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Abstract

For many multi-agent systems, collective decision-making among alternatives is a

crucial task. A group of agents may be required to collectively decide on their next

action, and may face limitations on their sensing, communication and computational

abilities. A swarm of honeybees choosing a new nest-site faces these challenges, and

has been shown to reliably make decisions with accuracy, efficiency and adaptability.

The honeybee decision-making dynamics can be modelled by a pitchfork bifurcation,

a nonlinear phenomenon that is ubiquitous in animal decision-making.

We describe and analyse a model for collective decision-making that possesses

a pitchfork bifurcation. The model allows us to leverage the characteristics of the

honeybee dynamics for application in multi-agent network systems and to extend the

capabilities of our decision-making dynamics beyond those of the biological system.

Using tools from nonlinear analysis, we show that our model retains some impor-

tant characteristics of the honeybee decision-making dynamics, and we examine the

impact of system and environmental parameters on the behaviour of the model. We

derive an extension to an existing centrality measure to describe the relative influence

of each agent, and to show how agent preferences can lead to bias in the network.

We design decentralised, adaptive feedback dynamics on a parameter of the model,

which ensure that a decision is made. We discuss how this system parameter, which

quantifies how much each agent is influenced by its neighbours, provides an intuitive

mechanism to involve a human operator in the decision-making. We continue this

discussion as we implement our model with a simple robotic system.

Throughout this thesis, we discuss the trade-off in the design of decision-making

dynamics between systems that are robust to unwanted disturbances, but are also

sensitive to the values of important system parameters. We show how dynamics

modelled by a pitchfork bifurcation exhibit hypersensitivity close to the bifurcation

point, and hyperrobustness far away from it.
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Chapter 1

Introduction

1.1 Multi-agent systems

Multi-agent systems are systems comprised of two or more agents that can commu-

nicate and interact with each other. Each agent is capable of autonomous action,

and can also sense and react to its environment [92]. It is common for agents to be

limited in their communication, actuation, computation and sensing abilities, and a

fundamental aim in the study of multi-agent systems is to show that through carefully

designed feedback dynamics and interaction between agents, the system as a whole

can perform complex tasks and produce rich behaviour [58].

Multi-agent systems have many applications in engineering, including mobile sens-

ing networks [24, 56, 57, 73], arrays of micro-devices [4], mobile robotic networks and

power networks [6,14,64]. Multi-agent sensing networks can traverse large or inacces-

sible areas, and extend human capabilities in inhospitable environments [14]. They

can be made up of simple, cheaper agents that are more easily replaceable in the case

of agent failure. Some multi-agent systems may include competitive interactions and

promote individualistic behaviour, but in this thesis we focus on systems that are

cooperative, and are working to achieve a common goal.
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We also focus on systems that are decentralised, in which each agent uses local

interactions and information to inform its behaviour. Because decentralised systems

do not rely on a central leader, they are robust to agent failures [56]. Often these

decentralised system require simple hardware and computation, as complexity can be

developed through behaviour at the group level, rather than from a single agent. A

multi-agent system may involve heterogeneous agents and asynchronous dynamics [6],

and as such present challenges in coordinating communication and control [4].

We focus on systems that are largely autonomous, but also provide means for

humans to interact with the system in a supervisory role. While full manual control

of a multi-agent system is too high a burden [61], a system should retain the ability

to take advantage of the superior cognitive abilities of a human operator [27]. The

human can provide supervision and task management, and use the data collected by

the agents to develop an overview of the environment and make high-level decisions

[37,56,68].

Some important tasks and objectives for multi-agent systems include decision-

making, formation control, task allocation, distributed estimation and group naviga-

tion [56,64]. In this thesis our focus is on decision-making. We ask the question: how

can a group of agents make a single, collective choice among alternatives?

1.1.1 Collective decision-making

For a multi-agent system, reaching consensus means reaching an agreement regarding

some quantity of interest [66, 67]. For instance, a system of agents performing a

collective task may be required to decide which direction to travel in, what is the

correct value for a measurement being taken, or how to allocate tasks among the

group. Consensus problems have been broadly studied, with a variety of applications

and outcomes. Some examples of consensus problems are the synchronisation of
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coupled oscillators, coordination of movement for a group of mobile agents, and task

assignment for networked systems [3, 50,77].

In the literature, consensus problems often fall into two main areas of study:

collective sensing and collective decision-making. Collective sensing involves sharing

knowledge to reach an agreement about the true value of a measured environmental

parameter [55, 59, 76, 77]. Agreement must be reached despite limits on the level

and nature of inter-agent interaction, sensor noise and unreliable communication.

Collective decision-making tasks, such as deciding on a direction of travel for the

group, involve reaching an agreement about future group behaviour [60].

In this thesis we focus on collective decision-making, and in particular on a choice

between two alternatives. We present dynamics that allow a group of agents to choose

one of the two alternatives, despite challenges of agent heterogeneity, limited commu-

nication and the possibility of multiple, competing sources of external information.

While some previous studies have combined consensus algorithms with additional dy-

namics, such as dynamics to adjust the direction of travel for agents on the move [60],

here we present general dynamics on the agents’ ‘opinions’ only. These dynamics can

be applied to multiple collective decision-making tasks, and combined with additional

dynamics to achieve complex objectives.

Inspiration from animal behaviour

Collective decision-making dynamics have also been studied in animal groups, in-

cluding situations in which animals rely on successful collective decision-making for

survival. For instance, a swarm of honeybees must quickly and accurately choose a

new nest-site from scouted alternatives that will provide sufficient protection during

the following winter [78–81]. Other examples of collective decision-making in animals

are schooling fish choosing among potential food sources [17, 18, 60], flocks of birds

deciding when to take off together during migration [9,21] and groups of gorillas coor-
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dinating rest and travel periods [86]. These animal groups are observed to choose with

speed, accuracy, robustness, and adaptability [70], even though they are thought to

be using decentralised strategies and may face limitations on sensing, communication,

and computation [89].

In this dissertation we discuss the honeybee nest-site selection process in detail,

and in particular the contributing mechanisms that allow the bees to make an accurate

and efficient choice from among alternatives. The dynamics of the decision can be

modelled by a pitchfork bifurcation, which captures the remarkable ability of the bees

to remain flexible and to adapt to the environmental conditions while also reliably

reaching an accurate decision. The honeybees perform successfully in the flexibility-

stability trade-off, and provide inspiration for our agent-based model for collective

decision-making.

A first look at the model

In this thesis we present a general agent-based model for collective decision-making

that is organised by a pitchfork bifurcation. The model is nonlinear, and was derived

by Alessio Franci, Vaibhav Srivastava and Naomi Ehrich Leonard [31]. It was designed

to leverage mechanisms from the decision-making dynamics of animal groups for

application in engineered systems, as well as to provide further insights about the

natural systems by studying them from a new perspective. The agent-based model

possesses a pitchfork bifurcation by design, a result that was first proven in [31]. We

refer to the model as “general” because it is not designed for a specific application.

The dynamics model the evolution of each agent’s opinion, which can be thought

of as an internal parameter for each agent. The decision-making dynamics can be

combined with additional dynamics controlling the external behaviour of the agents

to provide successful collective decision-making in the given application.
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The model allows a group of agents to collectively make a group-level decision

between two alternatives through local, inter-agent communication. The agents are

arranged in a network, which encodes who can communicate with whom, and they

share their opinions with each other. We use a saturating, odd-symmetric sigmoidal

function to modify how agents perceive their neighbours’ opinions, which introduces

nonlinearity into the model. The level of attention that each agent is paying to

its neighbours’ opinions is modulated by a ‘social effort parameter’. Along with

the sigmoidal function, the level of social effort plays a key role in the decision-

making dynamics and, among other things, determines whether or not a decision is

made. Additionally, each agent can be influenced by an external input. This external

information can be thought of as the agents sensing their environment and measuring

the value of the alternatives, or as a source of bias or preference.

The agent-based model is described in detail in Chapter 3, but we provide a brief

introduction here. We let xi ∈ R, i ∈ {1, ..., N}, be the state of agent i, representing

its opinion. Agent i is said to favour alternative A if xi > 0 and alternative B if

xi < 0, with the strength of agent i’s opinion given by |xi|. We model the rate of

change of xi as a function of the opinions of its neighbours and an external stimulus

βi:

ẋi = −dixi +
N∑
j=1

uaijS(xj) + βi. (1.1)

Here di is the number of neighbours of agent i, aij = 1 if agent j is a neighbour

of agent i and 0 otherwise, and βi is the external information that agent i receives

about the alternatives. If βi > 0, it represents information about alternative A,

while if βi < 0, it represents information about alternative B. S(·) is the saturating,

odd-symmetric sigmoidal function, and the parameter u is the social effort parameter

described above.

5



The collective decision-making model is an agent-based realisation that was in-

spired by a population-level model for honeybee decision-making dynamics [69, 81],

and the Hopfield network model [45,46]. In [31], Franci et al. showed numerically that

the model retains an important sensitivity to system parameters that was analysed

in [69].

Example: Search and rescue task

An example of a multi-agent system required to make collective decisions is a network

of robotic agents performing search and rescue. Search and rescue tasks involve

searching for survivors and victims in emergency situations and are often dangerous

for the searchers [16]. Robots can aide humans with this task, as they can search

locations that are impassable or hazardous. Additionally, human search and rescue

operations require significant time before deployment to assess and manage safety

concerns, but robotic agents are ultimately expendable, and can be deployed much

sooner. Studies have shown that a fast response in emergency situations substantially

improves the outcomes [82], and we can improve response times with assistance from

information systems and robotic technology.

Consider a robotic search and rescue team comprised of heterogeneous agents with

a range of sensors such as cameras, microphones, pyroelectric sensors and infrared

cameras for heat and motion [65]. Their aim is to detect survivors or victims in

an emergency environment based on measurements of acoustic, thermal and visual

signals [49]. They should coordinate in space and time, and act collaboratively to

share information and perform tasks. They must traverse an uncertain environment,

and may face communication challenges.

In [51], Jennings et al. designed a distributed team of autonomous mobile robots

that search for an object individually, but must work together to ‘rescue’ it. The group

must possess the ability to transition from a disparate ‘searching’ state to a collective
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‘rescue’ state, a task that requires decision-making and coordination. When surveying

a large area, the group of search and rescue robots must remain close enough to be

able to assemble to perform rescue tasks, and thus they need to be able to collectively

decide where to travel as they search, as well as when to come together for a rescue.

In [65], Nourbakhsh et al. presented an algorithm to calculate the likelihood that

a location contains a victim, based on data from sensor measurements. The output

of this algorithm is an example of the information from each agent that must be com-

bined when the group is making a decision. The information from different agents

may support different outcomes, and there may be a clear winner or a deadlock be-

tween alternatives. The decision-making dynamics must allow the robots to mediate

between the different sources of information, and to make a decision even when it is

unclear which is the ‘best’ alternative.

Additionally, a human operator should be able to interact with the system, for

instance to assist the robots in deciding when to transition from searching to rescuing,

or to adjust criteria that determine the system priorities. In the immediate response

to an emergency the operator may want the robotic system to prioritise moving

quickly through an area and paying attention to the most obvious signals only, while

later on the operator may prioritise a slow and thorough search. The robotic system

should be largely autonomous, but also provide a means for humans to take part in

the decision-making dynamics if necessary.

In this example task, we have identified some important challenges that the collec-

tive decision-making dynamics for a multi-agent system must overcome. These include

the ability to combine heterogeneous agents and data collection methods, communi-

cation challenges, task management, balancing competing alternatives and how to in-

tegrate supervisory interaction with a human operator. Our general decision-making

model was not designed for this search and rescue task specifically, but thinking about

collective decision-making in the context of a multi-agent search and rescue system
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will allow us to discuss the implications of our general model for design in a specific

setting. We will return to this example throughout this dissertation to illustrate how

the behaviours of our model that we analyse can be applied to improve the design of

collective decision-making dynamics for multi-agent systems.

The flexibility-stability trade-off

An important design consideration that we will return to often in this dissertation is

the flexibility-stability trade-off, which we define here. A stable or robust system is one

in which the desired behaviour will persist in spite of disturbances, while a flexible or

sensitive system is one that can react (for example, respond with different behaviours)

to a variety of parameter regimes. In other words, a robust system should maintain

its behaviour in the presence of inconsequential perturbations, while a flexible system

should be sensitive to meaningful changes, and adapt appropriately. If a system is

required to be both stable and flexible, there is a tension, as in many cases enhancing

one will diminish the other. A successful engineered system must be able to balance

these two requirements in collective decision-making tasks. Fortunately, collective

decision-making and the flexibility-stability trade-off are not unique to engineered

systems, and we can look to other occurrences of these dynamics for inspiration.

1.2 Contributions and thesis outline

In this dissertation, we focus on analysis of the agent-based model, and in particular

how system parameters and the external inputs affect the behaviour. The model

was created for application to the design of engineered systems, and also to allow

further study of the biological sources of inspiration. Here we focus on the design

application, and discuss our results in the context of informing design decisions for

engineered systems.
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We discuss six important design considerations, which are:

• How can we ensure that the group of agents can make a decision in all circum-

stances?

• How can we improve the ability of the model to remain both sensitive to the

relevant environment parameters but also robust to disturbances (the flexibility-

stability trade-off)?

• How does the communication network affect the behaviour of the system?

• What impact do heterogeneities in the system have on the decision outcome?

• How do internal system and external environmental parameters influence the

behaviour?

• How we can allow humans to interact with the system in meaningful ways?

Our analysis of the model provides answers to these questions, thereby improving

our ability to implement the decision-making dynamics in engineered systems.

In Chapter 2 we discuss the honeybee nest-site selection process, as well as pre-

vious analysis of the honeybee decision-making dynamics. We present results from

the perspectives of both biology and engineering that demonstrate how the bees be-

have and communicate to make efficient and accurate decisions. We also discuss

the decision-making dynamics of schooling fish that must choose between two food

sources, another example of an animal group using local communication to achieve

a collective decision. We then provide an overview of the theory of the pitchfork

bifurcations, a nonlinear phenomenon that is ubiquitous in animal decision-making

and models the remarkable ability of these animal groups to balance flexibility and

stability. We conclude Chapter 2 with a discussion of the six design considerations
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listed above. We discuss how the biological dynamics provide inspiration for system

design, based on these objectives.

