6

Lo = 3 — mgl cos 8.
$ —L;—"'ml cos @ M+m $

(This example corresponds to the case of simplified matching in which one may choose

Pab = Gab-)

Define the (conserved) momentum conjugate to s,

J = %1 =(M +m)s — }_—amlcoseé.
as o
Choosing o to satisfy

—-%<0'<0

stabilizes the inverted equilibrium (8, é)e = (0,0) for any value of momentum J.

Stability can be proven with a Lyapunov function developed from the modified energy.
A negative definite Lyapunov function for the inverted equilibrium is
1 J

. - 1 .
Ers(6,6;J) = 5[Aagl6® + 5

S +m + mgl cos@ (5.46)

where

(1 — o) (micos )2

SO0 ) (5.47)

[Aag] = ml? +
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is the modified horizontal energy metric.

Now assume that the system is subject to dissipation as described in Section 5.2,

d 8L oL .

Zios o8 — ¢
ia_L — +u .
dt 93 = UcL disss

where dg > 0 and u, is given by equation (5.45). Following (5.42),

Udiss — [gab‘ig:cgt:ﬁj:ﬂ - Dabpbcgcddgeje]
= [ga.bdg;cgcﬁi:ﬁ - DabJ:ireje]
dp . [ (M +m)(M + msin? ) i\ -
= (M [ g)g — J
(M +m) <M+m> (ml cos §) <M+m_(1_£)mcoszg M+m

M + msin? 8 <
M+m—(1-Lymcos?26)

(5.48)

= Jg(ml cos H)é —dy (

The parameters dp and d 7 represent dissipative control gains.

30 T T

20 e

6 (deg)
7",5,

b
o

[}] S 10 15
Time (s)
1 T T
0S5 i
E ) /’- -
«@
-05r- E
-1 L L
0 ) 10 15
Time (s)

Figure 5.4: Planar pendulum simulation with feedback dissipation.
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Figure 5.4 shows a simulation of the closed-loop system response. The physical proper-

ties are

M=1kg, m=05kg, [=01m, dp=0.01Nms.

The control parameters are
o=-02 dyg=10s"1, d;=1s"L

The initial condition is a static pendulum angle of 20 degrees.
As can be seen in Figure 5.4, the pendulum approaches vertical and the cart comes to
rest. Thus, the system with physical dissipation is asymptotically stabilized by the method

of controlled Lagrangians and appropriate dissipative feedback.

Remark 5.2.7 Cancelling the c.iz'ssipation in the actuated direction and superitmposing J
dissipation as prescribed effectively reverses the natural physical damping in the vertical
(cart) direction. Such an approach is necessary for stability; uncompensated physical damp-
ing in the controlled direction (i.e., damping which opposes the cart velocity) destabilizes

the desired equilibrium.

5.2.3 Example: The Pendulum on a Rotor Arm

In this section, we consider the pendulum on a rotor arm. This problem was treated in
[16], where it was noted that the simplified matching conditions cannot be used to stabilize
the inverted equilibrium. The model used here differs slightly from the model of [16] in
order to better approximate an experimental apparatus. Figure 5.5 depicts the device and
the choice of coordinates. Assuming that the cylindrical links have small diameters and

uniformly distributed mass (instead of massless links, as assumed in [16]), the Lagrangian
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Figure 5.5: Pendulum on a rotary arm.

for the uncontrolled system is

6 zmi? smiRcosf 6

L(6,6,¢) = % —mgl(cos §—1).

@ %mlR cos @ (%M +m) R% + %mlz sin” @ )
(5.49)
A control torque is applied to the horizontal link about the vertical axis. The kinetic energy

metric decomposes as shown,
L 1 1 2,1 2.2
[9as] = gml ) [9as] = §mlRCOS g, [gas] = §M +m | R* + §ml sin“ 8.

Assuming that no external forces act, other than the control torque u, the Euler-Lagrange

equations are

dor oL _ g
dtog 99
d L

In [16], the matching conditions were satisfied by choosing

Oap = gacdegdb + Gab
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Pab = Gab+ kap

where k,; represents a constant gain. In the following derivation, the same choices are made
and [kq] is replaced by & for brevity. The conditions on o and p are consistent with the
assumption that

gab — pab + a,ab’

as discussed in Section 5.1.3.

In the conservative setting, the feedback control law

u=ug = —k¢
LmlRsin 642 — sin 20 (%mlzéqﬁ + mRI(cos 8¢ + %))
= —k 5.51
M+ Im) B +m GR £ 1P)sin?0 1 (5:51)
leads to the modified Euler-Lagrange equations
iaL‘r’o—’p _ aLT'a',p — 0
dt 96 a6
L
40Lrop _ 0 (5.52)
dt 9¢
with controlled Lagrangian
- - 1 .
Lr.0,0(6,6, ) = L(6,6,8) + 5k¢”. (5-53)

While the control law (5.51) is quite complicated, it can easily be implemented using

microprocessor-based control hardware.
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Define J to be the controlled momentum conjugate to @,
J =9k _ ((lM +m) R% + émz2 sin? § -l-k) b+ %mchosBé.

3

Then the modified system energy, the Routhian corresponding to L., ,, is
3. 7 1 32 . Lo aby 72
E.;,06,0;J) = E[Aaﬁlg + §|'p ]J° +mgl(cos 8 — 1) (5.54)

where

1 LmiRcos6)?
A — _ ab = = 12 _ 2 )
[Aas] = [9as = Jaar™gss] = 3m M +m) B+ b2 0 1 & (5.55)
is the modified horizontal kinetic energy metric.
For the conservative system model, the inverted equilibrium
(6.6, ¢)e = (0,0,0). (5.56)

is stable provided Er,, is definite as a function of § and §. Define the amended potential

+1 J?
2 (%M-&-m) R2+%mlzsin26+k'

V.(8) = mgl(cos @ — 1)

The equilibrium (5.56) will be stable provided

sign[A,gle = sign ( (5.57)

8%V,
362 ),

Since V), has a maximum at the equilibrium of interest, the right-hand side of (5.57) is
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negative. Therefore & must be chosen to make [A,g] < 0 at the equilibrium. Now,

1 o[ (GM+m)R2+k—3mR?
[Aagle = 3mi ( (M +m)R2 +k

is negative provided

1 2 1 1 2
—<§M+m>R <k< (3M+4m>R.
Define a new control parameter k£ and let
e! o k—1(3 _,
k——(3M+m)R + z (4mR). (5.58)

The stability condition then becomes k> 1.

Substituting k and simplifying, the horizontal metric A,5 becomes

imi?2 — 3mR?)sin? 0 — 13mR?
[Aag] = £m12 (3 4 ) ! rd -
3 Fmi2sin? 6 + %—L (3mR2)

When & > 1, Aq,p is negative for all € (—8,8) where

o=t (1) ()

When 8 = +6, Aqp becomes zero and the control law (5.51) becomes singular. Thus 7

places a physical limit on the region of attraction of the stabilizing control law. As noted
in [16], the value of g approaches % in the limit that £ — 1 and [/R — 0.
As shown in Appendix F, linear damping provides a very accurate model of friction in the

pendulum link of the experimental apparatus. The azimuthal damping is more accurately
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Figure 5.6: Experimental apparatus.

characterized by a Coulomb model, though we assume that this damping too is linear in
velocity. Including the friction model and a dissipative feedback torque ugiss, the open-loop

equations (5.50) become

ddL OJL .
dios o8 — W
d L .

where dg > 0 and dy > 0. In the notation of Theorem 5.2.4, define

d2® = dgg? and d% = d g%

182
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where Jg and d. s are dissipative control gains. Choosing

Udiss = d(bé + [gabti‘;fgcﬁ]é - [D ab:obcgcddge]j

= dgd + dg[gas]6 — ds[Dasp™J

with dg > 0 and d; > 0 exponentially stabilizes the equilibrium (5.56). Note that the dissi-
pative control law attempts to exactly cancel the damping in the controlled direction. While
exact cancellation is practically impossible, the exponential stability result of Theorem 5.2.4
ensures a degree of robustness to modeling errors.

Figure 5.6 shows the experimental apparatus. As discussed in Appendix F, the system

is well-modeled by the equations developed in this section with the parameter values

M =0.259kg, R=0211m, ds=~0.0096 Nms,

m =0.130kg, [=0.332m, dy=0.00015Nms.

Figure 5.7 shows the experimental results for the control parameters

k=2 dy=10s"', dy=5s""L
1 Initially, the pendulum is very near the feedback-stabilized inverted equilibrium. At approx-
imately 2 seconds, the pendulum is perturbed. The system undergoes a damped oscillation,
converging once again to near-equilibrium within about 2 seconds.

One discrepancy between the experiment and simulations is a slow, steady drift in the
¢ direction which is apparent in the latter seconds of the experiment shown in Figure 5.7.
One explanation is that the symmetry axis of the apparatus is not truly vertical resulting in

a bias in the measurement of §. Any such bias would naturally result in some drift in the ¢
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Figure 5.7: Experimental results.

direction. One might reasonably expect drift since the control law preserves the azimuthal
symmetry of the system. To eliminate drift, one might employ an additional control torque

which breaks the symmetry as described in [10].

5.3 Dissipation and Euler-Poincaré Systems

Recall that in Chapter 4, drag on the feedback-controlled underwater vehicle was shown to
enhance stability of steady, long-axis translation. In this section, we consider the effect of
physical damping on an entire class of Euler-Poincaré systems which have been stabilized
by the method of controlled Lagrangians [18]. We search for a dissipative feedback control
law to asymptotically stabilize a closed-loop equilibrium which is stable for a conservative
system model. Our approach is similar in spirit to that of Chapter 4. We use a Lyapunov
function for the conservative, closed-loop system to study the effect of physical damping

and to design the feedback dissipation.
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The systems considered here have as their configuration space a product of Lie groups
Q = H x G and they exhibit full symmetry under the actions of H and G. While it is still
required that the r-dimensional Lie group G be Abelian, the n-dimensional group H may
generally be non-Abelian. Because of the symmetry, the dynamics may be described in a
reduced velocity phase space isomorphic to fj @ g, where f and g are the Lie algebras of H
and G, respectively. Let n* (where a € {1,2,...,n}) be a component of the velocity n € b
and let 6% (where a € {1,2,...,7}) be a component of the velocity 6 € g. Define the reduced
Lagrangian

1

59as0°6°, (5.60)

) 1 .
I(n®,6%) = 590,577"‘173 + gapn®0° +

where gog, gob, and gep are constant components of the kinetic energy metric tensor. In
the absence of generalized forces other than the control, the open-loop equations are the

Euler-Poincaré equations:

d ol al

aoE Cﬁ-ﬂf’w (5.61)
d dl

Eaéa = Uq. (562)

The coefficients cg,, represent the Lie algebra structure constants for f.

