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Abstract

In many engineered and natural multi-agent networked systems, a limited subset

of agents, called leaders, have access to external information, while the remaining

agents, called followers, obtain information through network connections. In this

dissertation, we connect measures of group-level performance with properties of the

underlying network. Specifically, we determine which nodes in the network should

be selected as leader nodes to maximize controllability and robustness of the leader-

follower consensus dynamics to noise.

Maximizing robustness of the leader-follower consensus dynamics to noise is equiv-

alent to minimizing steady-state system error defined in terms of variance about

consensus. We define a new notion of centrality of a set of nodes, called joint cen-

trality, that will be maximized by the optimal leader set for robustness to noise. We

demonstrate that the optimal selection of a single leader for robustness to noise is

the most information central agent. We show that, in general, node sets with high

joint centrality balance high individual information centralities with coverage over

the network.

For unweighted path and cycle graphs, we explicitly solve the optimal leader

selection problem for robustness to noise. For unweighted tree graphs, we provide a

simplification of two- and three-node joint centrality and present provable bounds for

computationally efficient leader selection.

Centrality of a set of nodes is significant to a variety of network applications. We

explore and illustrate the use of joint centrality in an example of synthetic lethality in

Saccharomyces cerevisiae (baker’s yeast), in an example of clustering in a Facebook

social network, and in a network of political books frequently purchased together on

Amazon.

In leader selection for controllability, we study average controllability, which mea-

sures the difficulty in controlling agents to any state in finite time, and volume of
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the subspace reachable with one unit of control input. We prove that average con-

trollability is maximized when the leader set is composed of the least information

central nodes. We demonstrate that reachable volume is dependent on the left eigen-

vectors of the graph Laplacian corresponding to the leader nodes. We explore the

fundamental trade-off between leader selection for robustness and leader selection for

controllability.
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Chapter 1

Introduction

Networked multi-agent systems consist of two or more agents that are interacting,

sensing, or communicating, with one another and possibly the surrounding environ-

ment. The generalizability of the networked multi-agent system framework allows for

its use in wide-ranging fields of research. As a result, analysis of topics such as engi-

neered systems, collective animal behavior, and social networks can all be conducted

using similar mathematical tools [41, 85, 111]. Examples include fleets of underwater

vehicles moving in the ocean that may be equipped to communicate with one another

and have sensors to measure ocean currents, or fish in a school that interact by sensing

the relative motion of near neighbors. A common objective of these kinds of applica-

tions is to understand how the structure of the inter-agent communication, or network

topology, affects the flow of information throughout the network and subsequently the

collective dynamics.

Agents in a complex network have different levels of influence on the flow of

information, depending on where in the network they are located and whether or not

they are interacting with the external environment. We can think of an agent that is

communicating with many other agents in the network as central in the network, and

therefore important in the spread of information. This notion becomes significantly
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more complex when thinking of the centrality of sets of agents in a network because

it mandates knowledge of how members of the set jointly influence the network. In

other words, we can not simply consider the influences or connections of each agent

independently, but rather how agents influence the network relative to other members

of the set.

When studying collective dynamics of a networked multi-agent system, one of the

most fundamental questions we can ask is whether or not the states of agents in the

group can reach consensus. In other words, are the agents communicating with one

another in such a way that the states of all agents will eventually be in agreement

with each other. Consensus of multi-agent systems is a key factor for many group

level behaviors, such as decision making where agents’ states may represent opinions

about a decision. Furthermore, many problems that require synchronization, such as

formation control [3], can be cast as consensus problems.

We can look beyond basic consensus by considering systems with agents also

capable of measuring external, or environmental, information. Often in networked

systems, only a limited subset of agents will have access to external information.

This is because in both natural and engineered systems it is frequently more costly,

i.e. requires advanced sensing capabilities, to acquire external information than it is

to communicate with other agents in the network. For example in a robotic swarm,

inter-agent communication can be accomplished at low-energy cost through bluetooth

or similar technology, while measuring information from the environment typically

requires additional sensors and more battery power. Therefore, it can be more efficient

for a small subset of agents to have direct access to external information and for

the remaining agents to obtain information through network connections. We call

the agents accessing external information leaders and all remaining agents followers.

Whenever two agents are communicating or interacting we refer to them as neighbors

and we assume that all communication between two agents is bi-directional. We
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not that not all networks of interest can be assumed as bi-directional and thus the

analysis here cannot be applied in those cases. The assumption of bi-directional

communication is used to simplify and improve tractability of our analysis.

In natural systems, such as herds of migrating animals, the locations of agents

sensing the environment is viewed as an emergent phenomenon [37]. In [71], the

authors extended a mathematical model [100] to analyze this evolutionary dynamic

and to compute the location of emergent leaders as a function of the network graph

and the investment cost. The model yields a distributed adaptive dynamic for taking

on leadership in this context; however, the evolutionary dynamics do not guarantee

a steady-state solution that is optimal for the herd.

In engineered systems we would like to determine the best locations of leaders so

as to optimize the collective dynamics. Alternatively posed, we seek to determine

where information should enter the network so as to optimize the performance of the

system as a function of the network topology. Merging components of natural and

engineered leader selection by designing networks where emergent leadership gives

rise to high performing systems is an area of ongoing research.

The notion of external information discussed thus far could represent a number

of different functions or signals. In this work we consider two scenarios. In the first,

the external information is a static or slowly time-varying signal that the group is

seeking to estimate, and reach consensus about, through measurements by the leader

agents and inter-agent communication. For the second case, the external information

is a (possibly time-varying) control signal. Here, each agent in the network achieves

a desired state as a result of inter-agent communication and the control input which

directly affects the states of the leader nodes.

All real world systems are subject to disturbances and noise. Therefore, it is crit-

ical for the leader-follower consensus dynamics to be sufficiently robust. Robustness

of a multi-agent system can be considered with respect to a variety of parameters,
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including performance under communication failures, agent failures, environmental

disturbances or noise, and communication uncertainty. While all facets of robustness

are important to leader-follower multi-agent systems, in this work we focus specifically

on the robustness of the leader-follower consensus dynamics to environmental noise.

For systems in which the leaders states are influenced by a control input, we would like

the networks to be controllable. That is, there exists a control input such that each

agent can obtain any state in finite time. It is possible that a system is controllable

but takes nearly infinite input energy to achieve a target final state and because of

this, we use measures of network controllability to quantify how controllable a system

is. For many systems, one cannot simultaneously maximize both robustness to noise

and controllability, therefore trade-offs must be made if both properties are desired.

This dissertation provides a bridge between performance of group level collective

dynamics, such as controllability and robustness of the leader-follower consensus dy-

namics to noise, and properties of the underlying network topology represented by a

network graph. To do so, we analytically determine network-level properties of leader

sets that will give rise to optimal group behavior.

1.1 Leader Selection for Robustness

When we are confronted with the problem of choosing the locations of leaders in

a graph to maximize accuracy of consensus about an external signal despite the

presence of noise, we refer to this as the problem of leader selection for robustness.

Furthermore, throughout this thesis, the use of the term robustness implies robustness

of the leader-follower consensus dynamics to noise. This problem has received a

significant amount attention in recent years [16, 24, 38, 49, 56, 58, 59, 74, 79]

Much of the research related to leader-follower multi-agent systems with linear

stochastic dynamics has been focused on the development of off-line leader selection
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algorithms that seek to find the leader set that minimizes total system error, defined

as the sum of individual steady-state variances about the stationary external signal

[16, 24, 58, 59, 74]. Total system error can be viewed as a measure of coherence,

equivalently the H2 norm of the system dynamics [74, 109]. In [74] a greedy algorithm

was proposed to find the optimal set of m leaders. The authors argued that their

greedy algorithm may be too computationally intensive for very large networks, and

they derived alternative algorithms that use a bound on the total system error to

improve efficiency. These and similar algorithms add a leader to the optimal set one

at a time, which typically leads to a suboptimal leader set because in general the

optimal set of m leaders does not include the optimal set of m − 1 leaders. In [59]

convex optimization was used to quantify bounds on performance and an efficient

greedy approach was proposed. This algorithm uses a swap procedure to reduce the

error associated with choosing one leader at a time. In [17, 16] the total system error

was proved to be a supermodular function (see 2.6) of the leader set, and this allowed

for the development of algorithms that approximate the optimal solution up to a

provable bound.

While researchers have added complexity to the leader selection for robustness

problem by studying convergence rate to the state of the leader(s) [93, 104], networks

with time delays [79], higher order dynamics [38, 49, 56, 94], uncertain dynamics [14,

105], or contradicting leader states [64], we note that the linear and most fundamental

form of the problem has not been solved explicitly even for simple network structures

[75].

To this end we develop a means of quantifying the combined influence of a set of

leader nodes in a network on the total system error in the leader-follower dynamic.

Intuitively, this influence should correspond to some notion of centrality of a set of

nodes because a leader set that gives low system error must be well connected to

other nodes in the network.
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We note that the problem of leader selection for robustness is very closely tied

to problems in other research areas such as pinning control [94], task allocation in

robotic networks [34], and opinion dynamics with stubborn agents [35, 78, 108].

1.2 Centrality of Sets of Nodes

Analysis of how influential or central an agent is in a network can be used in a

wide variety of contexts to better understand the roles of individual agents in multi-

agent system dynamics. Examples are numerous and include social network analysis

[30, 31, 36, 89], destabilization of covert networks [11, 12], biological applications such

as understanding metabolic networks [63] or lethality in protein networks [45], and

analysis of self-organized vs. planned urban streets [19].

Understanding how a set of agents jointly influences the network requires a notion

of centrality different from that of a single agent. Various notions of centrality of

a set of agents were defined in [23], where the authors quantified degree, closeness,

betweenness and flow centralities of sets of nodes by extensions of the definitions for

individuals. Illustrative examples were used in [13, 23, 69] to explore the relationship

to network properties and efficient computation of group betweenness centrality was

studied in [40, 53, 82, 83]. Alternative group centrality measures have been derived

in [9, 10, 54]. While these measure provide heuristics that are intuitively reasonable,

it is difficult to ascertain whether or not the measures are rigorously representative

of the centrality of a set of nodes. In contrast to the existing literature, we derive

a measure of centrality of a set of nodes, called joint centrality, by examining the

performance measure, i.e., total system error, and expressing performance in terms

of graph measures.

Applications of measures of centrality of a set of nodes include a broad range

of research areas, encompassing emergency response management [48] and a net-
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work connectivity analysis of the quality of innovative ideas [8]. Furthermore, many

combinatorial problems, such as resource allocation for network security [87] and de-

ployment strategies for mobile ad hoc networks [50] are strongly dependent on the

joint influence of a set of nodes on the rest of the network.

1.3 Leader Selection for Controllability

Broadly speaking, there are two common variations on the problem of leader selection

for controllability. When can a network be controlled by a given number of leaders

[42, 43, 61, 65, 84, 99, 114]? And where in the network should leaders be located to

optimize controllability metrics [27, 66, 73, 98]? These two variations are complemen-

tary as it is important to understand whether it is feasible to reach any final state

and also how difficult it is to control the system to any such final state.

The concept of structural controllability is often applied when determining if a

network can be controlled by a set of leaders. If a system is structurally controllable

then there exists a set of weightings on communications between agents for which the

network is controllable [57]. A common assumption is that leadership is costly, i.e.

requires additional hardware or energy, and therefore one objective in the literature

is to determine the minimum number of agents to behave as leaders. In [61] the

authors concluded that the number of leaders, defined as nodes providing control

input, required for structural controllability depends largely on the degree distribution

of the network. An algorithm for finding the minimum number of leaders while

minimizing cost was proposed in [77].

The authors of [99], and later the authors of [84], examined the graph theoretic

characteristics required for a network to be controlled by a single leader. Means for

extending these characteristics to the multiple leader setting were introduced in [84]

using equitable partitions, which were also studied in [65]. In [46], the authors studied
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controllability as related to connectedness between leader and follower subgraphs;

topological implications of the results from [46] were examined in [47]. A common goal

in many areas of multi-agent systems research is to develop distributed algorithms and

protocols. To this end, [76] proposed a distributed algorithm to determine the number

and locations of leaders to meet specifications related to structural controllability.

Leader selection in networks subject to agent or communication failures was studied

in [43].

In [18] it was argued that the more important question was whether or not a

system is almost uncontrollable. Arbitrarily large graphs were considered in [22], and

the fraction and locations of leaders needed for controllability were found for some

canonical network topologies.

A related approach is to select leaders to maximize standard measures of control-

lability, which are defined in terms of the controllability Gramian. In [73] a strategy

was developed for selecting leader nodes with performance guarantees relative to the

smallest eigenvalues of the controllability Gramian, a measure inversely related to

worst case input energy. Additionally, the authors of [101] developed an algorithm

for actuator placement in sensor networks that meets a bound on control energy

while ensuring controllability. The largest and smallest eigenvalues of the controlla-

bility Gramian were used in [107], where the relationship between energy cost bound

and control time was demonstrated.

The trace of the controllability Gramian can be applied as a measure of average

controllability as in [66]. In [98] the authors established that the trace of the con-

trollability Gramian is modular while two other energy related control measures are

submodular: trace of the inverse Gramian and log product of non-zero eigenvalues of

the controllability Gramian, a measure of reachable volume (see 2.6 for definitions of

modular and submodular). Control energy centralities were defined for each node in

a network based on these measures of controllability.
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1.4 Contributions and Thesis Outline

The work in this dissertation was motivated by the desire to rigorously connect group

level performance of leader-follower networks with properties of the underlying net-

work. To this end, throughout this work we investigate the leader selection problems

for robustness (1.1) and controllability (1.3) in an attempt to rigorously show as a

function of network graph measures where in the network optimal leaders should be

located to optimize performance. We begin in Chapter 2 by providing background

material and reviewing relevant mathematical topics that will be used throughout

this thesis.

Chapter 3 focuses on the leader selection problem for robustness of agents’ states

to external noise. We provide a new approach to solving the optimal leader selec-

tion problem in terms of network graph measures. In general, our approach reduces

computational complexity significantly as compared to the brute force computation.

Further, our results provide structural insights into the problem and foundations for

the development of on-line strategies. Significant to our approach, we define a new

notion of centrality of a set of nodes in an undirected, connected graph, that we call

joint centrality. For the leader-follower network dynamics, we show that the total

system error is inversely proportional to the joint centrality of the leader set when

the leaders are noise-free. Thus, the solution to the optimal leader selection problem

is the set of nodes that maximizes joint centrality. We show that joint centrality of a

set of nodes is a generalization of information centrality for a single node, and that

the optimal leader set is composed of nodes that trade off high nodal information

centrality with good coverage of the graph, i.e., a well distributed set with respect to

resistance and biharmonic distances among nodes in the set.

In Chapter 4 we investigate special cases of graphs, namely path graphs, tree

graphs, and cycle graphs. We demonstrate how the computation of joint centrality

simplifies in these cases and provide lower and upper bounds on pairwise joint cen-
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trality in unweighted trees. Furthermore, we solve explicitly for optimal solutions in

unweighted path and unweighted cycle graphs. Chapter 5 demonstrates the use of

joint centrality as a centrality measure of a set of nodes with the use of three real world

examples: synthetic lethality in Saccharomyces cerevisiae (baker’s yeast), clustering

of a facebook social network and clustering of political books sold on Amazon.

We then proceed to study leader selection for controllability in Chapter 6. We

prove the dependence of average controllability on information centrality of the leader

nodes. Additionally, we prove the dependence of the reachable volume on the leader

nodes’ entries in the eigenvectors of the graph Laplacian. We discuss the tension

between optimal sets for controllability and for robustness of the network dynamics

to noise, and then conclude with a summary of results and interesting open questions

in Chapter 7.
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Chapter 2

Background

In this chapter we establish notation and review mathematical tools that will be used

throughout this thesis. In particular we present a brief introduction to graph theory,

related linear algebra, and key results from control theory. We also review results

that are relevant to the conclusions drawn in this work. Although we cannot pro-

vide a thoroughly comprehensive review of all topics, the referenced citations contain

additional details on the expansive work in these areas.

2.1 Basic Notation and Definitions

Throughout this dissertation we will use the symbol R to denote the set of all real

numbers, C to denote the set of all complex numbers, and Z to denote the set of all

integers. Lower case Roman or Greek letters will be used to denote scalar quantities.

The exceptions to this include the capital letter Kf , which represents the scalar

Kirchhoff index of a graph, and the capital letter W , which we will use to denote a

scalar Wiener process.

Vectors will be represented by bold lower case Roman or Greek letters, with the

exception of W, which denotes a vector-valued Wiener process. We denote scalar

entries in a vector using the same, non-bold, letter with a subscript denoting the

11



position of the entry. For example, the ith entry of vector x is xi. The jth standard

basis vector of Rn will be written as e
(j)
n ; a vector with 1 in the jth position and 0 in

all other positions. The notation 1n denotes a vector in Rn with 1 in every entry.

