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Joint Centrality Distinguishes Optimal
Leaders in Noisy Networks

Katherine Fitch, Student Member, IEEE, and Naomi Ehrich Leonard, Fellow, IEEE

Abstract—We study the performance of a network of agents
tasked with tracking an external unknown signal in the presence
of stochastic disturbances and under the condition that only a
limited subset of agents, known as leaders, can measure the signal
directly. We investigate the optimal leader selection problem for a
prescribed maximum number of leaders, where the optimal leader
set minimizes total system error defined as steady-state variance
about the external signal. In contrast to previously established
greedy algorithms for optimal leader selection, our results rely on
an expression of total system error in terms of properties of the
underlying network graph. We demonstrate that the performance
of any given set of noise-free leaders depends on their influence
as determined by a new graph measure of the centrality of a set.
We define the joint centrality of a set of nodes in a network graph
such that a noise-free leader set with maximal joint centrality is
an optimal leader set. In the case of a single leader, we prove that
the optimal leader is the node with maximal information centrality
for the noise-corrupted and noise-free leader cases. In the case of
multiple leaders, we show that the nodes in the optimal noise-free
leader set balance high information centrality with a coverage
of the graph. For special cases of graphs, we solve explicitly for
optimal leader sets. Examples are used to illustrate.

Index Terms—Leader-follower dynamics, network analysis and
control, networked control systems, network theory (graphs),
optimization stochastic/uncertain systems.

I. INTRODUCTION

ANALYSIS of networked multiagent system dynamics has
generated substantial research interest in recent years

[1]–[3]. This is largely due to the broad range of applications
for which the theory can be applied, including, for example,
the design of vehicle networks [4], analysis of social networks
[5], investigation of collective animal behavior [6], and more.
Often in these applications, the network must learn an external
signal, for example, in the case of a sensor network using a
consensus to estimate an environmental signal [7]. However,
when the signal is costly to sample, for example, because of
energy consumption costs or costs associated with acquiring
the necessary sensory or processing capability, it may become
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impractical for all agents in the network to measure the signal
directly. If interagent sensing or communication is relatively
inexpensive, then a more efficient solution involves a limited
subset of agents, called leaders, measuring the signal directly,
with the remaining agents, called followers, learning the signal
through network connections. In this paper, we address the
problem of selecting leaders, as a function of the network graph,
to maximize network accuracy in tracking the external signal.

The problem is motivated by the quest for the design of high-
performing engineered networks, such as sensor networks as
well as by the search for conditions under which biological
networks, such as animal groups, perform highly. For example,
in migratory herds, the animals must learn, agree on, and move
together along a single migration route. It is likely that only
a subset of animals invests in a direct measurement of the
route, particularly when it is easier to rely on observations
of neighbors [8]. Reference [8] shows that the emergence of
leaders and followers within a large, mobile population is an
evolutionarily stable solution for a sufficiently high investment
cost of sampling the migration route. In [9], the authors used a
mathematical model to analyze this evolutionary dynamic and
to compute the location of emergent leaders as a function of
the network graph and the investment cost. The model yields
a distributed adaptive dynamic for taking on leadership in this
context; however, the evolutionary dynamics do not guarantee
a steady-state solution that is optimal for the herd.

In this paper, we study the leader-follower network dynamics
subject to stochastic perturbations [10], [11], examining cases
in which there are one and two noise-corrupted leaders and in
which there are any number of noise-free leaders. Our objective
is to make rigorous how a leader set, as a function of properties
of the network graph, affects the total system error of the group
defined as the steady-state variance of the system about the
external signal. Total system error can also be viewed as a
measure of coherence, equivalently, the H2 norm of the system
dynamics [11], [12].

To this end, we develop a means of quantifying the combined
influence of a set of leader nodes in a network on the total
system error in the leader-follower dynamic. Intuitively, this
influence should correspond to some notion of centrality of
a set of nodes since a leader set that gives low system error
must be well connected to other nodes in the network. Different
types of centrality of a set of nodes were defined in [13],
where the authors quantified degree, closeness, betweenness,
and flow centralities of sets of nodes by extensions of the
definitions for individuals. Illustrative examples were used in
[13] to explore the relationship between those measures and
network properties. In contrast to the literature, we derive a
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measure of centrality of a set of nodes, called joint centrality,
by examining the performance measure, that is, total system
error, and expressing performance in terms of graph measures.
We note that applications of measures of centrality of a set of
nodes include a broad range of research areas from emergency-
response management [14] to a network connectivity analysis
of the quality of innovative ideas [15].

Much of the recent research related to leader-follower mul-
tiagent systems with stochastic dynamics has focused on the
development of offline leader selection algorithms that seek
to find the leader set that minimizes total system error [11],
[16]–[19]. These algorithms have been designed to be com-
putationally efficient in approximating optimal solutions with
proven bounds on the total system error relative to the optimal
value of error. Many of the algorithms are iterative, adding to
the leader set one agent at a time. This approach may preclude
finding the optimal solution since the optimal set of l leaders
does not necessarily include the optimal set of m leaders,
l > m. The authors in [19] address this issue by considering
a “swap” step within their iterative algorithm.

Our contributions are fourfold. First, we provide a new
approach to solve the optimal leader selection problem in terms
of network graph measures. In general, our approach reduces
computational complexity significantly compared to the brute
force computation. Second, we define a new notion of centrality
of a set of nodes in an undirected, connected graph, that we call
joint centrality. For the tracking dynamics of the leader-follower
network, we show that the total system error is inversely propor-
tional to the joint centrality of the leader set when the leaders
are noise free. Thus, the solution to the optimal leader selection
problem is the set of nodes that maximizes joint centrality.

The joint centrality of a set of nodes depends on the in-
formation centrality of each of the nodes and the resistance
and biharmonics distances between pairs of nodes in the set.
We show how to calculate joint centrality using entries from
submatrices of the pseudoinverses of the Laplacian and squared
Laplacian. We show that joint centrality of a set of nodes is a
generalization of information centrality for a single node, and
that the optimal leader set is composed of nodes that trade off
high nodal information centrality with good coverage of the
graph, that is, a well-distributed set with respect to resistance
and biharmonic distances among nodes in the set.

Third, we consider the case of noise-corrupted leaders and
we derive a modified notion of joint centrality, showing, in the
cases of one and two noise-corrupted leaders, that total system
error is inversely proportional to the modified joint centrality of
the leaders. Fourth, we prove the explicit solution to the optimal
leader selection problem in the case of cycle graphs and path
graphs. A preliminary version of results in this paper, for the
cases of one and two leaders, appears in [20].

This paper is organized as follows. In Section II, we introduce
the network model dynamics and define the optimal leader
selection problem. We review information centrality, resistance
distance, biharmonic distance and other properties of the Lapla-
cian in Section III. In Section IV we derive total system error for
the general case of m noise-free leaders, define joint centrality
of m nodes, and prove our main result. In Section V, we
interpret joint centrality, we prove explicit solutions to the

optimal leader selection problem in a few cases, and we extend
our results to noise-corrupted leaders in the case of one and
two leaders. We also discuss the connection to the problem of
controllability of networks. We show an example application of
joint centrality in Section VI. We conclude with a discussion in
Section VII.