Recall that in the Lie-Poisson (Hamiltonian) setting, a Casimir is a function of the mo-
menta which has its gradient in the null space of the Poisson tensor. Define the momentum
conjugate to n%,

M, = —. (5.63)

185



In the Euler-Poincaré setting, a Casimir C*¥(M,) satisfes

k k
5" = 5izy (@) = vz, (7 ) =0
The Casimirs C* of the non-Abelian group dynamics are conserved for any choice of control.
Physically, Casimirs correspond to inertial conservation laws. Since the control acts on the
shape space G, which represents internal degrees of freedom, it does not affect the total
system momentum. Casimirs are thus conserved under any choice of control.
For systems described by equations (5.61) and (5.62), one is often interested in the

stability of a relative equilibrium
(n°,0%) = (1, 62)

of the uncontrolled dynamics, where n¢ is nonzero. In terms of the method of controlled
Lagrangians, this problem is distinct from the problems considered in Section 5.2.

The method of controlled Lagrangians provides a control-dependent modification of the
kinetic energy metric and a choice of control which preserves the Lagrangian structure in
the closed-loop system. In this case, one chooses a modified reduced Lagrangian i, and

a control u, such that

d al-r'a"p _ 7811',0',[)

i one = S g (564

dOlrs,

Gt = O (5.65)
186
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Choosing the modified energy in such a way that

al al‘r,g’p

a.,’a a.,’a

(5.66)

leads to “matching” of equations (5.61) and (5.64), as in equation (5.11). The reduced
controlled Lagrangian is

. - 1
lrop(n®,6%) = U(n®,6° +78n") + SoaTarin®n®

1 . .
+5@as(60 + (9°Gea + 730%)(6° + (9%%94p + TENP)  (5.67)

where @gp, = pap — gab [17]- Recall from Section 5.1.3 the Euler-Poincaré matching condi-
tions:

78 = —0%g, and 0% 4% =g (5.68)

where pgy and 0,5 are chosen constant to preserve symmetry. Also recall from (5.20) that

these conditions lead to the controlled Lagrangian
@ éa — l a aéb l e'ag'b
lrp(17:6%) = 59a81°0" + gabon™ 0" + 5ab6"0". (5.69)

One may check that the control law (5.19) which leads to the closed-loop equations (5.64)

and (5.65) may also be written as

d dl
Ug = kg a‘ga—na)

ol
= 8

where k2 is defined in (5.30). Because of its role in the feedback control law (5.70), kg may
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be thought of as a control gain, replacing the previously free parameter pe. Equation (5.70)
is often a more convenient expression of the control law than (5.19).
Define the controlled momentum

- ol .
Jo = ’ng:_p = gaa"la + Pabgb- (5'71)

Written in terms of n® and J,, the controlled energy takes the block diagonal form
‘@ T 1 a 1 ab 7 T
Er,a,p(ﬂ yJa) = "2‘Aaﬁ77 n° + EP JaJb, (5.72)
where the horizontal kinetic energy metric is

Aof = 9o — Gaah™ gos- (5.73)

Remark 5.3.1 The control u, in equation (5.62) leaves considerable freedom in matching
this equation to a desired closed-loop equation such as equation (5.65). Choosing the right-
hand side of (5.65) to be zero is somewhat natural in the conservative setting, since this
choice conserves J,. Conservation laws simplify stability analysis for the closed-loop system.
The choice (5.65) of closed-loop 6%-dynamics is not unique, however. For example, one
might use control to impose Euler-Poincaré equations for some m-dimensional, non-Abelian

Lie group with structure constants ¢, (where m is the dimension of the original Lie group

G):

d al—r,g,p _ —b ~dal-,—’a»,p
dt aéa —cadB —87- (574)

One might imagine a situation where the resulting closed-loop phase space structure is more

useful than that due to (5.65). We call this structure-modifying feedback control. (See also
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Remark 4.1.12 and [13], [70].)

Rather than pursue the idea of structure-modifying feedback, we continue as in Sec-
tion 5.2 studying the effect of physical and feedback dissipation on the closed-loop dynamics

under the control law given by the method of controlled Lagrangians.

5.3.1 The Effect of Generalized Forces on the Modified Energy

Assume that the control law u, has been chosen as indicated in (5.70) for the conservative

system model. Further, assume that there is a function
a 71 1 a 1 ab 7 T 5 k T
E&(T’ yJa) = 'Q'A-aﬁn n+ ’2'p Jadb + @(C*, Ja). (5.75)
which has a maximum at some desired relative equilibrium
(n°,6%) = (ng,62). (5.76)

One method of generating such a function is the energy-Casimir method, which imposes
conditions on the control gains and on the equilibrium values of the first and second partial
derivatives of ®. To illustrate the idea, we proceed with the first step of the method. That
is, we seek conditions on ® for which the equilibrium (5.76) is a critical point of Eg. First,
using the notation in [18], define the controlled momentum conjugate to n* as

Alrg.p(n,0%) _ Ol(n>,6%)

Mo = an® on*

gaﬁnﬁ + gaa.éa

(gaﬂ - gaozpabgbﬁ)"')l3 + gaa.pabjb

= Aapn® + 9aap™Jp- (5.77)
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Note that M, = M, because of the Euler-Poincaré matching conditions. Recall that the
Casimirs C* depend only on M,; they are Casimirs of the non-Abelian group dynamics.
For the equilibrium (5.76) to be a critical point, the first variation of E3 must be zero

at the equilibrium,

DEjle - (61°,80y) =
4% aCc*k . 8% ack 4% -
aAa + ——A4A & A + | J ab + sxE o ="Yca ab + —= 6J, =0. (5.78
(” 5T BC* b1, “")e 7 ( "t ack g, 0 T a5,) Ch =% B

Since the variations §n® and éJ, are arbitrary, condition (5.78) requires that

8d ack
3CF aa7 le = —7g (5.79)
(o3
and that
- 8% 8Cc* 8%
— ab , Y* ab
o = (B Zr o+ 53]
- 8%
= ba Ja = 9aal®) + —=
(p ( 9aan™) o3, )
= (9’%2—;) i (5.80)

In the following analysis, only equilibria for which 62 = 0 are considered.

Remark 5.3.2 [t is natural to consider equilibria for which é;_‘ = 0. If 92 # 0, then
friction in the internal actuator would require a steady counterforce which might be costly to
masintain. Still, this condition could be relazed in the analysis that follows, perhaps leading

to a more general result.

Continuing, one next requires that the second variation of Eg be definite when evaluated

!
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at the equilibrium. Often, a simple but adequate choice of ® is a function which is linear

and quadratic in its arguments:

3 7 8% 3?o 1
k k L0 v Lk ARyt o
&(Ck, Ja) = aCkI C* + 57| T+ 5omacl. (2(0 ckc ce)>
5@ k k 2P (1 - - - - )
C —_—= — J _._J J _J , 5»81.
Tack a7, (© W= Jo)) + A anL 5(Ja = Ja)(Jo = Jo) | » (5-81)

where the notation |, indicates that the term is a scalar constant determined by the energy-
. Casimir method. In proving stability of a given relative equilibrium, the linear terms in
(5.81) ensure that the equilibrium is a critical point of Eg, while the quadratic terms provide

definiteness of the second variation.
Assume that Ez < 0 with equality if and only if the system is at the desired equilib-
. rium. For the conservative system, the controlled energy E; g ,, the Casimirs C*, and the
controlled conserved quantities J, are all conserved. Then %E@ = 0 and Lyapunov stability

follows immediately.

More generally, suppose that the system is subject to generalized forces F, and F,. The

open-loop equations become

d al ol

—_— = % (i

& e &.n pr F, (5.82)
d ol

Eae-a = ua + Fa. (5-83)

To examine the effect of physical and feedback dissipation on closed-loop stability of
equilibria, consider the rate of change of Ez due to the generalized forces F, and F,. While
%E&, = 0 for the conservative system, the forces F,, and F, destroy the conservation laws.

In general, the internal forces Fy, destroy conservation of E; s, and J,. These forces do not
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affect C*(M,,) since F, does not enter the equation for ‘%M

&M= G e~ @oe @ o T (584

However, the external forces F, typically destroy all of the conservation laws.

Adapting equation (5.32) to the current problem gives

) 8% ac"c 3 9% =
P4 = cepc ab y —_—
- ad ack - 8d -
= n%A.3BP" (F, — g.59%F: +JaD“b Fy—koFg) + — =% —Ja
B (-, v ) ( b 5) aCkam, = ad,

Using equation (5.31) for %fa and equation (5.84) for %Ma, and noting that E,i, = 0 when

F, = F, =0, one finds that

Eg =% Aap B (Fy — 909" F)

0% ack 0%
9CF BM Fo + aj' PabDbc (Fc_kg‘pﬁ) (5'85)

+jaDab (Fb - kng) +
Assume that 6, = 0 and that & takes the form
B(C*, Jz) = ®(C*) + ¥ (Ja)

where @ is linear and quadratic in its arguments and

1

- a7 T
2¢p Jan.

\P(ja) =

The scalar constant v is chosen to satisfy conditions imposed during the stability analysis
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of the conservative system model. From equation (5.85)

d 2% ack ab 1\ : .
Ei_E(p"p = (naAaﬁBl"h + WEJ\Z) F, — 1%9aa D® Fp + (1 + 17;) Jo D b (Fb - ngﬁ) .

