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Abstract— Two optimal leader selection problems are exam-
ined for multi-agent networks. The optimal leader set is the
set of m > 0 leaders that maximizes performance of a linear
dynamic network. In the problem for controllability, each leader
is identified with a control input, and performance is measured
by average controllability and reachable subspace volume. In
the problem for robustness, each leader responds to an external
signal, the linear dynamics are noisy, and the performance
is measured by the steady-state system error. Previously, we
showed that the optimal leader set for robustness maximizes
a joint centrality in the network graph. In this paper, we
show how the optimal leader set for controllability depends
also on measures of the graph, including information centrality
of leaders and eigenvectors of the graph Laplacian. We explore
a fundamental trade-off between optimal leader selection for
controllability and for robustness, and we outline a distributed
algorithm for the selection of a pair of leaders in trees.

I. INTRODUCTION

The problems of optimally selecting leaders for control-
lability [1]–[5] and for robustness [6]–[9] in multi-agent
networks have both received significant attention in the
control literature. This is largely due to the broad applications
of the problems, e.g., to robotic formation control [10],
consensus [11], and collective animal behavior [12].

The objective in these problems is to choose a set of
leaders that maximizes a system performance metric, namely
a measure of controllability or robustness of the linear
network dynamics. In this paper we focus on solving for
optimal leader sets as a function of properties of the network
graph. In previous work [6] we proved that the optimal leader
set for robustness maximizes the joint centrality of the leader
set in the network graph, and we showed that joint centrality
depends on the information centrality of each of the leaders
and a coverage term associated with the leader set. In this
paper we find the leader sets that maximize controllability,
as defined by two different metrics, and we show how these
sets depend on information centrality of individual leaders
and the eigenvectors of the graph Laplacian.

Structural controllability in multi-agent systems is the
primary focus of [1]–[3], [13]. The authors of [1], and
later the authors of [2], examined the graph theoretic char-
acteristics required for a network to be controlled by a
single leader. Means for extending these characteristics to the
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multiple leader setting were introduced in [2] using equitable
partitions. Equitable partitions were also studied in [3]. In
[14] it was argued that the more important question was
whether or not a system is almost uncontrollable. Arbitrarily
large graphs were considered in [15], and the fraction and
locations of leaders needed for controllability were found for
some canonical network topologies.

A related problem is to select leaders to maximize standard
measures of controllability, which are defined in terms of the
controllability Gramian. In [4] a strategy was developed for
selecting leader nodes with performance guarantees relative
to the smallest eigenvalues of the controllability Gramian,
a measure inversely related to worst case input energy.
The largest and smallest eigenvalues of the controllability
Gramian were used in [16], where the relationship between
energy cost bound and control time was demonstrated.

The trace of the controllability Gramian can be applied
as a measure for average controllability as in [17]. In [5]
the authors established that the trace of the controllability
Gramian is modular while two other energy related control
measures are submodular: trace of the inverse Gramian and
log product of non-zero eigenvalues of the controllability
Gramian, a measure of reachable volume. Control energy
centralities were defined for each node in a network based
on these measures of controllability.

The robustness of noisy, linear multi-agent dynamics has
been studied using the H2 norm as a measure of the steady-
state system error, see, e.g., [18]. [7] introduced the optimal
leader selection problem, in which leaders that respond to
an external environmental signal are selected to maximize
robustness to noise by minimizing the H2 norm. This prob-
lem was studied further in [6], [8], [9]. In [6] we defined and
interpreted the joint centrality of a set of nodes and proved its
relationship to the optimal leader set for robustness. With the
notable exception of [19], the problems of leader selection
for controllability and leader selection for robustness have
largely been treated as separate problems. However, the
combined consideration of controllability and robustness is
important for the design of versatile multi-agent systems.

Distributed selection of a single leader has been studied
in [20], [21], and distributed algorithms for the calculation
of node centrality metrics such as betweeness centrality [22]
and harmonic influence centrality have been derived in [23].
However, distributed leader selection algorithms for multiple
leaders that take into consideration both controllability and
robustness have yet to be developed.