Calligraphic capital letters will denote mathematical objects such as graphs or

sets, with the exception of S and F , which will be used to represent a set of leader

agents and follower agents, respectively, and â, b̂, and ŷ, which will be used as sets of

nodes in a partitioned network in Chapter 4. We will represent matrices using capital

Roman or Greek letters, with the exception of the aforementioned examples: Kf , W ,

S, and F . When a set S of m nodes is identified, we will assume they are the first m

nodes in an ordering of the complete set of n nodes unless otherwise specified. The

entry of a matrix M in the ith row and jth column will be denoted by Mi,j. We will

denote the partition of an n× n matrix B as

B =

 BS BSF

BFS BF

 , (2.1.1)

where BS is an m ×m matrix corresponding to nodes in set S, and BF is an (n −

m) × (n − m) matrix corresponding to the remaining nodes. We will further let l1

be the first node in the ordered set S, and we will use this when there is no loss of

generality. The identity matrix in Rn×n will be represented as In.

The ith eigenvalue of a square matrix B will be written as λi, where λi are arranged

in ascending order. The association of λi with B will typically be clear in context,

but in cases where this is not clear we will write λi(B).

We will use the exponent T to denote the transpose of a matrix and the exponent

∗ to denote the Hermitian transpose of a matrix. The inverse of a matrix B will be

written as B−1, the determinant of B as det(B), and the adjugate matrix of B as

adj(A), where B−1 = adj(A)
det(A)

. The inverse of a matrix can also be computed blockwise
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via the following relationship [6]

B−1 =B−1
S +B−1

S BSF (BF −BFSB
−1
S BSF )−1B3B

−1
S −B−1

S BSF (BF −BFSB
−1
S BSF )−1

−(BF −BFSB
−1
S BSF )−1BFSB

−1
S (BF −BFSB

−1
S BSF )−1

 ,
(2.1.2)

assuming BS is invertible.

The Moore-Penrose Pseudoinverse of a rank deficient matrix C will be written as

C+, where CC+C = C+ and C+CC+ = C [5]. The trace of a square matrix B is

equivalent to the sum of diagonal entries and represented by tr(B). We will make use

of the property that the trace of the product of square matrices of equivalent size is

invariant under cyclic permutations. That is, tr(XY Z) = tr(Y ZX) = tr(ZXY ). This

property also holds for rectangular matrices of compatible dimension. For example,

for Z ∈ Rn×m, tr(Z ′Z) = tr(ZZ ′).

A normal matrix B ∈ Rn×n is a matrix that commutes with its transpose, i.e.

BBT = BTB. A square matrix U ∈ Cn×n is a unitary matrix if its inverse is equivalent

to its Hermitian transpose, that is U∗U = UU∗ = In.

A tridiagonal matrix is a matrix with entries along the main diagonal, and the

first diagonals above and below the main, with zeros elsewhere. The elements of the

inverse of a general tridiagonal matrix can be expressed through a recurrence relation

[102]. Certain tridiagonal matrices allow for explicit expressions of the elements of

13



the matrix inverse [28]. A tridiagonal matrix of the form

Tn =



1 + a
a+b

−1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1


,

has a symmetric inverse such that

(T−1
n )i,j =

ai− b
a

i ≤ j. (2.1.3)

We can write the pseudoinverse of a real-valued, rank-deficient matrix, B ∈ Rn×n

plus a rank-one matrix in terms of the pseudoinverse of B plus a real valued matrix

H. Formally, for y, z ∈ Rn,

(B + zyT )+ = B+ +H (2.1.4)

where

H = − 1

‖w‖2
vwT − 1

‖m‖2
mhT +

β

‖m‖2‖w‖2
mwT (2.1.5)

and β = 1+yTB+z, v = B+z, h = (B+)Ty, w = (I−BB+)z, and m = (I−B+B)Ty

[5] . Additionally, we will make use of the Matrix Inversion Lemma, which states that

given X ∈ Rn×n, Z ∈ Rm×m, U ∈ Rn×m and V ∈ Rm×n such that X, Z and X+UZV

are nonsingular, then, (X + UZV )−1 can be written as [106]

(X+UV Z)−1 = X−1 −X−1U(Z−1 + V X−1U)−1V X−1. (2.1.6)
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Another important matrix property that we will make use of is the determinant

of a matrix with an added row and column, otherwise called a bordered matrix. The

determinant of a bordered matrix can be computed as follows,

∣∣∣∣∣∣∣
X u

vT d

∣∣∣∣∣∣∣ = d|X| − vT (adj(X))u, (2.1.7)

where X ∈ Rp×p, u,v ∈ Rp, and d ∈ R [32] .

2.2 Linear Consensus Dynamics

The objective of a multi-agent system performing consensus dynamics is for the

state of every agent in the network to reach agreement, i.e. converges on the same

value. Formally, we represent this by considering n agents with states denoted by

x = [x1 x2 ... xn]T , where xi is the state of agent i. Then we can say that a system

is in consensus if xi = xj ∀ i, j ∈ {1, 2, ..., n}. We note that the state of the system

can represent a physical state, such as location or direction of travel, or the state can

represent a virtual quantity, for example, a belief or parameter estimate. A funda-

mental assumption of consensus dynamics is that each agent can measure its state

relative to the state of its neighbors. That is, if agent i is communicating with agent

j, then i has access to the difference xj−xi. The use of relative measurements rather

than absolute avoids the need to establish position in global coordinates, which can

be difficult to measure. Furthermore, this ensures that any agent’s bias in calculating

absolute measurements (e.g., imperfectly calibrated sensors) is inconsequential.

There are many variations on dynamic protocols for achieving consensus, though

here we will focus on the linear consensus protocol [70, 86, 90, 103]. In linear consensus

dynamics, each agent updates its state according to a weighted average of relative
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measurements of its neighbors. For each i ∈ {1, .., n} we have

ẋi =
∑
j∈Ni

ai,j(xj − xi), (2.2.1)

where Ni is the set of neighbors of agent i and ai,j is a positive weight on the relative

difference in states i and j. In matrix form, equation (2.2.1) can be expressed as

ẋ = −Lx (2.2.2)

where L is the Laplacian matrix generated by the underlying network topology. The

construction and properties of L will be discussed in the following section.

2.3 Undirected Graph Theory

The study of graph theory provides a visual and mathematical framework for analysis

of networked multi-agent systems. Agents are represented by nodes and communica-

tion between any two agents is given by a link, otherwise known as an edge between

the two agents.

Formally, a graph G = (V , E , A), where each agent corresponds to a node in the set

V = {1, 2, ..., n}. We will use the terms agents and nodes interchangeably. E ⊆ V ×V

is the set of edges, where the edge (i, j) ∈ E if j is a neighbor of i (j ∈ Ni). A ∈ Rn×n

denotes the adjacency matrix. If (i, j) ∈ E then element ai,j will be positive, otherwise

ai,j = 0. In the linear consensus dynamic the magnitude of ai,j is the weighting that

node i puts on the relative value of information from agent j. If for every pair (i, j) ∈ E

we have that (j, i) ∈ E and ai,j = aj,i ∀i, j,∈ {1, 2, ..., n}, then graph G is undirected.

It follows that the adjacency matrix for an undirected graph is a symmetric matrix.

For the purpose of analytic tractability, in this dissertation we limit our analysis to

undirected graphs. Recent results in closely related areas of directed graph theory
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[112], [113], may provide a bridge towards extending this work to directed graphs.

A visual representation of a weighted, undirected graph is shown in Figure 2.1.

Nodes are given in the numbered circles, lines between nodes are edges and the

weight of each edge is written adjacent to the edge. In general, if edge weights are

not specified then all weights are assumed to be 1.

1

2
3

4

5

6

7

8

91

1.2

0.5 0.8

1.3

2.2

2 1
0.6

1.1

1.6

Figure 2.1: Example undirected, weighted graph with 9 nodes and 11 edges

We define the degree of node i, denoted by di, to be the sum of the weights

of all edges incident to i, di =
∑n

j=1 ai,j. The degree matrix associated with G is

the diagonal matrix of node degrees, D = diag([d1, d2, ..., dn]T ) = diag(A1n). The

Laplacian matrix, L, of G is defined as L = D − A. The Laplacian matrix of an

undirected graph has a number of properties that will be utilized in future sections.

First, the Laplacian is symmetric, and row and column sums of L are always equal

to zero. The vector 1n lies in the null space of L, thus

L1n = 0, (2.3.1)
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and 0 is always an eigenvalue of L. All other eigenvalues will be real and non-negative,

assuming the graph is connected. Finally, the following property of L+ will be applied

in proofs (see [81] for details):

LL+ = L+L = In −
1

n
1n1n

T . (2.3.2)

A path is a sequence of nodes for which there is an edge between each consecutive

pair of nodes. The number of edges between consecutive pairs of nodes is the length

of the path. A simple path is a path which has no repeated nodes. A cycle is a path

for which the initial node is equivalent to the final node, otherwise referred to as a

closed path. A cycle which is a simple closed path is called a simple cycle. If every

pair of nodes in an undirected network has a path between them then the graph G

is connected. In this dissertation we will only make use of simple paths and simple

cycles, therefore the use of the terms path or cycle will always indicate no repeated

nodes. We will use the notation p(ab) to denote a path between nodes a and b, and

let |p(ab)| be the length of the path, defined as the number of edges.

We now review relevant special cases of graphs. A cycle graph is a graph with n

nodes and n edges where every node in the graph is contained by a simple cycle of

length n. A path graph is a graph with n nodes and n− 1 edges where every node in

the graph is contained by a simple path of length n−1. We note that a path graph is

equal to a cycle graph with one edge removed. A connected graph with n nodes that

does not contain any cycles is a tree. A tree graph will always contain exactly n− 1

edges. Any node in a tree with a degree of one is referred to as a leaf. Tree graphs,

path graphs and cycle graphs are all examples of planar graphs, which implies that

they can be drawn in a 2-D plane without edge crossings as shown in Figure 2.2 [2].
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cycle graph
tree graph

path graph

Figure 2.2: Examples of three canonical graph topologies: cycle graph (upper left),
tree graph (upper right), and path graph (bottom).

2.3.1 Distance and Centrality

There are a variety of measures to characterize how central any given node in a graph

is [30]. Examples include degree centrality [92], betweenness centrality [29], closeness

centrality [4], eigenvector centrality [55] and information centrality [97]. Of those, only

eigenvector centrality and information centrality take into account all paths between

any pair of nodes in the network. Betweenness centrality and closeness centrality are

both calculated using shortest paths, while degree centrality depends on the degree

of each node.

We will show later (Chapter 3) that information centrality in particular is an

important measure in the leader selection problem. Information centrality can be

understood by first defining the information in a path between any two nodes in G

to be the inverse of the sum of edge weights between those two nodes. Thus for

an unweighted path, the longer the path the less information in that path. Total

information between nodes i and j, denoted I toti,j , is the sum of the information in

all paths connecting nodes i and j. It was shown in [97] that total information can
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be calculated without path enumeration by using the pseudoinverse of the Laplacian,

L+:

Itot
i,j =

1

L+
i,i + L+

j,j − 2L+
i,j

, (2.3.3)

where L+
i,j is the i, j component of L+. Information centrality for node i, denoted ci,

is defined as the harmonic average of total information between node i and all other

nodes in G [97]:

ci =

(
1

n

n∑
j=1

1

Itot
i,j

)−1

. (2.3.4)

The Kirchhoff index of a graph is the sum of resistance distances between all node

pairs and has been applied as a measure of robustness of a network [109, 110]. The

diagonal entries of the psuedoinverse of the Laplacian are related to the Kirchhoff

index through the relation [52]

tr(L+) =
Kf

n
. (2.3.5)

In [81], Poulakakis et al. evaluated the certainty of each node i in a network of

decision-makers accumulating stochastic evidence towards a decision∗ . This certainty,

denoted µi, is defined as the inverse of the difference between the variance of the state

xi about the reference signal and the minimum achievable variance as t → ∞. The

authors apply the notion of information centrality to directly interpret µi in terms of

structural properties of the underlying communication graph. It was proven that

1

µi
=
σ2

2
L+
i,i =

σ2

2

(
1

ci
− Kf

n2

)
. (2.3.6)

∗This paragraph through the end of Section 2.3.1 has been adapted from Fitch and Leonard [26]
with some text taken verbatim.
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The identity (2.3.6) implies that the ordering of nodes by certainty is equal to the

ordering of nodes by information centrality.

The total information between any two nodes i and j is closely related to the

resistance distance between them, denoted ri,j. Resistance distance between nodes in

the undirected graph G is defined as the resistance distance between the corresponding

two nodes in the electrical network analog to the graph G. By [52] for an undirected

graph G

ri,j = L+
i,i + L+

j,j − 2L+
i,j = Itot

i,j
−1
. (2.3.7)

It follows that

n∑
i=1

ri,j =
n

cj
. (2.3.8)

Since there is only one path between any two nodes and all edge weights are equal

to one in an unweighted tree graph, resistance distance in this case is equivalent to

geodesic distance. The notation δi,j will be used to denote the resistance distance

between nodes i, j in an unweighted tree. The constraint of one path between any

two nodes allows us to write the information centrality of a node i for an unweighted

tree graph in terms of the sum of geodesic distances from i to every other node in the

network:

1

ci
=

1

n

n∑
j=1

δij, (2.3.9)

where we note that in this case I i,jtot = 1
δij

. This form can be simplified even further

when considering paths graphs. In general for path graphs we will use the convention

that node a is the node in the ath position along the path, ordered from left to right.
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Applying equation (2.3.9) to a path graph yields for node i,

1

ci
=

2i2 + n+ n2 − 2i(1 + n)

2n
(2.3.10)

An additional measure with similar form to that of resistance distance is the

recently derived notion of biharmonic distance, dB [60]. This measure has been used

to quantify distance between two points vi, vj on the surface of a discrete 3D mesh:

dB(vi, vj)
2 = gd(i, i) + gd(j, j)− 2gd(i, j), (2.3.11)

where gd is the discrete Green’s function [15, 60] of the discretized, bilaplacian L̃2,

equivalent to the pseudoinverse of L̃2. L̃ is the discretized Laplacian, obtained by

the cotangent formula for discretization of the Laplacian on meshes, and normalized

by the mesh area at each vertex (see [60] and references therein for details). In

the context of 3D meshes, the biharmonic distance has the advantage, over diffusion

and geodesic distances, of providing a balance between local and global properties

of a surface, reflecting overall connectivity for faraway points [60]. We define the

biharmonic distance between two nodes i and j in the graph G, which we denote γi,j,

analogously for the unnormalized Laplacian L as defined in the beginning of Section

2.3:

γi,j = L2+
i,i + L2+

j,j − 2L2+
i,j =

n∑
l=1

(L+
l,i − L

+
l,j)

2

= (ei − ej)
TL2+(ei − ej). (2.3.12)

We observe that the definition of biharmonic distance γi,j of (2.3.12) is very similar

to the definition of resistance distance ri,j of (2.3.7) with the difference being the use

of the pseudoinverse of L2 in the definition of γi,j as compared to the pseudoinverse

of L in the definition of ri,j. Since L2 is symmetric and positive semi-definite, we
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immediately have that γ1/2 is a metric. In fact, it can be viewed as a Manahalobis

distance, which in this case describes a dissimilarity measure between two vectors from

a single distribution with covariance matrix L2. Let Γ be the matrix with elements

γi,j.

For completion, we note that both resistance distance and biharmonic distance

between nodes can be written in terms of the eigenvalues λi and eigenvectors νi of

the Laplacian L [52, 26]:

ri,j =
n∑
l=2

1

λl
(νil − ν

j
l )

2, (2.3.13)

γi,j =
n∑
l=2

1

λ2
l

(νil − ν
j
l )

2. (2.3.14)

2.4 Controllability

Given a dynamical system, we often wish to rigorously understand how the behavior

of that system will be modified by the presence of inputs to the system. A linear

system with n states subject to m inputs, u, can be written as

ẋ = Ax +Bu, (2.4.1)

where A ∈ Rn×n, x ∈ Rn×1, B ∈ Rn×m and u ∈ Rm×1.

One relevant question we can ask is whether or not it is possible to design control

inputs which can drive the system to a desired state. This brings us to the notion of

controllability :

Definition 1. [88] Controllability: The linear, time invariant system (2.4.1) is con-

trollable if, for every xf and every T > 0, there exists an input function u(t), for

0 < t < T , such that the system is taken from x(t = 0) = 0n×1 to x(t = T ) = xf .

In our discussion we are primarily concerned with steady state behavior. There-
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fore we will consider infinite horizon controllability, that is, controllability as defined

in Definition 1 with T = ∞. A key concept in the study of controllability is the

controllability Gramian. The controllability Gramian associated with the dynamics

(2.4.1) is defined, for stable A, as [39]

WC =

∫ ∞
0

eAτBBT eA
T τdτ, (2.4.2)

which is also the solution to the Lyapunov equation

AWC +WCA
T = −BBT . (2.4.3)

It can be shown that the following statements are equivalent [39].

1. System (2.4.1) is controllable.

2. The controllability Gramian (2.4.2) is nonsingular.

3. The n× n controllability matrix C = [B AB A2B ... An−1B] has rank n.

In the case where WC is not full rank we refer to the controllable subspace of the

system (2.4.1) as the range of the controllability Gramian. While controllability is

an important characteristic for a linear time invariant system, it is also necessary to

consider how controllable a system is. This is because it is possible for a system to be

controllable but take infinite time to reach the final state or require a large amount of

control effort or energy. † The following four functions of the controllability Gramian

provide four measures of controllability performance.