(5.86)

Remark 5.3.3 (Feedback dissipation with no physical dissipation.) Consider the

case in which Fy = 0 and let F, = Dapp®udss where dissipation is due only to the control

udisS_ Equation (5.86) becomes

d 1\ ;>
ISR P

! This is precisely the case considered in [11]. Clearly, one may choose udsS to make %E&,
sign semidefinite with whatever sign is required by the sign of Eg. (For ezample, if Eg <0,
as we have assumed, then one may choose ugiss to make %E@ > 0.) Asymptotic stability of

the desired equilibrium may then be studied in the context of LaSalle’s invariance principle.

Unfortunately, the negative definite function Eg ¢ is not generally suitable as a Lya-
punov function when physical dissipation is present. Although F¢ ¢ is conserved when
F, = F, = 0, nonzero generalized forces destroy the conservation laws for the energy I g,
the controlled momenta J,, and the Casimirs C¥. The typical result, similar to the problem
described in Proposition 5.2.2, is that a Lyapunov function F¢ ¢ developed for a conser-
vative system using these conservation laws will have an indefinite rate in the presence
of physical damping, regardless of the choice of feedback dissipation. (The example of a
spacecraft with an internal rotor, discussed in Section 5.3.2 below, verifies this observa-

tion.) Consider a function & of the form (5.81). The terms linear in C* and J, ensure
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that the equilibrium is a critical point. The quadratic terms provide Eg with the correct
definiteness in directions where it is otherwise indefinite or definite in the wrong sense.
These quadratic terms can be problematic when drag is included because they can lead
to an indefinite energy rate. Alternatively, if the quadratic terms were omitted, one might
obtain a negative semidefinite function whose rate could be made positive semidefinite by
an appropriate choice of feedback dissipation. Stability might then be studied by applying
LaSalle’s invariance principle to this semidefinite Lyapunov function.

Suppose that a negative semidefinite energy function can be formed by removing from

®(CF) the terms quadratic in C*. Define
- %
&(C*) = (W) ck. (5.89)
e
Assumption 5.3.4

— 1 -~ =~ -~ -
By = 5Aapn®P + 5p%Jods + 8(CH) + () < 0. (5.90)

The goal is to find a subclass of Euler-Poincaré systems which, having been stabilized by the
method of controlled Lagrangians, can be shown to be asymptotically stable in the presence
of physical dissipation using a semidefinite energy function of the form (5.90).

It should be noted that assumption 5.3.4 is somewhat restrictive. The assumption
holds for the spacecraft with a single internal rotor considered in Section 5.3.2 and for
an underwater vehicle with three internal rotors. However, it is not always true that one
obtains a semidefinite Lyapunov function by simply truncating quadratic terms from ®(C¥).

In other words, applying the first two steps of the energy-Casimir method (see page 39)
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does not always yield a function which is semidefinite about the critical point.

Suppose the system is subject to physical damping described by the generalized forces
Dy (n,8) and D, (n, 6). In this setting, we will be concerned with stabilizing the relative
equilibrium (7, 8)e = (7¢,0) which is an unstable relative equilibrium of the uncontrolled,
conservative dynamics. Of course, in the presence of physical dissipation, a force must
act to oppose the damping when the system is at equilibrium. Assume that there is a
constant input force which is equal and opposite to the dissipative force at equilibrium.

The open-loop equations of motion become

d dl al ;

o = A n7 57 + Do (n,0) — Da(ne,0)
d a8l ;

—-dt —aéa = Uq + Da(n, 0) - Da (T]e, 0).

Most components of the thrust term Dg,(7.,0) will be zero. Even so, this term obviously
requires some additional actuation such as a thruster. This additional control authority
might be used in a more sophisticated way. For example, one might choose the thrust to
be some function of the velocity. Here, however, it is assumed that the additional input is
the constant force D, (7, 0).
Physical dissipation can take a variety of forms and general statements are difficult to
make. One may reasonably assume that drag opposes velocity,
: : . < 0 6#0,
n%Dqa(n,6) { and 8%Dq(n,0) { _ (5.91)
= 0 6=0.
Assumption (5.91) includes a large class of dissipative processes. To simplify the analysis,

we make the following stronger assumption on the form of drag.
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Assumption 5.3.5

Da (fl’ é) = 0
and (5.92)

Da(n7é) = - aﬁ(nﬁ —175),

where dug is a positive definite tensor.

The assumption that D, = 0 is equivalent to assuming that any internal damping is can-
celled through feedback. Assuming that D, does not depend on 6 is reasonable, since 8
corresponds to internal dynamics whereas the force D, acts externally. This linear drag
model belongs to the class of damping forces known as Rayleigh dissipation. While the as-
sumption of Rayleigh dissipation is restrictive, the results derived here should hold for more
general drag models, so long as these modelsireﬁect some very basic properties of physical
damping. For example, terms which are higher order in velocity may be introduced so long
as drag always “opposes” velocity in the sense of (5.91).

Recall equation (5.86) for the rate of change of Eg y,

3% ack
aC* a1,

d
“Fsw = (n&AaﬁB’s T+

dt ) (_d1¢(77¢ - 77::#)) - TlagaaD“be

+ (1 + %) JuD® (Fy = K (~dgy(n” — 1)) (5.93)

Assumption 5.3.6
k_ LikaB o1
C* = -2-h. M, Mg

where h*®B is constant and symmetric.

i
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Assumption 5.3.6 holds for a number of systems of physical interest including the spacecraft,

the underwater vehicle, and the heavy top. Substituting for the gradient of C* in (5.93),

d
mrew =
. % 1\ = .,
(n"‘AaﬁB‘"' + (n"‘Aa,s + Jap“bgw) mhkﬁ“’ - (1 + E) Ja D%k} ) (—dyy(n? =)
1\ -
+ (—n"‘gaa + (1 + 17}') Ja) Dabe. (5.94)

To condense notation, define

. ad
Xap = Aoy (B'w + ackhk—ﬁb) (—dys) (5.95)
od 1
Ye = (,,abg,,ﬂ bc_kh'fﬂ7 - <1 + E) D“”k,j’) (—dya)- (5.96)

We also make the following assumption.
Assumption 5.3.7 ¢ is in the null space of Xqog and Y7 .

This assumption holds, for example, for the spacecraft problem considered in Section 5.3.2.

Under Assumption 5.3.7, the rate of change of Eg y does not depend on 7g and

d - 1\ -
—Eg g =1"Xapn® +1°Y2Jo + | —1%aa + (1 + = ) Jo | D®F,. (5.97)
dt P

Consider the dissipative feedback control law

1\ -

where d° represents a control gain. Substituting into equation (5.97) and using Assump-
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tion 5.3.7 gives

d_t.Eé,\p = - (5“99)

where

P = (1 + %)2 [J“”]
Q = - (1 = %) [J“gcﬂ]

~ o - e )
S = [Xag +gac(ZCdgdg] .

Suppose that the dissipative feedback gain dgp is chosen to be symmetric and positive
definite. Then the remaining conditions on Ja[, under which %E@,’\P > 0, can be obtained

from the following lemma.

Lemma 5.3.8 The square matriz

A B

C D

with A = AT > 0 is positive semidefinite provided

(D-CA'B)+(D~CA'B)YT —BTA'B-cA~'cT >o0.

Proof. Given vectors « and y of compatible size,
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where

B A B

v
o

w

BT D C D

But A = AT, so A = A. One may easily verify that

T A ﬁ T _ T _ — _
. —y-(D—-BTA 'B)y + (z + A"'By) - A(z + A"'By).
_T —_
y B" D y

The latter term is positive definite. Therefore, one requires that

D-BTA'B=(D-CcA 'B)+(D-CA'B)T—-BTA'B-CA~'CT > 0. (5.100)

Applying Lemma 5.3.8 to the matrix in equation (5.99),

S — RP_lQ = I:Xaﬂ +gacd.Cdgdﬂ

(i (10 8o (2) () )

_ N
= |Xap t+ (1 + E) Yo?gaﬁ]
QTP—lQ = .ganabgbﬁ]
RP-'RT = |vo- (1 + i) Jca) (1 i) _23 (Y” - (1 i) d*? ]
= a Gac + ab 8 + 9dp
I 4 P P
r 1 —2 . 1 -1 -
= (1 + E) Y, dabYﬂb - (1 + 1)—1)) (Y£9a5 +gaaY,3a) + gaadabgbﬂ} .

Substituting into condition (5.100), one obtains the following theorem.

Theorem 5.3.9 Suppose feedback dissipation of the form (5.98) is chosen with day SYM-
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metric and positive definite. Then %E@yw > 0 provided Jab can also be chosen to satisfy

1IN2 L 1\t .
[Xaﬁ + Xﬁa - (l + E) chdabYBb +2 (1 + E) (Y:gaﬁ +gﬁaY;) - 2gaadabgbﬁ] = 0.
\

(5.101)

In the following section, Theorem 5.3.9 is applied to the example of a spacecraft with a

single internal rotor actuator.

5.3.2 Example: The rigid spacecraft with one internal rotor

Consider a rigid body with an internal rotor aligned with the third principal axis of the bsody.
The rotor spins under the influence of a control torque ». The problem of stabilizing steady
: intermediate axis rotation of the body using the method of controlled Lagrangians was first
considered in [15] and then further in [18, 11]. The configuration space is Q = SO(3) =< S!,
with the first factor H = SO(3) representing the spacecraft attitude and the second factor
G = S! representing the rotor angle. The Lagrangian is the total kinetic energy of the

system.

