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Multi-agent decision-making
dynamics inspired by honeybees

Rebecca Gray?, Alessio Franci?, Vaibhav Srivastava, Member, IEEE, Naomi Ehrich Leonard, Fellow, IEEE

Abstract—When choosing between candidate nest sites, a
honeybee swarm reliably chooses the most valuable site and even
when faced with the choice between near-equal value sites, it
makes highly efficient decisions. Value-sensitive decision-making
is enabled by a distributed social effort among the honeybees,
and it leads to decision-making dynamics of the swarm that
are remarkably robust to perturbation and adaptive to change.
To explore and generalize these features to other networks, we
design distributed multi-agent network dynamics that exhibit a
pitchfork bifurcation, ubiquitous in biological models of decision-
making. Using tools of nonlinear dynamics we show how the
designed agent-based dynamics recover the high performing
value-sensitive decision-making of the honeybees and rigorously
connect investigation of mechanisms of animal group decision-
making to systematic, bio-inspired control of multi-agent network
systems. We further present a distributed adaptive bifurcation
control law and prove how it enhances the network decision-
making performance beyond that observed in swarms.

Index Terms—Adaptive control; animal behavior; bifurcation;
decision-making; decentralized control; multi-agent systems; net-
worked control systems; nonlinear dynamical systems.

I. INTRODUCTION

For many applications of multi-agent systems, ranging
from transportation networks and mobile sensing networks
to power networks and synthetic biological networks, suc-
cessful network-level decision-making among alternatives is
fundamental to tasks that require coordination among agents.
Enabling a group of individual agents to make a single choice
among alternatives allows the group to collectively decide, for
example, which alternative is true, which action to take, which
direction or motion pattern to follow, or when something in
the environment or in the state of the system has changed.

Since animals do so well at making collective decisions
between alternatives, we look to animal groups for inspiration.
For example, a honeybee swarm makes a single, accurate
choice of the best quality nest site among scouted-out sites
[1]. A fish school makes a single choice among potential
food sources about which some individuals may have prior
information or preference [2]. Migratory birds choose together
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when to depart a rest stop and continue on their route [3].
Indeed, from bird flocks to fish schools, animal groups are
known to manage tasks, such as migration, foraging, and
evasion, with speed, accuracy, robustness and adaptability [4],
even though individuals employ distributed strategies with
limitations on sensing, communication, and computation [5],
[6].

As in the case of animal groups, successful operation
of engineered networks in complex environments requires
robustness to disturbance and adaptation in the face of changes
in the environment. Further, like individual animals, agents in
these kinds of networks typically use distributed control and
have limitations on sensing, communication, and computation.

Mechanisms used to study collective animal behavior de-
pend on the animals’ social interactions and on their per-
ceptions of their environment. A rigorous understanding of
these dependencies will make possible the translation of the
mechanisms into a systematic, bio-inspired design methodol-
ogy for use in engineered networks. This remains a challenge,
however, in part because most studies of collective animal
behavior are empirically based or rely on mean-field models.

To address this challenge, we present a generalizable agent-
based, dynamic model of distributed decision-making between
two alternatives. In this type of decision-making, the pitchfork
bifurcation is ubiquitous [7]; for example, it appears in the
dynamics of honeybees choosing a nest site and schooling fish
selecting a food source. Our approach is to derive the agent-
based model so that it too exhibits the pitchfork bifurcation.
This allows animal group dynamics and multi-agent dynamics
to be connected mathematically by mapping to the normal
form of the pitchfork bifurcation. The agent-based model
provides an important complement to mean field or simulation
models by allowing for rigorous analysis of the influence
on system performance of distributed information, network
topology, and other heterogeneities across the network.

Development of our framework has been largely influenced
by the singularity theory approach to bifurcation problems
[8]. The distinction among state, bifurcation, and the so-
called unfolding parameters in that theory reflects the hierar-
chy among controlled variables, control variables, and model
parameters in control theory. This analogy naturally translates
bifurcation theory into control theory and guides the design of
intrinsically nonlinear and tunable behaviors. This connection
was originally made in [9] to design neuronal behaviors; see
also [10] for a neuromorphic engineering application.

In the present paper we specialize the Hopfield network
dynamics [11] by restricting them to a class of systems suitable
for distributed cooperative decision-making, and we rigorously
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design and analyze distributed dynamics that achieve bio-
inspired collective decision-making in an engineered network.
Towards this end, we employ techniques from singularity
theory, Lyapunov theory, Lyapuniv-Schmidt reduction, and
geometric singular perturbation theory.

The generalizability of our framework provides a systematic
way to translate a wide range of animal group dynamics into
distributed multi-agent feedback dynamics; in this paper we
focus the networked agent-based model dynamics on recov-
ering the high performing, value-sensitive decision-making of
a honeybee swarm choosing between two candidate nest sites
as has been studied empirically and with a mean-field model
[12], [13]; see [14] for an extension to multiple alternatives
and [15] for an agent-based approach. Remarkably, honeybees
efficiently and reliably select the highest value nest site, and
for alternatives of equal value, they quickly make an arbitrary
choice when the value is sufficiently high.

Our framework also provides the means to study and design
decision-making dynamics beyond that observed in biological
networks. To enhance control of network decision-making dy-
namics, we introduce an adaptive control law for a bifurcation
parameter in the model. We design the proposed adaptive
control law using a time-scale separation and leverage singular
perturbation theory to prove that the adaptively controlled
dynamics achieve a unanimous decision in the network. See
related work on control of bifurcations [16], [17], [18].

The major contributions of our work are fourfold. First,
we introduce a generalizable agent-based, dynamic model
for bio-inspired decision-making for a network of distributed
agents. Second, we characterize and rigorously establish its
rich bifurcation behavior for generic strongly connected net-
works. Robustness and adaptability of decision-making in
the proposed model are discussed in terms of the uncovered
bifurcation structure and singularity theory concepts. Third,
for a class of symmetric networks, we use model reduction
and asymptotic expansion to show further in depth how the
model captures the adaptive and robust features of value-
sensitive honeybee decision-making dynamics and how sen-
sitivity to scale and heterogeneity can be explored. Fourth,
we design distributed adaptive feedback control dynamics for
a bifurcation parameter that ensures a unanimous decision in
the network. We characterize and rigorously establish the rich
nonlinear phenomena exhibited by the adaptive dynamics.

Section II describes the motivating example of honey-
bee decision-making dynamics, highlighting value-sensitive
decision-making, adaptability and robustness. In Section III,
we present the agent-based decision-making model and ana-
lyze the associated nonlinear phenomena in a generic strongly
connected network. Model reduction to a low-dimensional,
attracting manifold in a class of symmetric networks is estab-
lished in Section IV and used to prove an analytical approxi-
mation to the pitchfork bifurcation point. These analytic results
are used in Section IV-C to show value-sensitivity, perfor-
mance, and influence of model parameters in the agent-based
model. In Section V we present the distributed adaptive control
law for the bifurcation parameter and analyze the nonlinear
phenomena in the resulting controlled adaptive dynamics. We
conclude in Section VI.

II. BIOLOGICAL INSPIRATION: VALUE-SENSITIVE
DECISION-MAKING IN HONEYBEES

When a honeybee hive becomes overcrowded, a cast swarm
goes out to find a new nest site that will provide sufficiently
valuable storage and shelter for surviving the next winter.
Honeybees in the swarm identify candidate nest sites, typically
cavities in trees, and then collectively choose one among the
alternatives. Swarms reliably choose the most valuable site
among the alternative nest sites [1], and even when faced with
the choice between near-equal value sites, they make highly
efficient decisions [12]. According to the model in [12], their
decisions are sensitive to both the relative and average value of
candidate nest sites [13]. This value-sensitive decision-making
means that honeybee swarms can adapt their decisions to the
value of available sites.