In this paper we first prove the optimal leader set to max-
imize average controllability and to maximize the reachable

naomi
Typewritten Text

naomi
Typewritten Text
Proceedings of the European Control Conference, Aalborg, Denmark, 2016

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text



subspace volume. For average controllability the optimal
leader set depends only on information centrality of each
leader in the network graph. For the reachable volume the
optimal leader set depends on the eigenvectors of the graph
Laplacian. We express two of the controllability centrality
measures defined in [5] in terms of network graph measures.
Second, we show how the optimal leader set for controllabil-
ity is in tension with the optimal leader set for robustness.We
outline a distributed algorithm for the selection of two
leaders in tree graphs that trades off the two objectives. The
algorithm results in a leader pair with the largest magnitude
lower bound on robustness among candidate pairs which
meet a minimum threshold on average controllability.

The paper is organized as follows. In Section II we define
the optimal leader selection problems for controllability and
robustness. We review modularity of controllability metrics
and the control energy centralities proposed by [5] in Section
III. In Section IV-A we prove the dependence of the trace of
the controllability Gramian, and thus the average controlla-
bility centrality, on information centrality of the leader nodes.
In Section IV-B we prove the dependence of the reachable
volume on the leader nodes’ entries in the eigenvectors of
the graph Laplacian and show that volumetric control energy
centrality for node i is dependent only on the ith terms of the
Laplacian eigenvectors. In Section IV-C we review optimal
leader selection for robustness. In Section V, we discuss
the tension between optimal sets for controllability and for
robustness, and outline a distributed algorithm for two leader
selection in tree networks. We conclude in Section VI.

II. MODEL AND PROBLEM DEFINITIONS

A. Generalized model

We consider a network of n agents for which the state
of agent i is xi ∈ R and the state of the network is x =
[x1, x2, ..., xn] ∈ Rn. The network topology is represented
by a graph G = (V, E , A) where each agent is represented
by a node in the set V = {1, 2, ..., n}. Ni is the set of
neighbors of agent i. E ⊂ V ×V is the set of edges in which
edge (i, j) ∈ E if j ∈ Ni. A ∈ Rn×n is the adjacency matrix
where element ai,j is the weight on edge (i, j). If (i, j) ∈
E then ai,j > 0; otherwise ai,j = 0. Here, we focus on
connected, undirected graphs and therefore A is symmetric
and ai,j = aj,i. The degree of node i is di =

∑n
j=1 ai,j . The

degree matrix, D, is the diagonal matrix of node degrees. The
Laplacian matrix is defined as L = D − A and the Moore-
Penrose pseudoinverse of L is written as L+.

We let ci be the information centrality [24] of node i. ci
is related to L+ by

1

ci
= L+

i,i +
Kf

n2
,

where Kf is the Kirchhoff index of G. In contrast with
other centrality measures such as closeness and betweeness,
information centrality takes into account all paths in the
network. Information centrality of node i is closely related
to resistance distance, ri,j between nodes i and j in an

undirected graph, where

ri,j = L+
i,i + L+

j,j − 2L+
i,j ,

and it can be shown that
n∑
i=1

ri,j =
n

cj
.

An additional distance measure between two nodes i and j
in a graph is biharmonic distance, γi,j , where

γi,j = L2+
i,i + L2+

j,j − 2L2+
i,j =

n∑
l=1

(L+
l,i − L

+
l,j)

2.

The dynamics considered in the following are modifica-
tions of linear consensus dynamics in which each agent i
updates according to its relative state xj − xi for j ∈ Ni,

ẋ = −Lx.

In the controllability problem, leaders are nodes that pro-
vide control input. In the robustness problem, leaders are
nodes that respond to an external environmental signal. The
remaining nodes, followers, update their state using only
measurements of neighbor states.

B. Optimal leader selection problem for controllability

To investigate optimal leader selection for controllability,
we start by assuming that a set S of m > 0 nodes are
leaders, which act as control inputs to the network system.
The network dynamics evolve according to

ẋ = −Lx +Bu (1)

where u ∈ Rm is the control vector and B has m columns
bei for i ∈ S, ei are standard basis vectors and b ∈ R.

Controllability of a consensus network can be defined by
restricting dynamics to the disagreement subspace (orthogo-
nal to the agreement subspace defined by the vector of all
ones 1n ∈ Rn) [4]. Thus, we consider the reduced Laplacian
L̄ = QLQT , and controllability Gramian

WC =

∫ ∞
t0

e−L̄τQBBTQT e−L̄τdτ (2)

where the rows of Q ∈ R(n−1)×n form an orthonormal basis
for 1⊥n . WC is also the solution to the Lyapunov equation

L̄WC +WCL̄
T = QBBTQT . (3)

We let WCi
be the controllability Gramian associated with

one leader node, i. WCi
satisfies (3) when B =bei. The fol-

lowing four functions of the controllability Gramian provide
four measures of controllability performance.
(a) Average controllability: tr(WC) provides a measure of

average controllability over the controllable subspace
and is equivalent to the H2 norm of the dynamics (1).