Open-Loop Dynamics. The reduced Lagrangian on so(3) x R is

(o) (a0 0 o) (o)

(d = L Qs 0 X 0 O Q, 510
; = § . -
Q3 0 0 X3 J3 Qs

L6 ) o oma)\e

where Q = (Q,Q2,Q3)7T is the angular velocity of the carrier and ¢ is the relative angle

of the rotor. The rigid body moments of inertia are I} > I > I3 and the rotor moments
i 200
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of inertia are J; = J> and J3. It is also convenient to define the components of the locked

inertia, A\; = I; + J; for = 1,2,3. Assume that A; > A2 > A3. In the notation of previous

sections,

AL 00 0
gas]l=] 0 2 0 |» [ctl=1[g8]"=] 0 |+ [gas] =3
0 0 /\3 J3

The components of body angular momentum are

A
~ ol
[Ma} = 6—Q = A2
A3Q3 + J3(13

The momentum conjugate to ¢ is

ol .
—_ =l = Q .
% 3 = J3(Q3 + @)

With a control torque u acting on the internal rotor, the equations of motion are

a0 _ _q9
dt o2 o0
dal

A Casimir for the system is the magnitude of the total angular momentum,
_1a al 1 2 2 -\ 2
C= 23—0 . 'Bﬁ = 5 ((/\IQ]_) + (/\292) + (A3Q3 + J3¢> ) . (5.103)
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The Controlled Lagrangian System. Since the Abelian group G = St is one-
dimensional, g.s, 0o and pgp are all scalars. Given that [ggp] = J3, we let [oqp] = 0J3 and

[pap] = pJ3 where o and p are dimengionless scalars. For matching, p should satisfy

1 1 1 ] P
—_—t — == .e. = —. 5.104
0’J3+pJ3 J3’ e g p—l ( )

The controlled Lagrangian is

. 1 .1 .
lroo($2 8) = 5 (MOT + X203 + [9F) + 3036 + 5pJ3¢”. (5.105)
Define a new control parameter k£ in terms of p,
-1
‘ _ p L
k= (l - p—1 Js)
The method of controlled Lagrangians provides the control law
(5.106)

= ucr = k(A — A2)Q1Q2

which gives closed-loop equations that derive from the Lagrangian (5.105):

d0lrgp _ _g9res
dt oQ on
ial'r,a',p —_ 0
dt 3¢ )

Notice the controlled conserved quantity

- al i
I3 = =222 — J.(Q3 + pd).
3 30 3(Q3 + pd)
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For this example

AL O 0
[Aag] = (98 — 9aaP™gs] = | 0 2y 0

0 0 I+&3J

n

Because it has units of inertia and is parameterized by p, define the “controlled inertia

) -1
- Ic3=[3+p

J3.

Using [A4g], the controlled energy may be written according to equation (5.72) as

A 00

~ 1
lTvo':P(Q’ 13) = En ° 0 A2 0 n + 2pJ3 -

0 0 Ig

Stability of Steady Intermediate-axis Rotation. Consider the equilibrium

Q=|0a | =0, (5.107)

where Q # 0. This equilibrium corresponds to steady rotation about the intermediate axis
and is unstable for the uncontrolled spacecraft.
The control law (5.106) can be shown to stabilize the equilibrium (5.107) for appropriate

i choices of k (equivalently, p). Conditions on k for stability may be found by applying the
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energy-Casimir method to the augmented energy

Es w(R,03) = lr,5,,(R2,13) + ®(C) + T(i3) (5.108)

where
I 1 2 2 1-\2
C(Q,la) = 5 ()\191) -+ (/\2Q2) + IC;;Q.'} + ;l3 R
Let
- i [§
U(l3) =
(I3) 00T

In proving nonlinear stability of the equilibrium (5.107), one first requires that it be a

critical point of Eg y:

A2,
- o®
(DEQ,W)e . (691 6l3) = 0 = [Aaﬁ]ne + ’6"5 /\%Qz - 692
e

Icy(Icy Q3 + 5l3)
[
1\ (8@) 1( 1~> "
+ll{1+=) 2+ (=) = (I +=T) |-db.
(( ¢>PJ3 ac) p\'® 270/, )

This requirement is satisfied by choosing ® such that

(22) —-L
ac),” N

Next, one requires that the equilibrium be either a maximum or a minimum of E¢ y. This

will be true if the matrix of the second variation of E¢ y is definite when evaluated at the

, 204
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equilibrium. The matrix of the second variation evaluated at the equilibrium is

[ n (1 ~ %;) 0 0 0 \
’ (aar (%“s)e " ’ (5.109)
0 0 Ic, (1 - %) -

o o E GO E RO

Since the first diagonal element is negative, the matrix must be negative definite for E¢ ¢

to be a Lyapunov function. The second diagonal element is negative provided one chooses

9?®
(522). <

The third diagonal element is negative if

® such that

If1— 7{‘2’ < k < 1, then Ic, is positive. If £k > 1, then I¢; is negative. In either case,
the third diagonal element in the matrix of the second variation is negative. Assume that
k > 1, which corresponds to choosing p such that

J3
J3 + I3.

—_— < ——x0 or O<p<

The final condition for the second variation evaluated at equilibrium to be negative definite

is that ¢ be chosen to satisfy

1 J3
(1 * _) < 0w —Tcs) (5110
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Assuming k& and 1 are chosen according to the requirements above, a negative definite

Lyapunov function for the equilibrium (5.107) is

1

Eo w(03) = lr5 (R, 13) — W

c+alliic—c,)+ 3
€2 ¢ 2¢pJs’

where

el <o0.

As was shown in [11], an appropriate choice of feedback dissipation leads to asymptotic
stability, in the conservative setting. While a spacecraft is arguably free from external
damping, consider the effect of drag as a simple illustration of the ideas developed in Sec-
tion 5.3.1.

The Effect of External Damping. Now, assume that the spacecraft is subject to
an external damping torque —D$2 where D = diag(d;,d>,d3) > 0. Also, assume that an
external “propulsive” torque D2, acts on the spacecraft. The revised open-loop equations

of motion are

d 9l = Ol
zoa - g —DEr-f) (5.111)
a0 _ (5.112)
dt 3¢
Choose the new control law
U = UcL, + Udiss (5.113)

where ucr, is given by (5.106) and ugiss is a dissipative feedback term to be chosen.
Because the rate of change of Eg¢ v is indefinite regardless of the choice of feedback
dissipation, Fg ¢ cannot be a Lyapunov function. (See Remark 5.3.11.) Consider instead
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the negative semidefinite function

B3y = lrgp(n®, Ja) + B(C) + ¥(ls). (5.114)
where
B(C) = ——cC
= -3C.

In accordance with Assumption 5.3.6, we may write C = %hl"‘ﬁ MaMg where
[RleP] =T.

According to definitions (5.95) and (5.96),

A 0 O % 0 O
1
[Xag]l = 0 X O 0 £ o0 _EI (—D)
0 0 Ig 0 0 x

. AL 1 1
= diag (- (1 - /\—2) di, 0, —Ic, ()‘—3 - rz-) d3)

and

o = (00— _(1+L)e=L1)
= (00 55 (g) 5og) oo

_ 1, () est
= (O’ 0. (p/\z+(l+¢) T )d“)

As required by Assumption 5.3.7, 2. is in the null space of [X,g] and [¥Z].
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Define the dissipative feedback gain
= J:
[das] = =

where d is a scalar gain. According to (5.98), let

1\ -
Udiss = [Dabec (_gcﬂnﬁ + (1 + Z) Jc)]
) 1 p—ll)_ch( ( 1>-)
= |—+—= — | =S+ 1+ =)13]). 5.115
- (Japfs B\ p) " (5.113)
Theorem 5.3.9 gives conditions on the dissipative feedback gain d for asymptotic stability.

In Appendix G, it is shewn that choosing

d3 >0 (5.116)

with

) I3 J3 )
0<1l4+—<min|{ — . 5.117
( =D%’ 702 —Ta) (5.117)

makes E’&,\I, >0.

LaSalle’s invariance principle is applicable to systems with semidefinite Lyapunov func-
tions. However, the task of finding a trapping region is hindered by the semidefiniteness;
one may no longer define a compact set simply by bounding the value of the Lyapunov
function. For this example, however, one may find a compact, positively invariant set by
using a physical argument similar to the argument used to define the set By on page 107.
Since drag increases linearly with angular velocity and the propulsive torque is constant,

the magnitude of body angular rate ||2|| must be bounded. The Casimir C = %”%IP may
i 208
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be used to define a (noncompact) positively invariant region whose boundary is determined
by this “maximum sustainable angular rate.” Another (noncompact) positively invariant
region may be defined by bounding the value of E‘i’\[’- The intersection of these two sets
is compact and positively invariant. Thus, LaSalle’s principle may be applied within this
region.

Examining the dynamics on the set where %E@'\p = 0, one finds that
- Aoy = —da(Q2 — Q).

The largest invariant set within the set where %E—éy‘p = 0 contains only the desired equilib-
rium (5.107). Thus, one may conclude that the equilibrium is asymptotically stable. In fact,
since the trapping region determined by the method outline above is radially unbounded,

one may conclude global asymptotic stability.

Theorem 5.3.10 (Global Asymptotic Stability of Steady Intermediate Axis Ro-
tation with Drag) Consider the control law (5.113) with uqgiss given by (5.115). If k > 1,
d satisfies condition (5.116) and ¥ satisfies condition (5.117), the equilibrium (5.107) is

globally asymptotically stable.

Remark 5.3.11 If one considers the original negative definite function Eg ¢ rather than
E&,,\p, one finds that %Eq,,p s indefinite. As a stmple illustration of this fact, assume that

at an instant Q; = Q3 =0 and I3 =0. Then, at that instant,

Few =\ 3c2

d 2P
dt

) (C = C) (0a22) (—da (2 — ).

Since (C — Ce)(22 — ) > 0 in this special case, the sign of %Eq,,\p depends on the sign of

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 L
8 10 2 £ 40 50 &0
g v
sy
o
¢y .
0 10 20 £ 40 50 60

1Cl 10 20 30 40 50 60
@ — Y -
e 0.5k~ 4
& \
= TN
t U L 1 L e
- 0 10 20 30 40 50 60
Time (s)

Figure 5.8: Closed-loop spacecraft response to an initial perturbation.

Qo. Therefore, %Eq),\y is indefinite under the influence of drag, as modeled.
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Figure 5.9: The Casimir and Lyapunov function.

The stability result of Theorem 5.3.10 is confirmed in the simulation shown in Figure 5.8.
Figure 5.9 shows the time history of the Casimir C and the semidefinite Lyapunov function

E’q,,\p. The parameters used in the simulation were to reflect the assumed principal inertia
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ordering, but are otherwise arbitrary:

I =3kgm?, L=2kgm? I3=1kgm?

Ji=Jo=025kg m? J3=0.5kgm?