II. MODEL AND PROBLEM STATEMENT

We consider a network of n agents tasked with tracking an
external signal from the environment. We denote the external
signal by μ ∈ R and assume it to be a constant. Generaliza-
tions to vector-valued environmental signals are expected to
be relatively straightforward and extensions to time-varying
environmental signals are the topic of future work.

The state of agent i for i = 1, . . . , n is xi ∈ R, and it repre-
sents agent i’s estimate of the signal μ. The state of the network
is given by x = [x1, x2, . . . , xn] ∈ R

n. Agent i can measure
the evolving relative state xj − xi for each agent j in its set of
neighbors Ni. The availability of these measurements to agent
i is the result of agent i directly sensing the relative state of
its neighbors, for example, in the case that the state refers to
position, or of neighbors communicating the value of their state
to agent i.

The graph G = (V , E , A) encodes the network topology.
Each agent corresponds to a node in the set V = {1, 2, . . . n},
and we will use the terms “agents” and “nodes” interchange-
ably. E ⊆ V × V is the set of edges, where the edge (i, j) ∈ E
if j ∈ Ni. The adjacency matrix is given by A ∈ R

n×n where
matrix element ai,j corresponds to the weight on edge (i, j).

We consider undirected, connected graphs. Recent results on
effective resistance in directed graphs [21], [22] suggest the
means to extend our theory in future work to the case of directed
graphs. If the undirected graph contains edge (i, j), then ai,j =
aj,i > 0; otherwise, ai,j = 0. The degree matrixD is a diagonal
matrix with entries di,i =

∑n
j=1 ai,j . The associated Laplacian

matrix is defined as L = D −A.
An agent l ∈ V is called a leader if it directly measures

the external signal. Let kl > 0 be the weight that agent l puts
on its signal measurement. Any agent that is not a leader is
called a follower. Let the set of leaders be denoted as S with
cardinality m and the set of follower nodes, denoted by F , be
the complement of S with cardinality n−m. The summation
over s denotes summation over the leader set, while summation
over i denotes summation over the entire set of leaders and
followers. We use the index l1 when it is necessary to identify
one leader apart from the rest of the leader set.

Throughout this paper, when a set S of m nodes is identified,
we will assume they are the first m nodes in an ordering of the
n nodes. Accordingly, we will denote the partition of an n× n
matrix B as

B =

[
BS BSF

BFS BF

]
(1)

where BS is an m×m matrix corresponding to nodes in set S,
and BF is an (n−m)× (n−m) matrix corresponding to the
remaining nodes. We will further let l1 be the first node in the
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ordered set S. We will denote the Moore Penrose pseudoinverse
of a matrix B by B+ and the conjugate transpose of B by B∗.
We let 1n be the vector of n ones and ej be the standard basis
vectors for Rn.

We assume that all leaders apply the same weight k to their
measurement of the external signal, that is, ki = k > 0 for i ∈
S and ki = 0 for i ∈ F . We assume that stochastic disturbances
enter the dynamics as additive noise. We model the dynamics
for each agent i ∈ V by the following stochastic process:

dxi = −ki(xi − μ)dt− Lixdt+ σdWi (2)

whereLi is the ith row of the LaplacianL, and σdWi represents
increments drawn from independent Wiener processes with
standard deviation σ.

In the case that k < ∞, the dynamics of the leaders and
followers are all noise corrupted. In [19], it was demonstrated
that in the limit as k → ∞, that is, in the case that leaders
apply an arbitrarily large weight to tracking the external signal,
the dynamics (2) describe the case of noise-free leaders. Thus,
our model (2) describes both cases of noise-corrupted leaders
(k < ∞) and noise-free leaders (k → ∞).

To write (2) in vector form, let K ∈ R
n be the diagonal

matrix with elements ki, let M = L+K and without loss of
generality, let μ = 0. Then, (2) becomes

dx = −Mxdt+ σdW. (3)

Since we have assumed that G is connected, −M is Hurwitz so
long as ki = k > 0 for some agent i, that is, S is nonempty.

Thus, for nonempty S, x will converge to a steady-state
distribution about the value of the external signal, and the
steady-state covariance matrix Σ of x is the solution to the
Lyapunov equation

MΣ+ ΣMT = σ2I.

The steady-state variance of xi is Σi,i, the corresponding diag-
onal element of Σ. Since the external signal is assumed to be
constant, the system will converge to a steady-state distribution
about the value of the external signal even if the nodes chosen
as leaders do not guarantee system controllability.

Following [11] and [18], we define total system error as
Tr(Σ)=

∑n
i=1Σi,i. We define group performance as the inverse

of total system error, which measures network tracking accuracy.
By [23] we have that the covariance matrix of (3) is

Cov (x(t),x(t)) = σ2

t∫
0

e−M(t−τ)e−MT (t−τ)dτ. (4)

Given that G is undirected, the Laplacian matrix L will be
symmetric and it follows that M will be symmetric and normal.
Let the eigenvalues of M be λi, i ∈ V with corresponding
eigenvectors νi. Let Λ be the diagonal matrix with entries
Λi,i = λi. Then there exists a unitary matrix U such that
U ∗MU = Λ and (4) can be written as

Cov (x(t),x(t)) = σ2 (UR(t)U ∗)

with

R(t) :=

t∫
0

e−(Λ+Λ∗)(t−τ)dτ.

From [24], this gives

[Cov (x(t),x(t))]i,j = σ2
n∑

p=1

1− e−2Re(λp)t

2Re(λp)
ν
(p)
i ν

(p)
j

∗
.

Since M is symmetric, all eigenvalues of M will be real, and
the steady-state variance of each node can be written as

Var(xi)ss = Σi,i = σ2
n∑

p=1

1

2λp

∣∣∣ν(p)i

∣∣∣2 . (5)

Total system error follows from summing (5) over all i

n∑
i=1

Σi,i = σ2
n∑

i=1

1

2λi
=

σ2

2

n∑
i=1

M−1
i,i . (6)

Total system error defines the coherence of the network, and is
equivalent to the H2 norm of the system with output equation
y=Cx, whereC=In and In then×n identity matrix [11], [12].

We define the optimal leader selection problem as follows.
Definition 1 (Optimal Leader Selection Problem): Given m

and an undirected, connected graph G, find a set of m leaders
S∗ over all possible sets S of m leaders that minimizes the
total system error (6) for the leader-follower network tracking
dynamics (3), that is, find

S∗ = argmin
S

σ2
n∑

i=1

1

2λi
= argmin

S

σ2

2

n∑
i=1

M−1
i,i .

III. REVIEW OF PROPERTIES OF THE LAPLACIAN

AND GRAPH-THEORETIC MEASURES

We briefly review relevant graph-theoretic measures and
identities that will be applied in later sections. We start with
the notion of information centrality, which was first introduced
by Stephenson and Zelen in [25]. Information centrality can be
understood by first defining the information in a path between
any two nodes in G to be the inverse of the path length between
those two nodes. Thus, the longer the path, the less information
in that path. Total information between nodes i and j, denoted
as Itoti,j , is the sum of the information in all paths connecting
nodes i and j. Reference [25] shows that total information can
be calculated without path enumeration by using the group
inverse of the Laplacian, which here is the pseudoinverse L+

Itoti,j =
(
L+
i,i + L+

j,j − 2L+
i,j

)−1
.