(b) Reachable volume: ld(WC) = log
(∏rankWC

j=1 λj(WC)
)

provides a measure of the volume of the controllable
subspace reachable with one unit of input. When WC is
full rank ld(WC) is equal to the log determinant of WC .



(c) Average control energy: tr(WC
−1) and tr(WC

+) pro-
vide measures of average control energy required to
reach a random state in the controllable subspace.

(d) Worst case input energy: λmin(WC) is inversely pro-
portional to the input energy required to move in the
least controllable direction in the controllable subpace.

We define four cases of the optimal leader selection
problem for controllability as follows.

Problem 1 (Optimal leader selection problem for controlla-
bility). Given m > 0 and undirected, connected graph G,
find a set of m leaders S∗C over all possible sets S of m
leaders that optimizes a controllability metric α(WC) for
the leader-follower network dynamics (1), where α(WC) is
determined by one of the four performance measures:

(a) Average controllability: α(WC) = tr(WC)
(b) Reachable volume: α(WC) = ld(WC)
(c) Average control energy: α(WC) = tr(W+

C )
(d) Worst case input energy: α(WC) = λmin(WC).

C. Optimal leader selection problem for robustness

To study leader selection for robustness, we let the system
be subject to stochastic disturbances and the control input be
state feedback with Bu = −Kx, and K ∈ Rn×n a diagonal
matrix where Ki,i = k > 0 if i ∈ S and zero otherwise. S is
the set of m leaders that provide state feedback in response
to the environmental signal (taken without loss of generality
to have reference value 0). The dynamics are

ẋ = −(L+K)x + σdW (4)

where σdW is a vector of increments drawn from a standard
Wiener process with standard deviation of σ.

We construct the infinite-horizon controllability Gramian
WR for (4). In contrast to the system (1) studied for
robustness, the system (4) has state matrix −(L + K) and
input defined by independent random perturbations to the
state of each node. The Gramian is

WR =

∫ ∞
t0

e−(L+K)τ σ2I e−(L+K)τdτ,

which is the solution to the Lyapunov equation

(L+K)WR +WR(L+K)T = σ2I.

The trace of WR is the sum of the steady state variance of
each node about the reference value. Equivalently, tr(WR) is
the H2 norm of the system dynamics (4). Systems with lower
tr(WR) will have states that remain closer to the reference
value despite the presence of noise. Thus, tr(WR) measures
robustness of the system (4); it is inversely related to how
well the system rejects additive noise.

We define the optimal leader selection problem for robust-
ness as follows.

Problem 2 (Optimal leader selection problem for robust-
ness). Given m > 0 and undirected, connected graph G, find
a set of m leaders S∗R over all possible sets S of m leaders

that minimizes the H2 norm, tr(WR), for the leader-follower
network tracking dynamics (4), i.e., find

S∗R = arg min
S

tr(WR).

D. Comparison of WC and WR

We observe that even though WC and WR are quite
similar in formulation, the difference between choosing non-
zero elements of B and non-zero diagonal elements of
K is quite significant due to the fact that K influences
the value of WR as part of an element in an exponential
function, whereas BBT is simply multiplied by the state
transition matrix. Thus, non-zero elements of B will have
a different effect on the value of tr(WC) than non-zero
diagonal elements of K will have on the value of tr(WR).
Furthermore, to maximize average controllability one wants
to maximize tr(WC); however, to maximize robustness one
wants to minimize tr(WR). We demonstrate and discuss the
implications of these observations on the resulting optimal
leader sets for each problem in Sections IV and V.

III. CONTROL ENERGY CENTRALITIES

The authors of [5] proved that the trace of the control-
lability Gramian, tr(WC), is a modular set function. The
implication of a modular set function is that each element
of a subset independently contributes to the value of the
function. Solving an optimization problem with a modular
cost function is straightforward, as the total cost is the sum of
each element’s independent contribution to the cost function.