The physical damping coefficients were d; = dy = d3 = 0.1 kg m?/s. The remaining

parameters were chosen as
k=2.5 (p=0.23), Pp=-11 d=1.5.

The desired equilibrium was steady rotation about the intermediate axis (the 2-axis) at 1

rad/s. (Once again, this choice was arbitrary.) The initial condition for the simulation was

Qo = (1, 1, 1) rad/s lo = 0.5 kgm?/s.

As is evident in the simulation results of Figure 5.8, the perturbations in Q;, Q3, and ]
decay within ten seconds. Once the spacecraft is rotating purely about its intermediate axis,
the dynamics are governed by the linear damping and the constant propulsive torque. Ad-
ditional control authority over the propulsive torque could produce even faster convergence

to the equilibrium spin rate £, = 1 rad/s.
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Chapter 6

Conclusions and Future Work

The principal, unifying theme for this work is feedback stabilization from a geometric me-
chanical perspective. The idea of reduction by symmetry leads to the low-dimensional model
of an underwater vehicle with rotors used in Chapters 3 and 4. The first step in the control
design, originally based on the insightful work of Krishnaprasad [40] and Bloch et al [13],
may be derived using the elegant idea of kinetic energy shaping, i.e., the method of controlled
Lagrangians [17]. Proof of stability via the energy-Casimir method and Lyapunov-based
design of feedback dissipation are also geometric in nature.

A secondary theme arises from a concern over the effect of drag on the underwater
vehicle stabilization results. The question about the effect of physical dissipation in this
particular system led to the more general inquiry, described in Chapter 5, into the effect of
damping on controlled Lagrangian systems.

In Section 6.1, we summarize the results presented here. Section 6.2 describes a few

ideas for future investigation.
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6.1 Summary

Leonard [42] studied the dynamics of ellipsoidal underwater vehicles modeled using Kirch-
hoff’s equations for a rigid body in a perfect fluid. Stability criteria for various translational
relative equilibria gave conditions on angular rate and CG location for nonlinear stability.
Leonard and Woolsey [45] later considered the possibility of providing gyroscopic stability
using an internal rotor rather than by spinning the body. Since these predictions were
developed assuming an inviscid fluid, concern arose over the effect of viscosity. Chapter 3
reviews the equilibria and their predicted stability properties and also describes an exper-
imental investigation of the criteria. The experiments involved launching a bottom-heavy
prolate spheroid with an internal rotor along its symmetry axis in the direction of gravity.
While the critical parametric conditions for stability were not finely resolved, the experi-
ments indicate that the stability conditions based on the ideal fluid model are somewhat
conservative. This result is physically reasonable. One would expect flow separation on the
aft, leeward side of a prolate spheroid whose symmetry axis is slightly misaligned with the
flow. The low-pressure, separated flow would tend to realign the symmetry axis with the
flow. (This viscous effect alone is not enough, however, to overcome the destabilizing fluid
moment predicted by potential flow theory. Thus, stability requires some other mechanism
such as a low CG or gyroscopic stabilization.)

In Chapter 4, a control law is proposed for an underwater vehicle with three internal

rotors as actuators. The development takes place in three stages:
1. Stabilize a conservative model of the system by shaping kinetic energy,
2. Add feedback dissipation to achieve asymptotic stability,

3. Examine the effect of physical dissipation to ensure good performance.
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The first step involves shaping the kinetic energy of the clos:ed-loop system by effectively
modifying the system’s inertia. Steady long-axis translation is stabilized by choosing control
gains to make the modified inertia negative. The second step follows naturally from the
constructive Lyapunov analysis used to prove stability in the first step. Prior insights from
[31] and new analysis indicate choices of control gains which expand the estimated region
of attraction. Furthermore, simulations suggest that the region of attraction estimates are
conservative. Because physical damping is omitted in this stesp, the dynamics evolve on an
invariant surface defined by the initial condition. Steady long-=axis translation is shown to be
asymptotically stable restricted to the appropriate level set; ffor example, the final velocity
of the vehicle is dictated by the initial translational momentiuim. The third step involves a
general model for the damping force and torque on an ellipsoidal underwater vehicle which
is presented in Chapter 3. It is notable that this drag model contains, as a special case, a
common model cited in [29]. One effect of damping on the wehicle dynamics is to destroy
conservation laws used to construct the Lyapunov function in the first step. Therefore,
a modified semidefinite Lyapunov function is introduced bsy truncating terms from the
previous Lyapunov function. Proving asymptotic stability with a semidefinite Lyapunov
function is complicated by the difficulty of finding a trappimg region and the necessity of
examining the “zero dynamics,” i.e., the dynamics on the se:t where the Lyapunov rate is
zero. In the case of coincident CG and CB, these difficultiess are overcome resulting in a
global asymptotic stability result. In the case of noncoincident centers, we resort to local
analysis in both the second and third steps, resulting in locally exponentially stabilizing
control laws.

Chapter 5 describes a more general inquiry into the effeect of damping on controlled

Lagrangian systems. We first consider “balance systems” for which the desired equilibrium
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is a maximum of the potential energy. Stabilization involves modifying the kinetic energy
metric, often by making the closed-loop energy metric negative in certain directions, so
that the equilibrium is a maximum of an energy-based Lyapunov function. Concern for
the effect of damping is quite natural, considering the nature of the control law. The
analysis indicates that, while damping in the unactuated directions is beneficial in the
sense that it tends to asymptotically stabilize the unactuated dynamics, damping in the
controlled directions can destabilize. Fortunately, however, damping in these directions
can be directly compensated for. Thus, a suitable choice of feedback dissipation leads to
asymptotic stability of the desired equilibrium. The results were demonstrated in simulation
and experimentally. We also considered the effect of damping on relative equilibria of Euler-
Poincaré (reduced Lagrangian) systems which have been stabilized using the method of
controlled Lagrangians. Sufficient conditions were suggested for asymptotic stability in the

presence of linear damping.

6.2 Future Work

Feedback structure modification. It was noted in Remark 4.1.12 that a truncated
version of the control law used for a vehicle with coincident CG and CB leads to an almost
Poisson closed-loop system with the same modified Hamiltonian and a modified structure.
Similarly, as described in Remark 4.2.2, for a vehicle with noncoincident CG and CB,
omitting the gravitational term from the feedback control law derived using the method
of controlled Lagrangians leads to an almost Poisson closed-loop system with a modified
kinetic energy, a modified potential energy, and a modified structure.

The idea of modifying structure through feedback generalizes the idea of energy modifi-

cation and, within the framework of the method of controlled Lagrangians, might potentially
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lead to broader conditions for closed-loop stability. Furthermore, there may be physical rea-
sons why a feedback-modified structure is more appealing than the uncontrolled structure.
In [13], for example, the configuration space of a spacecraft with three internal rotors was
modified through feedback to resemble the configuration space of a heavy top. This idea
relates directly to that of Leonard [43], in which a system’s symmetry is intentionally broken
through feedback in order to stabilize in those symmetry directions.

Robustness of the method of controlled Lagrangians to unmodeled dynamics.
This problem was suggested by Jerrold Marsden out of a concern that the stabilizing control
laws based on low-dimensional models of physical systems might excite higher-order modes
leading to instability. To study robustness, “unmodeled dynamics” may be introduced
through additional kinetic and potential energy terms in the original Lagrangian. For
example, one may consider a first-order model of a flexible pendulum link by replacing
a rigid link with two rigid links pinned with a stiff torsion spring. (See Figure 6.1.) The
Lagrangian describing this system involves an additional kinetic energy term, corresponding
to the additional link, and an additional potential energy term corresponding to the torsion
spring. The method may be considered “robust to unmodeled dynamics” if the control law
derived for the rigid link also stabilizes the flexible link without exciting the bending mode.
Preliminary investigation and simulations of this type of system indicates that unmodeled
dynamics are not problematic.

Experiments with internally actuated underwater vehicles. Given the practical
motivation for the work presented here, a quite natural next step is to test these ideas
experimentally. One application of a laboratory scale underwater vehicle with rotors would
be to investigate spacecraft attitude control using reaction wheels. Similar programs in

experimental spacecraft control have focused on spacecraft with external actuators. The
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Figure 6.1: First order approximation of a flexible pendulum.

spacecraft are simulated using neutrally buoyant underwater vehicles with propellers. (See,
for example, the University of Maryland Space Systems Laboratory’s Supplemental Camera
and Maneuvering Platform (SCAMP), described in {5].) A more ambitious experimental
program would investigate the use of internal rotors to control a steadily translating un-
derwater vehicle, as described in this dissertation. The experimental results described in
Section 3, where a small internal rotor was used to provide gyroscopic stability to a trans-
lating, prolate spheroid, demonstrate the possible practical viability of using internal rotors
on underwater vehicles. It is anticipated that internal rotors would be particularly useful
for vehicles moving at low velocity, perhaps in a highly disturbed environment, such as a
coastal region. Such an environment could be simulated at laboratory scale with relative

ease and the merits of such a scheme could be effectively evaluated.
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Appendix A

Discussion of Kirchhoff’s Equations

Consider a rigid body B of arbitrary shape immersed in an inviscid, incompressible fluid
which is itself contained in some envelope £. Let w denote the velocity of the fluid at a
point with respect to some coordinate frame fixed in space. The motion of the fluid bounded
between B and £ is called irrotational if the vorticity V X w is zero at every point in the fluid.
In this case, the motion of any infinitesimal volume of fluid is described by a combination of
pure translation and pure strain; there is no rotational component. Suppose that a closed
curve denoted A is drawn within the fluid and that this curve completely bounds a surface

A (see Figure A.1). The circulation of the fluid about the circuit 64 is defined as
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where s denotes arclength along the curve and ¢ denotes the unit tangent vector tangent to

the curve. By Stokes’ theorem,

r=[£wxuyn¢4

where dA represents a differential area element of the surface A and n denotes a unit vector
normal to that element. The fluid motion is irrotational if I' = 0 about every circuit JA
that can be drawn in the fluid. Kelvin’s circulation theorem states that, in the absence of
nonconservative forces, I' remains constant. Thus if the fluid motion is initially irrotational,
it will always be so.