In Chapter 3 we summarise important theory and definitions that are relevant

to this dissertation. In Section 3.2, we present our generalised, agent-based model,

as well as the proof that the model possesses a pitchfork bifurcation. The theorems

and associated proofs in Chapter 3 have been published in [40]. The work from [40]

presented in Chapter 3 was led by Alessio Franci, with contributions from Vaibhav

Srivastava and Naomi Leonard. It has been included in this dissertation because it

provides the foundation for the work that follows. In Section 3.3 we return to our

list of design considerations and discuss how aspects of these have been addressed

implicitly by the design of the agent-based model. From this point forward, this

dissertation represents my contributions to the project.

In Chapter 4 we present a method to reduce the model to a low-dimensional mani-

fold for special cases of graphs. The reduced model provides improved tractability, and

we use the low-dimensional model to analyse additional behaviours to those discussed

in the previous chapter. We discuss how knowledge of each of these behaviours can

be applied to the design of engineered systems that implement the decision-making

dynamics. In Chapter 5 we present results describing the effect of external informa-

tion on the outcome of the decision-making dynamics, and also how the position of

each agent impacts its influence on the group dynamics. We show that these results

persist in the presence of noise.

In Chapter 6 we design an adaptive feedback dynamic on the level of the social

effort parameter u which ensures that the group can always make a decision. The

adaptive dynamic can be ‘switched on’ when it is necessary for the group to reach a

decision, and we discuss how this switch can be triggered both internally by the system

or externally by environmental conditions or a human operator. This discussion leads

us to Chapter 7, where we implement the agent-based decision-making dynamics with
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a group of three simple robots that must choose which side of a space to drive to. We

performed four experiments with this robotic platform, which demonstrate some of

the behaviours discussed earlier in the thesis, as well as some ways in which a human

operator could interact with the system and control the behaviour at the high-level.

We conclude in Chapter 8 with some summarising remarks, as well as a discussion

of future directions for this work. We briefly discuss some related projects that have

already begun, as well as additional ideas for continuation of this project.
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Chapter 2

Background: Collective

decision-making organised by a

pitchfork bifurcation

In his book ‘A Honeybee Democracy’ [79] Thomas D. Seeley describes the work of

his academic predecessors Karl von Frisch [33] and Martin Lindauer [62], as well as

his own contributions, to our knowledge of the honeybee Apis mellifera and how

swarms of these bees behave and communicate in order to select a new nest-site. The

passion and delight of these men for their work is clear, and one can easily see why

we now have such a sophisticated and detailed knowledge of many aspects of this

decision-making process. We understand not only the characteristics and qualities,

but also the underlying mechanisms. This understanding places us in a powerful

position to leverage our understanding of honeybee decision-making dynamics for use

in engineered systems. The motive for this chapter is to describe the honeybee nest-

site selection process, the insights we draw from it, and how we can build on this

knowledge in an engineering context.
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2.1 The honeybee nest-site selection process

In this dissertation, the word ‘honeybee’ is used to describe the species Apis mellifera.

Reproduction of honeybees can be thought of as occurring at two levels; the queen

bee laying eggs to produce new workers, queens or drones, and the colony dividing

to produce new colonies. It is this colony-level reproduction that necessitates the

honeybee nest-site selection process. Roughly half of the existing colony stays behind

in the old nest, while the rest of the bees depart and must find a new home for their

new colony. The bees cluster around the new colony’s queen in a swarm and send

out scouts to search for nest-site candidates, which are typically cavities in trees.

The decision is time sensitive; the bees gorge themselves on honey before leaving and

do not feed again during the decision-making process, so they must choose within a

limited time-frame.

Over spring and summer the worker bees from a hive collect pollen to accumulate

food stores. During the colder months all bees must focus their energy on preserving

warmth in order to stay alive. They cluster together and use a contracting motion

of their flight muscles to produce heat, and rely on stored food for nourishment.

Appropriate nest selection is crucial to successfully enduring the winter, as character-

istics of the nest-site affect the bees’ chance of survival. A summary of their nest-site

preferences and the underlying reasons for them is given in Table 2.1. Typically the

honeybees prioritise sites that provide sufficient storage and shelter. We refer to how

well a site meets these priorities as the value or quality of the site, and use these

terms interchangeably. Poor nest-site selection can lead to the death of the colony

over winter, so the bees must make the high-valued choice accurately. In our agent-

based decision-making model, the value of the alternatives is represented by βi in

(1.1).

During the decision-making process some of the older worker bees, known as

scouts, leave the swarm to search for potential nest-sites and report back to the swarm
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Table 2.1: Table from [79], summarising the preferred nest-site qualities for honeybees.

with their discoveries. They perform a waggle dance, which is depicted in Figure 2.1,

to advertise the site they have just visited to the other bees. The bees walk in a

straight line while vibrating their abdomen, called a waggle run, and then loop back

around to repeat the movement. The duration of the waggle run is proportional to

the distance to the site, and the angle between the run direction and the direction of

gravity shows the heading direction of the site, relative to the sun. As discussed in [78,

80] there is some decay of the scouts’ commitment to their alternative, proportional

to their assessment of the quality of the site. When dancing for a high quality site, a

bee will perform more energetically and there will be more repetitions of the waggle

dance. Other scouts that witness the dance may fly off to investigate the site for

themselves, and also return to perform the waggle dance.

A decision for the chosen nest-site is made by quorum; quorum is a term from

parliamentary procedure that describes the minimum number of members of a delib-

erative body that must be present in order for the proceedings to be valid. A decision

is made in honeybee nest-site selection when a sufficient number of scouts are present

at a given site. That is, when the bees visiting a site observe a large number of

others, they return to the nest and communicate that a quorum has been reached.
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Figure 2.1: Figure from [79], depicting the waggle dance that is used by scout bees
to communicate the distance, direction and quality of a potential nest-site.

Thus, the bees do not require a majority or unanimity to make a selection; once a

quorum of dancers for a given site is reached, that site is chosen. The scouts produce

a particular ‘piping’ sound when the decision is made, and approximately one hour

later, the swarm takes off to inhabit the site that has been chosen. In [80], it is shown

experimentally that the swarms can reliably choose the best nest-site from among

alternatives. This high level of accuracy in choosing the highest valued alternative is

desirable in a decision-making process, and is therefore a characteristic that we want

to leverage for our decision-making model.

In [13], Brown et al. postulated that decisions between two alternatives in a human

brain can be thought of as competition between two populations of neurons, and that

there is cross inhibition between competing populations. We see a similar mechanism

in honeybee decision-making, which gives the bees an efficient way to deal with a

deadlock when choosing between two alternatives that are close in value. Choosing

an alternative when there is a clear winner is a matter of accuracy, but a reliable

decision-making process must also also allow for a decision to be made when the

alternatives are near equal. Decision-making between near-equal alternatives was

the subject of [81], where Seeley et al. showed that the honeybee nest-site selection

process also involves a form of cross inhibition. In addition to the waggle dance, bees

communicate via stop signalling. Neighbouring bees that are not committed to the

same site will head-butt a dancing bee and emit a vibrational signal from their head.
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Experimental results showed that the accumulation of stop signals will lead to a bee

abandoning their waggle dance. Assuming a well-mixed and large population, a model

for the proportion of bees committed to each alternative, as well as the uncommitted

population, was developed in [81] to study how stop signalling affects the decision-

making process. Seeley et al. showed that with low rates of stop signalling, the

presence of two equal alternatives will lead to a deadlock and no decision being made.

When the stop signalling is occurring at a high rate, the deadlock is broken and one

of the alternatives is chosen at random. The stop signalling allows the bees to make a

decision between equal alternatives. Thus, in addition to a high level of accuracy, the

nest-site selection process also possesses the necessary mechanisms to manage equal

alternatives when an outcome is non-trivial.

Population-level model

The population-level model from [81] was further analysed in [69], to find the critical

value of stop signalling required to break a deadlock between equal alternatives. The

model describes a population of total size N that can be divided into three subpop-

ulations, depending on their commitment or lack thereof to the two alternatives. NA

of the N agents are committed to site A, NB agents are committed to site B and NU

agents have no commitment. The fraction of the population for each of the subpop-

ulations are yA(t) = NA(t)
N

, yB(t) = NB(t)
N

, and yU(t) = NU (t)
N

. The model describes the

evolution of each subpopulations, and because NA+NB +NU = N , yA +yB +yU = 1,

and it suffices to study the evolution of the two committed populations only. The

model encodes the four mechanisms that will result in a change in subpopulation size:

dyA

dt
= γAyU − yA(αA − ρAyU + σByB)

dyB

dt
= γByU − yB(αB − ρByU + σAyA). (2.1)
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γi is the rate at which an uncommitted agent discovers and commits to alternative i.

αi is the rate of decay of the commitment of an agent to alternative i and represents

a return to the uncommitted subpopulation. ρi is the rate of recruitment of an

uncommitted agent by an agent committed to alternative i to that alternative, and σi

is the rate of stop signalling between agents with opposing commitment. The assessed

quality of alternative i is νi and, as discussed previously, the experimental results

of [78,80] show that the liveliness and duration of the waggle dance is proportional to

the assessed quality of the site. It is therefore assumed that γi = ρi = νi and αi = 1
νi

.

In [69], Pais et al. set σi = σ, and considered a quorum decision to be reached when

yA or yB crosses some threshold ω ∈ (0.5, 1].

Pais et al. showed that when νA = νB = ν, the critical rate of stop signalling

required to break deadlock is given by

σ∗ =
4ν3

(ν2 − 1)2
. (2.2)

This means that when σ < σ∗, the only option is for the deadlock to remain, but

when σ > σ∗, there are two options, which correspond to a decision for each of the two

alternatives. This transition between the number of possible outcomes (or equilibria)

is called a pitchfork bifurcation, a ubiquitous phenomenon in animal decision-making

between two alternatives [58]. At the critical value of stop signalling σ∗, known as

the bifurcation point, there is a transition from one stable outcome which corresponds

to a deadlock, to two stable outcomes which correspond to a decision for either

alternative, and the deadlock becomes unstable. In Section 2.3, we will discuss the

pitchfork bifurcation in detail, and present the associated theory that is relevant to

this dissertation.

The inverse relationship between the critical value of stop signalling σ∗ and the

assessed value ν given in (2.2) makes the breaking of deadlock sensitive to the value of
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Figure 2.2: Figure from [69] showing the inverse relationship (solid black curve) be-
tween the rate of stop signalling required to break a deadlock between equal alterna-
tives and the alternative value. The grey shaded area represents the parameter region
where there is one fixed point corresponding to the deadlocked decision, and the white
area represents the parameter region for which a decision for either alternative will
occur.

equal or near equal-valued nest-sites. The relationship between σ∗ and ν is shown in

Figure 2.2, where we see that for low values of ν the critical value σ∗ is high, but as ν

increases the critical value decreases. Let us consider this result in the context of the

honeybee decision-making. Although we are modelling a two-alternative decision, the

natural honeybee nest-site selection process typically involves multiple alternatives.

If the bees are choosing between two equally low-valued alternatives it would be

advantageous for the colony to delay making a decision in case a better alternative

can be found. If, however, the choice is between two high-value sites, there is no reason

to delay making the decision, and it can be made quickly. This inverse relationships

shows that the honeybee decision-making has the characteristics of being not only

efficient and accurate, but also sensitive to both the relative and absolute value of

the alternatives. We refer to the honeybee dynamics as value-sensitive; this term

describes how the relationship between the value of the alternatives and level of social

effort determines whether or not a decision is made. We know that a decision is made
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for σ > σ∗, and now we also see that the critical stop-signalling level σ∗ depends the

value of the alternatives ν.

Pertinent insights from the honeybee dynamics

We have now seen that the honeybee decision-making dynamics are efficient, accu-

rate and value-sensitive, and possess the necessary mechanisms to make a decision

when the two alternatives are equal. As discussed, the honeybee dynamics can be

modelled by a pitchfork bifurcation, which captures these characteristics, as well as

the remarkable ability of the dynamics to balance flexibility and stability in decision-

making between two alternatives, concepts that we broadly defined in Chapter 1. In

the context of the honeybee dynamics specifically, by flexibility we mean sensitivity

of the decision-making to small differences in the quality of the alternatives, which

can change with changing environmental conditions. By stability, we mean robust-

ness of the decision-making to unwanted disturbances. Since the results from [69,81]

show that these desirable characteristics of flexibility and stability arise from decision-

making that is organised by a pitchfork bifurcation, they motivate the design of an

agent-based model that inherits these advantageous features. In the next section

we consider decision-making dynamics from another animal group, which provided

additional insight and inspiration for our model.

2.2 Decision-making dynamics in schooling fish

In [18], Couzin et al. used numerical simulations to study a large school of fish deciding

between two food sources, when a subgroup of individuals have a prior preference for

one of the two alternatives. They modelled the evolution of the direction of each

fish, which is governed by rules requiring it to swim away from neighbours that are

too close, and swim towards neighbours that are too far away. They also performed
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experiments in which a number of fish were trained to swim towards one of the

two food sources, introducing a source of external information. They showed that

although the fish in the school are not aware of which individuals are or are not

‘informed’, the simple interactions described above are sufficient for the information

to be communicated to the group.

Couzin et al. performed experiments in which a school of fish must swim towards

one of two food sources. They first considered the case in which the informed in-

dividuals all prefer the same alternative. For large schools, only a small number of

informed individuals are required for the school to make an accurate decision, and to

choose the alternative favoured by the trained individuals. Additionally the propor-

tion of informed individuals required to ensure accuracy decreased with increasing

school size.

When they introduced a second group of informed individuals with a preference

for the other alternative, the decision-making dynamics also exhibited what appeared

to be a pitchfork bifurcation. They considered the symmetric case, where the number

of informed individuals for each alternative was equal. The apparent bifurcation

parameter was the difference in the preferred direction of the two informed groups.