(a) Average controllability: tr(WC) provides a measure of average controllability

over the controllable subspace.

†The following text through the end of Section 2.4 has been adapted from Fitch and Leonard
[27] with some text taken verbatim.
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(b) Reachable volume: ld(WC) = log
(∏rankWC

j=1 λj(WC)
)

provides a measure of

the volume of the controllable subspace reachable with one unit of input. When

WC is full rank ld(WC) is equal to the log determinant of WC .

(c) Average control energy: tr(WC
−1) and tr(WC

+) provide measures of average

control energy required to reach a random state in the controllable subspace.

(d) Worst case input energy: λmin(WC) is inversely proportional to the input

energy required to move in the least controllable direction in the controllable

subspace.

We let WCi
be the controllability Gramian associated with one leader node, i.

WCi
satisfies (2.4.3) when B = e

(i)
n . In [98], the authors defined three control energy

centralities for each node i in a network based on the value of controllability measures

(a)-(c) when i is selected as a single leader node. These control energy centralities

are

• Average controllability centrality

CAC(i) = tr(Wci) i ∈ V

• Average control energy centrality

CACE(i) = −tr(W+
ci

) i ∈ V

• Volumetric control energy centrality

CV CE(i) = log

rankWci∏
j=1

λj(Wci)

 i ∈ V.
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2.5 Stochastic Differential Equations

Often it is not possibly to perfectly model the dynamics of physical systems due to

the presence of noise, which could arise from random disturbances, imperfect mea-

surements, or unpredictable phenomena that cannot be captured by our dynamical

equations. Though we cannot precisely determine a priori the magnitude and means

by which noise will effect our system at any given instant, we would still like our

dynamic model to account for stochasticity. A dynamic model with noise can be rep-

resented using an Ito stochastic differential equation [33], the scalar version of which

can be written as

dx = f(x, t)dt+ g(x, t)dW, (2.5.1)

where x is the state variable, f and g are each functions of both x and t and dW is the

standard Wiener increment. Before discussing the precise meaning of dW , we first

introduce Markov processes and Wiener processes. A Markov process is a process for

which the future state of the process depends only on the current state of the process

and not past states [72]. In this way, a Markov process is referred to as memory-less:

the past history of the process provides no additional information about the future

states. A Wiener process, W (t), is a continuous Markov process with a zero-mean

Gaussian probability density function that has a variance that grows linearly with

time [1, 33]. The Wiener process is a function of time and we will often drop the t in

W (t) and write W for notational simplicity. Increments of W are stationary, meaning

that the distribution of W (t2)−W (t1) does not depend on the particular values of t1

or t2, but rather the difference t2 − t1.

The Wiener process is closely related to the concept of white noise, which is a

scalar, stationary, zero-mean Gaussian process ξ(t), with a constant power spectral
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density. If fact, [1]

∫ t

0

ξ(τ)dτ = W (t). (2.5.2)

Therefore we can think about dW in equation (2.5.1) as a term representing the

presence of white noise. Unfortunately, the Wiener process is nowhere differentiable,

and we are not able to take the derivative of W in the normal way. The development

of Ito calculus provides us a means with which to work with such functions. We make

the definition

dW := ξ(t)dt,

and then we are able to write the integral of a white noise process as [33]

∫ t

0

g(x, τ)ξ(τ)dτ =

∫ t

0

g(x, τ)dW

where

∫ t

0

g(τ)dW := ms-lim
n→∞

{ n∑
i=1

g(x, τi=1)[W (τi)−W (τi−1)]
}

(2.5.3)

where ms-lim stands for mean square limit and τ0 = t1 < τ1 < τ2 < ... < τn = t2.

Thus (2.5.1) is a valid equation and its integral form is [33]

x(t)− x(0) =

∫ t

0

f(x, τ)dτ +

∫ t

0

g(x, τ)dW

These concepts can be easily extended to higher dimensions by considering W to

be an n-dimensional Wiener process in which each element is an independent scalar
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Wiener process. The generalized version of (2.3.12) is

dx = f(x, t)dt+G(x, t)dW, (2.5.4)

where x is an n-dimensional vector, f is a vector-valued function of x and t, and G is

a matrix-valued function of x and t.

Any process corrupted by noise will result in a different time series for each run of

the process. For this reason, it is more informative to determine statistical properties

of the solution rather than solve for sample solutions x(t). To do this we study how

the probability density function of x(t), p(x, t), evolves with time. If (2.5.4) can be

written as [1]

dx = [A(t)x + a(t)]dt+B(t)dW, (2.5.5)

and initial condition x(t0) is constant or normally distributed, then x(t) is a Gaussian

process, and p(x, t) can be completely described by its mean and covariance [1].

Letting E[·] denote the expected value operator, we define µx(t) := E[x(t)] to be the

mean of x, and Σx(t) := E
[
(x(t)− µx(t))(x(t)− µx(t))T

]
to be the covariance of x.

It then holds that µx(t) satisfies the equation [1]

µ̇x(t)) = A(t)µx(t)) + a(t), (2.5.6)

and the covariance Σx(t) satisfies

Σ̇x(t) = A(t)Σx(t) + Σx(t)A(t)T +B(t)B(t)T . (2.5.7)

Therefore, equations (2.5.6) and 2.5.7 completely describe the behavior of systems of

the form (2.5.5) with constant or normally distributed initial conditions.
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Assuming constant A and B matrices, we observe a parallel between the steady

state covariance equation((2.5.7) with Σ̇ = 0 and the equation for the controllability

Gramian (2.4.3). Indeed, one way to think of noise is as an input to our dynamical

system.

2.6 Modularity and Submodularity

It is often difficult to generalize the effect of a change in the members of a set S

on the outcome of a real valued set function f(S). However, there are properties of

f(S), namely modularity and submodularity, that when established, give us valuable

insight. Let V = 1, ..., Z be a finite set and let f : 2V → R be a function from

all subsets of V to real values. Then modularity and submodularity are defined as

follows.

Definition 2. [62] Modularity: A set function f : 2V → R is modular if and only if

for any subset S ⊆ V, f can be written as

f(S) = w(∅) +
∑
s∈S

w(s) (2.6.1)

where w is a weight function w : V → R.

The implication of a modular set function is that each element of a subset inde-

pendently contributes to the value of the function. Moreover, w(s) = f({s}) when

w(∅) = 0. Solving an optimization problem with a modular cost function is therefore

straightforward, as the total cost is simply the sum of each element’s independent

contribution to the cost function.

Definition 3. [62] Submodularity: A set function f : 2V → R is submodular if and
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only if for all subsets A ⊆ B ⊆ V and all elements s /∈ B

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B). (2.6.2)

A submodular set function has the property of diminishing returns, that is the ad-

dition of an element to a larger set has a smaller contribution than the addition of an

element to a smaller set. Therefore, each element of a subset does not contribute inde-

pendently and full solutions to optimization problems with nondecreasing submodular

set functions are NP-hard. However, greedy algorithms can provide a solution within

a provable bound from the optimal solution [68].

Definition 4. [62, 16] Supermodularity: A set function f : 2V → R is supermodular

if and only if for all subsets A ⊆ B ⊆ V and all elements s /∈ B

f(A)− f(A ∪ {s}) ≥ f(B)− f(B ∪ {s}). (2.6.3)

A supermodular set function has the property that adding an element s to a set

A yields a larger decrease in f than adding s to a superset B. A function, f , is

supermodular if −f is submodular.
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Chapter 3

Leader Selection for Robustness

and Joint Centrality∗

In this chapter we study the leader selection problem for robustness. We consider

a network of nodes tracking an external signal in a noisy environment, and seek to

identify m leader nodes to directly measure the signal such that total system error is

minimized. Total system error is defined as the sum of steady state variances of all

nodes in the network and is equivalent to the H2-norm of the linear system (3.1.2),

a measure of robustness of the leader-follower consensus dynamics to environmental

noise. Therefore, high performing leader sets indicate that the system will be less

influenced by the presence of noise in the state of each node. We find that total

system error for m noise-free leaders can be written as proportional to the joint

centrality of the leader set, where joint centrality is a measure associated with a set

of nodes that takes into account the centrality of the nodes and coverage of the set over

the network. Thus, high performing leader sets will be central, yet distributed over

the graph. For one leader, we prove that the optimal leader is the most information

central node.

∗This chapter is adapted from Fitch and Leonard [26] with most of the text taken verbatim.
Some material was first published in Fitch and Leonard [25].
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3.1 Model and Problem Statement

We consider a network of n agents tasked with tracking an external signal from the

environment. We denote the external signal by µ ∈ R and suppose it to be a constant.

Generalizations to vector-valued environmental signals are expected to be relatively

straightforward and extensions to time-varying environmental signals are the topic of

future work.

An agent l ∈ V is called a leader if it directly measures the external signal. Let

kl > 0 be the weight that agent l puts on its signal measurement. Any agent that is

not a leader is called a follower. Let the set of leaders be denoted S with cardinality m

and the set of follower nodes, denoted by F , be the complement of S with cardinality

n −m. Summation over s denotes summation over the leader set, while summation

over i denotes summation over the entire set of leaders and followers. We use the

index l1 when it is necessary to identify one leader apart from the rest of the leader

set.

We assume that all leaders apply the same weight k to their measurement of the

external signal, i.e., ki = k > 0 for i ∈ S and ki = 0 for i ∈ F . We assume that

stochastic disturbances enter the dynamics as additive noise. We model the dynamics

for each agent i ∈ V by the following stochastic process:

dxi = −ki(xi − µ)dt− Lixdt+ σdWi, (3.1.1)

where Li is the ith row of the Laplacian L, and σdWi represents increments drawn

from independent Wiener processes with standard deviation σ.

In the case that k < ∞, the dynamics of the leaders and followers are all noise

corrupted. In [59], it was demonstrated that in the limit as k → ∞, i.e., in the

case that leaders apply an arbitrarily large weight to tracking the external signal,

the dynamics (3.1.1) describe the case of noise-free leaders. Thus, our model (3.1.1)
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describes both cases of noise-corrupted leaders (k < ∞) and noise-free leaders (k →

∞).

To write (3.1.1) in vector form let K ∈ Rn be the diagonal matrix with elements

ki, let M = L+K and without loss of generality let µ = 0. Then (3.1.1) becomes

dx = −Mxdt+ σdW. (3.1.2)

Since we have assumed that G is connected, −M is Hurwitz so long as ki = k > 0 for

some agent i, i.e., S is nonempty.

Thus, for nonempty S, x will converge to a steady-state distribution about the

value of the external signal, and the steady-state covariance matrix Σ of x is the

solution to the Lyapunov equation

MΣ + ΣMT = σ2I. (3.1.3)

The steady-state variance of xi is Σi,i, the corresponding diagonal element of Σ. Since

the external signal is assumed to be constant, the system will converge to a steady-

state distribution about the value of the external signal even if the nodes chosen as

leaders do not guarantee system controllability.

Following [74, 16], we define total system error as Tr(Σ) =
∑n

i=1 Σi,i. We de-

fine group performance as the inverse of total system error, which measures network

tracking accuracy.

By [1] we have that the covariance matrix of (3.1.2) is

Cov(x(t),x(t)) = σ2

∫ t

0

e−M(t−τ)e−M
T (t−τ)dτ. (3.1.4)

Given that G is undirected, the Laplacian matrix L will be symmetric and it follows

that M will be symmetric and normal. Let the eigenvalues of M be λi, i ∈ V with
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corresponding eigenvectors νi. Let Λ be the diagonal matrix with entries Λi,i = λi.

Then there exists a unitary matrix U such that U∗MU = Λ and (3.1.4) can be written

as

Cov(x(t),x(t)) = σ2(UR(t)U∗), (3.1.5)

with

R(t) :=

∫ t

0

e−(Λ+Λ̄)(t−τ)dτ. (3.1.6)

From [80], this gives

[Cov(x(t),x(t))]i,j = σ2

n∑
p=1

1− e−2Re(λp)t

2Re(λp)
ν

(p)
i ν̄

(p)
j . (3.1.7)

Since M is symmetric, all eigenvalues of M will be real, and the steady-state variance

of each node can be written as

Var(xi)ss = Σi,i = σ2

n∑
p=1

1

2λp
|ν(p)
i |2. (3.1.8)

Total system error follows from summing (3.1.8) over all i,

n∑
i=1

Σi,i = σ2

n∑
i=1

1

2λi
=
σ2

2

n∑
i=1

M−1
i,i . (3.1.9)

Total system error defines the coherence of the network, and is equivalent to the H2

norm of the system with output equation y = Cx, where C = In and In the n × n

identity matrix [74, 109].

We define the optimal leader selection problem as follows.

Definition 5 (Optimal leader selection problem for robustness). Given m and undi-
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rected, connected graph G, find a set of m leaders S∗ over all possible sets S of m

leaders that minimizes the total system error (3.1.9) for the leader-follower network

tracking dynamics (3.1.2), i.e., find

S∗ = arg min
S
σ2

n∑
i=1

1

2λi
= arg min

S

σ2

2

n∑
i=1

M−1
i,i . (3.1.10)

3.2 Joint centrality and the optimal m noise-free

leaders

In this section, we prove our main result on the general solution of the optimal leader

selection problem by deriving an explicit expression for total system error with m

noise-free leaders in terms of properties of the underlying graph. Before stating the

theorem, we first define the joint centrality of a set of m nodes in a network graph.

Definition 6 (Joint centrality). Let G be an undirected, connected graph of order n.

Given integer m < n, let S be the set of any m nodes in G. Choose an arbitrary

element l1 ∈ S. Let N be an n× n matrix with elements of N−1 given by

N−1
i,j = L+

i,j − L+
i,l1
− L+

j,l1
+ L+

l1,l1
. (3.2.1)

Following (2.1.1), N−1
S\l1 is the (m−1)×(m−1) submatrix of N−1 corresponding to the

elements of S less the first element l1. Let G =
(
N−1
S\l1

)−1

and Ḡ =

0 0

0 G

 ∈ Rm×m.

Let Q = ḠΓS, where Γ is given by (2.3.12). The joint centrality of set S in G is defined

as

ρS = n
(Kf

n
+ n det(G) det(L+

S ) +
1

2
Tr(Q)− 1TnQel1

)−1

. (3.2.2)

Theorem 1 (Optimal noise-free leader set). Let G be an undirected, connected graph
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of order n. Let S be a set of m noise-free leaders. Then, the total system error (3.1.9)

for the system dynamics (3.1.2) is

n∑
i=1

Σi,i =
σ2

2

( n
ρS

)
, (3.2.3)

where ρS is the joint centrality of leader set S given by (3.2.2). The optimal leader

set is S∗ = arg maxS ρS, the set of leader nodes with the maximal joint centrality.

Proof. (Theorem 1). We begin by studying terms in the total system error for finite

k > 0 and then evaluate in the limit as k →∞. From (3.1.9), the total system error

is proportional to Tr(M−1) where M = L + K. Let K1 be the diagonal matrix with

k in the first diagonal element and zeros elsewhere and let Km−1 = K − K1. We

derive an expression for Tr(M−1) by calculating two successive updates to L+. We

first show that if we define N = L+K1, and thus M = N +Km−1, then N−1 satisfies

(3.2.1) for k →∞.

Let e = d be vectors of length n with
√
k in the l1 (first) entry and zeros elsewhere

where l1 is a member of the leader set. Note that the choice of l1 will not affect the

value of joint centrality for a given leader set. Then N−1 = (L+K1)−1 = (L+edT )−1.

Applying Lemma 2.1.4 we get that (L + edT )−1 = L+ + H, with H given by (2.1.5)

such that

N−1 =L+ − L+
l1
1n

T − 1nL
+T
l1

+
(1 + kL+

l1,l1
)

k
1n

T1n. (3.2.4)

Taking the limit as k →∞, the elements of N−1 can be written as (3.2.1).

Let U = [−
√
ke2, . . . ,−

√
kem] ∈ Rn×(m−1), let V = UT and let Im−1 ∈ R(m−1)×(m−1)

be the identity matrix. Then, M−1 = (N + Km−1)−1 = (N + UIV )−1. Applying the
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Matrix Inversion Lemma 2.1.6 we get that

(N+UIV )−1 = N−1 −N−1U(I + V N−1U)−1V N−1. (3.2.5)

Let G = (N−1
S\l1)

−1 as in Definition 6. Then if we take the limit as k →∞, sum

the diagonal elements of M−1 = (N + UIV )−1, and apply the identities (2.3.1) and

(2.3.5) we get

n∑
j=1

M−1
j,j =

Kf

n
+ nL+

l1,l1
−

∑
s1,s2∈S\{l1}

n∑
i=1

Gs1,s2

(
L+
l1,l1

(L+
l1,l1
− L+

l1,s1
− L+

l1,s2
)+

L+
l1,s1

L+
l1,s2

+
1

2

[
(L+

i,l1
− L+

i,s1
)2 + (L+

i,l1
− L+

i,s2
)2− (L+

i,s1
− L+

i,s2
)2
] )
.