The free, irrotational motion of an ideal fluid in a simply-connected region is described

by a single-valued velocity potential ¢:
u = —Vo. (A1)

Lamb [41] gives the following physical interpretation for the velocity potential: “Any actual
state of motion of a liquid, for which a (single-valued) velocity potential (¢) exists, could
be produced instantaneously from rest by the application of a properly chosen system of
impulsive pressures”

pd+C,

where p is the fluid density and C is an arbitrary constant. (The additive constant has no
effect on the fluid motion since it represents a uniformly applied impulsive pressure.) The

condition for continuity of an incompressible fluid is that V- u = 0 everywhere in the fluid.
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If the fluid motion derives from a velocity potential, continuity implies that
V=0 (A.2)

throughout the fluid. Considering the conditions for solubility of Laplace’s equation, the
velocity potential is completely determined (up to an additive constant) when ¢, V¢ - n,
or some combination is given over the bounding surfaces £ and B. (Following convention,
n denotes the unit normal vector to the surface directed into the fluid.) If the envelope £
extends to infinity, it is sufficient to require that the velocity be zero there. In this case,
too, the fluid motion is completely determined.

Let £/B denote the fluid volume. Recalling equation (A.1) for the fluid velocity, as-

suming that ¢ satisfies (A.2), and applying the divergence theorem to the quantity u¢

//[5/3”V¢|124V=—//g«ﬁvcﬁ-ndA—//quw-ndA. (A.3)

The kinetic energy of the fluid is

n=;[[ [‘E Pl av (A.4)

so premultiplying both sides of equation (A.3) by %p reveals an energy balance,

T = —%p (//g ¢V¢-ndA+//B ¢V¢-ndA> . (A.5)

According to Lamb’s interpretation of the velocity potential, the right-hand side of (A.5)

gives

represents the work done by the system of impulsive pressures which, applied at the bound-

ing surfaces, would effect the actual fluid motion from a state of rest.
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Of particular interest is the case in which the rigid body B moves through the fluid
under no influence other than that of the fluid. In this case, the “work” done by the rigid
body on the fluid, i.e., the right-hand side of (A.5), takes a simple form. By treating the
body and the fluid as one combined dynamical system, the partial differential equations
which describe the more general problem of rigid body motion in a fluid reduce to a finite
set of ordinary differential equations and, as Lamb remarks, “the troublesome calculation
of the effect of the fluid pressures on the surfaces of the solids is avoided.”

N Suppose that the surface of the envelope £ is infinitely far from the rigid body B in all
directions. Fix a coordinate frame to B and suppose that the body moves with translational
velocity v = [v, va, 'U3]T and angular velocity € = [Q,Q2,Q3]7, both written with respect

to the moving coordinate frame. (See Figure A.2.) Consider the problem of finding a

€ o i
\\\
v
B

Figure A.2: Rigid body in a fluid.
velocity potential ¢ which satisfies Laplace’s equation (A.2) subject to the conditions that

1. the fluid velocity normal to the surface of B at a point is equal to the normal velocity

of the surface at that point.
2. the fluid is at rest infinitely far from B.

Tangential motion of the fluid at the body’s surface is allowed but is not prescribed. Kirch-
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hoff found that the solution takes the form

p=v-Pd+Q-Xx (A.6)

where the components of ¢ = [¢1, ¢2, ¢3]T and x = [x1, X2, X3|T depend only on the shape
of B. Let = denote the position of a point on the surface of the rigid body relative to the

body-fixed coordinate frame. The boundary condition at the surface of B becomes

-Vé-n=(v+Qxz) n (A.7)

Each component of ¢ and x must satisfy equation (A.2) independently, subject to the

relevant boundary condition on B implied by equation (A.7) with ¢ given by (A.6):

Vér-n Vx1-n
_v¢-n=— v¢2,n =n and —VX"n=— VXZ'n =X X 1.
Vés-n Vxs-n

According to Lamb, Lord Kelvin defines the ‘impulse’ of the body-fluid system at an
instant to be the impulsive force and couple required to instantaneously generate the body
and fluid’s motion from rest. Lamb shows that the component of impulse due to the
pressure at the infinite boundary £ vanishes and that the variation in system impulse is
therefore given entirely by the time integral of the external forces acting on the rigid body.
The system impulse thus behaves “in exactly the same way as the momentum of a finite
dynamical system.”

Let P = [Py, P, P5]T and II = [MI;,II5, II3]7 represent the impulsive force and couple,

respectively, written with respect to the body-fixed coordinate frame. Also, let Fyiher and
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T other represent an external force and torque acting on the rigid body. As Lamb shows by
considering infinitesimal motions of the body-fluid system, the impulse varies according to

the equations

1;.[ = HXQ+va+Tcher

P = PXQ'*'fother-

Since the integral over £ vanishes, the kinetic energy of the fluid (A.5) becomes

T = —%p (//B ¢V -n dA) . (A.8)

Substituting the expression (A.6) for the velocity potential ¢ into (A.8) gives

v Mf DfT v
: (A.9)
Q Dy Iy Q

where the square matrix is a constant, symmetric, positive definite matrix whose entries

depend only upon the density of the fluid and the shape of the body B. For example,

My, = = [[ 6194 nas

- p//qul(n-el) s,

where the latter equality arises from the boundary condition (A.7). The expression (A.9)
for the fluid kinetic energy holds formally for bodies B of arbitrary shape. Naturally, the
complexity of the integrals defining the components of My, Df, and Iy depends on the

complexity of the shape of the body and on the choice of body-fixed coordinate frame.
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Let Ty, denote the kinetic energy of the rigid body. It is assumed that the mass of
the body, say m, is equal to the mass of the displaced fluid so that the body is neutrally
buoyant. The location of the mass center of B with respect to the body-fixed coordinate
frame is given by r. Let I.p denote the rigid body inertia tensor computed with respect to

the body-fixed frame. Then the kinetic energy of the rigid body alone is

1
T = 5 ] - (A']-O)
Q mir I Q
The total system energy is
11 v M DT v
T = Trb +Tf = 5 . (A'll)
Q D I Q

where

M = M;+mZT
D = Dj+mi (A.12)

I = If+I1.b.

Lamb shows that the system impulse is related to the rigid body velocity according to

and I = - (A.13)
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for i = 1,2, and 3. In terms of the system impulse, the total kinetic energy is

-1

P M DT P

. (A.14)
II D I II

Lamb points out several simplifications of the generalized inertia tensor. For example,

one may always rotate the body coordinate axes such that M becomes diagonal. Further-

more, writing D as the sum of a symmetric and a skew-symmetric matrix, one may elimi-

- . nate the skew-symmetric contribution by shifting the coordinate origin. Thus the number

of coefficients required to define the generalized inertia reduces from twenty-one to fifteen.

Further simplifications follow for particular body shapes. In particular, Lamb discusses

bodies having one or more planes of symmetry, one or more axes of symmetry, and a special

¢ type of “helicoidal” symmetry illustrated by a ship’s propeller. An ellipsoid with uniformly

distributed mass is an example of a body with three planes of symmetry. Choosing co-

ordinate axes fixed to the ellipsoid principal axes, one finds that M = diag(m;, mo,m3),

D = 0, and I = diag(l,, I, I3). Even if the ellipsoid mass is not uniformly distributed, one

obtains such simplifications for the added mass and inertia matrices My, Dy, and Ig.
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Appendix B

Proof of Theorem 4.1.2

Consider the function (4.10):

H@ = HK(II‘IP’ C) + @(017 C‘Z’ CI’ (27 C3)’

where Cy = §||P||2 and Co =1II - P. Since Hx and any smooth function @ are conserved

under the dynamics (4.6), He = 0. To be a Lyapunov function for the equilibrium

I PP
Iec=| 0 |, Pe=| 0 |- %= 0 | (B.1)
0 0 0

Hg must have a minimum or a maximum there. First, in order for the equilibrium to be a

critical point one requires (DHg) = 0, where

DH(P(Hm Pe’ Ce) : (6n7 6P1 JC) = (IK_l(He - Ce) + ®2Iepe) oIl
+ (M 7P, + @] Pe + BaleIle) - 6P + (—Ix~'(Ie — (o) + (@3, B4, B5)T) - 6¢.(B.2)
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®; is the partial derivative of ® with respect to its ith argument. (For example, &; = %’)

If the function @ satisfies

Dle = pr=——+ ;

my IK1 P{)
_ _ 1 @m-q)
‘§2Ie = p2= I_I(l- P{) y
. HO_ 0
Byl = py=— L,
Ky
(D4le = 01
) ®5le = 07

then H¢ will have a critical point at the equilibrium (B.1).
For the critical point to be a maximum or a minimum, the second variation D?Hg must

‘ be definite when evaluated at the equilibrium. The symmetric matrix

Hi1i Hiz His
H= HT, Haz Hos

HIs His Hss

represents the matrix of the second derivative of Hy where

Hir = Ig~ '+ 0,PPT

Hiz = BT + P(3oI07T + &1, PT)

Hizs = —Ix '+ P(®e3, P2g, Pos)

Has = M7+ 3T+ 3IIM7 + &1,(TIPT + PIT) + &1, PPT

Haz = P(P13, P4, P15) + II(P23, P2y, P25)
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< 1
Ny

®33 P34 D35
Has = Ik '+ | @y Su us

P35 Pys Dss

The scalar quantity ®;; is the second partial derivative of @ with respect to its ith and jth
arguments. (For example, ®12 = 56‘?12—3@.)

If Ig, > 0 and Ig, > 0, the second and third principal determinants of # will be
positive. In this case, for D?Hg to be definite when evaluated at the equilibrium (B.1),
it must be positive definite. If all principal determinants of #{. are positive, then the
equilibrium will be a minimum of Hg. Checking principal determinants, one finds that all

principal determinants of #. are positive if for i =2 and ¢ = 3

1 0 _ ~0\2 0 — 00
(L_ 1 >(H1 0(1) + 1 (I OC;)CI >L(_1__i) (B.3)
I[{l IK.- I[(l Pl I[(l IK‘- (P}. ) I[(‘. mi my

and P satisfies:

1 1 . 5 02, o5 (Y
Q11le = p1> —(—po—)z — + g1 + 3p3(I17)* + 2p2 =5 ,
1

m 2
Piole = p2= —,52(_13%5_2- —p3 (%%) ,
Pyle = p3> _E:(_P;V’
Cale = P35> 7 _';1(1_13:)(;{))2,
Sule = ps> I—_Z—‘E{z—ﬁ%,
Pssle = ps > m3p3

1-— m3IK3p.%

with all other second partial derivatives of ® equal to zero. Note that these conditions only
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apply to ® at one point, the equilibrium. Otherwise, ® is completely free.