Collective decision-making in honeybees has been exten-
sively studied, providing insight about not just the character-
istic outcomes, but also the contributing mechanisms. From
experimental work, it is known that a small population of
workers, called scouts, find and assess the value of candidate
nest sites using criteria that include site volume, size of
entrance, and height above the ground. Each scout advertises
for its site at the swarm, using a “waggle dance” to commu-
nicate the site’s location and its assessment of the site’s value.
The scouts also use a cross-inhibitory stop-signal to stop the
dancing of the scouts recruiting for a competing site [12].

A model of the mean-field population-level dynamics of the
swarm was derived in [12] under the assumption that the total
honeybee population size is very large. Analysis of the model
was carried out in [13] to rigorously explain the mechanisms
that lead to value-sensivity of the decision-making dynamics.
The model considers decision-making between two alterna-
tives and the dynamics of the fractions of the total population
that are committed to each of the two sites. In the case of alter-
natives with equal value, the dynamics exhibit a supercritical
pitchfork bifurcation in which the collective decision emerges
as the stop-signal rate increases. For stop-signal rate less than
a critical value, the only stable solution is the deadlock state,
which corresponds to equality of the two committed fractions
of the population and therefore no decision. For stop-signal
rate greater than the critical value, deadlock is unstable and
there are two stable solutions, corresponding to dominance
of agents committed to one of the alternatives. For large
enough stop-signal rate, the number of dominant agents will be
greater than a quorum threshold, and the two stable solutions
correspond to a decision for one of the alternatives.

Further, the critical value of the stop-signal rate is inversely
proportional to the average value of the alternatives. This
means that the higher the value of the alternatives, the lower
is the stop-signal rate required to break deadlock and get an
arbitrary decision for one of the alternatives. If the alternatives
have low value and the stop-signal rate is too low for a
unanimous decision, the honeybees may be waiting for a better
alternative. If the wait yields no new alternative, the honeybees
could then ramp up the stop-signal rate until it crosses the
critical value for a decision [13]. This would provide a way of
adapting to their circumstances and getting a timely decision
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even if it less than ideal.
When asymmetry is introduced, the pitchfork unfolds to

a persistent bifurcation diagram. The unfolded bifurcation
diagrams are robust in the sense that the decision behavior
away from the bifurcation point resembles the symmetric case
and also in the sense that the behavior close to the bifurcation
point is fully determined by singularity analysis. The way
in which the pitchfork unfolds close to the bifurcation point
is exactly what determines the sensitivity of the decision-
making to asymmetric internal and environmental parameter
variations, providing a further mechanism for adaptability
that complements value-sensitivity. The unfolded pitchfork
bifurcation diagrams also exhibit a hysteresis that makes the
group decisions robust to small fluctuations in the relative
value of the alternatives.

The characteristics of value-sensitivity, robustness and
adaptability are highly desirable in a decision-making process,
and [12] and [13] demonstrate how these characteristics can
arise in decision-making dynamics when they are organized by
a pitchfork bifurcation. However, the model in [12] and [13]
builds on an assumption of a well-mixed (mean-field) popula-
tion, and so it cannot directly be used to design distributed
control strategies or to examine the influence of network
topology or distribution of information across the group. This
motivates the design of distributed agent-based dynamics that
exhibit a pitchfork bifurcation and inherit the advantageous
features of the honeybee decision-making dynamics.

III. AN AGENT-BASED DECISION-MAKING MODEL
ORGANIZED BY A PITCHFORK SINGULARITY

We propose an agent-based decision-making model that
specializes the Hopfield network dynamics ([19], [11]). The
model provides generalizable network decision-making dy-
namics for a set of N agents, and by design it exhibits a
pitchfork bifurcation tangent to the consensus manifold. To
describe decision-making between two alternatives A and B,
let xi ∈ R, i ∈ {1, ..., N}, be the state of agent i, representing
its opinion. Agent i is said to favor alternative A (resp. B) if
xi > 0 (resp. xi < 0), with the strength of agent i’s opinion
given by |xi|. If xi = 0, agent i is undecided. The collective
opinion of the group at time t is defined by the average opinion
y(t) = 1

N

∑N
i=1 xi(t). Let yss and xss be steady-state values

of y(t) and x(t) = (x1, . . . , xN )T , respectively. As proved in
Theorem 1 below, the existence of yss and xss is ensured by
the boundedness of trajectories and the monotonicity of the
proposed model.

Let the group’s disagreement δ be defined by δ = |yss| −
1
N ‖xss‖1, where ‖ · ‖1 is the vector 1-norm. If each entry
of xss has the same sign, then there is no disagreement, i.e,
δ = 0. We say that the group’s decision-making is in deadlock
if either xss = 0 (no decision) or δ 6= 0 (disagreement). A
collective decision is made in favor of alternative A (resp. B)
if δ = 0 and yss > η (resp. yss < −η), for some appropriately
chosen threshold η ∈ R>0.

The network interconnections define which agents can mea-
sure the state, that is, the opinion, of which other agents, and
this is encoded using a network adjacency matrix A ∈ RN×N .

Each aij ≥ 0 for i, j ∈ {1, ..., N} and i 6= j gives the weight
that agent i puts on its measurement of agent j. Then aij > 0
implies that j is a neighbor of i and we draw a directed edge
from i to j in the associated graph. We let aii = 0 for all i
and D ∈ RN×N be a diagonal matrix with diagonal entries
di =

∑N
j=1 aij . L = D − A is the Laplacian matrix of the

network graph. In our illustrations, we use aij ∈ {0, 1}.
We model the rate of change in state of each agent over

time as a function of the agent’s current state, the state of its
neighbors, and a possible external stimulus νi:

dxi
dt

= −uIdixi +

N∑
j=1

uSaijS(xj) + νi. (1)

νi ∈ R encodes external information about an alternative
received by agent i, or it represents the agent’s preference be-
tween alternatives (we will use “information” and “preference”
interchangeably). We let νi ∈ {νA, 0,−νB}, νA, νB ∈ R+.
If νi = νA (resp. νi = −νB) agent i is informed about, or
prefers, alternative A (resp. B). If νi = 0 agent i receives
no information or has no preference. uI > 0 and uS > 0
are control parameters and S : R → R is a smooth, odd
sigmoidal function that satisfies the following conditions:
S′(z) > 0, ∀z ∈ R (monotone); S(z) belongs to sector (0, 1];
and sgn(S′′(z)) = −sgn(z), where (·)′ denotes the derivative
with respect to the argument of the function, and sgn(·) is the
signum function. In our illustrations, we use S(·) = tanh(·).

Control uI can be interpreted as the inertia that prevents
agents from rapidly developing a strong opinion. The term
uSS(xj) can be interpreted as the opinion of agent j as
perceived by agent i. S(x) is a saturating function, so opinions
of small magnitude are perceived as they are, while opinions
of large magnitude are perceived as saturating at some cap.
Control uS represents the strength of the social effort: a larger
uS means more attention is paid to other agents’ opinions.

Let ν = (ν1, . . . , νN )T , and S(x) = (S(x1), . . . , S(xN ))T .
Then (1) can be written in vector form as

dx

dt
= −uIDx+ uSAS(x) + ν. (2)

To simplify notation, we study (2) using a timescale change
s = uIt. We denote x(s) by x and dx/ds by ẋ. Let
u = uS/uI , βi = νi/uI , βA = νA/uI , βB = νB/uI and
β = (β1, . . . , βN )T . Then each βi ∈ {βA, 0,−βB} and (2) is
equivalent to

ẋ = −Dx+ uAS(x) + β. (3)

Dynamics (3) are designed to exhibit a symmetric pitchfork
bifurcation in the uninformed case β = 0, with the additional
requirement that the two stable steady-state branches emerging
at the pitchfork do so along the consensus manifold. In other
words, we have designed dynamics (3), equivalently dynamics
(2), as a model of unanimous collective decision-making
between two alternatives. To provide intuition about why these
dynamics exhibit a pitchfork bifurcation along the consensus
manifold, let the network graph be fixed and strongly con-
nected. Then rank(L) = N − 1 and L1N = 0, where 1N is
the vector of N ones. Observe that the linearization of (3) at
x = 0 for u = 1 and β = 0 is the linear consensus dynamics
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ẋ = −Lx. Because L has a single zero eigenvalue with
the consensus manifold as the corresponding eigenspace, it
follows from the center manifold theorem [20, Theorem 3.2.1]
that (3) has a one-dimensional invariant manifold tangent
to the consensus manifold at the origin. On this manifold,
the reduced one-dimensional dynamics undergo a bifurcation,
which, by odd (that is, Z2) symmetry of (3) with β = 0, will
generically be a pitchfork [8, Theorem VI.5.1, case (1)].