(3.2.6)

Consider the square bracketed terms of (3.2.6) in which we observe the emergence

of biharmonic distance, γ. Substituting (2.3.12) and defining Ḡ as in Definition 6 we

get

∑
s1,s2∈S\{l1}

n∑
i=1

Gs1,s2

1

2

[
(L+

i,l1
− L+

i,s1
)2 + (L+

i,l1
− L+

i,s2
)2− (L+

i,s1
− L+

i,s2
)2
] )

= −1

2
Tr(ḠΓS) + 1Tn [ḠΓS]el1 . (3.2.7)

Additional simplification is made by applying Lemma 2.1.7 to the middle terms

on the right hand side of (3.2.6). We get

nL+
l1,l1
− n

∑
s1,s2∈S\{l1}

Gs1,s2

(
L+
l1,l1

(L+
l1,l1
− L+

l1,s1
− L+

l1,s2
) + L+

l1,s1
L+
l1,s2

)
=

n

det(G−1)

(
L+
l1,l1

det(G−1)−∑
s1,s2∈S\{l1}

CN−1
s1,s2

[
L+
l1,l1

(L+
l1,l1
− L+

l1,s1
− L+

l1,s2
) + L+

l1,s1
L+
l1,s2

] )
(3.2.8)
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where CN−1 is the cofactor matrix ofN−1
S\l1 =G−1. We then let L+

l1,si
=[L+

l1,s1
, ..., L+

l1,sm−1]T

and L+
l1,l1

= [L+
l1,l1

, ..., L+
l1,l1

]T to be vectors in Rm−1 and apply Lemma 2.1.7 to rewrite

the expression in (3.2.8) as

n

det(N−1
S\l1)

∣∣∣∣∣∣∣
N−1

S\l1 L+
l1,l1
− L+

l1,si

L+
l1,l1
− L+

l1,si
L+
l1,l1

∣∣∣∣∣∣∣ . (3.2.9)

Using (3.2.1) we expand the determinant in (3.2.9) and perform algebraic manip-

ulation to show that (3.2.9) simplifies to

n det(G) det(L+
S ). (3.2.10)

Thus,

n∑
i=1

Σi,i =
σ2

2

(Kf

n
+ n det(G) det(L+

S ) +
1

2
Tr(ḠΓS)− 1Tn [ḠΓS]el1

)
=
σ2

2

( n
ρS

)
(3.2.11)

where ρS is defined by (3.2.2).

3.3 Interpretation

In this section we provide interpretation of, and intuition on, the joint centrality

measure, we prove explicit solutions to the optimal leader selection problem in a few

cases, and we consider noise-corrupted leaders in the case of m = 1 and m = 2.

Our central insight is that joint centrality of a set of nodes is a generalization of

information centrality of an individual node: the joint centrality of a set of nodes

is directly related to the information centrality of each individual node in the set

and a coverage of the graph by the whole set, defined in terms of distribution of

the set over the graph with respect to resistance and biharmonic distances. These

38



components of joint centrality may be in tension, since the most information central

nodes can be close to one another (e.g., in the path graph), in which case they may

be insufficiently distributed over the graph to provide good coverage. The optimal

leader set is composed of nodes that trade off high nodal information centrality (close

to the center in the path graph example) with good coverage (close to the ends in the

path graph example).

We begin in this section by examining the terms in the expression for joint central-

ity in the case of an arbitrary number of noise-free leaders m, and show the connection

to information centralities and coverage. We solve the optimal leader selection prob-

lem in the case of a cycle graph and illustrate further with a more general example. We

then specialize to the case of m = 1 leader, and show how joint centrality specializes

to information centrality of the leader node, with or without noise corruption. Next

we specialize to the case of m = 2 leaders, where the expression for joint centrality

facilitates a close examination of the trade-off between information centralities and

coverage provided by the two leaders. We prove an explicit solution for the optimal

set of two leaders in the case of the path graph. We also address the problem for

m = 2 noise-corrupted leaders and provide intuition. We finish the section with a

discussion of our results in light of greedy algorithms for finding optimal leader sets,

and we make connections to controllability.

3.3.1 Joint centrality and an arbitrary number of leaders m

We interpret the results of Theorem 1 in the following two remarks. We then illustrate

the notion of coverage by proving the explicit solution to the optimal leader set in

the case of a cycle graph. We illustrate the trade-off between centrality and coverage

with an example network.

Remark 1. Using Theorem 1 to compute the total system error in terms of joint
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centrality of the m leader nodes provides a significant reduction in computation as

compared to using the definition of total system error (3.1.9). Using joint centrality

one only needs to compute the inverse of two n × n matrices L+ and L2+ and then

for each candidate set of leaders the inverse of an (m − 1) × (m − 1) matrix. This

is in contrast to using the definition (3.1.9), which requires computing the inverse of

the n× n matrix M for each candidate set of leaders.

.

Remark 2. Theorem 1 reveals how the solution to the optimal leader selection problem

is an optimal trade-off between high information centrality of the leader nodes and high

resistance distances and biharmonic distances between leader nodes. To see this we

examine the terms in (3.2.2) for joint centrality ρS.

First, the elements of N−1 given by (3.2.1) depend on resistance distances:

N−1
i,j =

1

2
(ri,l1 + rj,l1 − ri,j).

Thus N−1
i,j quantifies a joint resistance distance between a pair of nodes i, j and l1,

Then, det(G) = (det(N−1
S\l1))

−1 depends on these joint resistance distances among

leaders.

Second, by (2.3.6) each diagonal element of L+
S corresponds to a leader node and

depends directly on the inverse of its information centrality as follows:

L+
s,s =

1

cs
− Kf

n2
.

By (2.3.7) the off diagonal elements of L+
S depend on information centralities and

resistance distances between leaders:

L+
s,t =

1

2

(
1

cs
+

1

ct
− rs,t − 2

Kf

n2

)
.
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Maximizing ρS requires a small det(G)det(L+
S ), which suggests a key trade-off between

high information centrality of leaders and high resistance distances between leaders.

The term Tr(Q) in (3.2.2) is the sum of products of the biharmonic distances

between pairs of leader nodes (from ΓS), and terms in G. Since Tr(Q) is negative,

maximizing joint centrality requires high biharmonic distances between pairs of leader

nodes. Biharmonic distance between a pair of nodes depends strongly on global con-

nectivity of the graph and together with resistance distances provides a measure of

coverage of the graph by a node set. Thus, the joint centrality measure makes rigor-

ous how the optimal leader set trades off high information centrality of each of the

nodes in the set with a good coverage of the graph by the set of nodes.

To better understand the coverage term, we first consider the case of a cycle

graph. Because each node in the cycle graph has the same information centrality,

it is only the coverage term that matters in the optimization of joint centrality. We

can use the cyclic structure of the graph Laplacian to explicitly solve for the optimal

locations of m noise-free leaders. In Theorem 5, we show that the optimal leader set

is a set of nodes uniformly distributed about the cycle, which corresponds to a set

that maximizes coverage of the graph.

Next, to illustrate the trade-off between nodal information centrality and coverage,

we consider the unweighted, undirected, connected graph shown in Figure 3.1. The

optimal sets of one, two and three leaders are shown in yellow, green and blue,

respectively. Visually, it is clear that the optimal choice for a single leader (node

9, in yellow) has a central position in the network. In fact, node 9 has the highest

information centrality ci (2.3.4), consistent with Corollary 1 of Section 3.3.2, where

it is proved that the optimal single leader is the most information central node.

Interestingly, it is observed that the optimal single leader is not a member of the

optimal set of two leaders (nodes 2 and 3, in green). This is due to the fact that the

optimal two leaders need to trade off high information centrality as individuals with
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a joint coverage of the graph (see also Corollary 2 in Section 3.3.3). For this reason

the optimal two leaders are well connected within the graph and distanced from each

other.

9

2
8

5

3

1

6

10
1211

14

15

7

16

4

13

Figure 3.1: Solutions to the optimal leader set for robustness for an example graph
with sixteen nodes. For m = 1 leader, the optimal solution is node 9, shown in yellow.
For m = 2 leaders, the optimal solution is the set of nodes 2 and 3, shown in green.
For m = 3 leaders, the optimal solution is the set of nodes 6, 10, and 12, shown in
blue.

The optimal three leaders (nodes 6, 10, 12, in blue) further illustrate the key

trade-off between leaders that are central and leaders that cover the graph. Although

node 12 is not so well connected, its large resistance and biharmonic distances from

nodes 6 and 10 make it part of the optimal three-leader set. That is, the three-node

42



leader set has optimal joint influence on the graph, as encoded by the joint centrality

of the set.

The three solutions illustrate how a leader selection algorithm that first selects a

leader and then iteratively adds to the set would result in a sub-optimal leader set

for this example and likely in general (see also the example in [74]).

To further demonstrate how the node set with highest joint centrality is comprised

of nodes that are both central and distributed over the network, we consider the highly

clustered graph in Figure 3.2, where the optimal sets of m =1,2,3, 4 nodes are shown

in orange. We see that as the number of leader nodes approaches the number of

clusters, the optimal leaders become highly central nodes within each cluster. This

characteristic will prove to be useful in Section 5.2 when we discuss the use of joint

centrality for graph clustering.

3.3.2 Optimal selection of a single noise-corrupted or noise-

free leader

Joint centrality reduces to information centrality in the case of a single leader (m = 1),

with or without noise corruption. Thus, the optimal single leader is the node with

the highest information centrality.

Corollary 1 (Optimal leader set, m = 1). Let G be an undirected, connected graph of

order n. Let S = {s} be a set of one noise-corrupted leader (k <∞) with information

centrality cs. Then, the total system error (3.1.9) for the system dynamics (3.1.2) is

n∑
i=1

Σi,i =
nσ2

2

(
1

k
+

1

cs

)
. (3.3.1)

If instead the leader set S is noise-free, then the total system error (3.1.9) for the
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Figure 3.2: Network of n = 80 nodes with four distinct clusters. The orange nodes
represent the optimal sets of m = 1, 2, 3, 4 nodes. For a single leader, the optimal node
is central in the graph, with connections to all clusters. As the number of leaders
increases to equal the number of clusters we see that the optimal leaders become
central nodes in each cluster.

system dynamics (3.1.2) is

n∑
i=1

Σi,i =
nσ2

2

(
1

cs

)
. (3.3.2)

In both the noise-corrupted and the noise-free cases, the optimal leader set S∗ =

{s∗} = arg maxs cs , the node with maximal information centrality cs∗.
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Proof. For a single leader we only need to consider a rank-one update to the pseu-

doinverse of L. From (3.2.4), where l1 = s, this is

N−1 = L−1 − L+
s 1n

T − 1nL
+T
s +

(1 + kL+
s,s)

k
1n

T1n. (3.3.3)

Summing the diagonal elements of (3.3.3) and applying (2.3.6), (2.3.1), (2.3.5) yields

n∑
i=1

N−1
i,i =

Kf

n
+
n

k
+ n

(
1

cs
− Kf

n2

)
=
n

k
+
n

cs
. (3.3.4)

Subsequently substituting into (3.1.9) gives the total system error

n∑
i=1

Σi,i =
nσ2

2

(
1

k
+

1

cs

)
. (3.3.5)

To get the total system error in the case of one noise-free leader, we take the limit of

(3.3.5) as k →∞, which gives

lim
k→∞

n∑
i=1

Σi,i = lim
k→∞

nσ2

2

(
1

k
+

1

cs

)
=
nσ2

2

(
1

cs

)
. (3.3.6)

The total system error in (3.3.5) and in (3.3.6) is minimized when the leader has the

highest information centrality.

Remark 3. Our definition of joint centrality derives from the definition of the optimal

leader selection problem in terms of minimizing total system error (3.1.9). However,

we have shown in Corollary 1 that joint centrality can be interpreted as a generaliza-

tion of information centrality of a single node. This suggests the possibility of using

joint centrality for generalizing from individual nodes to sets of nodes in problems

where information centrality is a critical measure. For example, it is proved in [95]

that information centrality of a node in a network performing distributed hypothe-

45



sis testing determines its speed-accuracy trade-off. Joint centrality may be useful for

investigating the decision-making performance of a set of nodes in this context.

3.3.3 Joint centrality and two noise-free leaders

In order to provide further intuition, we specialize Theorem 1 to the case of two noise-

free leaders. In this case the expression for joint centrality simplifies as compared to

the case of arbitrary m, and we can more closely examine the terms that determine

the centrality versus coverage trade-off in the optimal leader set.

Corollary 2 (Optimal noise-free leader set, m = 2). Let G be an undirected, connected

graph of order n. Let S2 = {s1, s2} be a set of two noise-free leaders. Then, the total

system error (3.1.9) for the system dynamics (3.1.2) is

n∑
i=1

Σii =
σ2

2

(
n

ρS2

)
, (3.3.7)

where ρS2 is the joint centrality of S2 given by (3.2.2), which specializes to

ρS2 = n
(Kf

n
+
nL+

s1,s1
L+
s2,s2
− nL+

s1,s2

2 − γs1,s2
rs1,s2

)−1

. (3.3.8)

The optimal leader set is S∗2 = {s∗1, s∗2} = arg maxs1,s2 ρS2, the two nodes with the

maximal joint centrality.

Proof. In the case of two leaders, G = 1
rs1,s2

. Equation (3.3.7) follows directly from

simplification of (3.2.3) and (3.2.2) from Theorem 1.

Remark 4. Following Remark 2, we see that in the two-leader case the term det(G)det(L+
S ) =

(L+
s1,s1

L+
s2,s2
− L+

s1,s2

2
)/rs1,s2, which is small for large leader information centrality

and large resistance distance between leaders. The term Tr(Q) is proportional to
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−γs1,s1/rs1,s2. For this term to be small, the biharmonic distance should be large

relative to the resistance distance between leaders.

We prove in Section 4.2 that the optimal pair of leaders on an unweighted path of

length n are at locations s∗1 = rnd(n
5

+ 1
2
) and s∗2 = rnd(4n

5
+ 1

2
), where rndis rounding

to the closest integer. We observe that for large n, the optimal two leader locations

on the path approach 0.2 and 0.8 of the path length (starting from one end). This is

in contrast with the cycle, where the optimal two leaders maintain a distance between

each other equal to 0.5 of the number of nodes. Considering that the path is simply

a cycle with one edge removed, it is interesting to observe that for large n, removing

an edge from a cycle will cause the fraction of nodes between the optimal two leaders

to increase from 0.5 to 0.6. That is, the optimal two leaders in the path are more

spread out towards the two endpoints. The locations of the optimal two leaders in

the path can be understood to be the optimal solution to the trade-off between high

information centrality of two symmetrically distributed leaders, which increases as

the two leaders get closer to midpoint and thus to each other, and good coverage,

which requires the two leaders to be sufficiently distant from each other. The optimal

two-leader set does not include the optimal single leader set, which is the node at the

midpoint of the path, following Corollary 1 of Section 3.3.2.

3.3.4 Joint centrality and two noise-corrupted leaders

To address the case of two noise-corrupted leaders, where k < ∞, we define a k-

dependent joint centrality of a set of two nodes. We then derive the solution to the

optimal leader selection problem for two noise-corrupted leaders by calculating the

total system error in terms of the k-dependent joint centrality of the two-leader set.

Theorem 2 (Optimal noise-corrupted leader set, m = 2). Let G be an undirected,

connected graph of order n. Let S2 = {s1, s2} be a set of two noise-corrupted leaders
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(k <∞). Define ρkS2, the k-dependent joint centrality of S2, as

ρkS2 = n
(Kf

n
+
n[1 + k(L+

s1,s1
+ L+

s2,s2
)]

k(2 + krs1,s2)
+
nk2(L+

s1,s1
L+
s2,s2
− L+

s1,s2

2
)− k2γs1,s2

k(2 + krs1,s2)

)−1

.

(3.3.9)

Then, the total system error (3.1.9) for the system dynamics (3.1.2) is

N∑
i=1

Σii =
σ2

2

(
n

ρkS2

)
. (3.3.10)

The optimal leader set is S∗2 = {s∗1, s∗2} = arg maxs1,s2 ρkS2, the two nodes with the

maximal k-dependent joint centrality.

Prior to proving Theorem 2, we state a lemma from [67] that provides a simplifi-

cation of the Woodbury formula in the case of a rank one update to a matrix.

Lemma 1. [67] For rank one square matrix H and nonsingular X and X + H,

(X +H)−1 can be written as

(X +H)−1 = X−1 − 1

1 + g
X−1HX−1, (3.3.11)

where g = Tr(HX−1).

Proof. (Theorem 2). Let K1, K2 be rank one matrices with K1s1,s1
= k, K2s2,s2

= k

where k > 0 and all other elements of K1, K2 are zero. Let K = K1 + K2 and

N = L+K1. Then, M = L+K = N +K2.