If, instead, K is chosen such that Ix, < 0 and Ig, < 0, then the equilibrium (B.1)
will be a mazimum provided the conditions on ® stated above are satisfied with all of the
tnequalities reversed.

Thus, if sign(Ix,) = sign(lx,) and condition (B.3) is satisfied, there exists a Lyapunov
function proving stability of the equilibrium (B.1).

Referring to condition (B.3), note that stability in the special case that Q¢ = 0 requires
that Ix, < 0 and Ig; < 0. Therefore, if Q‘I’ = 0, the stabilized equilibrium must be a

maximum. The constants g, g2, and g3 simplify, in this case, to

Thus, the conditions on the constants p1, p2, p1, and ps simplify to

mo\? ¢
p1 < —3p3 (—P—(l)-) s P2 =—p3 (FﬂlT) ,  pP1<0, p5<0.
1 1

These conditions are satisfied by the choice of constants pi, p2, P3, 4, and ps in the proof

of Corollary 4.1.3.
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Appendix C

Translational Relative Equilibria:

Noncoincident Centers

Recall the equations of motion for a vehicle with r # 0,

I = OIxN+ P xv+7rxmgl

P = PxQ
I = I'xQ
¢ = o.

Consider only the case 2 = 0. In this case, P =0 and I' = 0. Also, since 2 =0,
Ak(II - C) + BiTP = A Il = 0.
The matrix Ag is full rank, so II = 0. The system must therefore be at equilibrium with

P, xve+1r xmgl, =0. (C.1)
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Before stating the explicit equilibria, we note that r - (P, x v) = 0 so that there is no
component of the equilibrium “fuid torque” P x v in the direction of the CG. Now, from

equation (C.1) we have

T X (Pe X ve)

1
L. = or+
mg

= or+ rx (Pex M7IP,)

mgr-r

where [§] is determined from the identity ||I'||2 = 1. To verify this, we substitute I, into

equation (C.1) and use the vector identity

ax((bxc)=(a-c)b—(a-b)c.

f We find that

0 = PexM—lPe+rxmg<5r+ rx(PexM'lPe))

mgr - 7T

1
= P.xM'P.+ — (r-(Pex M7'P)r —7r-r(P. x M™'P,))

= P.xM'P,—-P.,x M P,.

Choosing r = yes gives

1
T =6ve3 + —e3 x (P. x M~ P,). (C.2)
, mgy
Notice that
es- (Pox M—'P,) = (1 — L) popo
¢ ma m 152

where P? is the ith component of P,. Thus, either P? =0 or P =0 at an equilibrium for
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which 2 = 0. Recall from Section (4.2) that

-1
i Ry (Z-K)! —-K(Z-K) Y(m#)M™! I m# Q

P 0 T —mr M v
One therefore obtains the following two five-parameter families of relative equilibria for

which 2 = 0:

O, = (myé3)M ‘P +(.,, P.=Plei+Ples, ¢(.=C(le1+Jez+Ges

0 PO 2 Popo
ad re__.i\/l_((}___l_)i&) et (2-L)BHe o129

m3a mi/ mgy m3 m;/) Mgy

The five equilibrium parameters are ¢?,¢9, ¢ and P? and P{ and the two families are given
by 7 = 1 or 2. Obviously, we must require that

0 PO\ 2
1_((_1__L) Qs_) 50 (C.4)
mg  m;) mgy

in order for (C.3) to be an equilibrium.

If P{’ = P2° = 0, then the vehicle moves along its 3-axis parallel to the direction of
gravity and C3 = PQ. If P) = 0, then the vehicle moves along its i-axis orthogonal to the
direction of gravity and C; = 0. To characterize more general equilibria, it is useful to
replace the equilibrium parameters Pi0 and P3° with the conserved quantities C; and Cj.

For 2 =1 and 2, we have

1 1 2 2
Ci = 3P Pe=((P%)°+(Pf)°) (C:5)
1\ P°po\?2 1 1\ POP?
C; = To-Po= :&:\/1 - ((i - —) -—-i> PO+ (— - —) 555 po (cg)
ma my; mgy m3 my; mgy
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P, « P, «
¥2C,
v v
P3 P}
(mgy) = 4C, (m;-c) (mgy)'< 4C; (=;- ¢
(i=1and2) (i=1and?2)

Figure C.1: Equilibrium values of P given II., and C; with C3 = 0.

Substituting (C.5) into (C.6) gives the following implicit equation for P?,

2

Cs _(L__l_) ()2 =1_((L_L) Py )2(20_(1,1_0)2)_

+ /201_(13?)2 m3  mMi/ Mgy m3  m;;/ mgy

Equation (C.7) is quartic in P? so there are at most four real values for P? given C; and

(C.7)

C;. Of particular interest is the case where C3 = 0 because this value corresponds to the
equilibrium describing pure long axis translation in the horizontal plane. Indeed, if P =0
then equation (C.5) gives two solutions for P? corresponding to “forward” and “reverse”
translation along the ith principal axis where 7« = 1 or 2. Alternatively, if P:? # 0 and

C3; = 0 then equation (C.7) leads to

1 1) P\
t=26 (=) )

It follows that

PP e {20, = Iy . (C.8)
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The latter two solutions correspond to physical equilibria if and only if

2
mgy
0 <2C; — (P%? =2C; — .
vaci (& - &)

Combining this condition with condition (C.4), one finds that “gliding equilibria” can occur

if and only if )

mgy
2 (;1; ~ ,,%) < 1. (C.9)

Thus, if the translational momentum (i.e., Cy) is large or the CG is not very far from the

0<

CB these equilibria exist.

A reasonable goal is to asymptotically stabilize the equilibrium corresponding to i =1
and P = 0 with as large a region of attraction as possible. The region of attraction will
be limited by the proximity of the nearest neighboring equilibrium. If 7 is chosen large
enough that condition (C.9) is not satisfied, then some of the neighboring equilibria will be
eliminated. (Translation along the 2 and 3-axis remain as equilibria.) Therefore, one might

require that

(mgvy)? > (2(1l 2 3—))2, i=1,2. (C.10)

m3 m;

The translational component P, of relative equilibria for the underwater vehicle can be
depicted on a sphere of radius +/2C;. In Figure C.1, the various values of P, are indicated
in the special case that C3 = 0. Shown on the left is the case where condition (C.10) is
satisfied; on the right is the case where the condition is not satisfied. (Note: The spheres
in Figure C.1 do not represent leaves of a foliation of phase space. Coadjoint orbits for the

Hamiltonian system (4.66) are generically six-dimensional.)
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Appendix D

Dissipative Gains for Theorem 4.2.4.

Recall that the characteristic polynomial of the linearized system (4.87) is

where

H1

H2

H3

Ha

7

o

A2 + i d + p2) A + X + pad® + psh + pg) (D.1)

—az(l —_ k)kdz

o2 (may = (1 = ) = o) (PP

—(1—-k) (— +a1kdl)
SR (- D) ety

I3 mi mo

1—k)? 1 1
+a1~(T) ((m7)2 (;n—l - —ﬂ-l;) (PD)? + kdlkds) + aimgy
1k 1

(= oka (= o) (B + (mgmih, )

—au(mem TE (- ) (o
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In addition to requiring that each coefficient us3,p4,ps, and pe be positive, the Routh-

Hurwitz criterion requires that

paps —ps > 0 (D.2)

papaps — pg — pepz > 0. (D.3)

To simplify notation, make the following substitutions:

i U=mgy, T= (L— L) (PO, Iy =

miy m2

Then

Q e = (Z—Z) (fffka - 2 +(1—k) ((m’)')2 (m'l—l - mig) T +kdlkd3>>

= 8 (_1_ r i
ps = Ikg( (1 = K)ka, T + k4 )
a1l =7~
= —-2LFg
7 T,

Substituting into condition (D.2) and multiplying by (Ix,/a1) < 0 gives

0>

- ('}L (- k)alkdl) (mks - ;FT +(1-k) ((m'r)z (i - —1—) T+ kdlkdg)) + 0

k3 m1 mo

k4T N ka,
= (1 — k)1 Jiyka, U — (1 k)(Ik3+(l——k:)a1kdl :

((rrw)2 (;nl—l — m%) T + kdlk43> :

This condition is automatically satisfied for £ > 1, ¥ > 0 and K4 > O.
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Coundition {B.2) may be rewritten

2
(&s) i (“i) + 6 < 0. (D.4)
K3 K3

There is a range of pu5/us for which (D.4) is satisfied provided

0 < pi—4dus

2 A 2
- (3 (oo (o (=) o)) e ()2
a \*( (5 7\’ 7 T 1 1)\ .-
(-Ik_g> ( (Ullcs + 6—1) + 2 UIk3 - Z (1 b k) ((m’y)z (-Tl_’l,_l - 52—) T + kdl kda)

+(1 —k)? ((m'y)2 (_1_ _ _1__) T + kg, kds)z )

mi me

This condition is also satisfied under the existing conditions on k, <y, and Kg4. Condition

(D.4) is satisfied when

ps —\/pd —4pe <2 (*Z—:) < pa +\/ud — 4pe. (D.5)

Inequality (D.5) gives implicit conditions on the control parameters. Provided these con-
ditions do not contradict the previous stability conditions, the equilibrium (4.82) is locally
exponentially stable. Rather than solve (D.5) for explicit conditions (which would be rather
messy), require that the control parameters kq,, and kg4, be chosen such that

py —2 (53) =0. (D.6)

Clearly this choice satisfies (D.5). It is a conservative choice in the sense that a small error

in the parameters will not violate condition (D.5). (Given error bounds on the parameter
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estimates which define the control gains, one could check that (D.5) is satisfied for parameter
values within an expected range.)