Information centrality for node i, denoted as ci, is defined as
the harmonic average of total information between node i and
all other nodes in G

ci =

⎛
⎝ 1

n

n∑
j=1

1

Itoti,j

⎞
⎠

−1

. (7)
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In [26], Poulakakis et al. evaluated the certainty of each
node i in a network of decision-makers accumulating stochastic
evidence toward a decision. This certainty, denoted as μi, is
defined as the inverse of the difference between the variance
of the state xi about the reference signal and the minimum
achievable variance as t → ∞. The authors applied the notion
of information centrality to directly interpret μi in terms of
structural properties of the underlying communication graph.
It was proven that

1

μi
=

σ2

2
L+
i,i =

σ2

2

(
1

ci
− Kf

n2

)
(8)

where Kf is the Kirchhoff index of G. The identity (8) implies
that the ordering of nodes by certainty is equal to the ordering of
nodes by information centrality [26]. We show in later sections
that information centrality also plays a critical role in the
solution to the optimal leader selection problem.

The total information between any two nodes i and j is
closely related to the resistance distance between them, denoted
as ri,j . Resistance distance between nodes in the undirected
graph G is defined as the resistance distance between the
corresponding two nodes in the electrical network analog to the
graph G. With [27] for an undirected graph G

ri,j = L+
i,i + L+

j,j − 2L+
i,j = Itoti,j

−1
. (9)

It follows that

n∑
i=1

ri,j =
n

cj
.

An additional measure with a similar form to that of re-
sistance distance is the recently derived notion of biharmonic
distance dB [28]. This measure has been used to quantify
distance between two points vi, vj on the surface of a discrete
3-D mesh

dB(vi, vj)
2 = gd(i, i) + gd(j, j)− 2gd(i, j)

where gd is the discrete Green’s function of the discretized, nor-
malized bilaplacian L̃2, equivalent to the pseudoinverse of L̃2,
and L̃ is the normalization of Laplacian L. In the context
of 3-D meshes, the biharmonic distance has the advantage,
over diffusion and geodesic distances, of providing a balance
between local and global properties of a surface, reflecting
overall connectivity for faraway points [28]. We define the
biharmonic distance between two nodes i and j in the graph G,
which we denote γi,j , analogously without normalizing L

γi,j =L2+
i,i + L2+

j,j − 2L2+
i,j =

n∑
l=1

(
L+
l,i − L+

l,j

)2

=(ei − ej)
TL2+(ei − ej). (10)

We observe that the definition of biharmonic distance γi,j of
(10) is very similar to the definition of resistance distance ri,j
of (9) with the difference being the use of the pseudoinverse of
L2 in the definition of γi,j compared to the pseudoinverse of
L in the definition of ri,j . Since L2 is symmetric and positive

semidefinite, we immediately have that γ1/2 is a metric. In fact,
it can be viewed as a Manahalobis distance which, in this case,
describes a dissimilarity measure between two vectors from
a single distribution with covariance matrix L2. Let Γ be the
matrix with elements γi,j .

For completion, we note that resistance distance and bihar-
monic distance between nodes can be written in terms of the
eigenvalues λi and eigenvectors νi of the Laplacian L

ri,j =
n∑

l=2

1

λl

(
νil − νjl

)2

γi,j =

n∑
l=2

1

λ2
l

(
νil − νjl

)2

.

Finally, the following properties of L+ will be applied to the
proofs. (See [26] for details.)

LL+ =L+L = In − 1

n
1n1n

T (11)

1n
TL+ =L+1n = 0 (12)

Tr(L+) =
Kf

n
. (13)

IV. JOINT CENTRALITY AND THE OPTIMAL m
NOISE-FREE LEADERS

In this section, we prove our main result on the general
solution of the optimal leader selection problem by deriving
an explicit expression for total system error with m noise-free
leaders in terms of properties of the underlying graph. Before
stating the theorem, we first define the joint centrality of a set
of m nodes in a network graph.

Definition 2 (Joint Centrality): Let G be an undirected,
connected graph of order n. Given integer m < n, let S be the
set of any m nodes in G. Choose an arbitrary element l1 ∈ S.
Let N be an n× n matrix with elements of N−1 given by

N−1
i,j = L+

i,j − L+
i,l1

− L+
j,l1

+ L+
l1,l1

. (14)

Following (1), N−1
S\l1 is the (m− 1)× (m− 1) submatrix of

N−1 corresponding to the elements of S less the first element

l1. Let G = (N−1
S\l1)

−1
and Ḡ =

[
0 0
0 G

]
∈ R

m×m. Let Q =

ḠΓS , where Γ is given by (10). The joint centrality of set S in
G is defined as

ρS = n

(
Kf

n
+ n det(G) det

(
L+
S

)
+

1

2
Tr(Q)− 1T

nQel1

)−1

.

(15)

Theorem 1 (Optimal Noise-Free Leader Set): Let G be an
undirected, connected graph of order n. Let S be a set of
m noise-free leaders. Then, the total system error (6) for the
system dynamics (3) is

n∑
i=1

Σi,i =
σ2

2

(
n

ρS

)
(16)
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where ρS is the joint centrality of leader set S given by (15).
The optimal leader set is S∗ = argmaxS ρS , the set of leader
nodes with the maximal joint centrality.

We recall three lemmas that will be used in the proof of
Theorem 1.

Lemma 1 [29]: Let z,y ∈ R
n. A rank-1 update zyT for

the Moore-Penrose pseudoinverse of a real valued matrix, F ∈
R

n×n, is given by

(F + zyT )
+
= F+ +H

where

H = − 1

‖w‖2vw
T − 1

‖m‖2mhT +
β

‖m‖2‖w‖2mwT (17)

and β = 1 + yTF+z, v = F+z, h = (F+)Ty, w = (I −
FF+)z, and m = (I − F+F )Ty.

Lemma 2 [30]: Let X ∈ R
n×n, Z ∈ R

m×m, U ∈ R
n×m and

V ∈ R
m×n such that X , Z and X + UZV are nonsingular.

Then, (X + UZV )−1 can be written as

(X + UV Z)−1 = X−1 −X−1U(Z−1 + V X−1U)
−1
V X−1.

Lemma 3 [31]: The determinant of a bordered matrix can be
computed as follows:∣∣∣∣X u

vT d

∣∣∣∣ = d|X | − vT (adjX)u

where X ∈ R
p×p, u,v ∈ R

p, and d ∈ R.
Proof: (Theorem 1). We begin by studying terms in the

total system error for finite k > 0 and then evaluate in the limit
as k → ∞. From (6), the total system error is proportional to
Tr(M−1) where M = L+K . Let K1 be the diagonal matrix
with k in the first diagonal element and zeros elsewhere and let
Km−1 = K −K1. We derive an expression for Tr(M−1) by
calculating two successive updates to L+. We first show that if
we define N = L+K1, and thus M = N +Km−1, then N−1

satisfies (14) for k → ∞.
Let e = d be vectors of length n with

√
k in the l1 (first)

entry and zeros elsewhere where l1 is a member of the leader
set. Note that the choice of l1 will not affect the value of joint
centrality for a given leader set. Then N−1 = (L+K1)

−1 =

(L + edT )
−1

. Applying Lemma 1 we get that (L+ edT )
−1

=
L+ +H , with H given by (17) such that

N−1=L+−L+
l1
1n

T −1nL
+T
l1

+

(
1+kL+

l1,l1

)
k

1n
T1n. (18)

Taking the limit as k → ∞, the elements of N−1 can be written
as (14).