By applying Lemma 1, we compute

M−1 = (N +K2)−1

= N−1 − 1

1 + Tr(K2N−1)
N−1K2N

−1. (3.3.12)
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By (3.2.4)

Tr(K2N
−1) = 1 + kL+

s2,s2
− 2kL+

s2,s1
+ kL+

s1,s1

= 1 + k rs1,s2 . (3.3.13)

Plugging (3.3.13) into (3.3.12) yields total system error (3.1.9):

n∑
i=1

Σi,i =
σ2

2

n∑
i=1

M−1
i,i =

σ2

2

n∑
i=1

(
N−1
i,i −

1

2 + krs1,s2
(N−1K2N

−1)i,i

)
. (3.3.14)

Expanding N−1 in terms of L+ and applying (2.3.1) and (2.3.5) gives

n∑
i=1

M−1
i,i =

n

k
+
Kf

n
+ nLs1,s1 −

1

2 + k rs,p

(
k

n∑
i=1

(L+
i,s1
− L+

i,s2
)2 + nk(L+

s1,s2
)2−

2nL+
s1,s2
− 2nkL+

s1,s1
L+
s1,s2

+ 2nL+
s1,s1

+ nk(L+
s1,s1

)2 +
n

k

)
. (3.3.15)

Rearranging terms and substituting from (2.3.12) results in

n∑
i=1

Σi,i =
σ2

2

(Kf

n
+
n+ nk(L+

s1,s1
+ L+

s2,s2
)

k(2 + krs1,s2)
+
nk2(L+

s1,s1
L+
s2,s2
− L+

s1,s2

2
)− k2γs1,s2

k(2 + krs1,s2)
)
)

=
σ2

2

( n

ρkS2

)
. (3.3.16)

We observe that the k-dependent joint centrality (ρkS2 from Theorem 2) plays the

same role in determining total system error with two noise-corrupted leaders (3.3.10)

as joint centrality (ρS2 from Corollary 2) plays in determining total system error with

two noise-free leaders (3.3.7). Further, as expected, in the limit as k → ∞ we see

that ρkS2 approaches ρS2 . To better understand the results in the case of finite k, we
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compute the Taylor series expansion of ρkS2 (3.3.10) about k = 0:

ρkS2 = 2k +

(
rs1,s2 − (L+

s1,s1
+ L+

s2,s2
)− 4Kf

n2

)
k2 +O(k3). (3.3.17)

Thus, for k << 1, ρkS2 can be approximated by 2k+
(
rs1,s2 − (L+

s1,s1
+ L+

s2,s2
)− 4Kf

n2

)
k2.

Remark 5. It can be seen in (3.3.17) that ρkS2 → 0 as k → 0. This follows since at

k = 0 there are no leaders and thus no centrality of leaders. For k << 1, the approx-

imation 2k+
(
rs1,s2 − (L+

s1,s1
+ L+

s2,s2
)− 4Kf

n2

)
k2 of ρkS2 reveals a trade-off similar to

the trade-off in the noise-free case. The trade-off implies that the k-dependent joint

centrality is maximized for large resistance distance rs1,s2 between the two leaders and

for large information centrality of each of the two leaders. In the case of a symmetric

graph where each node has the same information centrality, the optimal leader set is

the one in which the pair has maximum resistance distance.

50



Chapter 4

Joint Centrality and Optimal

Leader Sets in Trees and Cycles

In this chapter we focus on special cases of graphs, specifically unweighted tree and

cycle graphs. The constraints provided by these classes of graphs allow for increased

tractability; thus, we are able to thoroughly explore the optimal leader selection

problem in each case. The study of canonical graph structures provides us with

valuable insight that can be applied in future work to aid leader selection in more

complex networks. Section 4.3 and a preliminary version of Section 4.2 have been

previously published in Fitch and Leonard [26].

4.1 Joint Centrality in Unweighted Trees

We will now investigate general unweighted tree graphs and demonstrate how the

equation for joint centrality reduces for two and three nodes in an unweighted tree

graph. Our motivation for studying trees comes from large scale applications where

networks can be approximated by their minimum spanning tree to increase sparsity

and decrease computational time.

As discussed in Section 2.3, tree graphs are in the class of planar graphs, implying
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that we can embed any tree graph in a two dimensional plane without edge crossings.

We can also embed a tree graph in three dimensions with a third dimension, h, which

for each node is the corresponding diagonal entry of L+. This allows us to easily view,

in a single plot, how the information centrality of each node relates to its location

in the network and the relative information centralities of other nodes. An example

embedding is shown in Figure 4.1.

0

1

2

3

4

5

L
i,
i

+

Figure 4.1: Three dimensional plot of an unweighted, undirected tree graph. The
first two dimensions are the planar embedding of the tree and, for each node i, the
third (vertical) dimension corresponds to L+

i,i.

Furthermore, since there is only one unique path between any two nodes in a

tree graph, we can also select a path between two nodes and represent nodes in this

path on a plane where the vertical axis is h and the horizontal axis is position along

the path. In other words, slice Figure 4.1 along a path. We define the function

h(z) as the piecewise linear function created by connecting the diagonal entries of L+

corresponding to nodes along any path in a tree graph, ordered by position along the

52



path. Let a and b = a+ 1 be indices for a sequential pair of nodes. Then, we let

h(z) = (L+
pb,pb
− L+

pa,pa)z + (a+ 1)L+
pa,pa − aL

+
pb,pb

a ≤ z ≤ b,

where the subscript pa indicates the ath node along path p(ij). In particular, h(a) =

L+
pa,pa and h(b) = L+

pb,pb
. We will use superscripts on h(z) to denote the first and last

nodes along the path. For example, h(z)(i,j) is generated from the path connecting

nodes i, j. Figure 4.2 demonstrates the function h(z)(4,18) in an example tree graph.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

z: index along path

f(
z)

(node 4)

(node 3)
(node 9)

(node 15)

(node 17)

(node 18)

L+
18,18

L+
3,3

1

2

3
4

5 6

7

8

910

11

12

13

14

15 16

17
1819

20

h(
z)

Figure 4.2: Example tree graph with path p(4,18) highlighted (left) and corresponding
plot of h(z) along path p(4,18)

We will show in Theorem 3 that the average value of h(z) along the path appears

as a term in the biharmonic distance between those two nodes. Before presenting the

theorem, we first introduce notation specific to this section. For a pair of nodes a and

b, let â be the set of na nodes indexed by i for which the path p(bi) contains node a.

Similarly let b̂ be the set of nb nodes indexed by j for which the path p(aj) contains

node b. Finally, let ŷ be the set of all nodes not in â or b̂ and let the number of nodes

in ŷ be ny = n−na−nb. Figure 4.3 an example of this grouping where a is chosen as

node 10 and b is node 17. We then write L+
a,a and L+

b,b in terms of these parameters:

53



1

2

3
4

5 6

7

8
910

11

12

13

14

15 16

17
1819

20

a^

b^

^y

Figure 4.3: Example partitioning of a tree graph into sets â, b̂, and ŷ with a = 10,
b = 17. With this partitioning na = 5, nb = 4 and ny = 11.

L+
a,a = −Kf

n2
+

1

n

(
nbδa,b +

∑
i∈â

δa,i +
∑
j∈b̂

δb,j +
∑
h∈ŷ

δa,h

)
(4.1.1)

L+
b,b = −Kf

n2
+

1

n

(
naδa,b +

∑
i∈â

δa,i +
∑
j∈b̂

δb,j +
∑
h∈ŷ

δb,h

)
, (4.1.2)

where δi,j is the geodesic distance between nodes i and j. Geodesic distance is equiv-

alent to resistance distance in trees, that is δi,j = ri,j.

We will index a node on the path p(a,b) by α, where α 6= a, b. We define nα to

be the number of nodes, j, for which node α is incident on each path p(a,b), p(a,j)and

p(b,j). For example, consider Figure 4.3 and let a = 10 and b = 17; if α = 15 then

nα = 2, if α = 9, then nα = 9. The notation
∑

α∈p(a,b) implies that we are summing

over each node on the path p(a,b), excluding a and b.

Theorem 3 (Biharmonic distance in unweighted tree graphs). Let G be a connected,
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undirected, unweighted tree graph of order n. Let a, b be two nodes in G and let γa,b

be the biharmonic distance between a and b. Then γa,b is

γa,b =
n

4

(
− (L+

a,a − L+
b,b)

2 − 2(L+
a,a + L+

b,b + 2L̂+
a,b)δa,b + δ2

a,b

)
, (4.1.3)

where L̂+
a,b is the average value of the piecewise continuous function h(z)(a,b).

Proof. We begin the proof by writing biharmonic distance defined in (2.3.12) as a

sum in three parts,

γa,b =
∑
i∈â

(L+
a,a − L+

b,b + δb,i − δa,i)2 +
∑
j∈b̂

(L+
a,a − L+

b,b + δb,j − δa,j)2+

+
∑
h∈ŷ

(L+
a,a − L+

b,b + δb,h − δa,h)2

= na(L
+
a,a − L+

b,b + δa,b)
2 + nb(L

+
a,a − L+

b,b − δa,b)
2 +

∑
h∈ŷ

(L+
a,a − L+

b,b + δb,h − δa,h)2.

(4.1.4)

Expansion of the last term of (4.1.4) and application of (4.1.1), (4.1.2), and relation-

ship δb,α = δa,b − δa,α yields

γa,b =
1

n

(
(n− nb)nbδ2

a,b −
∑

α∈p(a,b)
nαδa,α

(
2nbδa,b +

∑
α∈p(a,b)

nαδa,α

)
+ n

∑
α∈p(a,b)

nαδ
2
a,α

)
.

(4.1.5)

Furthermore, by expressing δ2
a,α in terms of L+

a,a, L
+
b,b and associated sums it can

be shown that

∑
α∈p(a,b)

nαδ
2
a,α =

n

2
(L+

a,a + L+
b,b)(−δa,b + 1) + n

∑
α∈p(a,b)

L+
α,α + δa,b

∑
α∈p(a,b)

nαδa,α. (4.1.6)

We observe that 1
2
(L+

a,a + L+
b,b) +

∑
α∈p(a,b) L

+
α,α is equivalent to the area under the
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curve h(z)(a,b). And subsequently

− 1

2δa,b
(L+

a,a + L+
b,b)−

1

δa,b

∑
α∈p(a,b)

L+
α,α = −L̂+

a,b. (4.1.7)

Combining (4.1.6) and (4.1.7), substituting into (4.1.5) and manipulation of terms

yields

γab =
n

4

(
− (L+

a,a − L+
b,b)

2 − 2(L+
a,a + L+

b,b + 2L̂+
a,b)δa,b + δ2

a,b

)
.

In the following subsections we apply Theorem 3 to two-node and three-node

leader selection, respectively, in unweighted trees.

4.1.1 Two-node Leader Selection in Unweighted Trees

Corollary 3 (Two-node joint centrality in unweighted tree graphs). Let G be a con-

nected, undirected, unweighted tree graph of order n. Let S be a set of m = 2 nodes

and let ρS2t be the joint centrality of set S = {s1, s2} given by (3.2.2). Then the two

node joint centrality reduces to

ρS2t =
(Kf

n2
+ L+

s1,s1
+ L+

s2,s2
− 1

2
δs1,s2 − L̂+

s1,s2

)−1

. (4.1.8)

Proof. Applying equations (4.1.1), (4.1.2) and (4.1.3) to (3.3.8) and simplification

results in

ρS2t =
(Kf

n2
+ L+

s1,s1
+ L+

s2,s2
− 1

2
δs1,s2 − L̂+

s1,s2

)−1

.

There are a number of interesting observations to be made about equation (4.1.8).

56



First, we see that though the leader selection problem is inherently still combinatorial,

the equation for pairwise joint centrality has been greatly reduced in complexity. The

constraints imposed by a tree graph allow for pairwise joint centrality to be written as

a linear combination of interpertable terms. Additionally, the presence of the average

of h(z), rather than the average information centrality of each node in the path,

signifies that the rate at which information centrality increases or decreases along a

path is of importance. Furthermore, we are able to derive simple bounds for pairwise

joint centrality in trees as presented in Corollary 4.

Corollary 4 (Lower bound on pairwise joint centrality in undirected, unweighted

trees). Let G be a connected, undirected, unweighted path graph of order n. Let S be

a set of m = 2 nodes and let ρS2t be the joint centrality of set S = {s1, s2} given by

(4.1.8). Let s∗ be the node with the highest information centrality. Then the pairwise

joint centrality is lower bounded by

ρS2t ≥
(Kf

n2
+
(

1− 1

2δs1,s2

)
(L+

s1,s1
+ L+

s2,s2
)− 1

2
δs1,s2 − L+

s∗s∗ +
L+
s∗,s∗

δs1,s2

)−1

. (4.1.9)

Proof. The bound (4.1.9) follows from applying the inequality to (4.1.8)

L̂+
a,b ≥

1

2δa,b
(L+

a,a + L+
b,b) + (1− 1

δa,b
)L+

s∗s∗ . (4.1.10)

The inequality (4.1.9) clearly demonstrates that we require optimal leaders to have

high information centrality (inversely related to L+
s1,s1

and L+
s2,s2

), yet be distant from

each other in the graph (high δs1,s2). We also note that to compute the bound (4.1.9)

we only require one inversion of an n×n matrix, whereas other approximations, such

as the greedy algorithm in [74], would in general require n(n− 1) matrix inversions.

Corollary 5 (Upper bound on pairwise joint centrality in undirected, unweighted
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trees). Let G be a connected, undirected, unweighted path graph of order n. Let S be

a set of m = 2 nodes and let ρS2t be the joint centrality of set S = {s1, s2} given by

(4.1.8). Let s∗ be the node with the highest information centrality. Then the pairwise

joint centrality is upper bounded by

ρS2t ≤
(Kf

n2
+

1

2
(L+

s1,s1
+ L+

s2,s2
− δs1,s2) +

1

6
(−1 + δ2

s1,s2

)−1

. (4.1.11)

Proof. The bound (4.1.11) follows from evaluating (4.1.3) with nα = 1 for every node

α along the path between a and b. That is, evaluating (4.1.3) as though there is no

branching along the path between a and b.

While the expression for pairwise joint centrality (4.1.8) is significantly simplified

from the general form (3.3.8), and provides valuable insight as to how the network

structure and information centrality along the path connecting two leaders affects the

joint centrality of those leaders, it may still be costly to evaluate for large networks.

However, as previously mentioned, the bound (4.1.9) is computationally efficient even

compared to greedy algorithms. Simulation suggests that (4.1.9) is indeed a tight

bound for nodes with high joint centrality. We expect this because the difference

between L+
s∗,s∗ and L̂+

i,j will in general be larger for i, j with very low information

centralities, and smaller for nodes that are good candidates for members of the op-

timal set; that is i, j with high information centralities and the node with highest

information centrality, Ls∗,s∗ , along path p(ij).

4.1.2 Three-node Leader Selection in Unweighted Trees

In connected, undirected trees, for any three nodes i, j, l there is exactly one node,

a, incident on the three paths pi,j, pi,l, and pj,l, where it is possible that a is equal to

i, j, or l. It follows that δi,j = δi,a + δj,a,δi,l = δi,a + δl,a, and δj,l = δj,a + δl,a. We will

call a the link node for set {i, j, l}.
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Corollary 6 (Three-node joint centrality in tree graphs). Let G be a connected,

undirected, unweighted tree graph of order n. Let S be a set of m = 3 nodes, let ρS3t

be the joint centrality of set S = {s1, s2, s3} given by (3.2.2). Let a be the link node

of S. Then the three node joint centrality simplifies to

ρS3t =
(Kf

n2
+
∑
i∈S

(
L+
i,i −

1

2
δa,i −

∑
j<i

L̂+
i,j

)
+

∑
i∈S
∑

j<i L̂
+
i,jδa,iδa,j − 1

2

∏
i∈S δa,i∑

i∈S
∑

j<i δa,iδa,j

)−1

,

(4.1.12)

where L̂+
a,b is the average value of the piecewise continuous function h(z)(a,b).

Proof. Representing the distance between any two nodes in the set in terms of the

sum of distances to the link node, applying (4.1.1), (4.1.2) and (4.1.3) to (3.2.2), and

algebraic simplification yields

ρS3t =
(Kf

n2
+
∑
i∈S

(
L+
i,i −

1

2
δa,i −

∑
j<i

L̂+
i,j

)
+

∑
i∈S
∑

j<i L̂
+
i,jδa,iδa,j − 1

2

∏
i∈S δa,i∑

i∈S
∑

j<i δa,iδa,j

)−1

.

Corollary 7 (Lower bound on three-node joint centrality in undirected, unweighted

trees). Let G be a connected, undirected, unweighted tree graph of order n. Let S be

a set of m = 3 nodes and let ρS3t be the joint centrality of set S = {s1, s2, s3} given

by (4.1.12). Let s∗ be the node with the highest information centrality. Then the

three-node joint centrality is lower bounded by

ρS3t ≥
(Kf

n2
+ 2L+

s∗,s∗ +
∑
i∈S

(
L+
i,i −

1

2
δa,i −

δa,i
6(2δa,i + 1)

−
δa,iL

+
s∗,s∗ + L+

i,i

2δa∗δa,i + δ2
a∗

)−1

.

(4.1.13)

where δa∗ is the maximum distance from node a to any other node in the network.

Proof. The bound (4.1.13) follows from applying the inequality (4.1.10) and limits on
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δa,i, 1 ≤ δa,i ≤ δa∗ , to (4.1.12).

An important feature of the relationship (4.1.13) is that when applied to the leader

selection problem we can separately evaluate the contribution of each leader node

relative to the link node of the leader set. This allows us to perform computationally

efficient leader selection. First, a link node, a, is selected following the steps outlines

below. Then, for each branch formed by an edge incident to the link node, we search

for the node that minimizes

qi = L+
i,i −

1

2
δa,i −

δa,i
6(2δa,i + 1)

−
δa,iL

+
s∗,s∗ + L+

i,i

2δa∗δa,i + δ2
a∗
.