Expanding equation (D.6), one obtains an equation cubic in k4, and kg4,,

K, - T 1 1\ -
0= (—IZ -+ (1 - k)alkdl> (IksU - I—ks' + (1 - k) (kdlkds + (m’)’)2 (m1 b m_z) T))
+2((1 ~ k)ka, T — k43 U) (D.7)

Using kg4, as a free parameter, one may solve for kg; numerically. In the interest of obtaining
an explicit condition, one may observe that, in the limit that k4, and k4, are small enough,
the cubic terms in (D.7) are negligible and only linear terms remain. If one chooses k4, and

k4, small and satisfying

‘ o ( l ) U+ T - (- M) ("+1 — mL) T (D.8)

Kas a1l3 a i, U + T + a1 (m7)? (-L- - L) T

my ma

(assuming the denominator is nonzero) then (D.7) is satisfied approximately. Verifying that
(D.5) is satisfied, one finds that the roots of the quartic polynomial (D.1) all have negative

real part.
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Appendix E

Identities Concerning the Method of

Controlled Lagrangians

E.1 Modified Metric Under General Matching Conditions

Recall equation (5.11) for the controlled Lagrangian,

Ly o (2%, £%,6%) = L(z%, £%,0%
0,0

) 1 .y 1 : . ; .
+725%) + 50wTETHEEP + Sap (6% + (9°9ea +78)3°) (6° + (97gus + 75)3”)
Using the matching condition GM-1,

b b
T = —a” Goas

the controlled Lagrangian may be rewritten

Lrop(z%,2%,6%)
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1 . s R 1 . i . X
= Ego:ﬁa;a-'n‘3 + GaaZ®(6° — Uacgcﬁxﬁ) + Egnb(aa - a.acgcaxa)(ob - a'bdgdﬂzﬂ)
1 o 1 . . R .
+§gaa0'abgb/3$a$ﬁ + Ewab (ea + (g“ - O'ac)gcaxa) (eb + (gbd - abd)gdﬁxﬁ) - V(xa)
1
= 5(9&49 - 2gaaaabgbﬁ + gaaO’abgchCdgdﬁ + gaadabgbﬁ

+90a (9% — 0) (Pse — Gbe) (9 — 0“‘)%) o8

. 1- -
+z*6* (gaa - gaba'bcgca + gab(gbc - ch) (pca — gca)) + Egaob (gab + Pab — gab) — V(%)

Simplifying the latter two terms above gives the controlled Lagrangian (5.11) with

(rop)ap = GaB + 9acoU(gde — 04e)o* g5 + Gac(9°® — %) (pae — 9ae) (9% — 0°F) g5
(g'r,cr,p)ab = gac(QCd - UCd)de
(g'r,a,p)a.b = Pab-

To find the horizontal component of the kinetic energy metric, we “complete the square”

as in Section 5.1.1.

1 o TR .
E(gr'o—1p)a.8$a$ﬂ + (g‘rro’vp)abzaeb + E(gT!aap)abeaeb =
1 .
5 (gcxﬁ + 9ac0(Gae — 0de) 0 918 + gac(g®® — 0°4)(pde — gae) (95 — o/ )gfﬁ) 5P
1 . .
~5Pab ((g"c - Gac)gmx“) ((g"d — o*)gqpiP )

1. e Lf e .
+Pab (59“6” + (9% — 0%) geab®s™ + 3 ((g - °)gcaa:°‘) ((g"‘i — o) gypiP ))

Recall that the controlled momentum conjugate to 8¢ is given by

~ oL . .
Jo = ‘_ag_:’p = Pab (ga + (gbc - ch)gcaxa) -
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Substituting above gives
1 XN -ae’b 1 'ag‘b — lA a8 1 abj j E.1
E(gf.zr,p)aﬁx z7 + (gf,a,p)ab-"" + E(Qr,a,p)abg =3 aBT Z7 + 5,0 adp (E.1)

where A, is the coordinate expression for g,, the horizontal component of the kinetic

energy metric:

Ao = Gap + 90a0® (Gbe — T5c)0gas + gaa(9™ — 7°®)(obc — Gbc) (9°* — 0°%)gap
—90a(9%® — 0®)poc(9®® — %) gug
= gap + 9220 (Gbc ~ 05c) %94 — Gaa (9™ — %) gbc(9°® — 0°%)gap
= 9oB + 9000 96c09us — 90a0®* 958 — 900 9™ 968 + 20007988 — 92a0** 950 gus

= 9ap — 9oa(g®® — %) gss-

E.2 Identities for B,s and B.

Recall that .

da YGob Be#f -B ong'ycg cb
9aB  Gab —B%¢g. g™ B

Then, by construction,

gaﬁBﬂ7 - gabBbdngQ&Y = &3 (E.2)

~9a8B?295a9™ + gabB* = 0 (E.3)

9apBP" — gasB*g4sg® = 0 (E.4)

"gaﬁBﬁagédec + gabBbc = ;. (E.5)
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Using equation (E.2), we may write B®? in terms of B,
B = g% + g°79,.B*grsg”’ . (E-6)
Similarly, using equation (E.5), we may write

Bab — gab + gacgcaBaﬂgﬁdgdb. (E?)

E.3 Proof of Proposition 5.2.2.

Recall the assumption that, at an instant,

. 1\t )

so that

Ergpp = &% Aag BT (6;0 - g.,agabk;f) F, (E.8)

Here, we show that

8% — Gaag® kP = Bay A%

First, observe that

(52 + Gaa DVKZ ) (5,;’ - gﬂcg“’kl) = 6 —9gea (g“" — D% + D*k¥ g¢b) kY
= 60— gaa (g“” - D% + cr"cgcaB‘wgwb) kY
= &
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Thus

(Jg - gaagabkf) = (5g + gaaDabkE) -
= ((Bﬁ7 “+ ggaaabgb.,) B7a)—1

= Bg, AT,
Substituting into equation (E.8) gives

Ergpw = 3%Fg. (E.9)
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Appendix F

Experimental Rotary Arm Pendulum

The parameter values for the experimental apparatus described in Section 5.2.3 are

M=0259kg, R=0211m, m=0.130kg, !=0.332m.

The effect of physical dissipation in the pendulum link and in the rotor arm was identified
experimentally. Friction in the pendulum link is well-approximated by a viscous friction

model,

Fy = —dg6 (F.1)

where

i dg = 0.00015 kgM?/s.

Figure F.1 compares the free response of the pendulum link to an initial displacement, with
the rotor arm locked in place, to a simulated response to the same initial condition. The
damping model in equation (F.1) is used in the simulation. As can be seen in the figure,
the damping model gives a slight error in phase and velocity, but predicts amplitude well.

(Note: In Figure F.1, § = 0 corresponds to the pendulum hanging vertically down.)
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Viscous friction modet: d,, = 0.0001 Skgnvs?
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Figure F.1: Elevation response to initial perturbation.

Though viscous friction provides a good model of damping in the pendulum link, it was
found that damping in the azimuthal direction is best approximated by a Coulomb friction

model,

Fy = —dg sign(¢) (F.2)

where

dg = 0.0096 kgm?/s.

Figure F.2 compares simulation with experiment. The plot shows the initial condition
response of the pendulum rotor arm (without the pendulum link) to an initial velocity
as well as a simulated response to the same initial conditions using the damping model
in equation (F.2). The Coulomb friction model matches the physical response very well,

except for a slight “one per rev” oscillation in the azimuthal velocity..
g
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Coulomb friction model: d,, = 0.0092112kgrvs?
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1 1.5 2 25 3 35 4 45 5 55 6
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Figure F.2: Azimuthal velocity response to initial perturbation.
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Appendix G

Computations for Spacecraft Example.

In Section 5.3.2, we design feedback dissipation to drive the negative semidefinite function
FE3 g to its maximum value. To conclude that E’q,,\[, > 0 under the influence of external and

feedback dissipation, one requires that d > 0 and that

1 1\2_.- 1\t -
0 < [XC:,B Y (1 + E) Y:dabyg + (1 + E) (chgaﬂ + gﬂaYo?) - gaadabgbﬁ

. AL 1 1
= dJag ( (1 /\2) dl, 0, IC3 <A3 —A;) d3>

2
J3< 1)“1 p—=1\ o T
SBl{i+=) =+ dlese
Qd( ¥) P pl ) T
1

1 -1 ~
+2J3 (—— + (1 + —) p—) dsesesT + JadesesT. (G.1)
pA2 v) pl3

The first element of the diagonal matrix on the right-hand side of (G.1) is positive and the

second is zero. The third diagonal element may be written

chi{—% (’3 +“5)2x2+ <7+ %(,s +a6)> z— 1} (G.2)
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where

1
a = 1+—,
¥
1
ﬁ - p)\z’
p—11
d = ——,
p I
Ie, (1 1
= &S ___)>o,
K Ts (/\3 Az)
d3
r = -=.
d

Choosing the control gain £ > 1 (which defines p) and choosing % according to condi-

tion (5.110) gives

J3

< — >0, <0, > 0.
p (A2 — Ic,) A 7

«

There is a range of = such that the expression (G.2) is positive only if the discriminant

of the term quadratic in z is positive. This discriminant may be written

4 4 2 2
7+ 7B +ad) + (; - ;) (B + ad)*

2
= (7 + —‘i—i(ﬁ +a6)) + (éi(fﬁ) Y(B + ad). (G-3)

Suppose that « is chosen negative. Then the latter term in (G.3) is negative and the
: discriminant may or may not be positive. Suppose that « is chosen positive (subject to

condition (5.110)). Then choosing « to satisfy

. B J3
o < min (_E’ m) (G.4)

makes the discriminant positive so that there is some range of z within which the expres-
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sion (G.2) is positive. The roots of (G.2) are

ve = (525) |- (1+ 26 +a0) ﬂ:\/(~r+§(ﬂ+aa))2 ~ 256+ a0y
(G5

Any value of z lying between these two roots makes (G.2) positive. Furthermore, z is
positive in this range, so a positive value of d corresponds to any choice of z € (z_,z4+). A
reasonable choice of z is the one which maximizes (G.2):

. _ds _o?(y+2(B+ad))
S B+ )2

(G.6)
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