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Information Centrality and Optimal Leader Selection in Noisy Networks

Katherine Fitch and Naomi Ehrich Leonard

Abstract— We consider the leader selection problem in which
a system of networked agents, subject to stochastic distur-
bances, uses a decentralized coordinated feedback law to track
an unknown external signal, and only a limited number of
agents, known as leaders, can measure the signal directly. The
optimal leader selection minimizes the total system error by
minimizing the steady-state variance about the external signal,
equivalent to an H> norm of the linear stochastic network
dynamics. Efficient greedy algorithms have been proposed in
the literature for similar optimal leader selection problems. In
contrast, we seek systematic solutions. We prove that the single
optimal leader is the node in the network graph with maximal
information centrality. In the case of two leaders, we prove that
the optimal pair maximizes a joint centrality, which depends
on the information centrality of each leader and how well the
pair covers the graph. We apply these results to solve explicitly
for the optimal single leader and the optimal pair of leaders
in special classes of network graphs. To generalize we compute
joint centrality for m leaders.

I. INTRODUCTION

Analysis and design of distributed coordination dynamics
in multi-agent systems has gained considerable attention in
recent years [1]-[3]. The dynamics are rich and the pos-
sibilities for application are abundant, both in engineering,
e.g., vehicle networks [4], and in nature, e.g., bird flocks
[5] and social networks [6]. When such systems interact
with the external environment, e.g., to collectively learn
or track an environmental signal, performance will depend
on the information that agents have about the environment,
which can vary across the group, particularly when such
information is costly to acquire. For example, for a robotic
vehicle network tracking a chemical plume, it may be most
efficient for only some subset of vehicles to do the sampling.
Likewise, in a herd of migrating animals, it is likely that only
some subset of the animals measure the migration route [7].

Indeed, it was shown in [7] that the evolutionary special-
ization of a migratory population into leaders who invest in
noisy measurement of the migration route and followers who
only use the available noisy social cues is an evolutionarily
stable solution when the cost of investment is sufficiently
high. In [8], the location of emergent leaders as a function
of the network topology was examined for adaptive dynamics
modeled after [7]. In this model each agent adjusts its
investment strategy to minimize its steady-state variance
about the reference value (migration route). This bottom-up
approach has the advantage of being distributed; however, it
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does not necessarily give rise to leader selections that opti-
mize group performance. Systematic methods to determine
optimal leader sets could prove useful in the design of high-
performing distributed adaptive leadership dynamics.

In the present paper we address the global optimal leader
selection problem for leader-follower dynamics defined such
that some agents (leaders) invest in the costly measurement
of a reference (consensus) value and the rest (followers) use
local consensus dynamics, relying soley on measurements of
the relative state of others in the system. We are interested
in the setting in which the dynamics are subject to stochastic
perturbations [9], [10]. We seek the leader set, as a function
of the fixed, undirected network graph, that minimizes total
system error defined as the steady-state variance of the
system state about the reference value, an Hy norm of the
stochastic linear system dynamics [10], [11].

Current literature focuses on the development of
optimization-based algorithms to find the set of leaders that
minimizes total system error in the same or similar leader-
follower stochastic dynamics as we consider here [10], [12]—
[15]. The algorithms are designed to be efficient but do not
in general have guarantees on optimality. Since many of the
algorithms are iterative (one leader at a time), they do not
accommodate that a node in the optimal set of [ leaders may
often not appear in the optimal set of m leaders, m > [. In
[15] the authors derive algorithms to obtain lower and upper
bounds on the global optimal error in the case of noise-
corrupted leaders and they consider a “swap” algorithm to
improve upon an iterative greedy algorithm.

Our contributions complement the existing literature: we
prove the dependence of the globally optimal one and two
leader sets on centrality measures of the network graph for
both noise-corrupted and noise-free leaders, and we derive
exact solutions for some cases. We leverage a recent result
[16], which shows for a network of stochastic evidence ac-
cumulating decision-makers that the ordering of nodes with
respect to information centrality [17] predicts the ordering
of nodes with respect to certainty. We prove that the optimal
single leader is the node with maximal information centrality.
And we prove that the optimal two leader set maximizes a
joint centrality, which depends on the information centrality
of each leader and how well the pair “covers” the graph. We
apply these results for cyclic graphs and path graphs.