When the degree to which the preferred directions differ was small, the school moved

in the average preferred direction; this is directly analogous to the deadlocked decision

in honeybees discussed in the previous section. As the difference in preferred direction

increased, the school selected one of the two directions with equal likelihood; the

two preferred directions become stables solutions and the average solution becomes

unstable.

Leonard et al. studied this symmetric case in [60], where it was shown that

adding uniformed individuals improves the stability of the collective decision-making.

Leonard et al. defined a continuous-time dynamic model with the same rules governing

the direction of the fish as in [18]. They showed that adding uninformed individuals
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with no preference increases the parameter region in which a decision is the only sta-

ble solution, and also lowers the critical value of the difference in preferred direction

that is required for a decision to be made. Adding more uninformed individuals was

shown to provide the same effect as increasing the strength of social interaction, and

made the system more robust to parameter variations.

Returning to [18], Couzin et al. showed that if the sizes of the groups of informed

individuals are unequal, the school will reliably choose the alternative favoured by

the majority. This is explained by a phenomenon called an unfolding of the pitchfork

bifurcation, which we will also discuss in Section 2.3 below.

Couzin et al. introduced further asymmetry in [17], where they investigated the

case in which the informed individuals have different preference strengths. They

found that a smaller number of individuals, or a minority, with stronger opinions

could dominate the school outcome over a majority group with weaker opinions when

no uninformed individuals were present. If uninformed individuals were added to

the school, the outcome of the decision could be returned to favouring the majority,

which Couzin et al. described as “inhibiting” the minority group, and “enforcing equal

representation”.

In [18], Couzin et al. postulated that because only a small number of informed

individuals was required to influence the school, having an uninformed population

may be advantageous if the presence of informed individuals is costly. From the

results of [17,60] we also know that the presence of uninformed individuals improves

the ability of the group to make decisions reliably. Leonard et al. showed in [60] that

adding uninformed individuals improves the stability of the decision-making process

to perturbation by enlarging the parameter region for which a decision is ensured.

The results presented in [17,18,60] are either from numerical simulations, or couple

the decision-making dynamics with the movement dynamics. These methods do not
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allow for easy translation to engineered systems, hence the design of our general,

agent-based model.

Pertinent insights from the schooling fish dynamics

The results from [17,18,60] provide another example of a group of animals that uses

decentralised communication to achieve a group-level consensus, and also of decision-

making dynamics that are organised by a pitchfork bifurcation. The schooling fish

dynamics also provide an example of how asymmetry in the system affects the under-

lying pitchfork bifurcation, leading to an unfolding of the pitchfork. We saw that in-

troducing different-sized informed subgroups, as well as different preference strengths

lead to a bias in the group, which was reflected in the outcome of the decision. Once

we have introduced our general decision-making model, we will analyse and quantify

the effects of asymmetry on the decision-making dynamics. We will return to the

results discussed in this section, particularly the effect of the total group and unin-

formed subgroup size on the dynamics throughout this thesis, as we see similar results

in the analysis of our model.

2.3 The pitchfork bifurcation

We have now seen several examples of decision-making dynamics in biological sys-

tems that display desirable characteristics, and that motivate further study of the

intricacies involved. In this dissertation we present a model that abstracts out the

fundamental properties of these decision-making dynamics and is general enough to

allow us to consider a range of applications. The feature that unites the decision-

making dynamics that we have seen is the pitchfork bifurcation, which appears in

this context as a change from indecision to decision based on a particular system

parameter. The bifurcation occurs at a singularity, and around this singularity there

22



is a heightened sensitivity to changes in parameters, which will allow us to model

the remarkable flexibility of the animal decision-making dynamics in their response

to environmental changes. Away from the singularity the bifurcation dynamics are

robust, which provides stability in the presence of disturbances. By deriving a model

that by design possesses a pitchfork bifurcation, we achieve the desired generalisabil-

ity while maintaining the chosen decision-making dynamics. In this section we review

the relevant bifurcation theory: for a broader understanding see [91] and [88].

Let us begin with the system

ẏ = g(y, u),

where y(t) ∈ R is the resulting trajectory and u ∈ R is a system parameter. From [53],

a point yeq is an equilibrium of the system if

g(yeq, ueq) = 0,

and yeq is a stable equilibrium if for each ε > 0 there exists some δ = δ(ε) > 0 such

that

||y(0)|| < δ =⇒ ||y(t)|| < ε.

An equilibrium point yeq is unstable if it it not stable, and it is asymptotically stable

if it is stable and

||y(0)|| < δ =⇒ lim
t→∞

y(t) = yeq.

The qualitative behaviour of a system is determined by the pattern of equilibria

(and/or periodic orbits) and their stability, as well as whether this behaviour persists

under small perturbations [53]. A bifurcation is a change in the qualitative behaviour

of the system as the parameter u is varied. This parameter is called the bifurcation
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parameter, and values of u at which the changes occur are called bifurcation points

(denoted u∗).

We can illustrate these changes in behaviour using a bifurcation diagram, such as

the one given in Figure 2.3, for the system g(y, u) = uy− y3. The diagram shows the

loci of the equilibria over a range of values of the bifurcation parameter u, as well as

the stability of the equilibria. Figure 2.3 shows a supercritical pitchfork bifurcation;

for u < u∗ = 0 there is one stable equilibrium point at y = 0, and for u > u∗ = 0

there are two stable equilibria at yeq = ±√u and one unstable equilibrium point at

yeq = 0. At u = 0, yeq = 0 is a singular point since dg
dy

∣∣
0,0

= 0. This point is still

stable, but the flow towards it is very slow.

Figure 2.3: Bifurcation diagram of a supercritical pitchfork bifurcation for the system
ẏ = uy− y3. The solid blue lines represent stable equilibria, and the dashed red lines
are unstable equilibria. We see that the bifurcation point is at u = u∗ = 0.

When we consider bifurcations in systems with a higher dimensionality, we use

methods that allow us to reduce the number of dimensions while still considering the

salient behaviours [88]. The centre manifold theorem [42, Theorem 3.2.1], tells us

that if f is a vector field on RN , then there are three invariant manifolds W s, W u

and W c that are tangent to the stable, unstable and centre eigenspaces respectively.

The stable (unstable) eigenspace corresponds to the negative (positive) eigenvalues,

while the centre eigenspace corresponds to eigenvalues with zero real parts [91]. If
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we assume that there are no unstable eigenvalues, the flow will converge along the

stable manifold to the centre manifold and, if this is two-dimensional, we can use

the above bifurcation theory. In this dissertation, the method used to find a two-

dimensional approximation to the system is called the Lyapunov-Schmidt reduction,

and an approachable explanation is given in the first chapter of [35]. This method

involves considering solutions of the N -dimensional system

ẋ = f(x, u)

locally around an equilibrium. We are considering the solutions of f(x, u) = 0. The

Jacobian is the matrix of first-order partial derivates with Jij = dfi
dxj

. If the Jacobian

of the system at this point is minimally degenerate (having rank N−1) we can divide

the solutions into two sets of equations

Ef(x, u) = 0 (2.3a)

(I − E)f(x, u) = 0, (2.3b)

where E is the projection of RN onto the range of the Jacobian, and I − E is the

complementary projection. (2.3a) can be solved for N − 1 of the variables, which are

then substituted into (2.3b) to give the desired one-dimensional equation, g(y, u) = 0.

g(y, u) = 0 gives the equation for the bifurcation diagram for the reduction of the

N -dimensional system f(x, u).

The normal form of a bifurcation is a simplified form of the system that readily

allows for analysis of the system behaviour. For example, the supercritical pitchfork

bifurcation has the normal form ẏ = uy − y3. In order to prove that our system

exhibits a pitchfork bifurcation, we can prove that our system is equivalent (exhibits

qualitatively similar behaviour) to this normal form using singularity theory [35]. The

singular point of g(y, u) = 0 (a point at which the Jacobian has a zero eigenvalue) is
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the bifurcation point (y∗, u∗), and as shown in [35, Chapter II] if we can show that

g(y∗, u∗) = gy(y
∗, u∗) = gyy(y

∗, u∗) = gu(y
∗, u∗) = 0

and

gyyy(y
∗, u∗) > 0, guy(y

∗, u∗) < 0

then our system is equivalent to the normal form of a pitchfork bifurcation. Here,

gy = dg
dy

and similar for higher orders. This method is the basis for the proof of

Theorem 1. The theorem is presented in Chapter 3 and the proof can be found in

Appendix A.

Figure 2.4: From [35], a universal unfolding of the pitchfork bifurcation. Any per-
turbation to the system will lead to one of the four topologically distinct bifurcation
diagrams.

The pitchfork bifurcation shown in Figure 2.3 is a symmetric pitchfork; and is

invariant under the transformation y 7→ −y. Small perturbations to the system

near the singularity will produce changes in the qualitative behaviour, but a powerful

aspect of bifurcation and singularity theory is that we can still characterise all possible
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behaviours in the presence of these small perturbations. An unfolding is a behaviour

that arises from any small perturbation to the system near the singularity. From [35],

we can define a universal unfolding, G(y, u,α). A universal unfolding for a pitchfork

bifurcation is given by

G(y, u,α) = y3 − uy + α1 + α2y
2, (2.4)

and there are just four possible topologically distinct behaviours, as shown in the plot

of the α1, α2 plane in Figure 2.4. Here, α1 and α2 are the unfolding parameters, and

they determine the shape of the bifurcation diagram. Any perturbation of g(y, u) is

equivalent to (2.4) for small α, and can be captured by some combination of α1 and

α2.

In Figure 2.5 we reproduce the symmetric pitchfork of Figure 2.3 with a horizontal

scaling, along with an unfolding from Region (2) of Figure 2.4 overlaid. We can

observe that around the singular point y = 0, u = 1, the unfolded diagram is very

different to the symmetric pitchfork, while away from this point the diagrams are

similar. Close to the singular point, the behaviour of the bifurcation diagram is

very sensitive to parameter changes and this is reflected by the differences between

the diagrams. By inspection of (2.4), we see that close to y = 0, the α1 term,

which is one of the unfolding parameters, will dominate the equation. Far away from

y = 0, the dominant term of (2.4) will be the y3 term, which is not affected by the

unfolding parameters, hence the similarity of the diagram to the symmetric pitchfork.

This observation will prove important in our discussion of the flexibility and stability

properties of dynamics that are organised by a pitchfork bifurcation.

We can see from Figure 2.4 that over a range of the α parameters, we will see

a variety of qualitative system behaviours. We also know that all these behaviours

will occur within a small neighbourhood of α = 0. As described in [35, Chapter I],
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Figure 2.5: Bifurcation diagram of a symmetric supercritical pitchfork bifurcation
(transparent), with the unfolding from region (2) of Figure 2.4 (opaque) overlaid.
The solid blue lines represent stable equilibria, and the dashed red lines are unstable
equilibria.

an organising centre is an equation that occurs in a model for certain values of pa-

rameters such that most of the system behaviours can be observed within a small

neighbourhood of these values. In other words, most of the bifurcation diagrams that

arise from the dynamics we are describing are captured by a universal unfolding of

this equation. We take inspiration from this concept for our design methodology. The

generalised dynamics that we present model the behaviour of the honeybee dynamics,

and also allow us to consider the role of uninformed individuals that was observed in

the schooling fish. By taking the model through a time-scale change, we also present

a system that can be easily implemented in engineered systems, and allows us to

consider design problems. The model is relevant both to the study of the biological

systems, and also design of dynamics for engineered systems. The model provides

an ‘organising centre’ that allows us to translate insights between these settings. For

another example of work that takes inspiration from the concept of organising centres

for system design, see [30].
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2.3.1 The flexibility-stability trade-off

We defined the flexibility-stability trade-off in Chapter 1 and discussed in Section 2.1

how the honeybee nest-site selection process performs remarkably in the flexibility-

stability trade-off. The sensing and communication tasks that make up the decision-

making process are carried out by individual bees, and will likely involve some error,

but the process remains stable. Additionally, the bees reliably make a decision when

there is a clearly superior alternative and also when there are alternatives that are

nearly equal. The dynamics are also flexible, due to the apparent value-sensitivity of

the bees to both the relative and absolute values of the alternatives.

The trade-off between flexibility and stability, as well as successful realisation of

both properties is widely studied in neurophysiological systems, where it has been

shown that the nervous system can produce stable behaviour despite perturbations

but also respond flexibly to component variation [63]. Nonlinear models that allow

for both flexibility and stability can be found in [19, 20, 28], but little work has been

done to understand this trade-off in other settings.

Now that we have an overview of the pitchfork bifurcation theory, we can begin

to understand how it models the ability to cope with both unwanted disturbances

and legitimate perturbations, and allows us to translate the favourable properties

of honeybee nest-site selection to our system. As we saw in the previous section, a

universal unfolding of a pitchfork captures the four possible ways in which a system

can change in response to disturbance, so there are a finite number of predictable

behaviours. Recall from Section 2.3, we discussed how the behaviour of the unfolding

of the pitchfork bifurcation is very different to the symmetric bifurcation close to the

bifurcation point, and very similar to the symmetric bifurcation far away from the

bifurcation point. This effect, which is illustrated in Figure 2.5, shows how systems

that exhibit a pitchfork bifurcation are highly sensitive to parameter changes around

the bifurcation point, and highly robust to changes far away from the bifurcation
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point. This is an important concept that we will return to throughout this dissertation

and we will see numerous examples that illustrate this behaviour.

The discussion of the flexibility and stability of our proposed model is continued

in Chapter 3, where we describe further how the pitchfork bifurcation allows for an in-

herently successful performance in the flexibility-stability trade-off. Throughout this

thesis, as we continue to investigate the behaviour of our agent-based model, we will

return to these notions of flexibility and stability. We will see how the new behaviours

of the model that we have analysed further contribute to successful performance in

this trade-off.