This argument is proved rigorously in Theorem 1 for an ar-
bitrary, strongly connected graph and the more general β 6= 0.
We specialize to the all-to-all case in Corollary 2. Geometric
illustrations are provided in Figures 1 and 2. Concepts from
singularity theory used in the proof of Theorem 1 are defined
in the monograph [8], where the first chapter provides a
thorough, accessible introduction to the theory, in particular
in relation to control problems. We cite specific references as
needed throughout the proof of Theorem 1. We also provide
insights into the meaning of the singularity concepts after the
theorem statement and before its proof.

A. Pitchfork bifurcation by design in generic network

A preliminary version of the following theorem can be
found in the preprint [21]. Let g(y, u,β) be the Lyapunov-
Schmidt reduction1 of (3) at (y, u,β) = (0, 1,0).

Theorem 1. The following hold for the dynamics (3) where
the graph is fixed and strongly connected:

(i) For β = 0, x = 0 is globally asymptotically stable if
0 < u ≤ 1, and locally exponentially stable if 0 < u <
1.

(ii) The bifurcation problem g(y, u,0) has a symmetric
pitchfork singularity at (x∗, u∗) = (0, 1). For u > 1
and |u − 1| sufficiently small the Jacobian of (3) at
x = 0 possesses a single positive eigenvalue and all
other eigenvalues are negative. The (N−1)-dimensional
stable manifold separates the basins of attraction of the
other two steady states bifurcating from the pitchfork,
which attract almost all trajectories. Further, the steady-
state branches bifurcating from the pitchfork for u > 1
are exactly the origin and ±ys1N , where {0,±ys} are
the three solutions of the equation y−uS(y) = 0, u > 1.

(iii) For β 6= 0, the bifurcation problem g(y, u,β) is an N -
parameter unfolding of the symmetric pitchfork. More-
over ∂g

∂βi
(0, 1,0) = v̄i, where v̄ = (v̄1, . . . , v̄N ) is the

null left eigenvector of L. v̄i is known as the eigenvector
centrality of node i in the network graph2.

Before proving Theorem 1, we discuss its implications,
notably in terms of robustness and adaptability of the decision-
making process. The types of robustness and adaptability

1The Lyapunov-Schmidt reduction is the projection of the vector field
near its singular point along the null space of the Jacobian at the singular
point. The reduction exploits the implicit function theorem to compute a local
approximation of the vector field in the subspace orthogonal to the null space.
The reduced dynamics can be used to infer associated bifurcations. See [8]
for a detailed discussion.

2Eigenvector centrality measures the relative influence of a node in a graph.
Because eigenvectors are not unique, it is only defined up to a scaling factor.

x i

− x j u

x i = x j

Fig. 1: For u = 1 and β = 0, dynamics (3) exhibit a pitchfork
bifurcation at x = 0. The steady-state branches emerging at
the singularity lie on the consensus manifold {xi = xj | i, j ∈
{1, ..., N}} shown in gray. Branches of stable and unstable
solutions are shown as solid and dashed lines, respectively.

described in the following remarks are not shared by linear
collective decision-making models.

Remark 1 (Pitchfork as organizing center yields deadlock
breaking). Theorem 1 states that the model dynamics (3) are
organized by the pitchfork. Similar to the honeybee collective
decision-making dynamics, the model (3) possesses a pitch-
fork singularity. In the case β = 0, before the bifurcation
point (u < 1), the deadlock state x = 0 is globally
exponentially stable. After the bifurcation point (u > 1 and
|u − 1| sufficiently small), the deadlock state x = 0 is
unstable and two symmetric decision states are jointly almost-
globally asymptotically stable (Figure 1). Thus, our agent-
based decision-making dynamics (3) qualitatively capture a
fundamental observation in the biological social decision-
making that increasing social effort (control u) breaks dead-
lock and leads to a decision through a pitchfork bifurcation.
Larger values of u might lead to secondary bifurcations, which
reflects the local nature of Theorem 1, at least for generic
strongly connected graphs. Necessary and sufficient conditions
for the appearance of secondary bifurcations under symmetric
interconnection topologies are provided in [22].

Remark 2 (Robustness to perturbation and unmodeled dy-
namics). It follows from singularity theory that the collective
decision-making characterized in Theorem 1 is robust in the
following sense. For β 6= 0 the symmetric pitchfork generi-
cally unfolds, that is, it disappears and breaks into qualitatively
different bifurcation diagrams. However, by unfolding theory
[8, Chapter III] only the four cases depicted in Figure 2(a) can
generically be observed (see [8, Section III.7] for a detailed
development in the pitchfork singularity case). These are the
persistent (that is, robust) bifurcation diagrams in the universal
unfolding of the pitchfork. These and only these four bifurca-
tion diagrams can be observed, almost surely, in any model,
or actual system, organized by the pitchfork singularity. Thus,
the possible qualitative behaviors are robust (in the sense of
the bifurcation phenomena connecting deadlock and decision)
under small perturbations and/or unmodeled dynamics. It is
exactly in this sense that the pitchfork singularity is the
organizing center of collective decision-making between two
alternatives. A detailed analysis of the unfolded dynamics (3)
will be presented in the upcoming work [23]. Note that all four
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persistent bifurcation diagrams of the pitchfork can be found
in the model (3) with generic strongly connected graphs.
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Fig. 2: Robustness of dynamics (3) illustrated for the graph
shown with N = 12. A white arrow indicates a directed edge
from every node in one all-to-all connected group to another.
Blue lines are stable solutions and red lines unstable solutions.
(a) The four persistent bifurcation diagrams of the universal
unfolding of the pitchfork. Top left: βA = βB = 5. Top right:
βA = βB = −5. Bottom left: βA = 5, βB = 4.5. Bottom
right: βA = −5, βB = −4.5. (b) Hysteresis in the universal
unfolding of the pitchfork with βA = 1 and βB varying.

Remark 3 (Sensitivity to system and environmental changes).
Organizing centers provide both robustness and sensitivity to
nonlinear phenomena. Infinitesimal deviations from the per-
fectly symmetric state, for example a slight overall preference
for one of the two alternatives, will unfold the pitchfork,
break deadlock, and enforce convergence to a decision. This
ultrasensitive responsiveness provides the mechanism through
which decision-making efficiently adapts to changes in en-
vironmental cues or agent preferences and interconnections.
And this form of adaptation is robust, because no aberrant be-
haviors can be observed besides the four persistent bifurcation
diagrams prescribed by the organizing center. The coexistence
of robustness and sensitivity seems, almost tautologically, a
necessary condition for survival and evolution. As in biological
systems, not all decisions made through this mechanism will
correspond to democratic or optimal decisions because of
the influence of the network topology and agent preference
strength [2]. In an engineering setting, to ensure that the best
decision is made, careful attention must be paid to the relation
between system parameters and the opening of the pitchfork.
This can be done using constructive sensitivity analysis at the
organizing center that is grounded in unfolding theory and
Lyapunov-Schmidt reduction. Theorem 1(iii) provides such a
sensitivity analysis, showing how an agent’s influence depends
on its eigenvector centrality. Theorem 1(iii) predicts the bias in
the decision in favor of the smaller group’s preference −βB ,
shown in Figure 2, because the sum of eigenvector centralities
for the smaller informed group is larger than the sum of
eigenvector centralities for the larger informed group.