Summers, et al. proved that the trace of the (pseudo-)
inverse of the controllability Gramian, tr(WC

+), and the
log determinant of the controllability Gramian, ld(WC), are
both submodular functions of the leader set. In [8], it was
shown that the trace of the robustness Gramian, tr(WR), is
also a submodular function of the leader set. A submodular
set function has the property of diminishing returns, that
is the addition of an element to a larger set has a smaller
contribution than the addition of an element to a smaller
set. Therefore, each element of a subset does not contribute
independently as in modular set functions. Full solutions
to opimization problems with nondecreasing submodular
set functions are NP-hard, although greedy algorithms can
provide a solution within a provable bound from the optimal
solution [25]. Thus, a closed-form solution for maximizing
tr(WC) is obtainable, while optimizing tr(WC

+), ld(WC),
and tr(WR) are each combinatorially difficult problems.

In [5], the authors defined three control energy centralities
for each node i in a network based on the value of control-
lability measures (a)-(c) when i is selected as a single leader
node. These control energy centralities are
• Average controllability centrality

CAC(i) = tr(Wci) i ∈ V

• Average control energy centrality

CACE(i) = −tr(W+
ci ) i ∈ V



• Volumetric control energy centrality

CV CE(i) = log

rankWci∏
j=1

λj(Wci)

 i ∈ V.

The authors of [5] did not provide relationships between
these centrality definitions and well defined measures of
the network graph nor insight more generally on how a
node’s location in a network relates to the value of its three
control energy centralities. For single leaders, the solutions to
maximizing tr(WC), and ld(WC) and minimizing tr(WC

+)
will align with the nodes that maximize the respective
control energy centralities. In the following section, we
make explicit the relationship between average controllability
centrality CAC , volumetric control energy centrality CV CE
and properties of the graph Laplacian L.

IV. OPTIMAL LEADER SELECTION RESULTS

A. Optimal leader selection for average controllability

The following theorem provides the optimal leader set S∗C
for Problem 1(a) in terms of properties of the network graph.

Theorem 1. Consider the dynamics (1) with the undirected,
connected graph G of order n. Let the set S be a set of m
leaders. Then average controllability depends on the inverse
of the information centrality of each node in S, and the
optimal leader set S∗C is composed of the m nodes with
smallest information centrality.

Proof. Consider the controllability Gramian WC given by
(2). We note that L̄ has the same eigenvalues as L except for
the zero eigenvalue, which we index by n. Let the diagonal
matrix of eigenvalues and the matrix of right eigenvectors
for L̄ and L be Λ̄, V̄ and Λ, V , respectively. Then,

WC = V̄
(∫ ∞

t0

e−Λ̄τ V̄ TQBBTQT V̄ e−Λ̄τdτ
)
V̄ T dτ. (5)

Consider the case of a single controller node, indexed by l.
Then, the vector B will have a single non-zero entry, b.

Since QT V̄ is equivalent to the first n − 1 columns of
V , we can represent the product in the integral of (5) as
a function of the eigenvalues and eigenvectors of L. Then
WC = b2V̄ GV̄ T , where G ∈ R(n−1)×(n−1) has entries

gi,j =

∫ ∞
0

e−λiτ−λjτvl,ivl,jdτ =
1

λi + λj
vl,ivl,j . (6)

Recall that we are interested in maximizing the trace of WC

and that trace is invariant under cyclic permutations. Thus

tr(WC) = b2tr(V̄ GV̄ T ) = b2tr(GV̄ T V̄ ) = b2tr(G)

=

n−1∑
i

b2

2λi
v2
l,i =

b2

2
L+
l,l =

b2

2

(
1

cl
− Kf

n2

)
(7)

where cl is the information centrality of node l. From (7), for
a single controller node, tr(WC) is maximized by the node
with the smallest information centrality.

Due to the modularity property, tr(WC) with m leader
nodes will be minimized when the set of leaders S∗C consists
of the m nodes with smallest information centrality.

Corollary 1. Consider the dynamics (1) with the undirected,
connected graph G of order n. Then

CAC(i) = tr(Wci) =
1

2

( 1

ci
− Kf

n2

)
.

We have thus shown that average controllability centrality
defined by [5] is in fact inversely related to a well defined
graph measure: information centrality. Corollary 1 implies
that the more information central is a leader node the lower
will be the average controllability.

B. Optimal leader selection for reachable subspace volume

The following theorem provides the optimal leader set S∗C
for Problem 1(b) in terms of properties of the network graph.