2.4 Design of engineered systems

The honeybee decision-making dynamics described in this chapter provide inspira-

tion for our agent-based model, which can be applied to engineering applications that

require network-level decision-making among alternatives. As outlined in previous

sections, we have a deep understanding of the desirable qualities of the honeybee

decision-making dynamics, as well as the underlying mechanisms that can produce

these outcomes, and we may now apply them to our dynamics. The collective decision-

making model presented in this thesis was designed to accomplish two main aims:

both to leverage the successful mechanisms of the nest-site selection process for ap-

plication in engineered systems and also to ask further questions about the biological

decision-making dynamics. In this dissertation, we focus on the former aim, and in

particular on how the insights gained as we study the model can be applied to the

design of engineered systems. We are not confined by the intrinsic parameter regimes

of the natural systems, and we can explore new possibilities in the engineering setting.

Let us now return to the example of a robotic search and rescue task, and discuss

the design considerations and objectives that would arise when applying decision-
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making dynamics to this multi-agent system, as well as the sources of inspiration

from the biological dynamics and the tools from engineering that we will use to

address these objectives.

Transition from deadlock to decision: When we introduced the example of search

and rescue task, we discussed a study by Jennings et al. [51] in which the robots were

required to autonomously transition between performing search tasks separately, and

rescue tasks collectively. In the honeybee decision-making dynamics, we saw that it

is crucial that the honeybees reach a group decision, and that they use stop signalling

to break a deadlock between near equal alternatives. The stop signalling facilitates a

transition from deadlock to decision, and we use a similar parameter in our model. It

was postulated in [69] that the rate of stop signalling might gradually increase over

time, to ensure that the bees reach a decision. We take inspiration from this to design

an adaptive feedback dynamic which ensures a decision is made.

Flexibility-stability trade-off : Robotic agents performing a search and rescue task

will likely operate in an uncertain environment, and therefore successful performance

in the flexibility-stability trade-off is a key requirement. When searching for signs of

human life it is crucial that the robotic agents do not overlook true signals, but the

task is also time-sensitive so the system cannot afford to be constantly disrupted by

false signals. As we have seen, decision-making dynamics organised by a pitchfork

bifurcation possess an innate ability to balance flexibility and stability, and this is a

quality that our model should also possess. We use the tools of nonlinear systems

analysis [41] and bifurcation analysis via singularity theory [36] to demonstrate that

our model possesses a pitchfork bifurcation, and therefore the associated flexibility

and stability properties.

Influence of the network structure: If the search and rescue task is being carried

out in response to a natural disaster, there will likely be limitations on, or disruption

of, communication. To ensure successful performance despite these limitations, it is
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crucial to know how the communication network will affect the system performance

and behaviour. The previous population level models of the honeybee dynamics

studied in [69, 81] do not accommodate examination of the role of communication

networks, and do not allow easy translation of the mechanisms from the honeybee

dynamics to a multi-agent system. The agent-based model presented in this thesis

considers a group of agents arranged in a communication network, and allows us to

encode a network structure into the model. We can then analyse the effect of the

network structure on system performance using graph theory [64], which will inform

design decisions when implementing the decision-making model.

The role of heterogeneity in the system: A robotic search and rescue system may

consist of heterogeneous agents with differing sensors and communication abilities,

which must all be incorporated into the group dynamics. Also, in some cases, hetero-

geneity in a system can be advantageous; if sensing equipment is costly then we may

wish to design a system in which agents are fitted with varying qualities of sensors.

Additionally, in [17,60], the authors showed evidence that adding uninformed individ-

uals to the group returned the decision-making dominance to a majority, which was

previously dominated by a minority with stronger opinions. We will investigate the

role of heterogeneity in our model. Adding heterogeneity to the system adds complex-

ity, which can limit our abilities to analyse the dynamics. We can use tools such as

the centre manifold theorem [41], the Lyapunov-Schmidt reduction [36] and LaSalle’s

invariance principle [53] to describe the behaviour of complex, high-dimensional sys-

tem in lower dimensions. We can perform the necessary analysis while maintaining a

level of complexity in the original system that allows us to consider heterogeneity.

Effect of system parameters : In addition to designing systems that balance flex-

ibility and stability, we can improve the performance of our engineered systems by

developing a strong understanding of how system parameters affect the behaviour. As

we discussed in Section 2.1, during the honeybee decision-making process the rate of
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stop signalling between bees determines whether or not a decision is made when the

swarm is choosing between two alternatives of equal value. As shown in [69] the rate

of stop signalling required to break a deadlock is inversely proportional to the value

of the two alternatives. This value-sensitivity would allow the bees to delay making

a decision when they are choosing between two equally low-valued alternatives, and

make a decision quickly when choosing between high-valued alternatives. In a search

and rescue task, it would be advantageous to design decision-making dynamics that

lead to a quick decision when the agents have a high level of confidence in their sen-

sor measurements, but can delay making a decision when their confidence level is

low. We can use techniques from applied mathematics such as asymptotic expansion

and spectral analysis to improve our understanding of how system parameters affect

the behaviour, and how we can design system dynamics that take advantage of the

properties that we discover.

Incorporating human interaction: As discussed in Chapter 1, humans taking

part in the search and rescue task should be able to interact with the robotic

system in a manner that takes advantage of our superior cognitive abilities, without

overburdening the human operator with unnecessary decisions and responsibilities.

This design consideration has no parallel in the honeybee decision-making dynamics,

and requires us to think beyond the biology. We implement our decision-making

dynamics in a small robotic network, and the results of these experiments allow us to

think about how human operators could control system behaviour through simple,

high-level interactions.

In this chapter we have learnt of the sources of inspiration for the agent-based

model for collective decision-making presented in this thesis; the dynamics of house-

hunting honeybees and schooling fish. We have discussed the pitchfork bifurcation,

which is ubiquitous in two-choice animal decision-making, and models the abilities
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of these animals groups to perform successfully in the flexibility-stability trade-off.

In the next chapter we describe our generalised decision-making model and show

that, by design, it possesses the pitchfork bifurcation. We see that some of the

design considerations mentioned here are addressed by the inherent properties of the

dynamics, while others require further study.
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Chapter 3

The agent-based model for

collective decision-making

In this chapter we provide the theory, terms and notation that are relevant for this

thesis. We then present the generalised, agent-based model for collective decision-

making, and prove that it exhibits a pitchfork bifurcation. The model was first

presented in [31] by Alessio Franci, Vaibhav Srivastava and Naomi Ehrich Leonard,

who together formed the idea and approach for the model and derived the model along

with an early version of the proof that it contains a pitchfork bifurcation. In my work

I have analysed, extended and applied the model in various contexts, and aspects of

my work have been published in [39] and [40]. I was the lead author for [39] and the

lead contributor to the analysis, results, discussion and writing. Alessio Franci and

Vaibhav Srivastava provided the proof that a specialised case of the model contains

the pitchfork bifurcation which is presented here as Corollary 2, and along with Naomi

Ehrich Leonard contributed to and provided guidance for all aspects of the work. I

was the joint lead author for [40] along with Alessio Franci. Alessio Franci was the

lead contributor to the sections discussed in this chapter, in particular Theorems 1
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and 3 and the associated proofs given in Appendix 1. Vaibhav Srivastava and Naomi

Ehrich Leonard provided guidance and contributed to all aspects of the work.

In the following chapter, in Section 3.2, the mathematical description of the vari-

ables, the model, its extensions and Theorem 1, Corollary 2 and Theorem 3 are taken

verbatim from [40], and were mostly written by Alessio Franci. Figure 3.5 was cre-

ated by myself for [40] and Figure 3.3 is original. All other sections as well as some

explanations and discussion in Section 3.2 are original.

3.1 Relevant theory, terms and notation

We wish to consider a group of N individuals performing a decision-making task

together, and we refer to each member of the group as an agent. Some examples of

possible agents are honeybees, fish, or robots in a sensing network. Throughout the

decision-making process, we keep track of the opinion of each agent, i ∈ {1, . . . , N},

which is represented as a state variable xi ∈ R. Information about who communicates

with whom is encoded into the model through network representation.

Network representation and theory

For a network of N agents, agent i is able to measure the opinion of agent j if there

is a directed edge in the network from agent i to agent j, in which case we say that

j is a neighbour of i. This information is encoded in a network adjacency matrix A.

We define the entries of A using the following rules:

aij =


0 if j is not a neighbour of i, and for j = i

1 if j is a neighbour of i.

We use network diagrams to visually represent a network, such as the network de-

picted on the far right of Figure 3.5. We use the convention that an arrow directed

36



from agent i to agent j means that agent i is sensing agent j. Small black arrows

represent individual communication, and block white arrows represent all-to-all com-

munication between subgroups of agents.

We define D, a diagonal matrix with entries di, known as the degree of each

agent. We use di =
∑N

j=1 aij, known as the in-degree, and
∑N

i=1 aij is the out-degree.

A network is undirected if for every i, j ∈ {1, ..., N}, aij = aji, and directed if this is

not the case. If the in-degree and out-degree are equal, a network is balanced, which

is always the case for an undirected network. A directed network is connected if there

exists a directed path (sequence of directed edges) between each pair of nodes, and

is strongly connected if there are directed paths in both direction between each pair.

An all-to-all graph, also known as a complete graph, contains undirected edges that

connect all nodes.

L = D − A is the Laplacian matrix of the graph; it is a powerful tool for the

analysis of a network’s performance in consensus tasks. If we consider the linear

consensus dynamic

ẋ = −Lx, (3.1)

because each di =
∑N

j=1 aij, every row of the network Laplacian will sum to zero,

so therefore the matrix L will have a zero eigenvalue corresponding to the (right)

eigenvector ζ1N , with ζ ∈ R. If the network represented by L is strongly connected,

there will be only one zero eigenvalue; this means that ζ1N is in the nullspace of L, so

the dynamics (3.1) will converge to a consensus [23, 66]. Additionally, the remaining

N − 1 eigenvalues of a strongly connected Laplacian L are positive.

We will also refer to the left eigenvector of L corresponding to the null eigenvalue

often throughout this thesis, which we denote vT1 . We use the result that vT1 1N 6= 0,

which we will now prove here. Again assuming a strongly connected graph, we may

37



write the Laplacian matrix L in Jordan normal form [87] J = PAP−1, such that

J =

λ1 0

0 M

 ,
where M is a matrix of the Jordan blocks for the remaining N − 1 eigenvalues. We

know that vT1 = eT1 P
−1 and 1N = Pe1, where ei is the i-th vector of the standard

basis for RN . Therefore

vT1 1N = eT1 P
−1Pe1

= 1 6= 0. �

Henceforth, the vector vT1 is normalised such that vT1 1N =
√
N .

Types of bifurcation diagram

Figure 3.1: Left: Bifurcation diagram of a supercritical pitchfork bifurcation. Right:
Bifurcation diagram of a subcritical pitchfork bifurcation. For both diagrams the
solid blue lines represent stable equilibria, the dashed red lines are unstable equilibria
and the bifurcation point is at u = u∗ = 0.

In addition to the supercritical pitchfork bifurcation described in Chapter 2 we

will encounter other types of bifurcation in this thesis, which are summarised here.

Another form of pitchfork bifurcation is the subcritical pitchfork bifurcation, which
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has the normal form ẏ = uy + y3. Unlike the supercritical pitchfork, where there is a

change from one stable equilibrium, to two stable and one unstable equilibria at the

bifurcation point, the subcritical pitchfork involves a change from one stable and two

unstable equilibria to one unstable equilibrium. The two pitchfork bifurcations are

shown side-by-side in Figure 3.1.

Figure 3.2: Left: Bifurcation diagram of a saddle-node bifurcation. Right: Bifurcation
diagram of a transcritical bifurcation. For both diagrams the solid blue lines represent
stable equilibria, the dashed red lines are unstable equilibria and the bifurcation point
is at u = u∗ = 0.

A saddle-node bifurcation has the normal form ẏ = u+y2, and is characterised by

the appearance of one stable and one unstable node at the bifurcation point. Prior to

the bifurcation point there are no equilibria. A saddle-node bifurcation is depicted in

Figure 3.2 (left). A transcritical bifurcation has the normal form ẏ = uy− y2, and as

shown in Figure 3.2 (right) the two equilibria persist before and after the bifurcation

point, but exchange stabilities. As shown in Chapter 4, under certain parametric

conditions our model will produce bifurcation behaviour that is a combination of

these types of bifurcation.
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3.2 A model for agent-based decision-making

organised by a pitchfork singularity

3.2.1 Inspiration for the agent-based model

In Chapter 2, we discussed a population-level model for the honeybee decision-making

dynamics between two alternatives, which was analysed in [69, 81]. This model as-

sumes a large well-mixed population, where each agent can interact with all others,

and describes the evolution of the proportion of the population that is committed

to a given alternative, or uncommitted. The model presented in this chapter, and

studied for the remainder of this thesis, is agent-based and describes the evolution

of the opinion of each agent in the decision-making group. The agent-based model

allows us to encode the network structure and heterogeneity into the system, and to

understand the dynamics of individual agents. The model is a specialisation of the

Hopfield network model [45,46], a neural network model that modifies the communi-

cation between the two neurons by an odd sigmoid function. The sigmoid function

introduces the required symmetry and non-linearity for the model to exhibit a pitch-

fork bifurcation; without it our model reduces to the linear consensus dynamic (3.1).

3.2.2 The agent-based model

To describe decision-making between two alternatives A and B, let xi ∈ R, i ∈

{1, ..., N}, be the state of agent i, representing its opinion. Agent i is said to favour

alternative A (resp. B) if xi > 0 (resp. xi < 0), with the strength of agent i’s opinion

given by |xi|. If xi = 0, agent i is undecided. The collective opinion of the group

is defined by y(t) = 1
N

∑N
i=1 xi(t). Let yss and xss be steady-state values of y(t) and

x(t) = [x1, . . . , xN ]T , respectively. As proved in Theorem 1 below, the existence of

40



yss and xss is ensured by the boundedness of trajectories and the monotonicity of the

proposed model.