Remark 4 (Robustness to small fluctuations). Theorem 1 im-
plies a further type of robustness of collective decision-making

organized by the pitchfork due to bistability and the associated
hysteresis. All the persistent bifurcation diagrams of the pitch-
fork exhibit bistability between two stable steady states (the
two alternatives) for sufficiently large bifurcation parameter,
and this implies a hysteresis. In the collective decision-making
setting this means that after a decision has been taken it
is robustly maintained despite small adjustments in agent
preferences. Only sufficiently large preference changes can
switch the collective decision to the other alternative. This
is illustrated in Figure 2(b). At the mathematical level, this
robustness can be proved by observing that the unfolding
of the pitchfork is represented by a parametrized path in
the unfolding of the cusp catastrophe [8, Section III.12].
By traveling this unfolding transversally to these paths by
modulating unfolding parameters (instantiated here by agent
preferences), we recover the described hysteresis behavior.

Proof of Theorem 1. (i) Let V (x) = 1
2x

Tx. Then, for 0 <
u ≤ 1,

V̇ = x>(−Dx+ uAS(x))

= x>(−Dx+ uDS(x)− uDS(x) + uAS(x))

= −x>D(x− uS(x))− uxTLS(x))

< −ux>LS(x) ≤ 0, ∀x 6= 0,

since uS is a monotone function in the sector [0, 1], D is
diagonal and positive definite, and L is positive semi-definite.
Local exponential stability for 0 < u < 1 follows since the
linearization of (3) at x = 0 is

˙δx = (−D + uA)δx,

and (−D+uA) is a diagonally dominant and Hurwitz matrix.
(ii) Let F (x, u,β) = −Dx + uAS(x) + β, i.e., the right

hand side of dynamics (3). Observe that, by odd symmetry of
F in x,

F (−x, u,0) = −ẋ = −F (x, u,0).

That is, for β = 0, F commutes with the action of −IN . It
follows by [8, Proposition VII.3.3] that the Lyapunov-Schmidt
reduction of F at (x, u) = (0, 1) is also an odd function of
its scalar state variable, that is, g(−y, u,0) = −g(y, u,0).
To show that g, and therefore F , possesses a pitchfork
bifurcation at the origin for u = 1, it suffices to show that
gyyy(0, 1,0) < 0 and gyu(0, 1,0) > 0. This follows because
all of the degeneracy conditions in the recognition problem of
the pitchfork (gyy(0, 1,0) = gu(0, 1,0) = 0) are automatically
satisfied by odd symmetry of g, and g(0, 1,0) = gy(0, 1,0) =
0 because of the properties of the Lyapunov-Schmidt reduction
[8, Equation I.3.23(a)].

Let v̄ ∈ (Im(L))⊥ be a null left eigenvector of L, and
P = IN − 1√

N
1v̄> be a projector on Im(L) = 1⊥N . Then,

using [8, Equation I.3.23(c)] it holds that

gyyy(0, 1,0) =
〈
v̄, d3F0,1,0(1,1,1)

−3d2F0,1,0(1, L−1Pd2F0,1,0(1,1))
〉
,

where 〈·, ·〉 denotes the inner product, and dkFy,u,β is the k-th
order derivative defined by [8, Equation I.3.16]:

dkFx,u,β(v1, . . . ,vk) =
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∂

∂t1
. . .

∂

∂tk
F

(
k∑
i=1

tivi, u,β

)∣∣∣∣
t1=...=tk=0

.

Note that d2F0,1,0 = 0N×N×N because S′′(0) = 0. On the
other hand

∂3

∂xlxkxh
Fi(x, u,0) = uδkl δ

h
kδ
j
haijS

′′′(xj),

which implies that d3F0,1,0(1,1,1)i = uS′′′(0)
∑N
j=1 aij <

0. Since v̄ is a non-negative vector and not all entries are zero,
it follows that gyyy(0, 1,0) < 0.

Similarly, using [8, Equation I.3.23(d)], we have

guy(0, 1,0) =

〈
v̄, d

∂F0,1,0

∂u
(1)

〉
=

〈
v̄,

 N∑
j=1

aij

N
i=1

〉
> 0,

where we have already neglected the second-order term de-
pending on d2F0,1,0, which is zero.

It follows by the recognition problem for the pitchfork [8,
Proposition II.9.2] that (3) undergoes a pitchfork bifurcation at
the origin when u = 1. For u > 1 and |u−1| sufficiently small,
there are exactly three fixed points. The origin is a saddle
with an (N − 1)-dimensional stable manifold corresponding
to the N − 1 negative eigenvalues of −L at the bifurcation
and a one-dimensional unstable manifold corresponding to
the bifurcating eigenvalue. The other two fixed points are
both locally exponentially stable because they share the same
N − 1 negative eigenvalues as the origin and the bifurcating
eigenvalue is also negative by [8, Theorem I.4.1]. Noticing
that (3) is a positive monotone system and that all trajectories
are bounded for |u − 1| sufficiently small, it follows from
[24, Theorem 0.1] that almost all trajectories converge to
the two stable equilibria, the stable manifold of the saddle
separating the two basins of attractions. The location of the
three equilibria follows by direct substitution in the dynamic
equations.

(iii) The first part of statement is just the definition of an
N -parameter unfolding. The second part follows directly by
[8, Equation I.3.23(d)] �

In an all-to-all network and β = 0, the dynamics (3)
specialize to

ẋi = −(N − 1)xi +

N∑
j=1,j 6=i

uS(xj), (4)

and Theorem 1 holds globally in u and x.

Corollary 2. The following statements hold for the stability
of invariant sets of dynamics (4):

(i) The consensus manifold is globally exponentially stable
for each u ∈ R, u ≥ 0;

(ii) x = 0 is globally exponentially stable for u ∈ [0, 1) and
globally asymptotically stable for u = u∗ = 1;

(iii) x = 0 is exponentially unstable and there exist two
locally exponentially stable equilibrium points ±ys1N
for u > 1, where ys > 0 is the positive non-zero solution
of −y+uS(y) = 0. In particular, almost all trajectories
converge to {ys1N} ∪ {−ys1N} for u > 1.

Proof. To prove (i) consider a Lyapunov function Vij(x) =
(xi−xj)2

2 . It follows that

V̇ij(x) = −(N − 1)(xi − xj)(xi − xj + u(S(xi)− S(xj)))

< −(N − 1)(xi − xj)2 = −2(N − 1)Vij ,

for all xi 6= xj . Therefore, for V (x) =
∑n
i=1

∑n
j=1 Vij(x),

V̇ (x) < −2(N −1)V (x), for all x 6= ζ1N , ζ ∈ R. V̇ (x) = 0
for xi = xj = ζ, so by LaSalle’s invariance principle, the
consensus manifold is globally exponentially stable.

Using (i), it suffices to study dynamics (4) on the consensus
manifold, where they reduce to the scalar dynamics

ẏ = −(N − 1)y + u(N − 1)S(y).

(ii) and (iii) follow by inspection of these scalar dynamics and
properties of S.

B. Model extensions and further possible behaviors

Theorem 1 shows that in the case of β = 0, there is a
pitchfork bifurcation that results from the Z2 symmetry in the
dynamics (3). But even in the case β 6= 0, there can be Z2

symmetry and thus a symmetric bifurcation. One example is
an all-to-all graph and two equally sized informed groups with
βA = βB. If the size of each of the two informed groups is
n, 2n ≤ N , then the vector field F (x, u,β) commutes with
the action of the nontrivial element of Z2 represented by the
matrix

γ =

 0 −In 0
−In 0 0

0 0 −IN−2n

 , γ2 = IN ,

where the zero blocks have suitable dimensions (see [25,
Lecture 1] for basic definitions and concepts from group repre-
sentation theory). As in the proof of Theorem 1, this symmetry
implies the presence of a Z2-symmetric singularity, which for
small β will again be a pitchfork. We thoroughly analyze a
Z2-symmetric informed network in Section IV-B, using model
reduction to a low-dimensional invariant manifold. The general
case will be provided in [23].