The paper is organized as follows. In Section II, we present
the model dynamics and define the problem. In Section III we
review information centrality, node certainty and the results
of [16]. We prove our main results for the optimal single
leader set in Section IV and for the optimal two leader set
in Section V. We generalize by computing joint centrality



for m leaders in Section VI. We conclude in Section VII.

II. MODEL AND PROBLEM STATEMENT

We consider a model of n agents with system state denoted
by x = [21, X9, ..., 2] € R™, where z; is the state of agent
i. For every agent ¢ we let the set of neighbors N; be the
set of agents communicating information to agent %.

The communication topology can be represented by a
graph, G = (V, £, A), where each agent is a node in the
set V = {1,2,..n}, ECV XV is the set of edges, and
A € R™ ™ is the adjacency matrix with nonnegative entries
a; ; corresponding to the weight on edge (i,7). The graph
contains the edge (7,7) when j € AN;. In this paper we
consider unweighted, undirected graphs so that if the graph
contains edge (7,7), then a;; = a;; = 1 and otherwise
a;; = 0. The degree matrix D is a diagonal matrix with
entries d;; = Z;;l a;i j. The Laplacian matrix associated
with the graph G is defined as L = D — A.

Let the reference value from the environment be p € R.
Let agent ¢ invest in the measurement of the reference value
with gain k;. Let the set of leaders be S with cardinality
m. If agent i € S then k; = k > 0, otherwise k; =
The dynamics are modeled as a system of interconnected
Ornstein-Uhlenback stochastic processes of the form

de; = fkl(xl - Iu)dt — L;xdt + odW,, (D

where L; is the ¢th row of L and odW; represents increments
drawn from independent Wiener processes with standard
deviation o.

It was shown in [15] that the noise-free leader formulation
with k < oo is equivalent to the noise-corrupted leader for-
mulation (1) when all leaders have arbitrarily high feedback
gains on their states, i.e., kK — oo. In this paper we derive
results for both finite and infinite k.

Letting K = diag(k;) and without loss of generality letting
= 0 allows the above multivariate process to be written in
vector form as

dx = —Mxdt + cdW, 2)

where M = K+ L. We assume that the graph G is connected.
Then, if k; = k£ > 0 for some agent i, —M is Hurwitz. It
follows that the steady-state covariance matrix X of x is the
solution to the Lyapunov equation

MY +3XMT =621, (3)

The diagonal element ¥, ; is the steady state variance of x;
about the reference value. The total system error is defined
as tr(X) = >, ¥;; as in [10], [14]. We define group
performance to be the inverse of total system error.

Let )\; denote an eigenvalue of M and let () be the
corresponding normalized eigenvector. The Moore Penrose
pseudo-inverse of a matrix P is indicated by P™ and the
conjugate transpose of P by P*.

From [18], the covariance matrix of (2) is given by

t
Cov(x(t),x(t)) = 02/ e~ M=) =M (t=7) gr  (4)
0

Since the Laplacian of an undirected graph is a symmetric
matrix, it follows that M will also be symmetric, and
therefore normal. Furthermore, there exists a unitary matrix,
U, such that U*MU = A, where A is a diagonal matrix
containing the eigenvalues of M. Eq (4) becomes

Cov(x(t),x(t)) = o*(UR(L)U™), (5)
with
t N
R(t) := / e~ AN g (6)
0
Following [19], this gives
1 — e—2Re(Ap)t
[Cov(x(t),x(1)))i; = o> Z 2161e ui(p)ﬂj(-p). @)

Since M is Hermitian, all eigenvalues of M will be real.
Thus, in steady-state, the variance of the state of each node
can be written as

Var(z;)es = Sis = 02 Z | P2, ®)
By (8) the total system error is then
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This is equivalent to an Hy norm of the system, which
characterizes coherence of the network [10], [11].