This results in a set of nodes with size equivalent to the degree of the link node.

Of this set, the three nodes with minimal qi are selected as the leader nodes. If the

da = 2 then the link node is selected as a leader node. We note that leaf nodes cannot

be link nodes.

It remains to be clarified how the link node is selected. In large networks where

time complexity is a concern, an intuitive choice for a link node is the node with the

highest information centrality and degree greater than or equal to three. Alterna-

tively, one could iterate over all possible link nodes j, where dj ≥ 2 and select the

leader set that maximizes (4.1.13).

The advantage of applying (4.1.13) for leader selection is that with an appropriate

choice of link node, the resulting leader set will inherently have properties associated

with high performing leader sets. That is, the nodes will have high information

centralities, while also distributed over the network. By choosing leaders relative to a

node common on all paths between leaders, we are able to indirectly account, in part,

for the joint influence between leaders while still selecting each leader independently

from the other two.

The method of first selecting a link node and then selecting leaders nodes from
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branches of the link node can be extended for leader sets of size m > 3. At most

m−2 link nodes are required to express joint centrality (3.2.2) in terms of information

centralities of leader nodes and distances to link nodes. An area of ongoing research

is bounding joint centrality of m > 3 leaders and developing computationally efficient

heuristics for the selection of large, performing leader sets.

4.1.3 Leader Selection Examples

We provide two examples comparing the total system error for the optimal two and

three node leader sets, the two and three node leader sets obtained by maximizing

(4.1.9) and (4.1.13), and the two and three node leader sets obtained by the greedy

algorithm in [74]. The first example, Figure 4.4, is a tree network of 20 nodes that

has been used throughout this section to illustrate concepts. The second example,

Figure 4.5, is the tree network of 25 nodes presented in [74]. As summarized in

Table 4.1, we find that in the first example, the two-node leader set obtained by

maximizing (4.1.9) is indeed the optimal leader pair. Furthermore, the three-node

leader set obtained by maximizing (4.1.13) outperforms the leader set obtained by

the greedy algorithm. In the second example the pair of leaders which maximizes

(4.1.9) is once again an improvement over the greedy algorithm. However, total

system error is lower for the 3-node leader set selected using the greedy algorithm

than the set that maximizes (4.1.13). Table 4.2 summarizes leader selection results

for the second example. Computational complexity for selecting leader sets through

optimizing (4.1.9) and (4.1.13) is at worst O(n3 + n2), which provides a significant

reduction from the complexity of the greedy algorithm in [74] that is order O(nm+3).
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Figure 4.4: Example tree graph for leader selection results displayed in Table 4.1

2 leader 3 leader

nodes 1
σ

∑N
i=1 Σi,i ranking nodes 1

σ

∑N
i=1 Σi,i ranking

optimal 4, 17 16.88 1/190 4, 12, 17 19.67 1/1140

lower bound 4, 17 16.88 1/190 4, 10, 15 25.20 74/1140

greedy 4, 9 17.75 7/190 4, 9, 19 26.17 100/1140

Table 4.1: Two and three node leader selection results for tree graph shown in Figure
4.4

2 leader 3 leader

nodes 1
σ

∑N
i=1 Σi,i ranking nodes 1

σ

∑N
i=1 Σi,i ranking

optimal 4, 22 38.40 1/300 4, 16, 22 30.00 1/2300

lower bound 4, 19 41.67 6/300 4, 16, 19 36.20 105/2300

greedy 12, 22 44.75 10/300 5, 12, 22 33.25 12/2300

Table 4.2: Two and three node leader selection results for tree graph shown in Figure
4.5
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Figure 4.5: Example tree graph for leader selection results displayed in Table 4.2

4.2 Optimal Leader Selection in Unweighted Path

Graphs

The unweighted path graph, a tree graph with only one path, is one of the simplest

canonical graph structures. However, the optimal leader selection problem for robust-

ness has yet to be solved for this class of graph. In this section we will prove a simple

expression with conditions on rounding for the number of follower nodes between two

adjacent leaders that minimizes total system error.

4.2.1 Optimal selection of m Noise-Free Leaders in an Un-

weighted Path Graph

We let a block be any set of follower nodes between two leaders or between a leader

and an end of the path, including the end node. We define the positions of leaders
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by defining the number of nodes in the blocks. Let the number of follower nodes in

the first block, from the left end of the path to the first leader, be

w̄1 = rnd
( n

3m− 1
− 1

2

)
. (4.2.1)

Let the number of follower nodes in the last block, from the right end of the path to

the last leader be

w̄m+1 = rnd
( n

3m− 1
− 1

2

)
. (4.2.2)

Let the number of nodes in each middle block between two leaders along the path be

w̄j = rnd
( 3n

3m− 1
− 1
)
j = 2, 3, ...m. (4.2.3)

where rnd denotes rounding to an integer value and all blocks need not be rounded in

the same direction. For a path of any length, we let the number of end blocks where

(4.2.1) or (4.2.2) is rounded up to an integer value be bue and the number of end blocks

where (4.2.1) or (4.2.2) is rounded down to an integer value be bde. Similarly, we let

the number of middle blocks where (4.2.3) is rounded up to an integer value be bum

and the number of middle blocks where (4.2.3) rounded down to an integer value be

bde. Additionally, we let ξ be the remainder of n
3m−1

and let the relationship between

ξ, bue , b
d
e, b

u
m and bdm be as summarized in Table 4.3.

Theorem 4 (m noise-free leaders on a path). Let G be an undirected, unweighted path

graph of order n. Let S = {s1, ..., sm} be a set of m noise-free leaders with indices

si =
i∑
l=1

(w̄l + 1).

where w̄l is given by (4.2.1), (4.2.2), (4.2.3) and the number of blocks rounded up or
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ξ bue bde bum bdm assumption

ξ = 0 1 1 n/a n/a

0 < ξ < 1
3

2 0 ξ(3m− 1)− 1 m− ξ(3m− 1)

1
3
< ξ < 1

2
2 0 ξ(3m− 1)−m 2m− 1− ξ(3m− 1) ξ ≥ m

3m−1

ξ = 1
2

n/a n/a 1
2
(m− 1) 1

2
(m− 1)

1
2
< ξ < 2

3
0 2 ξ(3m− 1)−m 2m− 1− ξ(3m− 1)

2
3
< ξ < 1 0 2 ξ(3m− 1)− 2m+ 1 3m− 2− ξ(3m− 1) ξ ≤ 3m−2

3m−1

Table 4.3: Summary of relationship between ξ and the number of end and middle
blocks rounded up or down to an integer.

down is in accordance with Table 4.3. Then S minimizes total system error, (3.1.9),

and is the optimal set of leaders.

Proof. We begin by assuming m nodes on the path have been selected as leaders

and let M = L + K where K is a matrix with a value of k in the entries along the

main diagonal corresponding to the leader nodes and zeros elsewhere. Rather than

partition M in the usual way, we let the row and column related to each node in the

graph be that node’s incidence along the path, ordered from left to right. Let MF

be the matrix with leader node rows and columns deleted. Since we are assuming

noise-free leaders, to compute total system error we need only to consider the sum of

the diagonal elements of M−1
F . MF can be written as a block diagonal matrix where

each block corresponds to a set of connected follower nodes between two leader nodes.

There are m+1 blocks of MF , where the ith block is labeled as MFi
and is represented
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as follows,

MF1 =



1 −1 0

−1 2

0
. . . −1

0 −1 2


,

MFi
=



2 −1 0

−1 2

0
. . . −1

0 −1 2


i = 2, 3, ...m,

MFm+1 =



2 −1 0

−1 2

0
. . . −1

0 −1 1


.

We let the length of block i be wi. Total system error is then proportional to the sum

of the trace of each M−1
Fi

. By applying (2.1.2) and (2.1.3) it can be shown that

tr(M−1
f1

) =

w1∑
α=1

α =
1

2
w2

1 +
1

2
w1,

tr(M−1
fm+1

) =

wm+1∑
β=1

β =
1

2
w2
m+1 +

1

2
wm+1. (4.2.4)

Furthermore, by [20] we have that the eigenvalues of M−1
Fi

for i = 2, ..,m are

λ(M−1
Fi

)j =
1

2− 2 cos
(
j π
wi+1

) j = 1, ...., wi. (4.2.5)

The sum of the eigenvalues of a block is equal to the trace of that block, which is
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written as

tr(M−1
Fi

) =

wi∑
j=1

λ(M−1
Fi

)j =
1

6
w2
i +

1

3
wi, i = 2, ...,m. (4.2.6)

Therefore, the optimal leader selection problem for an unweighted path becomes

minimize
w1,...wm+1

J(w) = tr(M−1
F ) =

1

2

(
w2

1 + w1 + w2
m+1 + wm+1

)
+

m∑
j=2

1

6
w2
j +

1

3
wj

subject to
m+1∑
i=1

wi = n−m, wi ∈ Z+. (4.2.7)

Since the optimization problem (4.2.7) is non-convex, we proceed by studying its

convex relaxation in which the integer constraint, wi ∈ Z+, is replaced with wi ∈

R+. The relaxed problem is easily solved using Lagrange multipliers [7], yielding the

following optimal (non-integer) block sizes

w∗1 = w∗m+1 =
n

3m− 1
− 1

2

w∗j =
3n

3m− 1
− 1 j = 2, 3, ...m, (4.2.8)

which gives the optimal (non-integer) leader positions

s∗i =
1

2
+

(1 + 3(i− 1))n

3m− 1
i = 1, ...m. (4.2.9)

To fully solve the optimal leader selection problem, we study the solution to the

relaxed optimization problem and the increase in error induced by rounding block

sizes to integer values. We let w̄i = w∗i + εi, where w̄i ∈ Z and −1 < εi < 1, be w∗i

rounded to an integer value. Furthermore,
∑m+1

i w̄i = n−m; therefore,

m+1∑
i=1

εi = 0. (4.2.10)
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The total cost associated with integer block sizes, J(w̄) is

J(w̄) =
1

2

(
(w∗1 + ε1)2 + w∗1 + ε1 + (w∗m+1 + εm+1)2 + w∗m+1 + εm+1

)
+

+
m∑
j=2

1

6
(w∗j + εj)

2 +
1

3
(w∗1 + ε1)

= J(w∗) + (w∗1 + 1)ε1 +
1

2
ε21 + (w∗m+1 + 1)εm+1 +

1

2
ε2m+1 +

m∑
j=2

1

3
(w∗j + 1)εj + ε2j .

(4.2.11)

By expressing w∗1 and w∗m+1 as w∗1 = w∗m+1 =
w∗

j

3
− 1

6
and applying equation (4.2.10),

the cost (4.2.11) reduces to

J(w̄) = J(w∗) +
1

2
(ε21 + ε2m+1) +

1

3

m∑
j=2

ε2j . (4.2.12)

It is clear from equation (4.2.12) that the increase in cost induced by rounding block

sizes to integer values is of order O
(
m
2
ε2
)

where ε = max
i
εi. The value of each εi, as

well as the number of blocks rounded up to an integer value and the number of blocks

rounded down to an integer value to satisfy (4.2.10) is dependent on ξ − 1
2

and 3ξ,

where ξ is the remainder of n
3m−1

. Table (4.4) summarizes the relationship between ξ

and the total number of blocks rounded up, Tbu = bue + bum.

With the exception of ξ = 0 and ξ = 1
2
, the optimal rounding of block sizes for

different values of ξ cannot be discerned from Table 4.4 alone. For each case of ξ we

determine how J(w̄) varies as a function of the number of blocks rounded up or down

to the nearest integer by solving for bum in terms of bue in Table 4.4, combining with

(4.2.12) and taking the derivative of J(w̄) with respect to bue .

Subsequently, we can determine the minimum cost solution for rounding of block

sizes as a function of ξ as shown in Table 4.3. Thus, the solution to the optimal leader

selection problem on an undirected, unweighted path for any length and number of
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ξ Tbu = total number of blocks rounded up

ξ = 0 bue = 1

0 < ξ < 1
3

bue + bum = ξ(3m− 1) + 1

1
3
< ξ < 1

2
bue + bum = ξ(3m− 1)−m+ 2

ξ = 1
2

bum = 1
2
(m− 1)

1
2
< ξ < 2

3
bue + bum = ξ(3m− 1)−m

2
3
< ξ < 1 bue + bum = ξ(3m− 1)− 2m+ 1

Table 4.4: Summary of the relationship between the value of ξ =remainder
(

n
3m−1

)
and the total number of blocks rounded up to an integer value.

leaders can be solved by calculating non-integer block sizes, (4.2.8), calculating ξ,

the remainder of n
3m−1

, and rounding bue of the end block sizes up, bde of the end

block sizes down, bum of the middle block sizes up, and bdm of the end blocks down, as

summarized in Table 4.3 such that integer block sizes w̄j are obtained. The optimal

leader locations are then

si =
i∑

j=1

(w̄j + 1). (4.2.13)

We see that depending on the values of m and n, there well often be multiple

optimal solutions. For example, the optimal solutions for two leaders on a 10-node

path will be nodes 3 and 9 or nodes 2 and 8. A larger set of optimal solutions can

occur when m > 2 and there are multiple middle blocks. In this case it is irrelevant

which blocks are rounded up and which are rounded down, so long as Table 4.3 holds.

4.2.2 Two noise-Corrupted Leaders on a Path

To investigate the role of finite k we computed the optimal noise-corrupted leader

set for the path graph of order n = 51. For k = 2 and higher values, the solution
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corresponds to the optimal solution in the noise-free case given by Theorem 4, i.e.,

S∗ = {11, 41}. In the case of k = 0.0001, the optimal solution is S∗ = {13, 39}, i.e.,

the optimal noise-corrupted leaders are a little closer to the center of the path. The

trend persists for larger n. For example, for a path graph of order n = 101, for k = 2

and higher values, the solution corresponds to the optimal solution in the noise-free

case given by Theorem 4, i.e., S∗ = {21, 81}, and in the case of k = 0.0001, the

optimal solution is S∗ = {25, 77}.

4.3 Optimal Leader Selection in Unweighted Cycle

Graphs

The third canonical graph topology we study is the unweighted cycle graph. Cycle

graphs have the property that information centrality is equivalent for all nodes and

there are exactly two paths between any pair of nodes. With these constraints we

are able to develop exact solutions to the leader selection problem for robustness. We

prove the optimal locations of any m noise-free leaders and m = 2 noise-corrupted

leaders.

4.3.1 Optimal selection of m Noise-Free Leaders in an Un-

weighted Cycle Graph

Theorem 5 (Optimal noise-free leader set on a cycle graph). Let G be an undirected,

unweighted cycle graph of order n. Let m < n such that p = n/m is an integer. Let S

be a set of m noise-free leaders. Then, an optimal leader set S∗ is any set S where the

leaders are uniformly distributed around the cycle, i.e., the geodesic distance between

any leader and each of the other two closest leaders is δsa,sb = p.

Proof. We begin by assuming m nodes on the cycle have been selected as leaders and
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let M = L + K where K is a matrix with a value of k in the entries along the main

diagonal corresponding to the leader nodes and zeros elsewhere. We partition M in

the usual way. Similarly to Section 4.2, MF can be written as a block diagonal matrix

where each block corresponds to a set of connected follower nodes between two leader

nodes. Each block, MFi
will itself be a tridiagonal matrix of the form

MFi
=



2 −1 0

−1 2

0
. . . −1

0 −1 2


. (4.3.1)

In the case where there is one follower node in between two leader nodes the corre-

sponding diagonal block in MF will be one element with an entry of 2.

As before, total system error for noise-free leaders will be proportional to the trace

of M−1
F , which here is equivalent to the total sum of eigenvalues of each M−1

Fi
. The

eigenvalues of each M−1
Fi

and the trace of M−1
Fi

are given by equations (4.2.5) and

(4.2.6), respectively.

Therefore, minimizing the total sum of eigenvalues is equivalent to minimizing the

sum over i of tr(M−1
Fi

). It follows that the minimum is achieved when w1 = w2 =

w3 = ..., or in other words when the dimension of each block is the same. This

corresponds to the leaders being evenly distributed around the cycle with shortest

distances between leaders equal to δs1,s2 = n
2
.

4.3.2 Two noise-Corrupted Leaders on a Cycle

To again investigate the effect of finite k, we study the case of two noise-corrupted

leaders on a cycle. We prove in the case of the cycle graph, where every node has the

same information centrality, that the optimal two noise-corrupted leaders correspond

to an antipodal pair of nodes, i.e., a pair with maximal resistance distance. This is
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the same solution as in the case of noise-free leaders on the cycle.

Corollary 8 (Optimal noise-corrupted leader set on a cycle, m = 2). Let G be an

undirected, unweighted cycle graph of order n where n is even. Let S2 = {s1, s2} be a

set of two noise-corrupted leaders (k < 0). The optimal leader set S∗ is any two nodes

with maximal resistance distance rs1,s2 = n
4
, which corresponds to geodesic distance

δs1,s2 = n
2

and antipodal nodes.