From the informed Z2-symmetric dynamics (3), we can
expect another significant behavior: the transition from a
supercritical pitchfork to a subcritical pitchfork and emergence
of two stable branches due to a stabilizing quintic term and
two saddle-node bifurcations. In this case, the cubic term
is a Z2-symmetric unfolding term of the quintic pitchfork
that modulates it between the standard cubic pitchfork and
the subcritical cubic pitchfork. Figure 3 shows this transition
for increasing βA = βB = β in a Z2-symmetric graph.
From a behavior perspective, the interesting fact about the
subcritical pitchfork is the appearance of a bistable region
between deadlock and decision, which will induce further
robustness properties on the resulting decision-making. A
rigorous analysis of this transition and its relevance in control
problems will also be part of future works.

Finally, we consider an extension of model (3) that will be
important in the adaptive bifurcation control setting analyzed
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Fig. 3: Bifurcation in the Z2-symmetric graph shown tran-
sitions from supercritical to subcritical with two saddle node
bifurcations as β increases. (a) β = 1. (b) β = 3. White arrows
represent all-to-all undirected connections between groups.

in Section V. We let the social effort parameter u be heteroge-
neous across the agents by considering the decision dynamics

ẋ = −Dx+ UAS(x) + β, (5)

where U = diag
(
ū+ ũ1, . . . , ū+ ũn

)
and

∑N
i=1 ũi = 0. The

value ū is the average social effort and the ũi’s are the social
effort heterogeneities. The evolution of the opinion of agent i
is governed by the dynamics

ẋi = −dixi +

N∑
j=1

(ū+ ũi)aijS(xj) + βi.

Let ũ = (ũ1, . . . , ũN )T be the vector of social effort hetero-
geneities. The following theorem shows that the same results
as in Theorem 1 qualitatively persist for small heterogeneities
in agent social efforts.

Theorem 3. The following hold for dynamics (5) with fixed,
strongly connected graph and sufficiently small ũi, i ∈
{1, . . . , N}:

(i) There exists a smooth function ū∗(ũ) satisfying ū∗(0) =
1 such that the linearization of (5) for β = 0 possesses
a unique zero eigenvalue at (x, ū) = (0, ū∗(ũ)). More-
over, the associated null right eigenvector 1̃ satisfies
‖1̃ − 1‖1 = O(‖ũ‖1) and the associated singularity
is isolated.

(ii) Let g(y, ū,0) be the Lyapunov-Schmidt reduction of (5)
with β = 0 at (x, u) = (0, ū∗(ũ)). The bifurcation
problem g(y, ū,0) has a symmetric pitchfork singularity
at (y, ū) = (0, ū∗(ũ)).

(iii) For β 6= 0, the bifurcation problem g(y, ū,β) is an N -
parameter unfolding of the symmetric pitchfork.

Proof. Let F̃ (x, ū, ũ,0) denote the right hand side of (5) for
β = 0. Observe that F̃ (0, ū, ũ,0) = 0. We show that there
exists a smooth function ū∗(ũ) with ū∗(0) = 1 such that
the Jacobian J(ū, ũ) = ∂F

∂x (0, ū, ũ,0) is singular for ū =
ū∗(ũ) and sufficiently small ũ. Moreover, there exist no other
singular points close to (0, ū∗(ũ), ũ). To show this, we apply
the implicit function theorem [8, Appendix 1] to the scalar
equation

det (J(ū, ũ)) = 0.

Using Jacobi’s formula for the derivative of the determinant
of a matrix, we obtain

∂

∂ū
det J(ū, ũ) = tr

(
adj(J)

∂J

∂ū

)
,

where adj(J) is the adjugate matrix of J [26]. Because
Jadj(J) = adj(J)J = det(J)IN and det(J(1,0)) =
detL = 0, it follows that at (ū, ũ) = (1,0) the image of
adj(J) is the kernel of J and that the image of J is in the ker-
nel of adj(J). Recalling that rank adj(J) = N − rank J = 1,
it follows that adj(J(1,0)) = c1Nv

T
0 , where vT0 is a left null

eigenvector of L and c 6= 0. Now, at (ū, ũ) = (1,0),

∂J

∂ū
= A.

A is non-negative and, by the strong connectivity assumption,
at least one element in each of its columns is different from
zero. Furthermore, adj(J)∂J∂ū = c1Nv

T
0 A, and it follows that

tr(adj(J)∂J∂ū ) = cvT0 A1N , which is non-zero. Consequently,
∂
∂ū det J(ū, ũ) 6= 0. The existence of the smooth function
ū∗(β) with the properties of the statement now follows directly
from the implicit function theorem.

Using continuity arguments and the odd symmetry of (5),
the rest of the theorem statement follows by Theorem 1.

IV. MODEL REDUCTION AND VALUE SENSITIVITY IN
AGENT-BASED MODEL

For special classes of graphs the dynamics (3) can be
reduced to a low-dimensional manifold, which aids quanti-
tative and numerical analysis. We prove convergence of a
reduced-order model in Section IV-A. In Section IV-B we
use the reduced model to prove the existence of the pitchfork
bifurcation in informed Z2-symmetric all-to-all networks. In
Section IV-C1 we use the reduced model to show directly that
our agent-based model (2) recovers the value-sensitivity of
the biological mean-field model discussed in Section II. This
allows us to examine sensitivity of performance to parameters,
such as group size and distribution of information across the
group.

A. Model reduction to low-dimensional, attracting manifold

For certain classes of network graph it is possible to identify
a globally attracting, low-dimensional manifold to which the
dynamics (3) converge, and to perform analysis on the reduced
model. The dimension N of the system is treated as a
discrete parameter, allowing for the study of the sensitivity
of the dynamics to the sizes of the informed and uninformed
populations. As in [27], where the decision-making behavior
of animal groups on the move is considered, simulations of (3)
show that under the conditions described below, the dynamics
exhibit fast and slow timescale behavior. Initially agents with
the same preference and neighbors reach agreement, and then
in the slow timescale the dynamics of these groups evolve (see
Figure 4).

Let n1 and n2 be the number of agents with information
βi = βA = β̄1 and βi = −βB = β̄2, respectively, and let
n3 = N−n1−n2 be the number of agents with no information
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Fig. 4: Model reduction. Opinions are simulated over time for
N = 8 agents in the undirected network in the top box. βA =
βB = 1 and u = 2. Opinions of agents of the same group
(color) aggregate, and then the three group opinions evolve
according to the reduced model shown in the bottom box.
The black dashed-dotted line is the average group opinion.

(βi = 0 = β̄3). Let Ik ⊂ {1, ..., N}, k ∈ {1, 2, 3}, be the
index set associated with each group. Also assume

aij =

{
ākm, if i ∈ Ik, j ∈ Im, and i 6= j,

0, otherwise,

for i, j ∈ {1, ..., N}, where ākm = 1 if k = m. Under these
assumptions, each node in the same group k has the same
in-degree, d̄k = (nk − 1) +

∑
m 6=k n̄makm, where nk is the

cardinality of Ik, and dynamics (3) for agent i ∈ Ik are

ẋi = −d̄kxi+u
∑
j∈Ik
j 6=i

S(xj)+u
∑

m∈{1,2,3}
m 6=k

∑
j∈Im

ākmS(xj)+ β̄k.

(6)
Theorem 4 allows the analysis of (6) to be restricted to the
subspace where each agent in the same group has the same
opinion. The theorem is illustrated in the inset of Figure 4.