Let the group’s disagreement δ be defined by δ = |yss|− 1
N
‖xss‖1, where ‖·‖1 is the

vector 1-norm. If each entry of xss has the same sign, then there is no disagreement,

i.e., δ = 0. We say that the group’s decision-making is in deadlock if either xss = 0

(no decision) or δ 6= 0 (disagreement). A collective decision is made in favour of

alternative A (resp. B) if δ = 0 and yss > η (resp. yss < −η), for some appropriately

chosen threshold η ∈ R>0.

We model the rate of change in state of each agent over time as a function of the

agent’s current state, the state of its neighbours, and a possible external stimulus νi:

dxi
dt

= −uIdixi +
N∑
j=1

uSaijS(xj) + νi. (3.2)

Here, νi ∈ R encodes external information about an alternative received by agent i,

or it represents the agent’s preference between alternatives (we will use “information”

and “preference” interchangeably). We let νi ∈ {νA, 0,−νB}, νA, νB ∈ R+. If νi = νA

(resp. νi = −νB) agent i is informed about, or prefers, alternative A (resp. B). If

νi = 0 agent i receives no information or has no preference. uI > 0 and uS > 0 are

control parameters and S : R→ R is a smooth, odd sigmoidal function that satisfies

the following conditions: S ′(z) > 0, ∀z ∈ R (monotone); S(z) belongs to sector

(0, 1]; and sgn(S ′′(z)) = −sgn(z), where (·)′ denotes the derivative with respect to

the argument of the function, and sgn(·) is the signum function.

The control uI can be interpreted as the inertia that prevents agents from rapidly

developing a strong opinion. The term uSaijS(xj) can be interpreted as the opinion

of agent j as perceived by agent i. Since S(x) is a saturating function, opinions of

small magnitude are perceived as they are, while opinions of large magnitude are
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perceived as saturating at some cap. The control uS represents the strength of the

social effort : a larger uS means more attention is paid to other agents’ opinions.

Let ν = (ν1, . . . , νN)T , and S(x) = (S(x1), . . . , S(xN))T . Then (3.2) can be

written in vector form as

dx

dt
= −uIDx+ uSAS(x) + ν. (3.3)

To simplify notation, we study (3.3) using a time-scale change s = uIt. We denote

x(s) by x and dx/ds by ẋ. Let u = uS/uI , βi = νi/uI , βA = νA/uI , βB = νB/uI and

β = (β1, . . . , βN)T . Then each βi ∈ {βA, 0,−βB} and (3.3) is equivalent to

ẋ = −Dx+ uAS(x) + β. (3.4)

To provide intuition for the model, let us consider the simplest possible network of

two agents, depicted in the Figure 3.3. We model the interaction between these agents

in the block diagram shown in Figure 3.3 (top). Each agent receives information

about the environment via a scalar parameter βi and a negative feedback on the

agent’s own opinion which drives the opinions back towards zero and prevents a large

opinion developing quickly. In addition, there is a positive feedback of information

about the opinion of its neighbour via the function block uS(xi). The sigmoidal

term S(xi) has a saturating effect on how the agent’s opinion is perceived, and the

parameter u modulates the size of this effect. The effect of the function block uS(xi)

is illustrated in Figure 3.3 (bottom). We plot nullclines of this system for β = 0

with S(·) = tanh(·), and we see that for small u and u < 1 we have one intersection

at zero which represents a deadlock (no decision). The negative feedback, shown in

blue is dominant and drives the opinions back towards zero. As u is increased the

positive feedback in red destabilises the deadlock solution and we see the appearance

of two more equilibria representing a decision for the one of the two alternatives. The
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Figure 3.3: Top: Block diagram of our decision-making dynamics for two agents. The
blue lines represent negative feedback, and the red lines represent positive feedback.
Bottom: Nullclines for the system; we see that for u < 1 there is one intersection and
therefore one equilibrium, and for u > 1 there are three intersections that correspond
to two stable and one unstable equilibria. Here S(·) = tanh(·).

function block uS(xi) is the source of nonlinearity in the model; it is because of this

term that we see the pitchfork bifurcation.

With β = 0, the linearisation of (3.4) at u = 1 is the linear Laplacian consensus

dynamic x = −Lx. As discussed previously, for a fixed and strongly connected net-

work, L has one zero eigenvalue with the vector ζ1N as the corresponding eigenspace.

For dynamics (3.4) with β = 0, ζ = y, the average opinion. This vector corresponds

to the subspace {xi = xj | i, j ∈ {1, ..., N}}, which we refer to as the consensus man-

ifold. Dynamics (3.4) are designed to exhibit a symmetric pitchfork bifurcation in

the uninformed case β = 0, with the additional requirement that the two stable
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x i

− x j u

x i = x j

Figure 3.4: For u = 1 and β = 0, dynamics (3.4) exhibit a pitchfork bifurcation at
x = 0. The steady-state branches emerging at the singularity lie on the consensus
manifold {xi = xj | i, j ∈ {1, ..., N}} shown in grey. Branches of stable and unstable
solutions are shown as solid and dashed lines, respectively.

steady-state branches emerging at the pitchfork do so along the consensus manifold.

In other words, we have designed dynamics (3.4), equivalently dynamics (3.3), with

β = 0 as a model of unanimous collective decision-making between two alternatives.

It follows from the center manifold theorem [41, Theorem 3.2.1] that (3.4) possesses

a one-dimensional invariant manifold that is tangent to the consensus manifold at

the origin. On this manifold, the reduced one-dimensional dynamics undergo a bi-

furcation, which, by odd (that is, S2) symmetry of (3.4) with β = 0, will generically

be a pitchfork [35, Theorem VI.5.1, case (1)]. A geometric illustration for N = 2

with β = 0 is given in Figure 3.4. The grey plane represents the consensus manifold

xi = xj on which the steady-state bifurcation dynamics evolve.

For β 6= 0 there is an additional term in the linearisation and the opinion values

x 6= ζ1N . For sufficiently small β the opinions remains close to ζ1N , and we say that

the consensus manifold has been perturbed.

A note on Z2 and S2 symmetry

Several results in this thesis rely on the Z2 symmetry of our dynamics. On R, the

group Z2 can be represented by the set {1,−1}, where the element 1 maps y ∈ R

to y and the element −1 maps y ∈ R to −y. When we say our dynamics are Z2

symmetric, we imply that they are invariant under the transformations that result
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from the action of the Z2 group. Our model is Z2 symmetric because it is odd

symmetric. In our modelling approach, we represent the alternative A by positive

values and the alternative B by negative values, so multiplying by the element −1

corresponds to swapping the alternatives.

The finite symmetric group S2 is the set of permutations that can be performed

on a set of two symbols, and has two elements: the identity and the element that

swaps the two symbols. S2 is isomorphic to Z2 (from an abstract group theoretical

perspective, they are the same order-two group generated by {e, a}, where e is the

identity and a2 = e). From an option permutation perspective, our model is thus

both S2 and Z2 symmetric, and we may use these terms interchangeably.

3.2.3 A pitchfork bifurcation by design in generic networks

A preliminary version of the following theorem can be found in the preprint [31].

Theorem 1. [40] The following hold for the dynamics (3.4) where the graph is fixed

and strongly connected:

i. For β = 0, x = 0 is globally asymptotically stable if 0 < u ≤ 1, and locally

exponentially stable if 0 < u < 1.

ii. Let g(y, u,0) be the Lyapunov-Schmidt reduction of (3.4) at (x, u) = (0, 1) for

β = 0. The equilibria satisfying g(y, u,0) = undergo a symmetric pitchfork

singularity at (x∗, u∗) = (0, 1). For u > 1 and |u − 1| sufficiently small the

Jacobian of (3.4) at x = 0 possesses a single positive eigenvalue and all other

eigenvalues are negative. The (N−1)-dimensional stable manifold separates the

basins of attraction of the other two steady states bifurcating from the pitchfork,

which attract almost all trajectories. Further, the steady-state branches bifur-

cating from the pitchfork for u > 1 are exactly the origin and ±ys1N , where

{0,±ys} are the three solutions of the equation y − uS(y) = 0, u > 1.
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iii. For β 6= 0, the solutions to g(y, u,β) = 0 undergo an N-parameter unfolding of

the symmetric pitchfork. Moreover ∂g
∂βi

(0, 1,0) = vT1 ei, where vT1 is a null left

eigenvector of L and ei is the i-th vector of the standard basis of RN .

The proof for Theorem 1 can be found in Appendix 1. Theorem 1 proves that

dynamics (3.4) possess a pitchfork bifurcation, and therefore the associated qualities

of decision-making dynamics that are organised by this phenomenon. When β =

0, there is a symmetric pitchfork bifurcation, and for u > u∗ there are two stable

solutions that represent a decision for either of the two alternatives. For β 6= 0 we

see an unfolding of the symmetric pitchfork.

Figure 3.5: Figure taken from [40]. Left: the four persistent bifurcation diagrams
of a universal unfolding of the pitchfork in model (3.4), for the network shown on
the right. Blue lines are stable solutions and red lines unstable solutions. Right:
Hysteresis behaviour in the unfolding of the pitchfork. The graph topology and the
distribution of βi values is represented by the node colour, with βA = 5 and βB
varying. White arrows represent all-to-all directed connections from one population
to another and u = 1.5.

Figure 3.5 (left) shows the four persistent bifurcation diagrams in a universal

unfolding of the pitchfork in dynamics (3.4) for the network shown on the far right.

The agents in green have information value βA, for alternative A, and the agents in

pink have information value βB, for alternative B. As stated in Theorem 1, part (iii),

the scalar representation of dynamics (3.4), g(y, u,β), is an N -parameter unfolding
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of the symmetric pitchfork. By changing the values of βA and βB, we can reproduce

the four diagrams from Figure 2.4. β enters dynamics (3.4) linearly, so most often

we will see diagrams I and II. However, asymmetry due to the network structure also

causes an unfolding, and we can exploit this to realise the remaining two diagrams. In

order to move throughout all regions of Figure 2.4, we must manipulate both the α1

and α2 parameters. Due to the formulation of (3.4) we can only change α1 explicitly

via changing β. We can implicitly manipulate α2 by changing the network structure

and information distribution, but we don’t have an analytical relation to guide us.

Figure 3.5 (right) shows the hysteresis that occurs when we fix βA and u and vary

the value of βB. Let us begin at in the bottom left corner of Figure 3.5 (right), close

to (0, -1). Here, βA = βB, but due to asymmetry in the network structure, y = −1

and alternative B is preferred. The bifurcation diagram would look like diagram I in

Figure 3.5 (left). As we decrease βB and move to the right in Figure 3.5 (right), close

to (1, -1), the bifurcation diagram would change to look like diagram II of Figure 3.5

(left). Although the positive branch of II has become stable for low u values, due

to the bistability of solutions we remain on the negative branch. As we continue to

increase βA − βB, and move to the far right of Figure 3.5 (right), the saddle node

that creates the negative branch in II also moves to the right, until eventually there is

only one stable equilibria for the current value of u. At this point the solution jumps

to the positive branch of II and the upper branch in Figure 3.5 (right). We see this

effect in reverse as βB increases. What this means for dynamics (3.4) is that once a

decision has been made for an alternative even if there are small perturbations to the

perceived alternative values, the decision will persist. However, if there are significant

changes to the alternative values, the dynamics will respond by making a different

decision. This hysteresis behaviour contributes to the robustness of the dynamics, as

we will discuss below. As shown in [69], the same hysteresis behaviour was observed

for the population-level model of the honeybee decision-making dynamics.
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All-to-all networks

In an all-to-all network and β = 0, the dynamics (3.4) specialize to

ẋi = −(N − 1)xi +
N∑

j=1,j 6=i

uS(xj), (3.5)

and Theorem 1 holds globally in u and x.

Corollary 2. [40] The following statements hold for the stability of invariant sets of

dynamics (3.5):

i. The consensus manifold {xi = xj | i, j ∈ {1, ..., N}} is globally exponentially

stable for each u ∈ R, u ≥ 0;

ii. x = 0 is globally exponentially stable for u ∈ [0, 1) and globally asymptotically

stable for u = u∗ = 1;

iii. x = 0 is exponentially unstable and there exist two locally exponentially stable

equilibrium points ±ys1N for u > 1, where ys > 0 is the positive non-zero

solution of −y + uS(y) = 0. In particular, almost all trajectories converge to

{ys1N} ∪ {−ys1N} for u > 1.

The proof for Corollary 2 can be found in Appendix 1.

3.2.4 A pitchfork bifurcation with heterogeneous u

We consider an extension of model (3.4) that will be important in the adaptive bi-

furcation control setting analysed in Chapter 6. We let the social effort parameter u

be heterogeneous across the agents by considering the decision dynamics

ẋ = −Dx+ UAS(x) + β, (3.6)
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where U = diag
(
ū + ũ1, . . . , ū + ũn

)
and

∑N
i=1 ũi = 0. The value ū is the average

social effort and each ui = ū+ ũi. The evolution of the opinion of agent i is governed

by the dynamics

ẋi = −dixi +
N∑
j=1

(ū+ ũi)aijS(xj) + βi.

Let ũ = (ũ1, . . . , ũN)T be the vector of social effort heterogeneities. The following

theorem shows that the same results as in Theorem 1 qualitatively persist for small

heterogeneities in agent social efforts.

Theorem 3. [40] For dynamics (3.6) with fixed, strongly connected graph and suffi-

ciently small ũi, i ∈ {1, . . . , N}, the following hold:

i. There exists a smooth function ū∗(ũ) satisfying ū∗(0) = 1 such that the lin-

earisation of (3.6) for β = 0 possesses a unique zero eigenvalue at (x, ū) =

(0, ū∗(ũ)). Moreover, the associated null right eigenvector v̄T1 satisfies ‖v̄TN −

1TN‖1 = O(‖ũ‖1) and the associated singularity is isolated.

ii. Let g(y, ū,0) be the Lyapunov-Schmidt reduction of (3.6) with β = 0 at (x, u) =

(0, ū∗(ũ)). The equilibria satisfying g(y, ū,0) = 0 undergo a symmetric pitch-

fork singularity at (y, ū) = (0, ū∗(ũ)).

iii. For β 6= 0, there is an N-parameter unfolding of the symmetric pitchfork.