Proof. For a circulant graph, L+
s1,s1

= L+
s2,s2

= L+
s,s and thus γs1,s2 = 1

4

∑n
i=1(ri,s1 −

ri,s2)
2. The k-dependent joint centrality ρkS2 (3.3.9) simplifies to

ρkS2 = n
(Kf

n
+
nL+

s,s
2 − nL+

s1,s2

2 −
∑n

i=1(ri,s1 − ri,s2)2

4rs1,s2

)−1

. (4.3.2)

By applying (2.3.7) and re-arranging terms we have

ρkS2 =
n2

4

(Kf

n2
+

2

k
+ 4L+

s,s − rs1,s2 −
k

4

∑n
i=1(ri,s1 − ri,s2)2

2 + krs1,s2

)−1

. (4.3.3)

Using the electric circuit analog of resistance distance and applying Kirchhoff’s laws,

the resistance distance between any two nodes in a cycle can be written as

1

ri,j
=

1

δi,j
+

1

n− δi,j
, (4.3.4)

where δi,j is the geodesic distance between nodes i and j. The maximum resistance

distance is ri,j = n
4
, which is obtained between two nodes with δi,j = n

2
.

Simplifying the
∑n

i=1(r+
i,s1
− r+

i,s2
)2 term of (4.3.3) by inserting (4.3.4) gives

n∑
i=1

(ri,s1 − ri,s2)2 =
n∑
i=1

(
δi,s1 − δi,s2 +

δ2
i,s2
− δ2

i,s1

n

)2

=
δs1,s2(δs1,s2 − n)(δ2

s1,s2
− nδs1,s2 − 2)

3n
. (4.3.5)
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Substituting (4.3.5) into (4.3.3) results in

ρkS2 =
n2

4

(Kf

n2
+

2

k
+ 4L+

s,s −
δs1,s2(n− δs1,s2)

n
−

kδs1,s2(δs1,s2 − n)(δ2
s1,s2
− nδs1,s2 − 2)

6n(2n+ kδs1,s2(n− δs1,s2))

)−1

. (4.3.6)

To determine how ρkS2 changes as a function of δs1,s2 , we take the partial derivative

of (4.3.6) with respect to δs1,s2 to give

∂ρ−1
kS2

∂δs1,s2
=− 1

4
(n− 2δs1,s2)−

nk[2(−δs1,s2 + δ3
s1,s2

) + (1− 3δ2
s1,s2

)n+ δs1,s2n
2]

3(2n+ δs1,s2k(−δs1,s2 + n))2

−
k2[−2δ5

s1,s2
+ 5δ4

s1,s2
n− 4δ3

s1,s2
n2 + δ2

s1,s2
n3]

12(2n+ δs1,s2k(−δs1,s2 + n))2
. (4.3.7)

Since δs1,s2 ≤ n
2
, the first term of (4.3.7) will always be nonpositive. Additionally,

it can be shown algebraically that for n > 3 the two bracketed expressions in the

second and third terms will be greater than zero. Therefore ρ−1
kS2

decreases as δs1,s2

increases, reaching its minimum at the maximal value of δs1,s2 = n
2
, corresponding to

rs1,s2 = n
4
.

The results from Theorem 5 and 8 provide an interesting comparison with the

results from noise-free and noise-corrupted pairwise leader selection on path graphs,

Theorem 4 and Section 4.2.2, respectively. The removal of one edge in a cycle graph

results in a path graph, and we have shown that for large n the removal of this edge

causes the optimal leaders to change location from 25% and 75% about the cycle to

20% and 80% along the path. However, when we consider noise-corrupted leaders we

find that the removal of an edge in the cycle causes a smaller change in the location

of optimal leaders, that is the optimal noise-corrupted leaders on a path approach

the optimal pair for the cycle.
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Chapter 5

Applications of Joint Centrality

As mentioned in Chapter 1, the concept of centrality for a group of nodes has a

wide range of applications. In this chapter we explore the use of joint centrality as

a centrality measure for a set of nodes through illustrative examples. We begin by

demonstrating that pairs of genes in Saccharomyces Cerevisiae, otherwise known as

bakers yeast, which are pairwise essential to the organism, tend to have higher two-

node joint centrality relative to non-essential pairs of genes. Then, we apply joint

centrality to graph clustering and provide two examples. Section 5.1 was previously

published in Fitch and Leonard [26].

5.1 Joint Centrality and Synthetic Lethality in Sac-

charomyces cerevisiae

To further investigate joint centrality of a set of nodes, we apply it in the analy-

sis of synthetically lethal (SL) genes of the probabilistic functional gene network of

Saccharomyces Cerevisiae, also known as baker’s yeast. S. Cerevisiae has served as

a platform for studying genetics of human diseases and is therefore an important

model for biological studies [51]. A probabilistic functional gene network is one in

74



which nodes in the network represent genes and edges between pairs of nodes repre-

sent a measure of probability that two genes are involved in the same function. In

the probabilistic functional gene network of S. Cerevisiae from [51], edge weights are

determined by using Bayesian statistics to calculate the log likelihood of two genes

being functionally coupled. If the log likelihood between two nodes is zero, in other

words there is no edge between them, then it is implied that the likelihood of two

genes being involved in the same function(s) is at most random expectation. Addi-

tional details can be found in [51]. Here, we focus on instances of synthetic lethality,

which occur when the deletion of two genes (A and B) is lethal to the organism and

the deletion of A alone or B alone is not lethal.

Using the probabilistic functional gene network of S. Cerevisiae from [51], (5808

genes with 362,421 edges that represent functional couplings) we calculated the two-

node joint centrality for every pair of genes in the network. Then we applied experi-

mental interaction data from the BioGrid database to identify SL pairs of nodes [96].

Figure 5.1 shows the probability distribution function of two-node joint centrality for

all pairs of genes (blue) against the probability distribution function of two-node joint

centrality for SL pairs of genes (red). The distributions were constructed by fitting

non-parametric distributions with a normal kernel function to normalized histograms

of joint centrality calculations for all node pairs and for all SL node pairs.

A clear distinction between the two distributions in Figure 5.1 is apparent. The

distribution of two-node joint centralities for SL node pairs is more highly skewed to-

wards high values of joint centrality than the distribution of two-node joint centralities

for all node pairs.

We note that SL pairs of nodes are also distinguishable from all other pairs due to

their having a higher average degree. This is expected, however, as there is likely a

research bias towards testing high degree nodes for synthetic lethality (the set of SL

pairs is not necessarily the complete set but rather the set that has been identified
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Figure 5.1: Distribution of two-node joint centrality for every node pair (blue) in the
functional gene network of S. Cerevisiae and distribution of two-node joint centrality
of synthetically lethal node pairs (red).

thus far). Accordingly, we do not suggest that joint centrality is the only way to

predict possible SL pairs. Instead, we suggest that two-node joint centrality provides

a natural measure for predicting SL pairs, because it takes into account the joint

influence of a pair of nodes on the entire network. In contrast, a measure of pairwise

average degree only considers independent, local interactions.

5.2 Joint Centrality and Graph Clustering

In [93], the authors approximated the solution to the problem of leader selection

for fast convergence to consensus by applying an algorithm that approximates the

solution to the metric k̂-center problem. The solution to the metric k̂-center problem

is the set of k̂ leaders that minimizes the maximum distance from a follower node to

the closest leader. Inspired by [93], here, we apply the solution to the leader selection
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problem for robustness to graph clustering, an application which uses algorithms

similar to metric k̂-center. In graph clustering, the objective is to assign each node

in the graph to a group, or cluster, in a way such that all nodes in a given cluster are

similar or close in terms of a graph metric. There are many variants of the clustering

problem, and we refer to [91] for a more comprehensive survey on the topic.

One of the most common clustering algorithms currently used in practice is the

k̂-means algorithm. This is an iterative algorithm in which k̂ initial ”means”, or seed

nodes, are randomly selected and then k̂ clusters are constructed by assigning each

node to the cluster associated with the nearest mean in euclidean distance. Then

the centroid of each cluster becomes a mean for the next iteration and the process

is repeated until the clusters stabilize. Variations on k̂-means, including k̂-medoids,

employ alternative similarity or distance metrics as opposed to strictly l2 distances

[44]. k̂-means does not account for overlapping clusters, that is, a node cannot be

assigned to more than one cluster. As a comment on notation, k̂-means is typically

written as k-means, though here we use k̂ to denote number of clusters to distinguish

from k which represents weighting on the leader’s distance from external signal µ, as

used in earlier chapters of this thesis.

We have previously shown that node sets with high joint centrality trade off high

individual centrality with distribution over the network graph. Therefore, we suggest

that instead of iteratively assigning clusters and computing centroids, one can simply

select the k̂ nodes comprising the set with the highest k̂-node joint centrality, S∗ =

{s1, ..., sk}, as seed nodes. Subsequently, nodes can be assigned to clusters according

to a pre-decided distance measure or similarity measure, which we will clarify later,

to the nodes in this set. That is, to assign a node to a non-overlapping cluster, we

calculate the similarity of a node, i, to each node in S∗ and assign i to the cluster

centered at sj where the similarity between i and sj is greater than the similarity

between i and any other node in S∗. For overlapping cluster assignments, node i is a
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partial member of many clusters, where the percentage of assignment to each cluster

is determined by the relative similarity to each nodes in S∗. For example, let f(i, sj)

be a similarity measure, then if S∗ =}s1, s2}, f(i, s1) = 2, and f(i, s2) = 6, then node

i is 25% in the cluster centered at s1 and 75% in the cluster centered at s2. In the

examples that follow, we take the value kM−1
i,sj

as a measure of similarity of node i

to leader sj. As demonstrated in Equation (3.1.8), M−1
i,sj

is steady state covariance

of node i and node sj, scaled by 2
σ
. Therefore, it is an intuitive choice of similarity

measure to employ. One could alternatively cluster nodes according to resistance

distance or biharmonic distance from the most joint central set, though we do not

explore those directions here.

In both k̂-means and joint centrality based methods outlined above, there is little

guarantee on performance. It can be shown that the clusters assigned by k̂-means have

a non-increasing measure of net distance of each node to the closest center, though it is

possible the algorithm will converge to locally optimal selections of cluster centroids.

Alternatively, for the joint centrality based method we have cluster centroids that

are by default well distributed with respect to one another, well connected to nearby

nodes, and jointly provide an optimal distribution of information over the network.

To test the performance of the proposed clustering method, I downloaded my

Facebook social network using the Facebook graph API. The data was comprised of

468 entries, each with the name of a friend, their associated node ID and the node

IDs of other friends to which that node is connected. The objective was to determine

if the joint centrality based clustering method could appropriately cluster my friends

according to geographic location. Thus far, I have primarily lived in Hamburg NY,

Syracuse NY and Princeton NJ; therefore, the social network was clustered into three

groups. The set with the highest three-node joint centrality (excluding myself) was

calculated and found to be the set comprised of a friend from Hamburg, a friend from

Syracuse and a friend from Princeton. From there, the covariance of each node in the
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set with highest three-node joint centrality was calculated with each remaining node

in the network. To illustrate overlapping clusters (i.e., a friend could be affiliated

with both Princeton and Hamburg), nodes were colored using an rgb colormap where

the percentage red of a node is the covariance of that node with the center node of

the Hamburg cluster, the percentage green of a node is the covariance of that node

with the center node of the Princeton cluster, and the percentage blue of a node is the

covariance of that node with the center node of the Syracuse cluster. The resulting

coloring can be seen in Figure 5.2.

There are a few interesting observations to make. First, there is a relative gradient

in color from red (Hamburg cluster) to blue (Syracuse cluster), while the green cluster

(Princeton) has clearer boundaries. This is precisely what we would expect to see

because Hamburg and Syracuse are geographically close and there are a number of

friends who have ties to both locations. Subsequently, the friends with ties to both

locations have similar covariances to the centers of the Syracuse and Hamburg clusters.

Conversely, there is very little overlap of friends from the Princeton community with

friends in the Syracuse or Hamburg communities. Therefore, nodes in the Princeton

cluster have high covariances with the center of the Princeton cluster and very low

covariances with the center of the other two clusters. Manual verification of cluster

assignments demonstrated a high level of accuracy.

As a second example, we examine a network of 105 political books on Amazon.

Each book is classified as conservative (red), liberal (green), or neutral (blue), and is

represented by a node in the network. There is an edge between two nodes if those

two books are frequently purchased together.

For this example, we look at a clustering with non-overlapping cluster assignments,

that is, if a node is in group A then it is not in group B. This allows for direct

comparison with k̂-means clustering. The political book network is shown in Figure

5.3.
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Figure 5.2: Clustering on a Facebook social network graph. Nodes colored according
to covariance with the set with highest three-node joint centrality. Red signifies cluster
assignment to Hamburg, NY cluster, blue signifies cluster assignment to Syracuse, NY
cluster, and green signifies cluster assignment to Princeton, NJ cluster.

To test the applicability of the joint centrality based clustering method we sought

to establish three clusters of political orientation solely from the network topology

while assuming no knowledge of the ground truth labeling. Again, this was achieved

through calculation of the set with the highest three-node joint centrality and deter-

mining the covariance of each node in the network with each node in the leader set.

We assign a node to the cluster of the leader with which it has the highest covariance.
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Figure 5.3: Network of political books commonly purchased together on Amazon.
Red nodes are conservative books, green nodes are liberal books and blue nodes are
neutral books.

The resulting cluster assignments are shown in Figure 5.4. Furthermore, Figure 5.5
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Figure 5.4: Cluster classifications of political books commonly purchased together on
Amazon via the joint centrality based method.

shows the clustering assignments determined using k̂-means.

We find that the joint centrality based clustering method and k̂-means cluster-

ing perform similarly. Both have 13 errors and are, in general, unable to correctly

identify most of the neutral political books, while having a high level of accuracy

distinguishing between the conservative and liberal books. This is expected as the
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Figure 5.5: Cluster classifications of political books commonly purchased together on
Amazon via k̂-means.

neutral books are not clustered and in general cannot be isolated purely from knowl-

edge of the graph topology. Of the 13 errors in both methods, 12 are equivalent. The

difference in cluster classifications between the two methods is that the joint central-

ity misclassifies one neutral book as liberal, which k̂-means correctly classifies, and

k̂-means misclassifies one liberal book as neutral, which the joint centrality method

correctly classifies.
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Chapter 6

Optimal Leader Selection for

Controllability∗

In this chapter we study the optimal leader selection problem for controllability.

Specifically, we look at how controllable a system is, as a function of where in the

network leaders are placed. In previous chapters, every node was receiving an input

of white noise and we sought to select leaders to diminish the influence of that input

in steady-state. Conversely, in this chapter only the leader node receive an input, e.g.,

a control signal, and we seek to select leaders to maximize average controllability or

volume of the reachable subspace. Through our analysis, we prove that the optimal

leaders for average controllability are the least information central nodes, revealing an

interesting contrast to the optimal leader sets for robustness. We also show that the

optimal leaders for reachable subspace volume are dependent on the left eigenvectors

of the graph Laplacian.

∗This chapter is adapted from Fitch and Leonard [27] with most of the text taken verbatim.
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6.1 Optimal leader selection problem for control-

lability

To investigate optimal leader selection for controllability, we start by assuming that a

set S of m > 0 nodes are leaders, which act as control inputs to the network system.

The network dynamics evolve according to 2.4.1 where u ∈ Rm is the control vector

and B has m columns, corresponding to the standard basis vectors ei for i ∈ S.

Controllability of a consensus network can be defined by restricting dynamics to

the disagreement subspace (orthogonal complement of the one-dimensional agreement

subspace spanned by the vector of all ones 1n ∈ Rn) [73]. Thus, we consider the

reduced Laplacian L̄ = QLQT , and controllability Gramian

WC =

∫ ∞
t0

e−L̄τQBBTQT e−L̄τdτ (6.1.1)

where the rows of Q ∈ R(n−1)×n form an orthonormal basis for 1⊥n , and it follows that

L̄ is stable and invertible. WC is also the solution to the Lyapunov equation

L̄WC +WCL̄
T = QBBTQT . (6.1.2)

We define four cases of the optimal leader selection problem for controllability as

follows.

Definition 7 (Optimal leader selection problem for controllability). Given m > 0

and undirected, connected graph G, find a set of m leaders S∗C over all possible sets

S of m leaders that optimizes a controllability metric α(WC) for the leader-follower

network dynamics (2.4.1), where α(WC) is determined by one of the four performance

measures:

(a) Average controllability: α(WC) = tr(WC)

(b) Reachable volume: α(WC) = ld(WC)
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(c) Average control energy: α(WC) = tr(W+
C )

(d) Worst case input energy: α(WC) = λmin(WC).

6.1.1 Comparison of WC and WR

We observe that even though WC and WR are quite similar in formulation, the dif-

ference between choosing non-zero elements of B and non-zero diagonal elements of

K is quite significant due to the fact that K influences the value of WR as part

of an element in an exponential function, whereas BBT is simply multiplied by the

state transition matrix. Thus, non-zero elements of B will have a different effect on

the value of tr(WC) than non-zero diagonal elements of K will have on the value

of tr(WR). Furthermore, to maximize average controllability one wants to maximize

tr(WC); however, to maximize robustness one wants to minimize tr(WR). We demon-

strate and discuss the implications of these observations on the resulting optimal

leader sets for each problem in Sections 6.3 and 6.4.