Theorem 4. Every trajectory of the dynamics (6) converges
exponentially to the three-dimensional manifold

E = {x ∈ RN |xi = xj , ∀i, j ∈ Ik, k = 1, 2, 3}.

Define the reduced state as y = (y1, y2, y3) ∈ E . Then,
dynamics on E are

ẏ1 = −d̄1y1 + u
(
(n1 − 1)S(y1) + n2ā12S(y2)

+ n3ā13S(y3)
)

+ βA

ẏ2 = −d̄2y2 + u
(
(n2 − 1)S(y2) + n1ā21S(y1) (7)

+ n3ā23S(y3)
)
− βB

ẏ3 = −d̄3y3 + u
(
(n3 − 1)S(y3) + n1ā31S(y1)

+ n2ā32S(y2)
)
.

Proof. Let V (x) =
∑3
k=1 Vk(x), where Vk(x) =

1
2

∑
i∈Ik

∑
j∈Ik(xi − xj)2, for k ∈ {1, 2, 3}. It follows that

V̇k(x) =
∑
i∈Ik

∑
j∈Ik

(xi − xj)(ẋi − ẋj)

=
∑
i∈Ik

∑
j∈Ik

(
− d̄k(xi − xj)2 − u(xi − xj)(S(xi)− S(xj))

)
≤ −d̄kVk(x),

so V̇ (x) ≤ −d̄kV (x). By LaSalle’s invariance principle,
every trajectory of (6) converges exponentially to the largest
invariant set in V (x) = 0, which is E . Let yk = xi, for any
i ∈ Ik, k ∈ {1, 2, 3}. Then dynamics (6) reduce to (7).

B. Pitchfork bifurcation in informed Z2-symmetric all-to-all
networks

Dynamics (3) are Z2-symmetric if βA = βB = β,
n1 = n2 = n, 2n ≤ N , and the graph is symmetric with
respect to the two informed groups and their influence on the
uninformed group. This symmetry is satisfied for the class
of graph discussed in Section IV-A if ākm = āmk, for each
k,m ∈ {1, 2, 3}, and ā13 = ā23. For this class, Z2 symmetry
means that reversing the sign of βA and βB is equivalent to
applying the transformation x 7→ −x.

Consider an all-to-all graph with unit weights and βA =
βB = β, n1 = n2 = n, n3 − 2n ≥ 0, which make the
dynamics (3) Z2-symmetric as discussed in Section III-B. We
can find an approximation û∗ to the bifurcation point u∗ by
examining the reduced dynamics (7), which specialize to

ẏ1 = −(N − 1)y1 + u
(
(n− 1)S(y1)

+ nS(y2) + n3S(y3)
)

+ β

ẏ2 = −(N − 1)y2 + u
(
nS(y1) (8)

+ (n− 1)S(y2) + n3S(y3)
)
− β

ẏ3 = −(N − 1)y3 + u
(
nS(y1)

+ nS(y2) + (n3 − 1)S(y3)
)
.

Because of Z2 symmetry, the deadlock state y∗(u, β) =
(y∗(u, β),−y∗(u, β), 0) is always an equilibrium, where
y∗(u, β) is the solution to

(N − 1)y∗ + uS(y∗)− β = 0. (9)

When β = 0, y∗(u, 0) = 0 for all u ∈ R. When β 6= 0,
the implicit function theorem ensures that y∗(u, β) depends
smoothly on u and β. By Taylor expansion, an approximation
to y∗(u, β) can be found, and the bifurcation point where dead-
lock becomes unstable can also be approximated. To compare
theoretical and numerical results, we let S(·) = tanh(·) in
Theorem 5 but the computations are general.

Theorem 5. The following hold for dynamics (8) with S(·) =
tanh(·):

(i) the equilibrium y∗(u, β) = (y∗(u, β),−y∗(u, β), 0)
satisfies

y∗(u, β) =
1

N − 1 + u
β +

u

3(N − 1 + u)4
β3 +O(β5);

(10)
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(ii) the equilibrium y∗ = (y∗,−y∗, 0) is singular for

u∗ = 1 +
(1 + 3N3)2(N − n3)

9N9
β2 +O(β4); (11)

(iii) for sufficiently small β, the singularity at u = u∗ is a
pitchfork.

Proof. We begin with (i). Consider the Taylor series expansion
of y∗(u, β) with respect to β:

y∗(u, β) = βyI + β2yII + β3yIII + β4yIV +O(β5). (12)

Substitute (12) for y∗(u, β) into (9) and differentiate with
respect to β to get

(N − 1)y∗′(u, β) + usech2
(
y∗(u, β)

)
y∗′(u, β)− 1 = 0.

Letting β = 0 yields yI = 1
N−1+u . Proceeding similarly for

higher order derivatives gives yII = yIV = 0 and yIII =
u

3(N−1+u)4 . Substituting these values into (12) yields (10),
establishing (i).

At a singular point u∗, the Jacobian of (8) computed at y∗

drops rank. The Jacobian of (8) at y∗ is[−(N−1)+u(n−1)S′(y∗) unS′(y∗) un3

unS′(y∗) −(N−1)+u(n−1)S′(y∗) un3

unS′(y∗) unS′(y∗) −(N−1)+u(n3−1)

]
,

where we have used the fact that S′(·) is an even function.
For S(·) = tanh(·) the determinant d of the Jacobian is

d = −1

4
η(−1 +N + 2u+ ηcosh(2y1))(η+ 3u+n3u− 2Nu

− 2u2 + (η + u− n3u)cosh(2y1))sech4(y1),

with η = N − 1. A positive u = u∗ for which d = 0 satisfies

u∗ =
1

4

(
3 + n3 − 2N + cosh(2y∗)− n3cosh(2y∗)

+

√
16ηcosh2(y∗) + (3 + n3 − 2N − (−1 + n3)cosh2(2y∗))

)
.

Note that y∗ is also a function of u∗ and the above equation
is a transcendental equation in u∗, which can be solved nu-
merically. To compute u∗ we use the Taylor Series expansion
u∗(β) = 1 + u∗Iβ + u∗IIβ

2 + u∗IIIβ
3 + O(β4) and match

coefficients to obtain (11).
To prove that the singular point (y∗, u∗, β) corresponds to

a pitchfork we invoke singularity theory for Z2-symmetric
bifurcation problems [8, Chapter VI]. By Theorem 1, the
singular point (y∗, u∗, β) is a pitchfork for β = 0. Because (8)
is Z2-symmetric, for sufficiently small β > 0 we obtain a
small Z2-symmetric perturbation of the pitchfork at β = 0.
Invoking genericity of the pitchfork in Z2-symmetric systems
[8, Theorem VI.5.1], we conclude that (8) possesses a pitch-
fork at u = u∗.

Remark 5 (Deadlock breaking in informed symmetric case).
Theorem 5 shows persistence of the bifurcation in Corollary 2
under Z2 symmetry and weakly informed agents (β small). For
small social effort (u < u∗), the undecided state, and therefore
deadlock, is the only stable equilibrium despite the presence
of informed agents, but for sufficiently large social effort
(u > u∗) the undecided state is unstable. For β 6= 0 this does
not imply that deadlock has been broken, because differences

in opinions can maintain disagreement (δ 6= 0) for moderate
social effort. The adaptive bifurcation dynamics introduced in
Section V overcomes this by implementing feedback control
that increases the social effort beyond the destabilizing of the
undecided state to yield agreement as well and thus deadlock
breaking.

Remark 6 (Influence of system parameters). The approxi-
mation (11) of u∗ depends on information strength β, total
group size N and uninformed group size n3. It thus explicitly
describes the sensitivity of the bifurcation to group size, in-
formation strength and distribution of information. We further
illustrate this influence in Section IV-C2.