Let U=[−
√
ke2, . . . ,−

√
kem]∈R

n×(m−1), let V =UT and
let Im−1 ∈ R

(m−1)×(m−1) be the identity matrix. Then, M−1 =
(N+Km−1)

−1=(N+UIV )−1. Applying Lemma 2, we obtain

(N + UIV )−1 = N−1 −N−1U(I+ V N−1U)
−1
V N−1.

LetG=(N−1
S\l1)

−1 as in Definition 2. Then if we take the limit

as k→∞, sum the diagonal elements of M−1=(N+UIV )−1,
and apply the identities (12) and (13) we obtain
n∑

j=1

M−1
j,j =

Kf

n
+nL+

l1,l1
−

∑
s1,s2∈S\{l1}

n∑
i=1

Gs1,s2

×
(
L+
l1,l1

(
L+
l1,l1

−L+
l1,s1

−L+
l1,s2

)
+L+

l1,s1
L+
l1,s2

+
1

2

×
[(
L+
i,l1
−L+

i,s1

)2
+
(
L+
i,l1
−L+

i,s2

)2
−
(
L+
i,s1

−L+
i,s2

)2])
.

(19)

Consider the square bracketed terms of (19) in which we
observe the emergence of biharmonic distance, γ. Substituting
(10) and defining Ḡ as in Definition 2, we obtain

∑
s1,s2∈S\{l1}

n∑
i=1

Gs1,s2

×1

2

[(
L+
i,l1

−L+
i,s1

)2

+
(
L+
i,l1

−L+
i,s2

)2

−
(
L+
i,s1

−L+
i,s2

)2])

= −1

2
Tr(ḠΓS) + 1T

n [ḠΓS ]el1 .

Additional simplification is made by applying Lemma 3 to
the middle terms on the right-hand side of (19). We obtain

nL+
l1,l1

−n
∑

s1,s2∈S\{l1}
Gs1,s2

×
(
L+
l1,l1

(
L+
l1,l1

− L+
l1,s1

− L+
l1,s2

)
+ L+

l1,s1
L+
l1,s2

)

=
n

det(G−1)

⎛
⎝L+

l1,l1
det(G−1)−

∑
s1,s2∈S\{l1}

CN−1
s1,s2

×
[
L+
l1,l1

(
L+
l1,l1

−L+
l1,s1

−L+
l1,s2

)
+L+

l1,s1
L+
l1,s2

]⎞⎠
(20)

whereCN−1 is the cofactor matrix of N−1
S\l1 = G−1. We then let

L+
l1,si

=[L+
l1,s1

, . . . ,L+
l1,sm−1]

T
and L+

l1,l1
=[L+

l1,l1
, . . . ,L+

l1,l1
]
T

be vectors in R
m−1 and apply Lemma 3 to rewrite the expres-

sion in (20) as

n

det
(
N−1

S\l1
) ∣∣∣∣ N−1

S\l1 L+
l1,l1

− L+
l1,si

L+
l1,l1

− L+
l1,si

L+
l1,l1

∣∣∣∣ . (21)

Using (14), we expand the determinant in (21) and perform
algebraic manipulation to show that (21) simplifies to

n det(G) det
(
L+
S

)
.

Thus
n∑

i=1

Σi,i =
σ2

2

(
Kf

n
+ n det(G) det

(
L+
S

)
+

1

2
Tr(ḠΓS)− 1T

n [ḠΓS ]el1

)

=
σ2

2

(
n

ρS

)

where ρS is defined by (15). �
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V. INTERPRETATION

In this section we provide interpretation of and intuition on
the joint centrality measure, we prove explicit solutions to the
optimal leader selection problem in a few cases, and we con-
sider noise-corrupted leaders in the case of m = 1 and m = 2.
Our central insight is that joint centrality of a set of nodes is a
generalization of information centrality of an individual node:
the joint centrality of a set of nodes is directly related to the
information centrality of each individual node in the set and
a coverage of the graph by the whole set, defined in terms of
distribution of the set over the graph with respect to resistance
and biharmonic distances. These components of joint centrality
may be in tension, since the most information central nodes can
be close to one another (e.g., in the path graph), in which case
they may be insufficiently distributed over the graph to provide
good coverage. The optimal leader set is composed of nodes
that trade off high nodal information centrality (close to the
center in the path graph example) with good coverage (close
to the ends in the path graph example).

We begin in this section by examining the terms in the
expression for joint centrality in the case of an arbitrary number
of noise-free leadersm, and show the connection to information
centralities and coverage. We solve the optimal leader selection
problem in the case of a cycle graph and illustrate further with a
more general example. We then specialize to the case of m = 1
leader, and show how joint centrality specializes to information
centrality of the leader node, with or without noise corruption.
Next we specialize to the case of m = 2 leaders, where the
expression for joint centrality facilitates a close examination
of the tradeoff between information centralities and coverage
provided by the two leaders. We prove an explicit solution for
the optimal set of two leaders in the case of the path graph. We
also address the problem for m = 2 noise-corrupted leaders and
provide intuition. We finish the section with a discussion of our
results in light of greedy algorithms for finding optimal leader
sets, and we make connections to controllability.

A. Joint Centrality and an Arbitrary Number of Leaders m

We interpret the results of Theorem 1 in the following two
remarks. We then illustrate the notion of coverage by proving
the explicit solution to the optimal leader set in the case of a
cycle graph. We illustrate the tradeoff between centrality and
coverage with an example network.

Remark 1: Using Theorem 1 to compute the total system
error in terms of joint centrality of the m leader nodes provides
a significant reduction in computation as compared to using the
definition of total system error (6). Using joint centrality one
only needs to compute the inverse of two n× n matrices L+

and L2+ and then for each candidate set of leaders the inverse
of an (m− 1)× (m− 1) matrix. This is in contrast to using
the definition (6), which requires computing the inverse of the
n× n matrix M for each candidate set of leaders.

Remark 2: Theorem 1 reveals how the solution to the optimal
leader selection problem is an optimal tradeoff between high
information centrality of the leader nodes and high resistance
distances and biharmonic distances between leader nodes. To
see this we examine the terms in (15) for joint centrality ρS .

First, the elements of N−1 given by (14) depend on resistance
distances

N−1
i,j =

1

2
(ri,l1 + rj,l1 − ri,j).

Thus, N−1
i,j quantifies a joint resistance distance between a pair

of nodes i, j and l1, Then, det(G) = (det(N−1
S\l1))

−1
depends

on these joint resistance distances among leaders.
Second, by (8) each diagonal element of L+

S corresponds
to a leader node and depends directly on the inverse of its
information centrality as follows:

L+
s,s =

1

cs
− Kf

n2
.

By (9) the off diagonal elements of L+
S depend on information

centralities and resistance distances between leaders

L+
s,t =

1

2

(
1

cs
+

1

ct
− rs,t − 2

Kf

n2

)
.

Maximizing ρS requires a small det(G) det(L+
S ), which sug-

gests a key tradeoff between high information centrality of
leaders and high resistance distances between leaders.