The proof for Theorem 3 can be found in Appendix 1.

3.3 Behaviour of the model with respect to design

considerations

In the previous section we defined our agent-based model for collective decision-

making between two alternatives. We provided an intuition for how the negative

feedback on each agent’s own opinion and a positive feedback on its neighbours’
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opinions, modified by a sigmoidal function and a term to represent the social effort,

interact such that the agents remain in a deadlock (indecision) for low values of social

effort, and choose one of the two alternatives for high values of social effort. We

showed that when the term representing the external information β = 0, there is a

symmetric pitchfork. This is a local result around the bifurcation point (y∗, u∗) for

general networks, and for an all-to-all network this result holds globally. When β 6= 0

we see a universal unfolding of the symmetric pitchfork, and we can expect one of the

four behaviours shown in Figure 3.5. We also showed that these results persist when

we consider small heterogeneities in the social effort values of each agent.

In Chapter 2, we discussed six important design considerations that we would

address throughout this thesis. Now that we have introduced the decision-making

model, we can identify which of these considerations are addressed implicitly through

the design of the model, and which require further analysis.

Transition from deadlock to decision: In Chapter 2, Section 2.1, we saw that

the inhibitory stop signalling of the honeybees allows for the breaking of a deadlock

between equal alternatives, a behaviour that is captured by dynamics (3.4). With

β = 0 and u < 1, the deadlock state x = 0 is globally exponentially stable, and

for u > 1 and |u − 1| sufficiently small, the deadlock state x = 0 is unstable and

there are two symmetric decision states that are jointly almost-globally asymptotically

stable. For larger values of u there may be further bifurcations, see [26] for details.

Thus, increasing the value of u breaks a deadlock and leads to a decision for either

alternative. The parameter u can be thought of both as a level of social effort intrinsic

to the agents, and also a control parameter which can be modulated externally. In

Chapter 4, we use an approximation to the bifurcation point for some special classes

of network to analyse how system parameters such as the number of agents or value of

external information affect the value of bifurcation point, and therefore influence the

level of social effort that is required to break a deadlock between equal alternatives.
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In Chapter 6 we develop a decentralised adaptive feedback dynamic that increases

the average social effort level and ensures that the group will make a decision.

Flexibility-stability trade-off : As stated in the first presentation of the model

in [31], Franci et al. designed the decision-making dynamics (3.4) specifically to be

organised by a pitchfork bifurcation, so that it would mimic the desirable properties of

flexibility and stability from the honeybee decision-making dynamics. In the previous

section we saw that the Lyapunov-Schmidt reduction of the model (3.4), g(y, u,0) ex-

hibits a symmetric pitchfork singularity at (x∗, u∗) = (0, 1), and for β 6= 0, g(y, u,β) is

an N -parameter unfolding of the symmetric pitchfork. Perturbations to the systems,

breaking of symmetry or unmodelled dynamics will change the system behaviour, but

we know from unfolding theory [35, Chapter III] that only the four cases depicted

in Figure 3.5 (left) can generically occur. The decision-making dynamics are robust

(stable) in the sense that almost all behaviours we can expect from this model will

be represented by one of the cases shown, and there will be no aberrant behaviour.

Additionally, the hysteresis behaviour depicted in Figure 3.5 (right) provides ro-

bustness of a decision once the decision has been made. We discussed in Section 3.2.2

how a decision for either alternative will persist for small changes in the perceived

alternative values, but be abandoned for larger changes. The system will be robust

(stable) despite small fluctuations, but also adaptive (flexible) for more significant

changes. A detailed study of the bifurcation diagrams associated with a given sys-

tem would allow for tuning of the perturbation size that would or would not cause a

change in decision. In Chapter 6 we illustrate this hysteresis behaviour with a robotic

system.

For dynamics (3.4), close to the bifurcation point u∗, small deviations from the

perfectly symmetric state will lead to an unfolding of the pitchfork, and a decision

for either alternative. The dynamics are therefore hypersensitive to changes in this

region of the bifurcation diagram. Conversely, the unfolding resembles the symmetric
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diagram far away from the bifurcation point, so in this region the dynamics are hyper-

robust. In an engineered systems, asymmetry may enter the system due to legitimate

environmental changes, but also due to sensor noise, heterogeneity between agents

and influence of the network topology. Successful performance in the flexibility-

stability trade-off requires a system to distinguish between unwanted disturbances and

legitimate perturbations. We can improve the behaviour of engineered systems that

employ dynamics (3.4) by developing a stronger understanding of how the network

topology and system parameters influence the unfolding and bifurcation behaviour.

In the remaining chapters of this thesis we analyse and extend dynamics (3.4) and

develop a more refined understanding of the behaviour of this model. The results

presented here will allow us to implement systems based on this model with a higher

level of control.

Influence of network structure: The communication network of the agents is en-

coded in the model via the adjacency matrix A. We are considering unit weightings

on communication, so we can study the influence the number of neighbours of each

agent, and how these neighbours are arranged. The model was designed such that

with β = 0 at u = 1, the linearisation of the model is the Laplacian consensus

dynamics. The influence of the network on this linear consensus dynamics is well-

studied [77], and in this dissertation we investigate how this analysis can be extended

to the nonlinear model. In particular in Chapter 5, we present results that allow

us to predict how the network structure and distribution of the external information

combine to influence the decision outcome.

The role of heterogeneity in the system: The results of Theorem 3 extend the

results of Theorem 2, and show that when the level of social effort of each agent is

heterogeneous, the model still possesses a pitchfork bifurcation. We apply this results

in Chapters 4 and 6 where we quantify the affect of the agent heterogeneities on the

value of the bifurcation point.
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Effect of system parameters : In [69], Pais et al. showed that the level of social

effort required to break the deadlock is inversely proportional to value of alternatives

being considered. In Chapter 4, we will show under certain conditions that the agent-

based model captures this value-sensitivity. The agent-based model retains the ability

to break a deadlock between equal alternatives in a distributed control manner, and

we will see in Chapters 6 and 7 how an operator can interact at a high level with the

system through modulating the parameter u, e.g. as a global signal. The influence of

network structure, the role of heterogeneity and the effect of system parameters are

overlapping considerations, for instance, in Chapter 5, the effect of the information

vector β and the network structure of the group are coupled. Where possible, it can

be useful to isolate how each of these three consideration affect the system behaviour

individually, but it is also important to remember that the effects are often combined.

Incorporating human interaction: The value of u also provides a means by which

a human operator can interact with the system. We can think of the value of u as

being set by a dial, which the operator can turn up or down. Unlike the individual

agents, a human operator will likely have a broad overview of the environment and

with sufficient awareness of how the system will behave at various values of u, the

operator can interact with the agents in a simple way to determine how the agents

will respond to the environment. Although human intervention is not required for

a system that implements the agent-based decision-making model, it may still be

beneficial. The results of Chapter 7 demonstrate ways in which a human can interact

with the system, and discuss scenarios in which this interaction may be advantageous.
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Chapter 4

Analysis of the agent-based model

on a low dimensional manifold

This chapter contains analysis of the agent-based model (3.4) presented in Chapter 3

and demonstrates additional behaviours to those discussed in the previous chapter.

Section 4.1 describes a method to reduce the model to a low-dimensional manifold.

We use the reduced system to find a transcritical singularity that can occur in the

transition between unfolding diagrams of the bifurcation, a region of the parameter

space where we see non-persistent behaviour, i.e. the topology does not persist under

small perturbations. In Sections 4.2.2 and 4.2.5 we show that a symmetric pitchfork

occurs for β 6= 0, an extension to the results of Theorem 1, and show that for large β

there is a symmetric unfolding. The symmetric unfolding represents a transition from

‘soft’ to ‘hard’ decision-making, and allows us to change how reactive the system is

to small changes in the bifurcation parameter u. We also derive an approximation to

the bifurcation point for systems with S2 symmetry, and use this expression to show

that we can recover the value-sensitivity of the honeybee dynamics, an important

characteristic of the population-level model. We also analyse the effect of the number

of uninformed agents on the bifurcation point. These results provide an understanding
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of how system parameters effect the bifurcation behaviour, and we discuss how we

can apply these results when designing an engineered system. Some of an early

version of the work in Sections 4.1 and 4.2.2-4.2.4 was first presented in [39] for

which I was the lead author. The results were further developed in [40], and I led

the analysis and writing for the relevant sections. In both papers Alessio Franci,

Vaibhav Srivastava and Naomi Ehrich Leonard provided guidance on all work. The

mathematical preamble, theorems and proofs are taken verbatim from [40], where for

the most part it was my own original wording. The explanations and discussion, along

with Sections 4.2.1 and 4.2.5 were not a part of these publications and are original.

In Section 4.3 we consider the model extension that was the subject of Theorem 3

given in the previous chapter, and use the reduction method to consider the effect

of heterogeneous control parameters on the decision-making dynamics. This analysis

has not been previously published. We conclude by discussing how the social effort

level u allows us to exercise a high level of control over the system by interacting with

just one parameter, an observation that we will return to throughout this thesis.

4.1 Reducing the agent-based dynamics to a

low-dimensional manifold

For certain classes of network graph it is possible to identify a globally attracting,

low-dimensional manifold on which to reduce the dynamics (3.4), and to perform

analysis on the reduced model. The dimensionality N of the system and the sizes of

the informed and uninformed subgroups are treated discrete parameters. As in [60],

where Leonard et al. considered the decision-making behaviour of animal groups on

the move, simulations of (3.4) show that under the conditions described below, the

dynamics exhibit fast and slow time-scale behaviour. Initially agents with the same

preference and neighbours reach agreement in the fast time-scale, and then in the slow

55



Figure 4.1: Figure from [40] demonstrating the model reduction. Opinions are sim-
ulated over time for N = 8 agents arranged in the undirected network shown in the
top box. βA = βB = 1 and u = 2. Opinions of agents of the same subgroup (colour)
aggregate, and then the three subgroup opinions evolve according to the reduced sys-
tem, which is modelled by the network shown in the bottom box. The black dashed
line is the average opinion for the total group.

time-scale the dynamics of these subgroups evolve (see Figure 4.1). We can therefore

reduce the N -dimensional system to a system that models only the slow time-scale

behaviour, with a reduced number of dimensions. This method can be applied to any

number of groupings, but in order to consider both the informed subgroups for the

two alternatives and an uninformed subgroup, while retaining tractability, we reduce

the dynamics to three dimensions.

Let us consider a network that can be divided into three subgroups, and let Ik ⊂

{1, ..., N}, k ∈ {1, 2, 3} be the index set associated with each subgroup k. For i ∈ I1,

βi = βA = β̄1 and the subgroup size is given by n1 and for i ∈ I2, βi = −βB = −β̄2

and the subgroup size is given by n2. The number of agents with no information is

n3 = N −n1−n2, so for i ∈ I3, βi = 0 = β̄3. We also assume that each agent in each

subgroup has the same neighbours, so

aij =


ākm if i ∈ Ik, j ∈ Im, and if i and j are neighbours

0 otherwise,
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for i, j ∈ {1, ..., N}, where ākm = 1 if k = m. Under these assumptions, each node in

the same subgroup k has the same in-degree, d̄k = (nk− 1) +
∑

m6=k nmākm, where nk

is the cardinality of Ik. The opinion dynamics (3.4) for agent i ∈ Ik are

ẋi = −d̄kxi + u
∑
j∈Ik
j 6=i

S(xj) + u
∑

m∈{1,2,3}
m 6=k

∑
j∈Im

ākmS(xj) + βi. (4.1)

Theorem 4 allows the analysis of (4.1) to be restricted to the subspace where each

agent in the same subgroup has the same opinion. We can therefore represent all

agents in the same subgroup with one equation, and the system evolves on a three-

dimensional manifold. This theorem is illustrated in the inset schematic of Figure 4.1.

Theorem 4. [40] Every trajectory of the dynamics (4.1) converges exponentially to

the three-dimensional subspace

E = {x ∈ RN | xi = xj, ∀i, j ∈ Ik, k = 1, 2, 3}.

Define the reduced state as y = (y1, y2, y3) ∈ E. Then, dynamics on E are

ẏ1 = −d̄1y1 + u
(
(n1 − 1)S(y1) + n2ā12S(y2)

+ n3ā13S(y3)
)

+ βA

ẏ2 = −d̄2y2 + u
(
n1ā21S(y1) + (n2 − 1)S(y2) (4.2)

+ n3ā23S(y3)
)
− βB

ẏ3 = −d̄3y3 + u
(
n1ā31S(y1) + n2ā32S(y2)

+ (n3 − 1)S(y3)
)
.
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Proof of Theorem 4. Let V (x) =
∑3

k=1 Vk(x), where Vk(x) = 1
2

∑
i∈Ik

∑
j∈Ik(xi−

xj)
2, for k ∈ {1, 2, 3}. It follows that

V̇k(x) =
∑
i∈Ik

∑
j∈Ik

(xi − xj)(ẋi − ẋj)

=
∑
i∈Ik

∑
j∈Ik

(
− d̄k(xi − xj)2 − u(xi − xj)(S(xi)− S(xj))

)
≤ −d̄kVk(x),

so V̇ (x) ≤ −d̄kV (x). By LaSalle’s invariance principle (see [53]), every trajectory of

(4.1) converges exponentially to the largest invariant set in V (x) = 0, which is E . Let

yk = xi, for any i ∈ Ik, k ∈ {1, 2, 3}. Then dynamics (4.1) reduce to (4.2). �

Unlike the N -dimensional model (3.4), the reduced dynamics (4.2) contain ‘self-

loops’, to represent the influence of the agents within a subgroup upon each other.

The communication weights of the adjacency matrix are multiplied by the size of each

subgroup, which encodes the weighting that results from the associated subgroup size.

For the special classes of networks to which it can be applied, the reduction method

provides a powerful tool for analysing the decision-making dynamics 3.4. In some

cases, we can now write a scalar expression for the dynamics in closed form, which we

can analyse numerically to find an approximation to the bifurcation point in terms

of system parameters such as external information value and group size.