C. Value-sensitive decision-making in Z2-symmetric networks

Returning to the timescale of (2), we show how the agent-
based dynamics (2) recover the value-sensitivity and perfor-
mance of the honeybee decision-making dynamics studied
with the mean-field model in [13], and discussed in Section II.
We then use the agent-based model to examine the influence
on performance of system parameters, including size of the
group and strength and distribution of information across the
group.

1) Value-sensitivity and performance in agent-based model:
To show value-sensitivity and the associated robustness and
adaptability in the agent-based model, we examine the dy-
namics (2) with alternatives of equal value νA = νB = ν,
inertia uI = 1/ν, and bifurcation parameter uS = u · uI = u

ν .
Applying (11) gives the approximation û∗S to the bifurcation
point for (2) as u∗S = û∗S +O(ν7), where

û∗S =
1

ν
+

(1 + 3N3)2(N − n3)

9N9
ν3. (13)

Figure 5(a) shows how well û∗S approximates u∗S computed
using MatCont continuation software [28]. As in the case
of the honeybee mean-field model, the bifurcation point in
the agent-based model depends inversely on the value of the
alternatives ν (see (13) and Figure 5(a)). Thus, our agent-based
decision-making model recovers the value-sensitive decision-
making of the honeybee mean-field model.

This value-sensitivity is demonstrated further in Figure 5(b),
where bifurcation diagrams for the agent-based model are
given for a range of values ν. As ν is increased, the bifurcation
point decreases and the sharpness of the bifurcation branches
increases, representing a faster increase in average opinion.

2) Influence of system parameters in agent-based model:
An advantage of the agent-based framework is that it makes it
possible to systematically study sensitivity of the dynamics
to model parameters including those that describe network
structure and heterogeneity. An examination of (13) shows that
û∗S decreases with increasing total group size N , implying that
less social effort is required to make a decision with a larger
group. In the limit as N increases, û∗S = 1

ν .
Figure 6 shows the inverse relationship between ν and û∗S

for different values of n3 with fixed N and n1 = n2 = N−n3

2 .
As n3 increases, the number of informed agents decreases,
and the curve drops, implying that increasing the number of
uninformed agents reduces the requirement on social effort
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Fig. 5: Value sensitivity in the agent-based model (8) for
alternatives with equal value ν and informed and uninformed
group sizes n1 = n2 = 10 and n3 = 80. (a) The blue
line shows the approximation û∗S (13) while the red crosses
show u∗S computed numerically using MatCont continuation
software. (b) Bifurcation diagrams for three values of ν.

Fig. 6: The inverse relationship between û∗S from (13) and the
equal value of the alternatives ν in the agent-based model for
three values of n3 with N = 7 and n1 = n2 = N−n3

2 .

to destabilize deadlock. This result suggests that the agent-
based dynamics could be mapped to describe the schooling
fish decision dynamics discussed in [2], where it is shown
that increasing the number of uninformed agents allows the
group to choose the alternative preferred by the majority over
a more strongly influencing but minority preference.

V. ADAPTIVE CONTROL OF BIFURCATION

Studying the decision-making process as a control system
allows us to add further layers of dynamics beyond those
considered in [12] and [29]. A natural extension to our model
is to regard the social effort parameter u as a control input, and
to give it an adaptive feedback dynamic. We have shown that
the level of social effort required to break deadlock depends
on system parameters that may not be known ahead of time,
so it can be highly useful to allow the system to adapt to its
circumstances.

We introduce to the agent-based model a slow feedback
dynamic that drives the magnitude of opinion of the group |y|
to a prescribed threshold value yth > 0, thereby ensuring a
decision is made. As the system is decentralized, each agent
updates its own social effort control ui. Thus, we use the
extended model (5). Moreover, we do not make the assumption
that agents can directly access the average opinion y.

The proposed adaptive controller consists of two phases.
We first let each agent estimate the group average y using the
finite-time dynamic consensus algorithm proposed in [30]:

ẇ = −αsgn(Lŷ) (14a)
ŷ = Lw + x, (14b)

where ŷ is the vector of agent estimates of y =
∑N
i=1 xi,

wi are auxiliary variables, and α > 0 is the estimator gain.
During this phase, u̇i = ẋi = 0 for all i. It is shown in [30,
Theorem 1] that the consensus algorithm given by (14a)-(14b)
guarantees that the error ỹ = ŷ − 1

N 1TNx1N = ŷ − y1N is
globally finite-time convergent to zero. The convergence time
s∗ is explicitly given by

s∗ ≤ ||ỹ(s0)||
λ2(L)

,

where λ2(L) is the second smallest eigenvalue of L. Therefore
ŷi(s) = y for all s ≥ s∗. Here, we assume that each agent can
compute a lower bound on λ2(L). This can be accomplished
distributedly using algorithms developed in [31].

For s > s∗, we let xi and ui, i ∈ {1, . . . , N}, evolve
according to the two-time scale adaptive dynamics

ẋ = −Dx+ UAS(x) + β,

u̇ = ε
(
y2
th1N − ŷ2) ,

= ε
(
y2
th − y2

)
1N ,

where U = diag(u1, . . . , uN ) and ŷ2 is the vector of the
squares of the elements of ŷ. We omit specifying s ≥ s∗ from
now on. Let ū = 1

N

∑N
i=1 ui, then for s > s∗, ˙̄u = u̇i, for

each i. Thus, the social effort differences ũi = ui − ū are
constant and the adaptive dynamics reduce to

ẋ = −Dx+ UAS(x) + β, (15a)
˙̄u = ε

(
y2
th − y2

)
, (15b)

where U = diag(ū+ ũ1, . . . , ū+ ũN ).
We study the behavior of (15) using geometric singular per-

turbation theory [32]. We first find a suitable low-dimensional
invariant manifold for (15) by means of the center manifold
theorem [20, Theorem 3.2.1]. To use the center manifold
computation we extend (15) with dummy dynamics for ε and
β [33, §18.2]:

ẋ = −Dx+ UAS(x) + β, (16a)
˙̄u = ε

(
y2
th − y2

)
, (16b)

ε̇ = 0, (16c)
β̇ = 0. (16d)

By Theorem 3, if the graph is strongly connected, the
linearization of (16) at (x, ū, ε,β) = (0, ū∗(ũ), 0,0) has N−1
eigenvalues with negative real part and 3+N zero eigenvalues,
with corresponding null eigenvectors

e1̃ =


1̃
0
0
0

 , eu =


0
1
0
0

 , eε =


0
0
1
0

 , eβ,i

0
0
0
ei

 , i = 1, . . . , N,
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where 1̃ is defined in Theorem 3 and ei is the i-th vector of
the standard basis of RN . It follows by the center manifold
theorem, that (16) possesses an (N + 3)-dimensional center
manifold W c = span{e1̃, eu, eε, eβ,i, i = 1, . . . , N} that is
exponentially attracting. Dropping the dummy dynamics, the
restrictions of (16) to W c are

ẏc = gc(yc, ū,β), (17a)
˙̄u = ε

(
y2
th − y2

)
, (17b)

where gc is the reduction of the vector field (16a) onto its
center manifold. Similar to the Lyapunov-Schmidt reduction,
the center manifold reduction also preserves symmetries of
the vector-field [34, §1.3]. It follows similarly to Theorem 3
that for β = 0, the reduced fast vector field gc(yc, ū,0)
possesses a Z2-symmetric pitchfork singularity at (yc, ū) =
(0, ū∗(ũ)), and gc(yc, ū,β) is an N -parameter unfolding of
the pitchfork. Dynamics (17) capture the qualitative behavior
of dynamics (15) for initial conditions sufficiently close to
(x, ū) = (0, ū∗(ũ)) and small β.