The term Tr(Q) in (15) is the sum of products of the
biharmonic distances between pairs of leader nodes (from ΓS),
and terms in G. Since Tr(Q) is negative, maximizing joint
centrality requires high biharmonic distances between pairs of
leader nodes. Biharmonic distance between a pair of nodes de-
pends strongly on global connectivity of the graph and together
with resistance distances provides a measure of coverage of the
graph by a node set. Thus, the joint centrality measure makes
rigorous how the optimal leader set trades off high information
centrality of each of the nodes in the set with a good coverage
of the graph by the set of nodes.

To better understand the coverage term, we first consider the
case of a cycle graph. Because each node in the cycle graph
has the same information centrality, it is only the coverage term
that matters in the optimization of joint centrality. We can use
the cyclic structure of the graph Laplacian to explicitly solve for
the optimal locations of m noise-free leaders. In the following
theorem, we show that the optimal leader set is a set of nodes
uniformly distributed about the cycle, which corresponds to a
set that maximizes coverage of the graph.

Theorem 2 (Optimal Noise-Free Leader Set on a Cycle
Graph): Let G be an undirected, unweighted cycle graph of
order n. Let m < n such that p = n/m is an integer. Let S
be a set of m noise-free leaders. Then, an optimal leader set S∗

is any set S where the leaders are uniformly distributed around
the cycle, that is, the geodesic distance between any leader and
each of the other two closest leaders is dsa,sb = p.

Proof: See Appendix A. �
Next, to illustrate the tradeoff between nodal information

centrality and coverage, we consider the unweighted, undi-
rected, connected graph shown in Fig. 1. The optimal sets of
one, two and three leaders are shown in yellow, green, and blue,
respectively. Visually, it is clear that the optimal choice for a
single leader (node 9, in yellow) has a central position in the
network. In fact, node 9 has the highest information centrality ci
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Fig. 1. Solutions to the optimal leader set for an example graph with 16 nodes.
For m = 1 leader, the optimal solution is node 9, shown in yellow. For m =
2 leaders, the optimal solution is the set of nodes 2 and 3, shown in green.
For m = 3 leaders, the optimal solution is the set of nodes 6, 10, and 12, shown
in blue.

(7), consistent with Corollary 1 of Section V, where it is proved
that the optimal single leader is the most information central
node.

Interestingly, it is observed that the optimal single leader is
not a member of the optimal set of two leaders (nodes 2 and 3, in
green). This is due to the fact that the optimal two leaders need
to trade off high information centrality as individuals with a joint
coverage of the graph (see also Corollary 2 in Section V-C). For
this reason, the optimal two leaders are well connected within
the graph and distanced from each other.

The optimal three leaders (nodes 6, 10, 12, in blue) further
illustrate the key tradeoff between leaders that are central and
leaders that cover the graph. Although node 12 is not so well
connected, its large resistance and biharmonic distances from
nodes 6 and 10 make it part of the optimal three-leader set. That
is, the three-node leader set has optimal joint influence on the
graph, as encoded by the joint centrality of the set.

The three solutions illustrate how a leader selection algo-
rithm that first selects a leader and then iteratively adds to the
set would result in a suboptimal leader set for this example and
likely in general. (See also the example in [11].)

B. Optimal Selection of a Single Noise-Corrupted or
Noise-Free Leader

Joint centrality reduces to information centrality in the case
of a single leader (m = 1), with or without noise corruption.
Thus, the optimal single leader is the node with the highest
information centrality.

Corollary 1 (Optimal Leader Set, m = 1): Let G be an
undirected, connected graph of order n. Let S = {s} be a
set of one noise-corrupted leader (k < ∞) with information
centrality cs. Then, the total system error (6) for the system
dynamics (3) is

n∑
i=1

Σi,i =
nσ2

2

(
1

k
+

1

cs

)
.

If instead the leader set S is noise free, then the total system
error (6) for the system dynamics (3) is

n∑
i=1

Σi,i =
nσ2

2

(
1

cs

)
.

In both the noise-corrupted and the noise-free cases, the optimal
leader set S∗ = {s∗} = argmaxs cs, the node with maximal
information centrality cs∗ .

Proof: For a single leader, we only need to consider a
rank-one update to the pseudoinverse of L. From (18), where
l1 = s, this is

N−1 = L−1−L+
s 1n

T −1nL
+T
s +

(
1 + kL+

s,s

)
k

1n
T1n. (22)

Summing the diagonal elements of (22) and applying (8), (12),
and (13) yields

n∑
i=1

N−1
i,i =

Kf

n
+

n

k
+ n

(
1

cs
− Kf

n2

)
=

n

k
+

n

cs
.

Subsequently, substituting into (6) gives the total system error

n∑
i=1

Σi,i =
nσ2

2

(
1

k
+

1

cs

)
. (23)

To obtain the total system error in the case of one noise-free
leader, we take the limit of (23) as k → ∞, which gives

lim
k→∞

n∑
i=1

Σi,i = lim
k→∞

nσ2

2

(
1

k
+

1

cs

)
=

nσ2

2

(
1

cs

)
. (24)

The total system error in (23) and in (24) is minimized when the
leader has the highest information centrality. �

Remark 3: Our definition of joint centrality derives from the
definition of the optimal leader selection problem in terms of
minimizing total system error (6). However, we have shown
in Corollary 1 that joint centrality can be interpreted as a
generalization of information centrality of a single node. This
suggests the possibility of using joint centrality for generalizing
from individual nodes to sets of nodes in problems where
information centrality is a critical measure. For example, it
is proved in [32] that information centrality of a node in a
network performing distributed hypothesis testing determines
its speed-accuracy tradeoff. Joint centrality may be useful for
investigating the decision-making performance of a set of nodes
in this context.

C. Joint Centrality and Two Noise-Free Leaders

In order to provide further intuition, we specialize Theorem 1
to the case of two noise-free leaders. In this case the expres-
sion for joint centrality simplifies as compared to the case of
arbitrary m, and we can more closely examine the terms that
determine the centrality versus coverage tradeoff in the optimal
leader set.
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Corollary 2 (Optimal Noise-Free Leader Set, m = 2): Let
G be an undirected, connected graph of order n. Let S2 =
{s1, s2} be a set of two noise-free leaders. Then, the total
system error (6) for the system dynamics (3) is

n∑
i=1

Σii =
σ2

2

(
n

ρS2

)
(25)

where ρS2
is the joint centrality of S2 given by (15), which

specializes to

ρS2
=n

(
Kf

n
+
nL+

s1,s1L
+
s2,s2−nL+

s1,s2

2−γs1,s2
rs1,s2

)−1

. (26)

The optimal leader set is S∗
2 = {s∗1, s∗2} = argmaxs1,s2 ρS2

,
the two nodes with the maximal joint centrality.

Proof: In the case of two leaders, G = 1/rs1,s2 .
Equation (25) follows directly from simplification of (16) and
(15) from Theorem 1. �

Remark 4: Following Remark 2, we see that in the two-leader
case the term det(G) det(L+

S ) = (L+
s1,s1L

+
s2,s2 − L+

s1,s2

2
)/

rs1,s2 , which is small for large leader information centrality and
large resistance distance between leaders. The term Tr(Q) is
proportional to −γs1,s1/rs1,s2 . For this term to be small, the
biharmonic distance should be large relative to the resistance
distance between leaders.

We prove an explicit formula for the optimal two noise-free
leader set in the case of a path graph of order n.