4.2 Exploring behaviours and their implications

for design

We now present five results of analysis of the low-dimensional system, and discuss

the implications of each for the design of multi-agent systems that implement our

collective decision-making model.
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4.2.1 Transcritical singularity

Here we find the set of parameters for which a transcritical singularity occurs in the

universal unfolding of the pitchfork bifurcation for a given network. In Chapter 3 we

saw that a transcritical bifurcation occurs when there are two equilibria both before

and after a bifurcation point, but the stability of each changes. Recall in Figure 2.4,

there are four possible bifurcation diagrams in the universal unfolding G(y, u,α) of

the pitchfork bifurcation, depending on the values of the unfolding parameters α1 and

α2. We also expect to see different bifurcation diagrams on the transitions between

these regions, for instance a transcritical singularity on the transition from region (2)

to region (1).

Consider the directed ring shown in Figure 4.2, with βB = βA + ε, described using

the reduced dynamics (4.2) and with S(·) = tanh(·),

ẏ1 = −7y1 + u
(
3tanh(y1) + 4tanh(y2)

)
+ βA

ẏ2 = −7y2 + u
(
3tanh(y2) + 4tanh(y3)

)
− (βB − ε) (4.3)

ẏ3 = −7y3 + u
(
4tanh(y1) + 3tanh(y3)

)
.

The steady state solutions can be solved for y2 and y3, and we can write the scalar

equation g(y1, u). From [35] we know that for scalar equation g(y1, u), in order to

recognise a transcritical bifurcation at (y∗1, u
∗) we must have

g(y∗1, u
∗) = gy1(y

∗
1, u

∗) = gu(y
∗
1, u

∗) = 0.

Setting βA = 5, we have three equations that we can solve numerically for the three

unknowns y∗1, u∗ and ε. As shown in Figure 4.2 (centre), for the system (4.3) the

transcritical bifurcation occurs at ε = 1.151, with u∗ = 1.43.
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Figure 4.2: Bifurcation diagrams for the network shown, with βA = 5 and βB = βA−ε.
Left: With ε = 1 there is an unfolding towards alternative A. Centre: At ε = 1.151
there is a transcritical singularity in the universal unfolding. Right: With ε = 1.3
there is an unfolding towards alternative B.

Bifurcation diagrams for ε < 1.151 and ε > 1.151 are shown in Figures 4.2 (left)

and (right). The transcritical singularity occurs when the saddle node of Figure 4.2

(left) collides with the stable branch as ε increases. In Figure 4.2 (left) and (right) as

u increases from 1 to 2, the equilibrium varies smoothly and the trajectory does not

pass through the bifurcation point. The branch of the diagram corresponding to the

stable equilibrium for u = 1 remains stable for all u. In the transcritical bifurcation

diagram (Figure 4.2 (centre)), the branch that represents the stable equlibria for

u = 1 loses stability at the bifurcation point. The diagram in Figure 4.2 (centre) is

non-persistent, and we note that there are three equilibria before the bifurcation point

u∗. From a design perspective, the transcritical singularity represents a parameter

region in which the system is more sensitive to perturbations. When u− u∗ is small,

perturbations to the system could cause the trajectory of the average opinion y to

jump to the negative branch of the bifurcation diagram. This analysis also shows the

values of β at which the bifurcation diagram will change between regions of Figure 2.4.
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4.2.2 A symmetric pitchfork for β 6= 0

In Theorem 1 we show that for the decision-making dynamics (3.4), when β = 0,

there is a symmetric pitchfork at the singular point (0, 1,0) and when β 6= 0 there is

an unfolding of the symmetric pitchfork. The proof of Theorem 1 (see Appendix A)

relies on the S2 symmetry of dynamics (3.4) with β = 0 to show that the dynamics

possess the symmetric pitchfork. However, there are also cases when β 6= 0 and S2

symmetry remains. Therefore there can be a symmetric pitchfork for β 6= 0. An

example of this is an all-to-all graph that satisfies the conditions for Theorem 4 with

information values βA = βB = β and subgroup sizes n1 = n2 = n, 2n ≤ N and

n3 = N − 2n ≥ 0. In general the graph must be symmetric with respect to the two

informed groups and their influence on the uninformed group, therefore ākm = āmk for

each k,m ∈ {1, 2, 3} and ā13 = ā23. For this class of networks, S2 symmetry means

that reversing the sign of βA and βB is equivalent to applying the transformation

x 7→ −x.

Under these conditions for an all-to-all network we can find an approximation û∗

to the bifurcation point u∗ by examining the reduced dynamics (4.2), which specialise

to

ẏ1 = −(N − 1)y1 + u
(
(n− 1)S(y1)

+ nS(y2) + n3S(y3)
)

+ β

ẏ2 = −(N − 1)y2 + u
(
nS(y1) (4.4)

+ (n− 1)S(y2) + n3S(y3)
)
− β

ẏ3 = −(N − 1)y3 + u
(
nS(y1)

+ nS(y2) + (n3 − 1)S(y3)
)
.
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Because of S2 symmetry, the deadlock state yeq(u, β) = (yeq(u, β),−yeq(u, β), 0) is

always an equilibrium, where yeq(u, β) is the solution to

(N − 1)yeq + uS(yeq)− β = 0. (4.5)

When β = 0, yeq(u, 0) = 0 for all u ∈ R. When β 6= 0, the implicit function

theorem ensures that yeq(u, β) depends smoothly on u and β. By Taylor expansion,

an approximation to yeq(u, β) can be found, and the bifurcation point where the

deadlock state becomes unstable can also be approximated. To compare theoretical

and numerical results, we let S(·) = tanh(·) in Theorem 5 but the computations are

general.

Theorem 5. [40] For dynamics (4.4) with S(·) = tanh(·), the following statements

hold:

i. The equilibrium yeq(u, β) = (yeq(u, β),−yeq(u, β), 0) satisfies

yeq(u, β) =
1

N − 1 + u
β +

u

3(N − 1 + u)4
β3 +O(β5). (4.6)

ii. The value of u at which the Jacobian of (4.4) has a zero eigenvalue is given by

u∗ = 1 +
(1 + 3N3)2(N − n3)

9N9
β2 +O(β4); (4.7)

and when u = u∗ the equilibrium yeq = (yeq,−yeq, 0) is a singular point, denoted

yeq
∗ = (y∗eq,−y∗eq, 0).

iii. For sufficiently small β, the singularity at u = u∗ is is the bifurcation point for

a pitchfork bifurcation.
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Proof of Theorem 5. We begin with (i). Consider the Taylor series expansion of

yeq(u, β) with respect to β:

yeq(u, β) = βyI + β2yII + β3yIII + β4yIV +O(β5). (4.8)

Substitute (4.8) for yeq(u, β) into (4.5) and differentiate with respect to β to get

(N − 1)yeq
′(u, β) + usech2

(
yeq(u, β)

)
yeq
′(u, β)− 1 = 0.

Letting β = 0 yields yI = 1
N−1+u

. Proceeding similarly for higher order deriva-

tives gives yII = yIV = 0 and yIII = u
3(N−1+u)4

. Substituting these values into (4.8)

yields (4.6), establishing (i).

At the singular point u∗, the Jacobian of (4.4) computed at yeq
∗ has a zero

eigenvalue, and the Jacobian drops rank. The Jacobian of (4.4) at yeq
∗ is

[ −(N−1)+u(n−1)S′(y∗eq) unS′(y∗eq) un3

unS′(y∗eq) −(N−1)+u(n−1)S′(y∗eq) un3

unS′(y∗eq) unS′(y∗eq) −(N−1)+u(n3−1)

]
,

where we have used the fact that S ′(·) is an even function. For S(·) = tanh(·) the

determinant d of the Jacobian is

d = −1

4
η(−1 +N + 2u+ ηcosh(2y1))(η + 3u+ n3u− 2Nu

− 2u2 + (η + u− n3u)cosh(2y1))sech4(y1),

with η = N − 1. A positive u = u∗ for which d = 0 satisfies

u∗ =
1

4
(3 + n3 − 2N + cosh(2y∗eq)− n3cosh(2y∗eq)

+
√

16ηcosh2(y∗eq) + (3 + n3 − 2N − (−1 + n3)cosh2(2y∗eq])).
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Note that y∗eq is also a function of u∗ and the above equation is a transcendental

equation in u∗, which can be solved numerically. To compute u∗ we use the Taylor

Series expansion u∗(β) = 1 + u∗Iβ + u∗IIβ
2 + u∗IIIβ

3 +O(β4) and match coefficients to

obtain (4.7).

To prove that the singular point (yeq
∗, u∗, β) corresponds to a pitchfork we in-

voke singularity theory for S2 symmetric bifurcation problems [35, Chapter VI]. By

Theorem 1, the singular point (yeq
∗, u∗, β) is a pitchfork for β = 0. Because (4.4)

is S2 symmetric, for small β > 0 we obtain a small S2 symmetric perturbation of

the pitchfork at β = 0. Invoking genericity of the pitchfork in S2 symmetric sys-

tems [35, Theorem VI.5.1], we conclude that (4.4) possesses a pitchfork at u = u∗.

�

Theorem 5 shows that under the required symmetry conditions, the all-to-all net-

work possesses a symmetric pitchfork for β 6= 0. Additionally, we have approxima-

tions to the bifurcation point (yeq
∗, u∗) that depend on the information value β, and

the sizes of the total group and uninformed subgroup (and implicitly the informed

subgroups). In the next section we use these expressions to analyse the effect of the

information value β and the group sizes n3 and N on the bifurcation point.

4.2.3 Value-sensitivity

In Chapter 2, Section 2.1 we discussed results from [69, 81] which showed how the

population-level model of the honeybee decision-making is value-sensitive. The criti-

cal level of stop-signalling required to break a deadlock between two equal alternatives

is inversely proportional to the value of those alternatives [69], which provides an as-

sociated sensitivity to environmental parameters, as discussed in Section 2.3.1. In

this section we demonstrate that dynamics (3.3), which are equivalent to our gener-

alised model (3.4) with time-scale change t = 1
ν
s, recover the value-sensitivity of the

population-level model.
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We reproduce dynamics (3.3) here:

dx

dt
= −uIDx+ uSAS(x) + ν. (3.3)

We examine the dynamics (3.3) with alternatives of equal value νA = νB = ν. We set

uI , the inertial term which prevents agents from quickly developing a strong opinion,

to 1
ν
. The motivation for this choice of uI is the decaying commitment term of the

population model seen in [69,81], where the rate of decay is inversely proportional to

the value of the alternatives. The bifurcation parameter is given by the social effort

term uS, which includes the control term from the generalised dynamics u, as well as

the value of alternatives ν, so uS = u ·uI = u
ν
. Applying uS = u

ν
to the approximation

(4.7) gives an approximation to the bifurcation point u∗S for (3.3)

û∗S =
1

ν
+

(1 + 3N3)2(N − n3)

9N9
ν3 +O(ν7). (4.9)

Figure 4.3 (left) shows the approximation û∗S compared to values of u∗S computed

numerically using MatCont continuation software [38]. Recall the depiction of the

inverse relationship between the critical stop signalling level required to break a

deadlock between equal alternatives and the alternative value shown in Figure 2.2

from [69]. Figure 4.3 (left) shows that we recover the same inverse relationship here,

and therefore the associated value sensitivity. Systems with dynamics (3.3) will re-

quire a higher level of the social effort parameter us to break a deadlock between

alternatives that are of low value and a lower value of the social effort parameter us

to break a deadlock between alternatives that are of high value. In the context our ex-

ample search and rescue task, in which the robotic agents are searching for signs of life

and computing the probability that locations contain survivors, this value-sensitivity

means that if the robots were using a fixed value of uS, they would continue searching

until they found a location with a high probability of the location being occupied.
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Figure 4.3: From [40], value sensitivity in the agent-based model (3.3) for alternatives
with equal value ν. Left: The blue line shows the approximation û∗S (4.9) while the
red crosses show u∗S computed numerically using continuation software. Informed and
uninformed group sizes are n1 = n2 = 10 and n3 = 80. Right: Bifurcation diagrams
for agent-based model (3.3) with n1 = n2 = 10, n3 = 80 and three values of ν.

The time-scale change from (3.4) to (3.3) is an example of a method that can be

used to adapt the general dynamics (3.4) to a specific application. If this particular

value-sensitive property is an important consideration for a design application, (3.3)

can be used to give the desired behaviour.

The value-sensitivity is demonstrated further in Figure 4.3 (right), where bifur-

cation diagrams for the agent-based model are given for a range of values ν. As ν

is increased, the bifurcation point decreases (moves to the left). For a fixed value

of us, the branches of the bifurcation diagram corresponding to a decision for ei-

ther alternative only appear for sufficiently high ν. Additionally the ‘sharpness’ or

slope of the non-zero bifurcation branches increases. If we think about the value of

uS slowly increasing (which we consider later in this dissertation) on a bifurcation

diagram with sharper branches, the value of the average opinion will increase more

rapidly, and there is less time between the deadlock solution becoming unstable, and

the opinion crossing the decision threshold. As we will discuss further in Chapter 7,

in the context of search and rescue robots we can think of the faster increase in the

average opinion as the system being more reactive. If the robots encounter a location
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Figure 4.4: From [40], the inverse relationship between û∗S from (4.9) and the value of
the equal alternatives ν in the agent-based model for three values of n3 with N = 7
and n1 = n2 = N−n3

2
.

with a very high probability of containing a survivor, they can move from indecision

to decision quickly, with only a small increase in the value of uS.

4.2.4 Influence of group size

An advantage of the agent-based framework is that it makes it possible to systemati-

cally study the sensitivity of the dynamics to model parameters including those that

describe network structure and heterogeneity. An examination of (4.9) shows that

û∗S decreases with increasing total group size N , implying that less social effort is

required to make a decision with a larger group. In the limit as N increases, û∗S → 1
ν
.