Given m, the optimal leader selection problem is to find
the set of leaders S* over all possible sets S of m leaders
that minimizes the total system error as given by (9):

n 1 0_2 n
S* = i 2§ — = '—E M
argmslna - 2N argmsln 5 - i

III. INFORMATION CENTRALITY AND CERTAINTY

(10)

The notion of information centrality was first proposed
by Stephenson and Zelen in [17]. The authors define the
information contained in a path between two nodes ¢, j in a
graph as the inverse of the length of the path. Summing the
information in all paths between the nodes ¢, j then gives the
total information /;°. Information centrality ¢; for node 1 is
defined using the harmonic average of the total information
between node ¢ and every other node j:

-1
n

1 1
=2 m

j=1"%J

Y

As shown in [17], I:"]‘ can be computed from the Laplacian
matrix, L, without the need for path enumeration. Define
B = (L+1,1T)7!, then

L% = (bsi + bj; — 2bi;) " (12)

Poulakakis et al. [16] apply the notion of information
centrality to directly interpret the certainty level of each node
in a network of stochastic evidence accumulating decision-

makers in terms of the structural properties of the underlying



communication graph. The certainty of node %, (1, is defined
as the inverse of the difference between the variance of
the state x; about the reference signal and the minimum
achievable variance as ¢ — oo. It is shown that
1:‘72L_+_:02<1_Kf>
i 2wt 2 \¢g n2)’
where K is the Kirchhoff index of G. It follows from
(13) that the ordering of nodes by information centrality is
equivalent to the ordering of nodes by certainty. It is shown
that the ordering by certainty is not predicted by a degree
distribution or geodesic paths between nodes; indeed all
paths between nodes need to be accounted for to determine
the relative certainty of nodes in the network.
We show in the following sections that information cen-
trality is fundamental to the solution of the optimal leader
selection problem.

(13)

IV. OPTIMAL SINGLE LEADER SELECTION

In this section we derive an explicit expression for total
system error in terms of properties of the underlying network
topology for the case of single leader selection.

A. Noise-Corrupted and Noise-Free Leader

Theorem 1: Let G = (V,€, A) be an undirected con-
nected graph of order n. Let the cardinality of the leader
set, S, be m = 1, and let the leader node be noise-corrupted
(k < o00) and indexed by p with information centrality cp,.
Then total system error (9) for the system dynamics (2) is

2 no? (1 1
Yig=— |7+ — ],
I

c
i=1 P

(14)

and the optimal leader set S* = {p*} = argmax, c,, the
node with maximal information centrality.

Before proving Theorem 1, we state a lemma from [20]
that we use in the proof.

Lemma 1: [20] Let d,e € R™. A rank-1 update ed? for
the Moore-Penrose pseudo-inverse of a real valued matrix,
F € R"™ ™ is given by

(F+ed)F =Ft+@ (15)

where

1 T B T
= INW
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and 3 = 1 +dTFte, v = Fte, h = (FH)Td, w =
(I -FFt)e,and m = (I — F*F)Td.

Proof: (Theorem 1) Let 1,, be the vector of n ones. The
following are properties of L™ (see [16] for details):

LLt=LtL=1,— %1n1nT (17

1,/ LT =10L"1,=0 (18)

Tr(L") = % (19)

Let e = d be vectors of length n with v/k in the p** entry
and zeros elsewhere, i.e. e = d = [0, 0,...,\/E,...,0]T.

Then K = ed”. Since M = L + K, Lemma 1 can be
applied to compute M ~! and thus its trace as

S = 2 e
Jj=1
By symmetry of the Laplacian and its pseudo-inverse,

%111. By (16), G can be written as

(ULkL) |
k n n-

n

=> (LT + @),

j=1

(20)

m-=w =

G=-Li1," —1,L}" +

Therefore (20) becomes
n(1+kL},)

ZM‘ ZL QJZj;LIp)Jr( p

Applymg (13), (18), (19),

1 Ky no.n
= — ——— | =-+—. (21
Z L4 Lt ( n2> Pt 1)
Substltutmg into (9) gives the total system error as
- 2/1 1
Yom =" <+> (22)
P 2 \k ¢

Total system error (22) is minimized when the leader is node
p corresponding to maximal information centrality, c,. H

Corollary 1: Consider the conditions of Theorem 1 where
the leader is noise-free. Then total system error (9) is

n 2
>mi="2 (). 23)
pt 2 Cp
and the optimal leader set S* = {p*} = argmax, c,, the
node with maximal information centrality.

Proof: A noise-free leader is equivalent to a leader with
arbitrarily large k. Taking the limit of total system error as
k — oo yields

- 2/1 1 2 /1
im S8, = lim 2 (242 ) =" (),
k— 00 4 ’ k—oo 2 k Cp 2 Cp

=1

(24)
B. Examples [ |

Consider the unweighted, undirected network of Fig. 1. In
Table I, each node is ranked according to system performance
in steady-state if that node were the leader. As predicted by
(14), the node with highest information centrality (shown
in blue) is the optimal choice of leader for performance.
Further, the steady-state performance ranking is equivalent to
ranking by information centrality. The inclusion of closeness
centrality in Table I serves to demonstrate that this measure,
which depends only on geodesic paths between nodes, does
not help to determine the optimal leader since it does not
distinguish among nodes b, d, and f. This highlights the
importance of non-geodesic paths in information transfer
within the network and therefore on system performance.