Theorem 2. Consider the dynamics (1) with the undirected,
connected graph G of order n. Let the set S be a set of m
leaders. Then reachable volume can be written as

ld(WC)= log
( n−1∏
j=1

(∑
i∈S

v2
i,j

))
+h

where vj,i is the ith entry in the jth right eigenvector of L
and h is a constant that does not depend on leader set S. The
optimal leader set is S∗C = arg maxS(

∏n−1
j=1

(∑
i∈S v

2
i,j

)
.

Proof. Using (5), the determinant of WC is

det(WC) = b2det(V̄ GV̄ ) = b2det(V̄ )det(G)det(V̄ ). (8)

From (6), G = Ṽ ΓṼ where Ṽ ,Γ ∈ R(n−1)×(n−1). Ṽ is a
diagonal matrix with Ṽi,i = vl,i and the entries of Γ are
Γi,j = 1

λi+λj
. Plugging in to (8) gives

det(WC) = b2det(V̄ )det(Ṽ )det(Γ)det(Ṽ )det(V̄ ). (9)

The only term in (9) that depends on the choice of leader
node is det(Ṽ )2. Since Ṽ is diagonal, its determinant is the
product of its diagonal entries. Thus for a single leader l

ld(WC)= log

n−1∏
j=1

v2
l,j+h.

In the case of m leaders, Ṽj,j =
∑
i∈Sc

vi,j and

ld(WC)= log

n−1∏
j=1

(∑
i∈Sc

v2
i,j

)
+h.

It follows that the set S∗C of m leaders that maximizes∏n−1
j=1

(∑
i∈S v

2
i,j

)
maximizes ld(WC), the volume of the

controllable subspace reachable with one unit of input.

Corollary 2. Consider the dynamics (1) with the undirected,
connected graph G of order n. Let Y = det(V̄ ΓV̄ ). Then

CV CE(i) = log
(
Y

n−1∏
j=1

v2
i,j

)
.

Theorem 2 and Corollary 2 show the dependence of
ld(WC) and volumetric control energy centrality on leader
nodes’ entries of the eigenvectors of the graph Laplacian.



We point out that ranking nodes by volumetric control
energy centrality computed as

∏n−1
j=1 v

2
i,j for each node i

is significantly less computationally intensive than ranking
through a calculation of the controllability Gramian and its
determinant for each node i.

C. Optimal leader selection for robustness

We review leader selection for robustness by presenting a
definition and theorem from [6].

Definition 1 (Joint centrality). Let G be an undirected,
connected graph of order n. Given integer m < n, let S
be the set of any m nodes in G. The joint centrality of set S
in G is defined as

ρS = n
(Kf

n
+ nh1(cS , rS) +

1

2
h2(cS , rS , γS)

)−1

, (10)

where h1 is a function of the information centralities and
resistance distances of the leader set and h2 is a function of
the information centralities, resistance distances and bihar-
monic distances of the leader set.

Theorem 3. Consider the dynamics (4) with the undirected,
connected graph G of order n. Let S be a set of m noise-free
leaders. Then, tr(WR) for the system dynamics (4) is

tr(WR) =
1

2

( n
ρS

)
,

where ρS is the joint centrality of leader set S given by
(10). The optimal leader set is S∗R = arg maxS ρS , the set
of leader nodes with the maximal joint centrality.

Proof. See [6].

From [6], it is known that h1 will be optimized by a
leader set with both high information centralities and high
resistance distances among leaders in S. h2 will be optimized
by a leader set that trades off high biharmonic distances
and information centralities. Therefore, node sets with high
joint centrality will trade off information centralities and
distribution over the graph. Joint centrality is a rigorous
representation of the effects on robustness of the centrality
and coverage over a network of a set of nodes.

V. CONTROLLABILITY VERSUS ROBUSTNESS

Combining the results from Sections IV-A and IV-C we
find a fundamental trade-off between selecting leaders for
average controllability and selecting leaders for robustness.
To maximize average controllability one simply selects the
least information central nodes as leaders. Since the aver-
age controllability problem is modular, the solution does
not depend on the relative positions of the leader nodes.
Conversely, the problems of leader selection to maximize the
volume reachable with one unit of energy and the problem
of leader selection for robustness are both submodular;
therefore the relative positions of nodes in the leader sets
play a role in the optimal solutions. To maximize robustness
the leader set must balance high information centrality of
individual leader nodes with distribution of leader nodes
over the network. Nodes with low information centralities

lead to a leader set with high average controllability but
often with low robustness. Therefore, robustness and average
controllability cannot both be optimized by the same leader
set in general graphs where all nodes do not have equivalent
information centralities.