6.2 Control energy centralities

The authors of [98] proved that the trace of the controllability Gramian, tr(WC),

is a modular set function. The implication of a modular set function is that each

element of a subset independently contributes to the value of the function. Solving

an optimization problem with a modular cost function is straightforward, as the total

cost is the sum of each element’s independent contribution to the cost function.

Summers, et al. proved that the trace of the (pseudo-) inverse of the control-

lability Gramian, tr(WC
+), and the log determinant of the controllability Gramian,

ld(WC), are both submodular functions of the leader set. In [16], it was shown that

the trace of the robustness Gramian, tr(WR), is also a submodular function of the

leader set. A submodular set function has the property of diminishing returns, that
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is the addition of an element to a larger set has a smaller contribution than the ad-

dition of an element to a smaller set. Therefore, each element of a subset does not

contribute independently as in modular set functions. Full solutions to opimization

problems with nondecreasing submodular set functions are NP-hard, although greedy

algorithms can provide a solution within a provable bound from the optimal solution

[68]. From this, we can predict that a closed-form solution for maximizing tr(WC) is

obtainable, while optimizing tr(WC
+), ld(WC), and tr(WR) are each combinatorially

difficult problems.

The authors of [98] did not provide relationships between these centrality defini-

tions and well defined measures of the network graph nor insight more generally on

how a node’s location in a network relates to the value of its three control energy

centralities. For single leaders, the solutions to maximizing tr(WC), and ld(WC) and

minimizing tr(WC
+) will align with the nodes that maximize the respective control

energy centralities. In the following section, we make explicit the relationship between

average controllability centrality CAC , volumetric control energy centrality CV CE and

properties of the graph Laplacian L.

6.3 Optimal leader selection results

6.3.1 Optimal leader selection for average controllability

The following theorem provides the optimal leader set S∗C for Problem 1(a) in terms

of properties of the network graph.

Theorem 6. Consider the dynamics (2.4.1) with the undirected, connected graph G

of order n. Let the set S be a set of m leaders. Then average controllability depends

on the inverse of the information centralities of nodes in S, and the optimal leader

set S∗C is composed of the m nodes with smallest information centrality.

86



Proof. Consider the controllability Gramian WC given by (6.1.1). We note that L̄

has the same eigenvalues as L except for the zero eigenvalue, which we index by n.

Let the diagonal matrix of eigenvalues and the matrix of right eigenvectors for L̄ and

L be Λ̄, V̄ and Λ, V , respectively. Then,

WC = V̄
(∫ ∞

t0

e−Λ̄τ V̄ TQBBTQT V̄ e−Λ̄τdτ
)
V̄ Tdτ. (6.3.1)

Consider the case of a single controller node, indexed by l. Then, the vector B will

have a single non-zero entry, b.

Since QT V̄ is equivalent to the first n − 1 columns of V , we can represent the

product in the integral of (6.3.1) as a function of the eigenvalues and eigenvectors of

L. Then WC = b2V̄ GV̄ T , where G ∈ R(n−1)×(n−1) has entries

gi,j =

∫ ∞
0

e−λiτ−λjτvl,ivl,jdτ =
1

λi + λj
vl,ivl,j. (6.3.2)

Recall that we are interested in maximizing the trace of WC and that trace is invariant

under cyclic permutations. Thus

tr(WC) = b2tr(V̄ GV̄ T ) = b2tr(GV̄ T V̄ ) = b2tr(G)

=
n−1∑
i

b2

2λi
v2
l,i =

b2

2
L+
l,l

=
b2

2

(
1

cl
− Kf

n2

)
(6.3.3)

where cl is the information centrality of node l. From (6.3.3), for a single controller

node, tr(WC) is maximized by the node with the smallest information centrality.

Due to the modularity property, tr(WC) with m leader nodes will be minimized

when the set of leaders S∗C consists of them nodes with smallest information centrality.
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Corollary 9. Consider the dynamics (2.4.1) with the undirected, connected graph G

of order n. Then

CAC(i) = tr(Wci) =
1

2

( 1

ci
− Kf

n2

)
.

We have found that the average controllability centrality defined by [98] is in fact

inversely related to a pre-existing graph measure: information centrality. Corollary

9 implies that the more information central is a leader node the lower will be the

average controllability.

6.3.2 Optimal leader selection for reachable subspace volume

The following theorem provides the optimal leader set S∗C for Problem 1(b) in terms

of properties of the network graph.

Theorem 7. Consider the dynamics (2.4.1) with the undirected, connected graph G

of order n. Let the set S be a set of m leaders. Then reachable volume can be written

as

ld(WC) ∝ log
( n−1∏
j=1

(∑
i∈S

v2
i,j

))

where vj,i is the ith entry in the jth right eigenvector of L. The optimal leader set is

S∗C = arg maxS(
∏n−1

j=1

(∑
i∈S v

2
i,j

)
.

Proof. Using (6.3.1), the determinant of WC is

det(WC) = b2det(V̄ GV̄ ) = b2det(V̄ )det(G)det(V̄ ). (6.3.4)

From (6.3.2), G = Ṽ ΓṼ where Ṽ ,Γ ∈ R(n−1)×(n−1). Ṽ is a diagonal matrix with
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Ṽi,i = vl,i and the entries of Γ are Γi,j = 1
λi+λj

. Plugging in to (6.3.4) gives

det(WC) = b2det(V̄ )det(Ṽ )det(Γ)det(Ṽ )det(V̄ ). (6.3.5)

The only term in (6.3.5) that depends on the choice of leader node is det(Ṽ )2. Since

Ṽ is diagonal, its determinant is the product of its diagonal entries. Thus for a single

leader l

det(WC) ∝ log
n−1∏
j=1

v2
l,j.

In the case of m leaders, Ṽj,j =
∑

i∈Sc
vi,j and

det(WC) ∝ log
n−1∏
j=1

(∑
i∈Sc

v2
i,j

)
.

It follows that the set S∗C of m leaders that maximizes
∏n−1

j=1

(∑
i∈S v

2
i,j

)
maximizes

ld(WC), the volume of the controllable subspace reachable with one unit of input.

Corollary 10. Consider the dynamics (2.4.1) with the undirected, connected graph

G of order n. Then

CV CE(i) = log
(
Y

n−1∏
j=1

v2
i,j

)

where Y is a constant and Y = det(V̄ ΓV̄ ).

Theorem 7 and Corollary 10 show the dependence of ld(WC) and the volumetric

control energy centrality on the leader nodes’ entries of the eigenvectors of the graph

Laplacian.

We point out that ranking nodes by volumetric control energy centrality computed

as
∏n−1

j=1 v
2
i,j for each node i is significantly less computationally intensive than ranking
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through a calculation of the controllability Gramian and its determinant for each node

i.

6.4 Controllability versus robustness trade-offs

Combining the results from Section 6.3.1 and Chapter 3, we see that a fundamental

trade-off appears between selecting leaders for average controllability and selecting

leaders for robustness. To maximize average controllability one simply selects the

least information central nodes as leaders. Since the average controllability problem

is modular, the solution does not depend on the relative positions of the leader nodes.

Conversely, the problems of leader selection to maximize the volume reachable with

one unit of energy and the problem of leader selection for robustness are both sub-

modular; therefore the relative positions of nodes in the leader sets play a role in the

optimal solutions. To maximize robustness the leader set must balance high infor-

mation centrality of individual leader nodes with distribution of leader nodes over

the network. Nodes with low information centralities lead to a leader set with high

average controllability but often with low robustness. Therefore, both robustness and

average controllability cannot be optimized by the same leader set in general graphs

where all nodes do not have equivalent information centralities.

To provide intuition behind these contrasting solutions we discuss the single leader

case. For the controllability problem, we have a time varying control signal modu-

lating the state of the leader node and we would like to control the network to any

configuration in the controllable subspace. Variations in the state of the leader node

will have a large immediate effect on the states of neighboring nodes, while the effect

on the states of distant nodes will be less significant. In other words, there is vari-

ability in the effect of the control signal depending on distance from the leader node.

Since information centrality is calculated through a harmonic mean, nodes with a
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larger range of distances to every other node in the network will have lower informa-

tion centralities. Hence, the nodes with low information centralities will have more

unique and independent paths to every other node in the network. This means that

it is likely easier to independently control the states of other nodes in the network.

6.4.1 Optimal leader selection in a cycle graph

Consider a cycle graph with n nodes. For m = 2 leaders, the value of average

controllability over the controllable subspace will be the same no matter which m

nodes are chosen because all nodes have equivalent information centralities in a cycle

graph. For the robustness problem, in [26] it was proven that the optimal leader

selection for robustness in a cycle graph corresponds to m nodes evenly distributed

about the cycle. The optimal leader set for reachable volume corresponds to any

two nodes separated by a single node. Therefore the optimal leader set for reachable

volume and the optimal leader set for robustness are in direct tension and cannot be

simulatneously selected.

6.4.2 Optimal leader selection in a random graph

Consider a random network with n = 100 nodes as shown in Figure 6.1. We have

highlighted the sets of m = 3 nodes that will optimize the leader selection Prob-

lems 1(a-c), and Problem 2. The leader set that maximizes average controllability

is colored in green, the leader set that maximizes reachable volume is in orange, the

leader set that minimizes average control energy is in red, and the leader set that

maximizes robustness is in blue. The direct tension between optimizing the leader

set for controllability metrics and optimizing the leader set for robustness is visually

apparent. The optimal leader sets for maximizing average controllability, maximizing

reachable volume, and minimizing average input energy are on the periphery of the

network, and it is interesting to note that one node in particular is a member of all
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three sets. The nodes in the optimal leader set for robustness are in central, but

distributed, locations. Furthermore, nodes in the optimal leader set for robustness

are less susceptible to becoming disconnected from the network through edge failures.

Again, it is clear that a trade-off must be made if both controllability and robustness

are important characteristics in a leader-follower multi-agent system.

Figure 6.1: Random undirected graph with n = 100 nodes highlighting optimal leader
sets of m = 3 nodes for average controllability (green), reachable volume (orange),
average control energy (red) and robustness (blue).

The controllability Gramian measures are metrics over the controllable subspace

and none guarantee full controllability. Therefore it is possible that a leader set that

maximizes tr(WC) corresponds to few highly controllable modes or many weakly con-

trollable nodes. This may or may not be of significance depending on the application.

Consideration of the rank of the controllability Gramian in addition to the measures
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discussed here may be of importance.

6.5 Final Remarks

In this chapter we examined and provided new insights on the optimal leader selection

problem for leader-follower multi-agent systems. We proved that the optimal leader

set for average controllability consists of the least information central nodes in the

network. We proved the relationship between the optimal leader set for reachable

volume and entries in the eigenvectors of the network graph Laplacian. From these

we derived expressions for average controllability centrality and volumetric control

energy centrality in terms of properties of the underlying graph. We showed how the

optimal leader sets for controllability metrics are in tension with the optimal leader

set for robustness, and thus require a trade-off if both features are desirable.

Future directions include characterizing tr(W+
C ) and λmin(WC) in terms of prop-

erties of the graph and expanding the decentralized leader selection algorithm to

accommodate sets of more than two leaders.
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Chapter 7

Final Remarks

This dissertation examined leader selection problems for robustness of the consensus

dynamics to noise and controllability in multi-agent networks, and proved relation-

ships between group level performance metrics and the network properties of leader

sets. Our approach allowed us to determine, for multiple performance metrics, where

optimal leaders should be located in a network graph solely as a function of the net-

work topology. This is an important result that has not been previously established

in the literature. We investigated leader selection for robustness and defined a new

notion of centrality of a set of nodes, called joint centrality, based on our results. It

was shown that joint centrality rigorously accounts for the individual centrality and

distribution of nodes over a network. We compared this with our results on leader

selection for controllability and explored the inherent tension between the optimal

leader sets for robustness and the optimal leader sets for controllability.

Leader selection for robustness of the leader-follower consensus dynamics to noise

was discussed in Chapter 3, where it was demonstrated that the total system error,

equivalently the H2-norm of the system, could be written in terms of graph measures,

dependent only on the leader submatrices of L+ and L2+. We defined joint centrality

such that the node set with highest joint centrality minimizes total system error.
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Additionally we demonstrated that node sets with high joint centrality are composed

of nodes that trade off high individual information centralities with coverage over the

network graph. We illustrated this trade off through an examination of two-node

joint centrality and relevant examples. We proved that for one leader, the optimal

selection for robustness is the most information central node.

We considered special cases of graphs in Chapter 4. By applying properties of

unweighted tree graphs, we simplified the expression for biharmonic distance and

subsequently presented reduced expressions for two- and three-node joint centrality.

We also provided bounds on two- and three-node joint centrality that allow for com-

putationally efficient leader selection and illustrated this with examples. Motivated

by the results for two and three leaders, we discussed heuristic extensions for selection

of m > 3 leaders in unweighted trees. We derived explicit solutions for the selection

of m leaders in two types of one-dimensional graphs: unweighted paths and cycles.

We proved that there is equal spacing, up to a rounding, between any two optimal

leader nodes on a path graph and that the distance between the ends of the path and

optimal first and last leaders, respectively, is less than the distance between any two

leaders. Furthermore, expressions for the spacing between any two optimal leaders

or a leader and the end of the path were presented along with rules on rounding

to ensure optimality. We demonstrated that the optimal solution of m leaders on

an unweighted cycle graph corresponds to the leaders evenly distributed around the

cycle.

Chapter 5 explored the use of joint centrality in applications other than the leader

selection problem. We studied the gene network of Saccharomyces cerevisiae (baker’s

yeasst) and demonstrated that synthetically lethal pairs of nodes tended to have high

values of joint centrality when compared to all node pairs in the network. We showed

that joint centrality can be applied to graph clustering and provided two examples

in which nodes were clustered into m clusters according to covariances with nodes in
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the set with highest m-node joint centrality.

We discussed leader selection to optimize controllability metrics in Chapter 6.

The optimal set of m leaders for average controllability was found to be the set of

m nodes with the lowest information centrality and subsequently the node with the

highest average controllability centrality is the least information central node. We

related leader selection for reachable volume and volumetric control energy centrality

to the left eigenvectors of the graph Laplacian. Through these results, we identified

an inherent trade-off between the optimal leader set for robustness and the optimal

leader sets for controllability metrics, which we illustrated with examples.

7.1 Future Directions

Many compelling open directions remain related to leader selection in multi-agent

networks. The combinatorial nature of the problem of leader selection for robustness

makes a full solution to the general problem intractable; however, there exist possibil-

ities to develop explicit solutions to special cases of graphs beyond those mentioned

in this work. Additionally, generalizations of joint centrality and bounds on joint cen-

trality for m leaders in unweighted trees will provide a completion of the preliminary

results on two and three leaders presented in Chapter 4.

The assumption of undirected networks applied in this work implies equal com-

munication between a pair of connected nodes. This does not always hold in real

world networks, for example agent i can be sharing information with agent j but

the reverse may not be true. Therefore, leader selection in directed networks is an

important area of future research. For directed networks, it is currently unknown

where optimal leaders for robustness of the leader-follower consensus dynamics to

noise would be located as a function of the network topology. Fortunately, recent

works in the literature provide a path towards defining joint centrality for directed
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networks. A notion of effective resistance in directed networks was defined in [112] and

[113], and the authors of [21] applied theory of positive systems to establish convex-

ity in the problem of leader selection for robustness of the leader-follower consensus

dynamics to noise in directed networks. It is possible that the combination of theory

from these two works will allow for new developments and a broader understanding

of leader selection in directed networks.

Another important characteristic of many real world multi-agent networks that

we have not yet addressed is time variability. While the static graph approximation

is valid when the graph is changing at a much slower time scale than the network

dynamics, there exist many scenarios for which this assumption is not true. One

approach being studied in the Leonard lab is modeling time-varying graphs as Markov

jump linear systems and quantifying system error in terms of instantaneous graph

properties and the transition probability matrix.

We primarily discussed joint centrality in reference to the leader selection problem

for robustness of the leader-follower consensus dynamics to noise; however, there is

opportunity for joint centrality to be used as a measure of centrality of a set of nodes

beyond the examples presented in Chapter 6. Thus, another future direction is to

establish the generalized efficacy of joint centrality in the capacity of a centrality

measure for sets of nodes in a network. This would have an influence not only in

the area of multi-agent systems research but the broader field of networked system

analysis.

There are multiple controllability metrics, namely tr(W+
C ) and λmin(WC), for

which optimal leader selection has not yet been described in terms of the under-

lying network graph. These metrics provide valuable insight on the controllability

and required control energy for the system, and so generalizations in terms of the

graph Laplacian will be particularly useful. Furthermore, we would like to rigorously

quantify the trade-off between leader selection for robustness and leader selection for
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controllability.

The work presented here is primarily focused on ‘top down’ leader selection, that

is, an external observer selects leaders a-priori based on properties of the network

structure. Through this approach we have identified important nodal properties that

lead to high performing leader sets. An important direction for this work is to apply

these results to further develop distributed leader selection algorithms in which nodes

use information obtained through message passing to determine whether or not they

should act as a leader. This not only removes the need for an external observer to

select leaders, but also allows for networks to be adaptive in the face of changing

environment or communication structure.
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