Consider next the cycle graph and the path graph. By
symmetry every node in the cycle graph has the same
information centrality; thus, any node is the optimal single
leader. The optimal single leader in the path graph is the
node at the midpoint of the path.



Perf. Infor. Closeness
Node | Rank | Centrality | Centrality
a 5 1.132 0.091
b 1 1.565 0.125
c 4 1.305 0.100
d 2 1.540 0.125
e 7 0.733 0.077
f 3 1.534 0.125
g 6 1.055 0.083
Fig. 1. The connected, undi- TABLE 1

rected graph used in Exam-
ple 1. Node b with high-
est information centrality is
blue. The optimal noise-
corrupted leader pair is red
and the optimal noise-free
leader pair is green.

TABLE RANKING EACH NODE’S

PERFORMANCE AS LEADER AND

CORRESPONDING CENTRALITY
MEASURES

V. OPTIMAL TWO LEADER SELECTION

In this section we derive an explicit expression for total
system error in terms of properties of the underlying network
topology for the case of two leader selection. In the previous
section it was shown that total system error depends upon
the information centrality of the single leader. We show here,
for two leaders, that total system error depends on a notion
that we define as “joint centrality” of the leaders. We employ
the notion of resistance distance r; ; between two nodes 4, j
on an undirected graph G defined as [21]

7t + +
rij=L{;+ L, —2L],. (25)

The resistance distances with respect to node j and the
information centrality of node j are related by

n
>ori=1

T = —
_ 5] c
=1

A. Noise-corrupted and Noise-free Leaders

Theorem 2: Let G = (V,€, A) be an undirected con-
nected graph of order n. Let the cardinality of the leader set,
S, be m = 2, and let the leader nodes be noise-corrupted
(k < 00) and indexed by p, s, with information centrality cp,
cs, respectively. Then total system error (9) for the system

dynamics (2) is
2§:§%i== no® ( ! ),
’ 4

i=1 pkv]ms

(26)

27)

where py. s is a k-dependent joint centrality of nodes p, s
given by
) -1

(28)

The optimal leader set will be S* = {p*,s*} =
argmaxy, s Pk,p,s» the two nodes with the maximal k-
dependent joint centrality.

Before proving Theorem 2, we state a lemma from [22]
that we use in the proof.

11 1 71y,

reoe=(pt g e

- k Z?zl(rz}p - "qi,s)2
2n(2 + krsp)

Lemma 2: [22] For rank one square matrix H and non-
singular X and X + H, (X + H)~! can be written as
1
— X tHXx,
1+g

(X+H)'=Xx"1- (29)
where g = tr(HX1).

Proof: (Theorem 2) Let K, K be rank one matrices
with K, =~ =k, K,,, = k where k& > 0 and all other
elements of K,, K, are zero. Let K = K, + K, let N =
L+ K, andletM L+K=N+K,.

By (29) of Lemma 2 we can compute

M =(N+K,)™ !
1
=N‘!'-— ~— NIKNL 30
1+ tw(K,N-T) (30)
Since N = L + K,,, by Lemma 1 it holds that
1+ kLt
Nt =rt -l -1, L7 + Tppl 17 @31

Thus, by (31)
(K N~') = kN ) =14+ kL, —2kLY, + kL,
=1+kr, (32)

Using (32) in (30) total system error (9) is

2

o
2

- s

_ 1 _ _
(le - 2+T(N 'K.N 1)“). (33)
S,p

Expanding in terms of L+ and using (18) and (19) yields

n n
M=l (k: (Lf, - L))
; )0 k + Cp 2 + k Ts,p 12::

+nk(L},)? —2nL, — 2nkL} LT
+ +y2 1
+2nL, + k(L) + )
where a significant amount of algebra has been omitted due
to space constraints. Using (13) and (25) in (34) gives