Corollary 3 (Optimal Noise-Free Leader Set on a Path Graph,
m = 2): Let G be an undirected, unweighted path graph of
order n, which is the cycle graph with one link removed. Let
S2 = {s1, s2} be a set of two noise-free leaders. The optimal
leader set S∗ is s∗1= rnd((n/5)+(1/2)) and s∗2= rnd((4n/5)+
(1/2)), where rnd is rounding to the closest integer.

Proof: See Appendix B. �
We observe that for large n, the optimal two leader locations

on the path approach 0.2 and 0.8 of the path length (starting
from one end). This is in contrast with the cycle, where the
optimal two leaders maintain a distance between each other
equal to 0.5 of the number of nodes. Considering that the path
is simply a cycle with one edge removed, it is interesting to
observe that for large n, removing an edge from a cycle will
cause the fraction of nodes between the optimal two leaders
to increase from 0.5 to 0.6. That is, the optimal two leaders
in the path are more spread out towards the two endpoints.
The locations of the optimal two leaders in the path can be
understood to be the optimal solution to the tradeoff between
high information centrality of two symmetrically distributed
leaders, which increases as the two leaders get closer to the
midpoint and thus to each other, and good coverage, which
requires the two leaders to be sufficiently distant from each
other. The optimal two-leader set does not include the optimal
single leader set, which is the node at the midpoint of the path,
following Corollary 1 of Section V-B.

D. Joint Centrality and Two Noise-Corrupted Leaders

To address the case of two noise-corrupted leaders, where
k < ∞, we define a k-dependent joint centrality of a set of two
nodes. We then derive the solution to the optimal leader selec-
tion problem for two noise-corrupted leaders by calculating the
total system error in terms of the k-dependent joint centrality of
the two-leader set.

Theorem 3 (Optimal Noise-Corrupted Leader Set, m = 2):
Let G be an undirected, connected graph of order n. Let
S2 = {s1, s2} be a set of two noise-corrupted leaders (k < ∞).
Define ρkS2

, the k-dependent joint centrality of S2, as

ρkS2
= n

⎛
⎝Kf

n
+

n
[
1 + k

(
L+
s1,s1

+ L+
s2,s2

)]
k (2 + krs1,s2)

+
nk2

(
L+
s1,s1L

+
s2,s2 − L+

s1,s2

2
)
− k2γs1,s2

k (2 + krs1,s2)

⎞
⎠

−1

. (27)

Then, the total system error (6) for the system dynamics (3) is

N∑
i=1

Σii =
σ2

2

(
n

ρkS2

)
. (28)

The optimal leader set is S∗
2 = {s∗1, s∗2} = argmaxs1,s2 ρkS2

,
the two nodes with the maximal k-dependent joint centrality.

Prior to proving Theorem 3, we state a lemma from [33] that
provides a simplification of the Woodbury formula in the case
of a rank one update to a matrix.

Lemma 4 [33]: For rank one square matrix H and nonsin-
gular X and X +H , (X +H)−1 can be written as

(X +H)−1 = X−1 − 1

1 + g
X−1HX−1

where g = Tr(HX−1).
Proof: (Theorem 3). Let K1, K2 be rank one matri-

ces with K1s1,s1
= k, K2s2,s2

= k where k > 0 and all other
elements of K1, K2 are zero. Let K = K1 +K2 and N =
L+K1. Then, M = L+K = N +K2.

By applying Lemma 4, we compute

M−1 =(N +K2)
−1

=N−1 − 1

1 + Tr(K2N−1)
N−1K2N

−1. (29)

By (18)

Tr(K2N
−1) = 1 + kL+

s2,s2 − 2kL+
s2,s1 + kL+

s1,s1

=1 + krs1,s2 . (30)

Plugging (30) into (29) yields total system error (6)

n∑
i=1

Σi,i =
σ2

2

n∑
i=1

M−1
i,i

=
σ2

2

n∑
i=1

(
N−1

i,i − 1

2 + krs1,s2
(N−1K2N

−1)i,i

)
.
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ExpandingN−1 in terms ofL+ and applying (12) and (13) gives

n∑
i=1

M−1
i,i =

n

k
+

Kf

n
+ nLs1,s1 −

1

2 + krs,p

×
(
k

n∑
i=1

(
L+
i,s1

− L+
i,s2

)2
+ nk

(
L+
s1,s2

)2
− 2nL+

s1,s2
− 2nkL+

s1,s1
L+
s1,s2

+ 2nL+
s1,s1 + nk

(
L+
s1,s1

)2
+

n

k

)
.

Rearranging terms and substituting from (10) results in

n∑
i=1

Σi,i=
σ2

2

⎛
⎝Kf

n
+

n+ nk
(
L+
s1,s1 + L+

s2,s2

)
k (2 + krs1,s2)

+
nk2

(
L+
s1,s1

L+
s2,s2

−L+
s1,s2

2
)
−k2γs1,s2

k (2+krs1,s2)

⎞
⎠
⎞
⎠

=
σ2

2

(
n

ρkS2

)
.

�
We observe that the k-dependent joint centrality (ρkS2

from
Theorem 3) plays the same role in determining total system
error with two noise-corrupted leaders (28) as joint centrality
(ρS2

from Corollary 2) plays in determining total system error
with two noise-free leaders (25). Further, as expected, in the
limit as k → ∞ we see that ρkS2

approaches ρS2
. To better

understand the results in the case of finite k, we compute the
Taylor series expansion of ρkS2

(28) about k = 0:

ρkS2
= 2k +

(
rs1,s2−

(
L+
s1,s1

+L+
s2,s2

)
− 4Kf

n2

)
k2 +O(k3).

(31)

Thus, for k 	 1, ρkS2
can be approximated by 2k + (rs1,s2 −

(L+
s1,s1

+ L+
s2,s2

)− (4Kf/n
2))k2.

Remark 5: It can be seen in (31) that ρkS2
→ 0 as k → 0.

This follows since at k = 0 there are no leaders and thus
no centrality of leaders. For k 	 1, the approximation 2k +
(rs1,s2 − (L+

s1,s1 + L+
s2,s2)− (4Kf/n

2))k2 of ρkS2
reveals a

tradeoff similar to the tradeoff in the noise-free case. The trade-
off implies that the k-dependent joint centrality is maximized
for large resistance distance rs1,s2 between the two leaders and
for large information centrality of each of the two leaders. In
the case of a symmetric graph where each node has the same
information centrality, the optimal leader set is the one in which
the pair has maximum resistance distance.

We prove in the case of the cycle graph, where every node
has the same information centrality, that the optimal two noise-
corrupted leaders correspond to an antipodal pair of nodes, that
is, a pair with maximal resistance distance. This is the same
solution as in the case of noise-free leaders on the cycle.

Corollary 4 (Optimal Noise-Corrupted Leader Set on a
Cycle, m = 2): Let G be an undirected, unweighted cycle graph

of order n where n is even. Let S2 = {s1, s2} be a set of two
noise-corrupted leaders (k < ∞). The optimal leader set S∗

is any two nodes with maximal resistance distance rs1,s2 =
n/4, which corresponds to geodesic distance ds1,s2 = n/2 and
antipodal nodes.