Behavior of equations (17) can be analyzed using geometric
singular perturbation theory [32], [35], [36]. We define the
slow time τ = εs, which transforms (17) into the equivalent
dynamics

εy′ = gc(y, ū,β),

ū′ =
(
y2
th − y2

)
, (18)

where ′ = d
dτ . In the singular limit ε→ 0, the boundary layer

dynamics evolving in fast time s are

ẏ = gc(y, ū,β),

˙̄u = 0, (19)

and the reduced dynamics evolving in slow time τ are:

0 = gc(y, ū,β),

ū′ =
(
y2
th − y2

)
. (20)

The slow dynamics are defined on the critical manifold
M0 = {(y, ū) : gc(y, ū,β) = 0}. Singular perturbation
theory provides a qualitative picture of trajectories of the
original dynamics; trajectories of the boundary layer dynamics
are a good approximation of the original dynamics far from
M0, whereas trajectories of the reduced dynamics are a good
approximation close to M0.

Trajectories of the boundary layer and reduced dynamics are
sketched in Figure 7(a), (c) and (f) for different qualitatively
distinct cases. When β = 0 (Figure 7(a)), by Theorem 2,
M0 is composed of a single globally exponentially stable
branch y = 0 for ū < ū∗ and three branches emerging
from a pitchfork bifurcation for ū > ū∗. The outer branches
y = ±ȳ(ū) are locally exponentially stable and y = 0 is
unstable. For a given ū, trajectories of the boundary layer
dynamics (double arrows) converge toward stable branches of
M0 and are repelled by unstable branches. On M0, trajectories
of the reduced dynamics (single arrow) satisfy ū′ > 0 if
|y| < yth and ū′ < 0 if |y| > yth.

When β 6= 0 there are four possible qualitatively distinct
cases, corresponding to the four persistent bifurcation dia-
grams of the pitchfork illustrated in Figure 2(a). We consider

the two bifurcation diagrams in the left column of Figure 2(a),
as the other two are just their reflections. In the first case
(Figure 7(c)), there exists a smooth attracting branch of the
critical manifold that connects deadlock to decision. Trajecto-
ries slide along it until the threshold is reached. In the second
case (Figure 7(e)), the deadlock branch folds at ū = ūSN2. At
that point, we expect trajectories to jump to the stable decision
branch and slide until the threshold is reached.

Theorem 6 summarizes the qualitative behavior of the
adaptive control dynamics (17) for sufficiently small ε and
appropriate ranges of ū(0). The results are illustrated with
simulations in Figure 7(b), (d) and (f). The ūSN ’s denote the
value of ū at saddle-node bifurcation points in the perturbed
bifurcation diagrams.

Theorem 6. Suppose the interconnection graph is strongly
connected. There exists ε̄ > 0 such that, for all ε ∈ (0, ε̄] and
all yth > 0, the following hold for dynamics (17).
• β = 0 (Figure 7(a)). For all initial conditions yc(0), ū(0)
such that |yc(0)| is sufficiently small, 0 < ū(0) < ū∗(ũ),
and |ū(0)− ū∗(ũ)| is sufficiently small, the trajectory of (17)
exponentially approaches the critical manifold at a point
ūa = ū(0) + O(ε| log(ε)|), stays close to it with ˙̄u > 0
until u = ūc = 2ū∗(ũ) − ūb, where ū(0) < ūb < ū∗(ũ),
and afterwards exponentially converges to the upper or lower
attracting branches of the critical manifold, until y ∈ {±yth}.
• β 6= 0, Case 1 (Figure 7(c)). For all initial conditions
yc(0), ū(0) such that |yc(0)| is sufficiently small, 0 < ū(0)
and sufficiently small, the trajectory of (17) exponentially ap-
proaches the critical manifold at a point ū(0) +O(ε| log(ε)|),
and slides along the critical manifold with ˙̄u > 0 until y = yth.
• β 6= 0, Case 2 (Figure 7(e)). For all initial conditions
yc(0), ū(0) such that |yc(0)| is sufficiently small, 0 < ū(0) <
ūSN1, and |ū(0) − ūSN1| is sufficiently small, the trajectory
of (17) exponential approaches the critical manifold at a point
ū(0) + O(ε| log(ε)|), slides along the critical manifold with
˙̄u > 0 until it reaches the fold at ūSN2, at which points it
jumps to the upper attracting branch of the critical manifold
and slides along it until y = yth.

Proof. We just sketch the proof of Theorem 6.
• β = 0. Noticing that the critical manifold is normally hy-
perbolic (see [37, Section 1.2]) and attracting for ū < ū∗(ũ),
the existence of the point ūa follows by the standard Fenichel
theory [32],[37, Theorems 1,3]. The existence of points ūb and
ūc follows by [36, Theorem 2.2.4]. The rest of the statement
follows again by standard Fenichel theory.
• β 6= 0, Case 1. Because the smooth branch of the critical
manifold connecting deadlock and decision is normally hy-
perbolic and attracting, the statement follows directly by the
standard Fenichel theory.
• β 6= 0, Case 2. Because the branch of the critical manifold
for ū < ūSN1 is normally hyperbolic and attracting, the
existence of the point ūa follows by the standard Fenichel
theory. The behavior of trajectories through the fold ūSN2,
follows by [35, Theorem 2.1]. The rest of the statement follows
by the standard Fenichel theory.

Remark 7 (Bifurcation delay). The passage through the
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(e)

(a)

(f)

(d)

(b)

(c)

Fig. 7: Illustration of the slow-fast controlled adaptive dynamics (15), for the graph shown in Figure 2. Shown in (a), (c),
(e) are singular phase portraits of y versus ū, where the double arrows illustrate the boundary layer dynamics and the single
arrows illustrate the reduced dynamics. Shown in (b), (d), (f) are simulated trajectories of xi versus ui in dotted gray and y
versus ū in dashed green. (a) and (b) βA = βB = 0. (c) and (d) βA = βB = −5. (e) and (f) βA = −5 and βB = −4.5.

pitchfork for β = 0 is characterized by a “bifurcation delay”,
that is, the system state lies close to the unstable branch of
equilibria y = 0 for an O(1) range of ū after the pitchfork
bifurcation (at ū = ūc). This delay is illustrated in Figure 7(b).
Intuitively, the delay is due to the fact that near the bifurcation
point, dynamics (17a) slow down significantly and singular
perturbation arguments based on the timescale separation do
not hold.

Remark 8 (Guaranteed deadlock breaking). For any yth > 0,
the proposed feedback control ensures that deadlock is broken
for sufficiently small β.

Note that since center manifold theory is a local theory,
Theorem 6 captures the behavior of the full dynamics (15)
only close to the singular point (x, ū,β) = (0, ū∗(ũ),0).

However, since in the all-to-all case with zero information
and zero social effort differences, the consensus manifold is
globally exponentially attracting (and invariant), we have the
following straightforward corollary of Theorem 6.

Corollary 7 (All-to-all system). If the graph is all-to-all and
the social effort differences are zero (ũ = 0), then the same
result as Theorem 6 for β = 0 holds globally in x and ū.

We further stress that numerical simulations suggest that
the results of Theorem 6 hold globally in the generic case
of a strongly connected graph with non-zero information and
non-zero social effort differences.
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VI. CONCLUSION

We have defined an agent-based model that describes
distributed dynamics for collective decision-making between
alternatives in a multi-agent network with a generic strongly
connected graph. The agent-based dynamics are carefully
designed to exhibit a pitchfork bifurcation so that mechanisms
of collective animal behavior can be formally translated into
bio-inspired control design for multi-agent decision-making.
We have rigorously established the nonlinear phenomena as-
sociated with the proposed dynamics. We have used this frame-
work to prove agent-based dynamics that inherit the value
sensitivity and robust and adaptive features of honeybee nest
site selection. The sensitivity of outcomes to model parameters
and heterogeneity have been investigated. An adaptive control
law has been designed for the bifurcation parameter to achieve
unanimous decision-making in the network. The framework
will be used for control inspired by high performing decision-
making of schooling fish and other animal groups. Future work
will also seek to characterize nonlinear behavior away from
the bifurcation point u� 1, for larger values of β, and when
more than two options are available.
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