- 1 1y 1 rip)\2
M»‘-1:7<—k (7_£_7 ﬂ)
2; vt 24 krsyp ; 2c¢4 2 2¢, * 2

- kn kn kn
+ +7+7_7_

(34)

k¢ ¢ 4 4¢2 - 2¢pcs
2
knrs,  knrgp 3 k‘nr&p). 35)
2¢p 2¢c, 4
Re-arrangement of terms and application of (26) gives
- ne?/1 1 1 7
5, =1 (, 22 T
Z ’ 4 \k i Cp * Cs 2
=1
ki (rip — %)2) _ _no” . (36)
2n(2 + krs,p) 4prp.s

where py p, s is defined by (28). Total system error (22) is
minimized when the leaders are nodes p, s corresponding to
maximal k-dependent joint centrality, py p s. [ ]



Comparing total system error for two noise-corrupted
leaders (27) and for a single noise-corrupted leader (14),
the k-dependent joint centrality pg, s (28) can be seen
to play an analogous role to the k-dependent individual
information centrality defined as ¢y, = (% + i)*l. Leaders
that maximize these centrality terms optimize performance
by minimizing total system error. In both cases, higher k
yields better performance. High information centrality of the
leader or leaders also contributes to performance. However,
while in the case of a single leader the node with maximal
information central is the optimal leader, in the case of two
leaders, there is a tradeoff between centrality of each of the
two leaders which should be high, resistance r,, between
the two leaders which should be large, and the k-dependent
distribution term Y ., (r; ,—7;.5)*/(2+krs ;) which should
be large. Since resistance is a metric, the last term is a
covering term that should be optimized, i.e., the sum over
nodes of the squares of the differences between the resistance
distance between the node and each leader normalized by
a k-dependent function of the resistance distance between
leaders. Referring back to Example 1 shown in Fig. 1, the
optimal two noise-corrupted leaders with state feedback gain
k = 1 are nodes ¢ and d, which are highlighted in red.
These two nodes clearly do not have the first and second
highest information centralities; however they represent the
optimal tradeoff of the terms in py, , s (28). We note that an
iterative algorithm that first (correctly) chooses node b as the
optimal leader and then seeks a second optimal leader would
be unable to solve for the optimal pair ¢ and d. This is likely
true in general (see, for instance, the example in [10]).

Corollary 2: Consider the conditions of Theorem 2 where
the leaders are noise-free. Then total system error (9) is

yom, =" ( ) , (37)
i=1 4 \pps
where p,, ; is a joint centrality of nodes p, s given by
1 1 Ts,p n (Tip—’l“is)2)7
s=(— - _ 5P _ Nwp TnS) 38

The optimal leader set S* = {p*,s*} = arg max,  p s, the
two nodes with the maximal joint centrality.

Proof: Assigning noise-free leaders is equivalent to
leaders with arbitrarily large k. Taking the limit of total
system error as k — oo yields

2
. no no
lim E Y= lim =
k—oo k—o0 4pk’p’5 4pp’s

2

(39)

where p,, ; is given by (38). |

Now comparing (37) with (23), the k-independent joint
centrality p, ; (38) in the two leader case can be seen to play
an analogous role to the k-independent information centrality
cp in the single leader case. Leaders that maximize these
centralities optimize performance by minimizing total system
error. The case of the single optimal leader is unchanged as
compared to the noise-corrupted case, whereas the optimal
two leaders may be different in the noise-free versus the

noise-corrupted cases because the covering term (last term
in (38)) no longer depends on k. Indeed, in Example 1 of
Fig. 1, the optimal two noise-free leaders are nodes e and f,
which are highlighted in green.

The following lemma provides an upper bound on p,, ,.

Lemma 3:

-1
o)

Proof: Resistance is a metric, 7 , < 75 5 + 75 p. SO,

pp,s_( +07p

n

3 (rip —Tis)”
2nrg p

i=1
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B. Two Leaders on an Undirected Cycle

Theorem 3: Let G = (V,£,A) be an undirected cycle
graph of order n where n is even. Let the cardinality of the
leader set, S, be m = 2, and let the leader nodes be noise-
corrupted and indexed by p, s. The optimal leader set S* is
any two nodes with maximal resistance distance rs, =
which corresponds to geodesic distance d, , =
nodes).