Proof: See Appendix C. �
To further investigate the role of finite k we computed the op-

timal noise-corrupted leader set for the path graph of order n =
51. For k = 2 and higher values, the solution corresponds to
the optimal solution in the noise-free case given by Corollary 3,
that is, S∗ = {11, 41}. In the case of k = 0.0001, the optimal
solution is S∗ = {13, 39}, that is, the optimal noise-corrupted
leaders are a little closer to the center of the path. The trend
persists for larger n. For example, for a path graph of order n =
101, for k = 2 and higher values, the solution corresponds to
the optimal solution in the noise-free case given by Corollary 3,
that is, S∗ = {21, 81}, and in the case of k = 0.0001, the
optimal solution is S∗ = {25, 77}.

E. Optimization Algorithms for Leader Selection

A number of optimization algorithms have been derived in
the literature to approximately solve the optimal leader selec-
tion problem. In [11] a greedy algorithm was proposed. The
authors argued that the greedy algorithm may be too compu-
tationally intensive for very large networks, and they derived
alternative algorithms that use a bound on the total system
error to improve efficiency. These algorithms add a leader to
the optimal set one at a time. In [19] convex optimization
was used to quantify bounds on performance and an efficient
greedy approach was proposed. This algorithm uses a swap
procedure to reduce the error associated with choosing one
leader at a time. In [18] the total system error was proved to
be a supermodular function of the leader set, and this allowed
for the development of algorithms that approximate the optimal
solution up to a provable bound.

The dependence of the optimal leader set on joint centrality
explains how S∗

m, the set of m optimal leaders, is not in general
a subset of S∗

m+1, the set of m+ 1 optimal leaders. That is,
while the total system error is a supermodular function of the
leader set, it is not a modular function of the leader set. Thus,
any approach that chooses optimal leaders one at a time will
in general find only a suboptimal solution. This was illustrated
in the example in Section V-A. Likewise, in the case of the
cycle graph, since we have shown that the optimal leaders are
uniformly distributed around the cycle, a greedy method will
give the optimal solution for m = 2a where a = 0, 1, 2, 3 . . .,
but otherwise a suboptimal solution.

The results in the present paper complement the results on
optimization algorithms by characterizing the optimal leader set
in terms of graph centrality and coverage measures and making
it possible in some cases to solve explicitly for the optimal
leader set.

F. Connections to Controllability of Networks

The covariance matrix Wm = σ2
∫∞
0 e−Mτe−MT τdτ , given

by (4) for t → ∞, is the infinite-horizon controllability
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Gramian of the n-dimensional state-space system (3). The
inputs to the state-space equation are the independent noise
terms introduced at each node and the input matrix is σIn.
The total system error (6) that defines performance in this
paper is equivalent to the trace of Wm. Thus, the optimal
leader selection problem requires to choose the m < n nonzero
diagonal elements of K in M = L+K that minimizes the
trace of Wm. Although a controllability Gramian determines
performance, choosing a set of leaders to minimize the impact
of noise on the network coherence is not the same problem as
choosing a set of leaders to optimize controllability.

Controllability of networks is studied in the literature, for
example, in [34]–[36]. There the problem is to choose a set
of q < n input nodes that define the input to the network
dynamics, that is, that determine the rank q input matrix B
to guarantee or optimize controllability. In [34], the problem is
considered with respect to optimization of performance metrics
defined in terms of the infinite-horizon controllability Gramian
Wc =

∫∞
0 eAτBBT eA

T τdτ , where A defines the zero-input
network dynamics. For example, if the q input nodes guarantee
controllability, then Wc is invertible and minimizing the trace
of W−1

c minimizes the input energy needed for control. Even
without controllability, the trace of Wc can be maximized to
minimize average input energy. It is shown in [34] that the
trace of Wc is a modular function of the set of q input nodes.
This implies that the set of q input nodes that maximize the
trace of Wc is contained in the set of q + 1 input nodes that
maximize the trace of Wc. This modularity result does not
apply to the problem studied in the present paper. Indeed, as
discussed in Section V-E the trace of Wm is not a modular
function of the m leaders that minimize total system error but
rather a supermodular function of these m leaders as proved in
[18]. Likewise, as pointed out in [18], an approach that chooses
leaders to guarantee controllability, does not address the impact
of noise, and deviations in behavior can result even when noise
is introduced at a single node.

VI. JOINT CENTRALITY AND SYNTHETIC LETHALITY

IN SACCHAROMYCES CEREVISIAE

To further investigate joint centrality of a set of nodes, we
apply it in the analysis of synthetically lethal (SL) genes of
the functional gene network of Saccharomyces Cerevisiae, also
known as baker’s yeast. A functional gene network is one in
which nodes in the network represent genes and edges between
pairs of nodes represent the function or process by which the
pair of genes interact. S. Cerevisiae has served as a platform
for studying genetics of human diseases and is therefore an
important model for biological studies [37]. Here, we focus on
instances of synthetic lethality, which occur when the deletion
of two genes (A and B) is lethal to the organism and the deletion
of A alone or B alone is not lethal.

Using the probabilistic functional gene network of
S. Cerevisiae from [37] (5808 genes with 362,421 edges
that represent functional couplings), we calculated the two-
node joint centrality for every pair of genes in the network.
Then we applied experimental interaction data from the
BioGrid database to identify SL pairs of nodes [38]. Fig. 2

Fig. 2. Distribution of two-node joint centrality for every node pair (blue) in
the functional gene network of S. Cerevisiae and distribution of two-node joint
centrality of synthetically lethal node pairs (red).

shows the probability distribution function of two-node joint
centrality for all pairs of genes (blue) against the probability
distribution function of two-node joint centrality for SL pairs
of genes (red). The distributions were constructed by fitting
non-parametric distributions with a normal kernel function to
normalized histograms of joint centrality calculations for all
node pairs and for all SL node pairs.

A clear distinction between the two distributions in Fig. 2 is
apparent. The distribution of two-node joint centralities for SL
node pairs is more highly skewed towards high values of joint
centrality than the distribution of two-node joint centralities for
all node pairs.

We note that SL pairs of nodes are also distinguishable from
all other pairs due to their having a higher average degree. This
is expected, however, as there is likely a research bias towards
testing high degree nodes for synthetic lethality (the set of SL
pairs is not necessarily the complete set but rather the set that
has been identified thus far). Accordingly, we do not suggest
that joint centrality is the only way to predict possible SL pairs.
Instead, we suggest that two-node joint centrality provides a
natural measure for predicting SL pairs, because it takes into
account the joint influence of a pair of nodes on the entire
network. In contrast, a measure of pairwise average degree only
considers independent, local interactions.

VII. FINAL REMARKS

In this paper we examine the optimal leader selection prob-
lem in a leader-follower network dynamic subject to stochastic
disturbances. The objective is for the network to track an
external, unknown signal, where leaders can take measurements
of the external signal but followers must rely only on their
measurements of their neighbors. Performance is defined as
the inverse of total steady-state error of the system about an
external, unknown signal to be tracked, and the optimal set of
m leaders maximizes performance over all possible sets of m
leaders.

In contrast to approaches in the literature, which focus on
derivation of greedy algorithms, our approach is to derive total
system error as a function of a measure of the underlying
network graph. To do so we define the joint centrality measure
of a set of nodes, such that total system error is inversely
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proportional to joint centrality. We prove that the optimal leader
set corresponds to the set of m leaders with maximal joint
centrality. We show that joint centrality of a set of nodes
depends directly on the information centrality of each node
in the set and resistance distances and biharmonic distances
between pairs of nodes in the set, which can be interpreted as
a coverage of the graph by the set as a whole. We discuss how
the optimal solution is the set of leader nodes that trades off
high information centralities of individuals nodes with a good
coverage of the graph by the set. We show that joint centrality
specializes to information centrality in the case of a single node,
and that the optimal leader, with or without noise corruption, is
the most information central node.