A. Optimal leader selection in a cycle graph
Consider a cycle graph with n nodes and uniform edge

weights. The value of average controllability over the con-
trollable subspace will be the same no matter which m nodes
are leaders because all nodes have equivalent information
centralities. For the robustness problem, in [6] it was proven
that the optimal leader selection for robustness in a cycle
graph corresponds to m nodes evenly distributed about the
cycle. The optimal set of m = 2 leaders for reachable volume
corresponds to any two nodes separated by a single node.
Therefore the optimal leader set for reachable volume and
the optimal leader set for robustness are in direct tension and
cannot be simultaneously selected.

B. Optimal leader selection in a random graph
Consider a random unweighted network with n = 100

nodes as in Fig. 1, and the m = 3 nodes that optimize
the leader selection Problems 1(a), 1(b), 1(c) and 2. The
leader set that maximizes average controllability is colored
in green, maximizes reachable volume in orange, minimizes
average control energy in red, and maximizes robustness in
blue. The direct tension between optimizing the leader set
for controllability metrics and optimizing the leader set for
robustness is visually apparent. The optimal leader sets for
maximizing average controllability, maximizing reachable
volume, and minimizing average input energy are on the
periphery of the network, and it is interesting to note that
one node in particular is a member of all three sets. The
nodes in the optimal leader set for robustness are in central,
but distributed, locations. Furthermore, nodes in the optimal
leader set for robustness are less susceptible to becoming
disconnected from the network through edge failures. A
trade-off must be made if both controllability and robustness
are important for the multi-agent system.

The controllability Gramian measures are defined over the
controllable subspace and none guarantee full controllability.
It is possible that a leader set that maximizes tr(WC)
corresponds to few highly controllable nodes or many weakly
controllable nodes. It may therefore be of interest to account
also for the rank of the controllability Gramian.

C. Design of a distributed leader selection algorithm
An important application of the results above is in the

design of distributed leader selection algorithms that balance
controllability and robustness. Using the results of Section IV
we have developed a distributed algorithm for the selection
of two leaders in a tree graph that converges in finite time
to the pair that yields the highest lower bound on robustness
among candidate pairs that satisfy a minimum threshold on
average controllability.

The outline of the algorithm is as follows. Each leaf i
in the tree (nodes with degree one) uses a message passing



Fig. 1. Random undirected graph with n = 100 nodes highlighting
optimal leader sets of m = 3 nodes for problems 1a (average controllability:
green), 1b (reachable volume: orange), 1c (average control energy: red) and
2 (robustness: blue).

protocol to determine its own information centrality as well
as the information centrality and resistance distance to the
leaf j that is the farthest in terms of resistance distance. Then
each leaf i calculates average controllability for leader pair
(i, j) and passes information to its neighbor when certain
criteria on average controllability are met.

The step repeats with neighbor nodes and then their neigh-
bors. The process for leaf i is complete when information is
passed to a stopping node. Let a ∈ Ni, p ∈ Na and q be
a node along the path from i to j. Then node a will be a
stopping node, and won’t pass on information to node p, if
its estimate of average controllability for leader pair (p, q) is
lower than the acceptable limit for average controllability or
when (p, q) does not improve robustness relative to (a, q).
When the process is complete for each leaf node, each
stopping node calculates and broadcasts its lower bound on
robustness for its candidate leader pair. The candidate pair
with the largest lower bound on robustness becomes the
leader pair. Details will appear in a future publication.

VI. FINAL REMARKS

We have examined and provided new insights on the opti-
mal leader selection problem for leader-follower multi-agent
systems. We proved that the optimal leader set for average
controllability consists of the least information central nodes
in the network. We proved the relationship between the
optimal leader set for reachable volume and entries in the
eigenvectors of the network graph Laplacian. From these we
derived expressions for average controllability centrality and
volumetric control energy centrality in terms of well defined
graph measures. We showed how the optimal leader sets for
controllability metrics are in tension with the optimal leader
set for robustness, and thus require a trade-off if both features
are desirable. Finally, we outlined a distributed algorithm for
leader selection that takes into account this trade-off.

Future directions include characterizing tr(W+
C ) and

λmin(WC) in terms of properties of the graph and expanding

the distributed leader selection algorithm to accommodate
sets of more than two leaders.
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