Proof: For a circulant graph, ¢, = ¢, = c. By (28)

= (1 + 2 Ts,p k Z?:l(ri,p - Ti,s)2
Phos = ke 2 2n(2 + ki?“s,p)

By analyzing the graph as an electric circuit, the resistance
distance between any two nodes in a cycle can be written as

R (1)
Tip  dip N —djp
where d;,, is the geodesic distance between nodes j and
p. The maximum resistance distance is 7, = %, which is
obtained between two nodes with d;, = 7.
Using (41) gives

n
4
5 (antipodal

)_1. (40)

n

S ) = 30 (= P

i=1 i=1
ds,p(dsp — n)(dz, -

N 3n

Plugging (42) into (40) yields

1 2 dep(n—dsp)
(% T T

Pk,p,s =
— kds7p(ds’p — n)(dEJ) — nds’p — 2))71 (43)
6n(2n + kds p(n — ds »)) ’
Then,
i s 1
P2 — ——(n—2d,,)

0ds p T on
[2(=dsp +d5,) + (1= 3d5 ))n + ds pn”]

3(2n + ds pk(—dsp +n))?
2 5 4 3 024 g2 53
_k [—2d] , + 5d ,n — 4d; ;n* + d; ,n]

6n(2n + ds pk(—dsp +n))?

The first term of (44) will always be nonpositive. Further-
more, since ds;, < 5 it can easily be shown that the two

(44)



bracketed expressions in the second and third terms will be
greater than zero for n > 3. Thus p,;;w decreases as ds
increases and reaches its minimum when d ,, is maximal at
dsp = %, corresponding to 75, = 7. The result holds by
Theorem 2. u

Due to the symmetry of the cycle, the result of Theorem
3 holds in the noise-free two leader case as well. Because
every node in the cycle has the same information centrality,
the optimal leader set can be interpreted as the set that
maximizes the distance between the two leaders plus the
covering term, which simplifies further since the covering
term is maximized for maximal distance between leaders.
We conjecture that for a greater number of leaders m > 2,
the optimal leader set should be any set of nodes that is
uniformly distributed around the cycle.

C. Two Leaders on a Path

Theorem 4: Let G = (V,£, A) be an undirected, con-
nected path graph of order n, which is the cycle graph with
one link removed. Let the cardinality of the leader set, S, be
m = 2, and let the leader nodes be noise-free and indexed
by p, s where s > p. The optimal leader set S* corresponds
to p* = md(% + 1) and s* = md(%* + 3), where md is
rounding to the closest integer.

Proof: For the path graph we have r; ; = ||i — j|| and

n _ 2n
Sty (= +n—jg)—j+j*
Indexing the leaders as s, p where s > p, substituting (45)
into (38) and simplifying yields

(45)

C; =

a_ L ntn’-p-s
Pp.s 3n 2n
2(2p% 4+ 252 — s(3
n (p*%83n5(n+pﬁ_ 46)

Taking partial derivation of (46) with respect to s, p we find
the minimum of p, % to be p = md(%+3) and s = md(%*+
%) The level sets of p, ! can be shown to be ellipses. A
computation of the semi-axis lengths of the ellipses shows
that the optimal leader set corresponds to rounding to the
nearest integer the values that minimize p,, L [ ]

VI. JOINT CENTRALITY OF m NOISE-FREE LEADERS

For the general case, we first perform a rank-1 update
to find the inverse of M. We then apply the Sherman-
Morrison-Woodbury formula [23] for a m — 1 rank update to
M. Analogously to the previous sections, this allows us
to determine the total system error for a set, S, of m leaders.

We determine the m-joint centrality of the noise-free
leader set S to be

( 1 Gs,l Tsp T Tlp
pPs =\ — - 1
2¢,

s,leS\{p}

T+ TspTlp + Z E[Ti,p(riyp =Tl — Tis) + Ti,sri,l]}) )

=1

(47)

where G is the s, [ element of the inverse of the (m —
1) x (m — 1) leader submatrix of M 1.

VII. FINAL REMARKS

In this paper we analyze and provide new insights on
the optimal leader selection problem in a leader-follower
multi-agent system subject to stochastic disturbances where
performance is measured by coherence of the system. We
prove that the optimal single leader maximizes information
centrality. We prove that the optimal two leaders maximize a
joint centrality that depends on the information centrality of
each leader and on how the two leaders are distributed across
the network. Future directions include exploring the gener-
alization (47) to greater numbers of leaders and leveraging
these results for the design of distributed adaptive leadership
dynamics to yield high-performing dynamic networks.
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