We solve explicitly for the optimal leader set in the case of
the cycle graph and the optimal two-leader set in the case of the
path graph. Further, we extend the notion of joint centrality and
the optimal leader set to the case of two noise-corrupted leaders.
Finally, we provide additional illustration of joint centrality
and its more general applicability by using it in the analysis
of synthetically lethal gene pairs in a functional gene network.
Because joint centrality can be interpreted as a generalization of
information centrality, we expect it to prove useful in general-
izing to an optimal set of nodes in problems where information
centrality distinguishes individual nodes, such as in the case of
optimizing the speed-accuracy tradeoff in a network performing
distributed hypothesis testing as studied in [32].

Our optimal leader selection results are relevant both to
control design, for example, enabling accuracy and efficiency
in sensor networks, and to analysis, for example, finding con-
ditions that yield the high performance observed in collective
animal behavior. One future direction is to extend the optimal
leader selection results of this paper to directed networks by
applying the definition in [21], [22] of effective resistance in
directed graphs towards a definition of joint centrality in di-
rected graphs. Another compelling future direction is to derive
distributed, on-line algorithms that solve the optimal leader
selection problem, leveraging our solutions that depend on
measures of the graph.

APPENDIX A
PROOF OF THEOREM 2

Proof: We begin by assuming m nodes on the cycle have
been selected as leaders and let M = L+K where K is a
matrix with a value of k in the entries along the main diagonal
corresponding to the leader nodes and zeros elsewhere. We
partition M in the usual way. Since we are assuming noise-free
leaders, to compute total system error we need only to consider
the sum of the diagonal elements of the inverse of the submatrix
MF . MF can be written as a block diagonal matrix where each
block corresponds to a set of connected follower nodes between
two leader nodes. Each block MFi

will itself be a tridiagonal
matrix of the form

MFi
=

⎡
⎢⎢⎢⎣

2 −1 0
−1 2

0
. . . −1

0 −1 2

⎤
⎥⎥⎥⎦ .

In the case where there is one follower node in between two
leader nodes the corresponding diagonal block in MF will be
one element with an entry of 2.

Similar to previous sections, total system error for noise-free
leaders will be proportional to the trace of M−1

F , which here is
equivalent to the total sum of eigenvalues of each M−1

Fi
. By [39]

we have that the eigenvalues of M−1
Fi

are

λzij =
1

2− 2 cos
(
j π
wi+1

) j = 1, . . . ., wi

where wi is dimension of MFi
. The average value of the

eigenvalues of a block is then

λ̄zi =

wi∑
j=1

λzij =
1

6
wi +

1

3
.

Therefore, minimizing the total sum of eigenvalues is equiv-
alent to minimizing the sum over i of w2

i . It follows that
the minimum is achieved when w1 = w2 = w3 = · · · , or in
other words when the dimension of each block is the same.
This corresponds to the leaders being evenly distributed around
the cycle with shortest distances between leaders equal to
ds1,s2 = n/2. �

APPENDIX B
PROOF OF COROLLARY 3

Proof: Resistance distance in a path graph simplifies to
ri,j = ‖i− j‖ and

Lj,j =

∑n
i=1 ri,j
n

− Kf

n2

=
(n− j)(1 + n− j)− j + j2

2n
− Kf

n2
. (32)

The substitution of (32) into the expression (26) for ρS2
, where,

without loss of generality, we take s2 > s1, which gives

ρ−1
S2

=
1

n

(
− 1

6
+

n+ n2 − s1 − s2
4

+

(
2s21 + 2s22 − s2(3n+ s1)

)
3

)
. (33)

We then take partial derivatives of (33) with respect to s1 and
s2 to find the minimum of ρ−1

S2
to be s1 = rnd((n/5) + (1/2))

and s2 = rnd((4n/5) + (1/2)). The rounding of s1 and s2 can
be checked by observing from (33) that the level sets of ρ−1

S2

are ellipses in s1, s2. Computing the semiaxis lengths of the
ellipses shows that the nearest integer values of s1 and s2 that
minimize ρ−1

S2
indeed determine the optimal leader set. �
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APPENDIX C
PROOF OF COROLLARY 4

Proof: For a circulant graph L+
s1,s1 = L+

s2,s2 = L+
s,s and,

thus, γs1,s2 = (1/4)
∑n

i=1(ri,s1 − ri,s2 )
2. The k-dependent

joint centrality ρkS2
(27) simplifies to

ρkS2
=n

(
Kf

n
+
nL+

s,s
2−nL+

s1,s2

2−
∑n

i=1(ri,s1−ri,s2)
2

4rs1,s2

)−1

.

By applying (9) and rearranging terms, we have

ρkS2
=

n2

4

(
Kf

n2
+
2

k
+4L+

s,s−rs1,s2−
k

4

∑n
i=1(ri,s1−ri,s2)

2

2 + krs1,s2

)−1

.

(34)

Using the electric circuit analog of resistance distance and
applying Kirchhoff’s laws, the resistance distance between any
two nodes in a cycle can be written as

1

ri,j
=

1

di,j
+

1

n− di,j
(35)

where di,j is the geodesic distance between nodes i and j. The
maximum resistance distance is ri,j = n/4, which is obtained
between two nodes with di,j = n/2.

Simplifying the
∑n

i=1(r
+
i,s1

− r+i,s2)
2 term of (34) by insert-

ing (35) gives

n∑
i=1

(ri,s1 − ri,s2 )
2 =

n∑
i=1

(
di,s1 − di,s2 +

d2i,s2 − d2i,s1
n

)2

=
ds1,s2(ds1,s2−n)

(
d2s1,s2−nds1,s2−2

)
3n

.

(36)

Substituting (36) into (34) results in

ρkS2
=

n2

4

(
Kf

n2
+

2

k
+ 4L+

s,s −
ds1,s2 (n− ds1,s2)

n

−
kds1,s2 (ds1,s2 − n)

(
d2s1,s2 − nds1,s2 − 2

)
6n (2n+ kds1,s2 (n− ds1,s2))

)−1

. (37)

To determine how ρkS2
changes as a function of ds1,s2 , we

take the partial derivative of (37) with respect to ds1,s2 to give

∂ρ−1
kS2

∂ds1,s2
=−1

4
(n− 2ds1,s2)

−
nk
[
2
(
−ds1,s2+d3s1,s2

)
+
(
1−3d2s1,s2

)
n+ds1,s2n

2
]

3 (2n+ ds1,s2k (−ds1,s2 + n))2

−
k2
[
−2d5s1,s2+5d4s1,s2n−4d3s1,s2n

2 + d2s1,s2n
3
]

12 (2n+ ds1,s2k (−ds1,s2 + n))2
.

(38)

Since ds1,s2 ≤ n/2, the first term of (38) will always be non-
positive. In addition, it can be shown algebraically that for
n > 3. the two bracketed expressions in the second and third
terms will be greater than zero. Therefore. ρ−1

kS2
decreases as

ds1,s2 increases, reaching its minimum at the maximal value of
ds1,s2 = n/2, corresponding to rs1,s2 = n/4. �
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