Figure 4.4 shows the inverse relationship between ν and û∗S for different values of

n3 with fixed N and n1 = n2 = N−n3

2
. As n3 increases, the number of informed agents

decreases, and the curve drops, implying that increasing the number of uninformed

agents reduces the requirement on social effort to destabilise deadlock. We can also

think of decreasing the number of informed agents as decreasing the level of hetero-

geneity in the system. Recall from Chapter 2, Section 2.2, the results from [17, 60]

showed that adding uninformed individuals to a school of fish improved the ability

of the school to make decisions reliably. In particular, Leonard et al. showed in [60]
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that increasing the number of uninformed individuals lowered the critical value of the

difference in preferred direction that was required for a decision to be made. The

findings of Leonard et al. are directly analogous to the relationship between n3 and

u∗ that we have found here, suggesting that our general dynamics (3.4) could also

be mapped to describe the dynamics of the schooling fish in [17, 60]. This analysis

directly addresses our design consideration of the effect of systems parameters on the

decision-making dynamics. When designing a multi-agent system that uses decision-

making dynamics (3.4), this result tells us that if we have a smaller total group, or a

larger number of agents collecting information about the environment, we will need

a higher level of social effort to break a deadlock. When we think about a group of

robots performing search and rescue, it is likely that one would want to maximise

the number of robots using sensing equipment in order to cover a large area, and this

would move the bifurcation point to the right, thereby making it harder to the group

to make a decision. In order to offset this effect, we could multiply each agent’s exter-

nal information value by some gain, which will move the bifurcation to the left. This

gain could be tuned depending on how many agents with are using sensing equipment.

4.2.5 Symmetric unfolding of pitchfork

We have now seen that under S2 symmetry, dynamics (3.4) possess a symmetric

pitchfork for β 6= 0. Additionally, when we map to dynamics (3.3), we see that the

approximation to the bifurcation point u∗S given by (4.9) is inversely proportional

to the value ν of the alternatives being considered. If we return to the generalised

dynamics (3.4) and the approximation to the bifurcation point u∗ of given by (4.7),

we see that the effect of increasing the value of the alternatives βA = βB = β is

to delay the bifurcation point, and for β > 0, u∗ > 1. Results from numerical

simulations of (3.4) showed a further effect of increasing the value of β; a transition

from the supercritical pitchfork, to a subcritical pitchfork and the emergence of two
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Figure 4.5: Bifurcation diagrams for the network shown. Left: With βA = −βB = 1
there is a supercritical pitchfork. Right: With βA = −βB = 4 there is a subcritical
pitchfork.

stable branches from two saddle node bifurcations. This is referred to as a symmetric

unfolding of the supercritical bifurcation (to a subcritical bifurcation). In the case

of the subcritical bifurcation, for some u < u∗, there are five distinct equilibria; two

unstable and three stable.

Figure 4.5 shows two bifurcation diagrams for the same network, with β = 1 in

Figure 4.5 (left) and β = 4 in Figure 4.5 (right). We see that the bifurcation point

u∗ moves to the right with increasing β, and the bifurcation diagram transitions

from the supercritical pitchfork to a subcritical pitchfork. Recall from Chapter 2,

Section 2.3 that one of the conditions that must be satisfied in order to recognise a

supercritical pitchfork of g(y, u) is gyyy(y
∗, u∗) > 0. For a subcritical pitchfork the

condition is gyyy(y
∗, u∗) < 0, so the value of βA = −βB at which the transition occurs

can be found by determining when gyyy(y
∗, u∗) changes sign. This proves intractable

for general systems, but can be performed once network parameters are known.

As shown in Figure 4.5 (right), for some values of u < u∗, there is simultaneous

stability of the deadlock equilibrium, as well as the equilibria that represent a decision

for either alternative. In Chapter 3 we discussed the hysteresis behaviour that can
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occur in the unfolding of (3.4) when there are perturbations in β, as the shape of the

bifurcation diagram changes. When the bifurcation diagram of our system is in the

form of Figure 4.5 (right), there will also be hysteresis behaviour under perturbations

of the bifurcation parameter u. The symmetric unfolding of the pitchfork represents a

transition from ‘soft’ to ‘hard’ decision-making. By soft decision making, we refer to

systems in which small changes in u will also cause small changes in the equilibrium

values of the average opinion y, and when the value of u changes, the value of y changes

smoothly; this is the supercritical bifurcation diagram. Hard decision-making refers

to systems for which at a certain value of u, there is a large change in the equilibrium

values of y; this is the subcritical bifurcation diagram. Hard decision-making occurs

for high values of β, meaning that a system would move very quickly from deadlock

to decision for high-valued alternatives. We illustrate the differences between soft

and hard decision making in Chapter 7, and discuss how to apply the two forms of

decision-making in our example search and rescue task

4.3 Heterogeneity in social effort parameter values

In Chapter 3 we introduce dynamics (3.6), which are an extension of the general

decision-making dynamics (3.4) that allow us to consider agents with heterogeneity in

the social effort (and control) parameter u. Theorem 3 shows that dynamics (3.6) also

possess a pitchfork bifurcation, despite the heterogeneity in the bifurcation parameter.

In this section, we consider the effect of the heterogeneity in the social effort on the

bifurcation point. The social effort of each agent is ui = ū+ ũi, where ū is the median

social effort and ũi is the divergence of each agent’s social effort from the median. We

use an all-to-all network with β = 0, and consider a population in which n1 agents

have ui = ū + ũ, and n2 agent have ui = ū− ũ. Note that if n1 6= n2, ū, the median

social effort will differ from the average social effort u =
∑N

i=1
1
N
ui = ū+ n1ũ−n2ũ

N
. For
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n1 = n2, u = ū. By adapting the reduction method above, we can reduce the system

in this case to two equations

ẋ1 = −(N − 1)x1 + (ū+ ũ)((n1 − 1)S(x1) + n2S(x2))

ẋ2 = −(N − 1)x2 + (ū− ũ)(n1S(x1) + (n2 − 1)S(x2)).

The heterogeneity in ui means that the agents in group 1 are paying more attention

to their neighbours (from both groups) while the agents in group 2 are paying less

attention. The nullclines of this system are given by

x1 =
1

N − 1
(ū+ ũ)((n1 − 1)S(x1) + n2S(x2))

x2 =
1

N − 1
(ū− ũ)(n1S(x1) + (n2 − 1)S(x2)),

and there are three solutions, (x1, x2) = {(0, 0), (+x∗1,+x
∗
2), (−x∗1,−x∗2)}. ū ± ũ con-

trols the slope of the sigmoidal function S(·), so for small values of ū±ũ, the nullclines

intersect only once at the origin, while for larger values there will be three intersec-

tions.

To find the value of ū (as a function of ũ) at which the bifurcation occurs, we

consider the Jacobian of the system at the origin

J =

−(N − 1) + (n1 − 1)(ū+ ũ) n2(ū+ ũ)

n1(ū− ũ) −(N − 1) + n2(ū− ũ)

 .
The bifurcation point in terms ū∗ is the value of ū at which det(J) = 0. We know

n1 = N − n2, so ū∗ is given by

ū∗ = 1− N

2
+

√
ũ2 + ũ(2n2 −N) +

N2

4
. (4.10)
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Figure 4.6: The value of the bifurcation point u∗ in terms of the average u =
∑N

i=1
1
N
ui

plotted against ũi, for various sized groupings. Left: u =
∑N

i=1
1
N
ui plotted against ũi

for different total group sizes N , with n1 = n2. Right: u =
∑N

i=1
1
N
ui plotted against

ũi for a fixed N = 10, for various sizes of the group with reduced ui, n2.

The eigenvalues of J at (0, 0) are λ1,2 = −(N − 1)±
√

(n1n2)(ū2 − ũ2), so there are

two negative eigenvalues for ū < ū∗ and one positive and one negative eigenvalue for

ū > ū∗. For n1 = n2 = 1, (4.10) reduces to ū∗ =
√

1 + ũ2, and we see that the effect

of increasing ũ is to delay the bifurcation point, so higher social effort is required to

make a decision when there are higher inter-agent differences.

We can also study the effects of the group sizes n2 and N . In Figure 4.6 the value

of the bifurcation point in terms of the average social effort u =
∑N

i=1
1
N
ui is plotted

against the size of ũi, for various sized groupings. For Figure 4.6 (left) u∗ = ū∗,

and we see that the delaying of the bifurcation point that occurs when we increase ũ

decreases with increasing group size N . In [60], Leonard et al. showed that increasing

the number of uninformed agents increases the parameter region in which a decision

is the only stable solution. We are not considering informed agents here, but we

do find that increasing the total group size leads to the same effect. In Figure 4.6

(right) we fix the total group size N , and consider different values of n1 and n2. The

bifurcation point is lowest for n2 = 1 and n2 = 9, so a decision is made with less social

effort when there are less agents with a different ui to the remainder of the group.
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If our objective is to design a system with the lowest possible bifurcation point, we

should choose and large number of agents and minimise the level of heterogeneity in

the system.

In general, throughout this chapter we have seen that the effect of increasing the

level of heterogeneity of the group, such as through increasing the number of informed

agents or the difference in social effort values, is to delay the bifurcation point. The

result in Section 4.2.3, which showed that increasing the value of the alternatives

decreased the bifurcation point, is specific to dynamics (3.3) in time-scale t. For the

general dynamics (3.4) in time-scale s, which we consider for the majority of this

dissertation, increasing the value of the alternatives moves the bifurcation parameter

to the right. The location of the bifurcation parameter controls whether or not the

group reaches a decision, and is clearly an important parameter for the system. We

have shown that the effect of added heterogeneity is to delay the bifurcation point,

or move it to the right.

Returning to our example application; a search and rescue task occurs in an

emergency situation, so it is unlikely that operators of the system will be able to

make choices in terms of how many agents to use, and how to allocate sensors.

The results shown here demonstrate that by controlling the social effort value u,

an operator can ensure that the system reaches a decision when necessary, in spite

of parameters such as group size that they cannot control. The parameter u is a

powerful and simple way for the operator to interact with the system, a concept that

we will explore more in Chapters 6 and 7.

In this chapter we have used low-dimensional systems to explore the different

behaviours that we can expect from dynamics (3.4). We have shown that we recover

the value-sensitivity of the honeybee dynamics studied in [69, 81], as well as seeing

a similar improvement in decision-making abilities to those seen in [17, 60] when we
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increase the total group size and decrease the level of heterogeneity in the system.

Although we cannot show that these results generalise to all networks, they provide

insight into the kinds of behaviour we can expect for general systems, and an example

of the types of analysis that can be performed once the system details are known.

In the next chapter we consider more general results that predict the effect of

asymmetry on the system, and also consider the performance of (3.4) in the presence

of noise.
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Chapter 5

The symmetry-breaking effects of

agent preferences

In Chapter 2, Section 2.3, we saw that when asymmetry is introduced to a system

organised by a pitchfork bifurcation we see a qualitative change in the system be-

haviour, which we can characterise through unfolding theory [35]. In this chapter

we will consider the changes in behaviour due to asymmetry that arise when agents

have external information or prior preferences, and the β term of the decision-making

dynamics (3.4) is non-zero. We refer to the vector β as the information distribution.

We know that each βi ∈ {βA,−βB, 0}, and the information distribution tells us how

the values of βi are distributed amongst the group. As shown in Figure 4.5 if β 6= 0

but S2-symmetry is preserved the symmetry of the pitchfork bifurcation will persist,

and we see a symmetric unfolding to the subcritical pitchfork. However, this is a

special class of networks and information distribution, and we seek to understand

how external information will affect the dynamics generally, for any network and in

the absence of S2 symmetry.
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We then consider decision-making in the presence of noise. We use the linearisation

of the nonlinear dynamics to predict the decision-making outcomes for a variety of

networks.

5.1 Results from singularity theory: eigenvector

centrality and βp

We begin by restating part (iii) of Theorem 1 from [40], given in full in Chapter 3;

“For β 6= 0, the solutions to g(y, u,β) = 0 undergo an N -parameter unfolding of

the symmetric pitchfork. Moreover, ∂g
∂βi

(0, 1,0) = vT1 ei, where vT1 is the null left

eigenvector of L and ei is the i-th vector of the standard basis of RN”. This implies

that the influence of the external information βi of agent i on the reduced expression

g(y, u,β) is given by the ith element of the left eigenvector of the zero eigenvalue of

L, which we shall denote (vT1 )i.

Bonacich proposed the first left eigenvector of the largest eigenvalue of a network

as a centrality measure in [11], known as eigenvector centrality. A centrality measure

is a quantity that can be used to compare nodes in a graph in terms of their location

in the network, i.e., it defines a notion of how central a node is in a network. Cen-

trality measures have been used to describe the connection between the performance

outcomes of a network and the network structure. In [32], Freeman proposed the

intuitive notion that a centrality measure should always award the highest evaluation

to the central node of a star-shaped graph. An example of a centrality measure is

degree centrality ; the degree centrality of an agent in a network represented by an

unweighted graph is simply the number of its neighbours. Different problem formu-

lations and desired outcomes lead to different choices for measuring centrality. For

instance, for noisy networks, [71, 85] show how information centrality predicts the

ordering of nodes by certainty, while in [25] Fitch et al. define joint centrality and
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show how it solves the optimal leader selection problem. Eigenvector centrality is a

measure of the influence of a node on the network, and can be thought of as the sum

of both direct and indirect connections between nodes and their neighbours [12]. In

Theorem 1 we use the eigenvector centrality to consider the influence of an agent’s

information or preference on the dynamics.

Figure 5.1: Bifurcation diagrams for the networks shown inset. Left: An undirected
network with an unfolding towards alternative A. Right: A directed adaption of the
undirected network with the same information distribution, now with an unfolding
towards alternative B.

We seek to understand the effect of a given network structure and information

distribution β on the performance of the group of agents; whether it will cause an

unfolding of the symmetric pitchfork and in which ‘direction’ this will be. By di-

rection, we mean whether the group chooses alternative A or alternative B. In all

unfolding diagrams there is one branch that is stable for all positive values of u for

which there is one zero eigenvalue of L only, and one stable branch that appears after

the saddle node. When the branch that is stable for all u increases into the region

y > 0 we call this a ‘positive unfolding’; this solution represents a bias or favouring

of alternative A. When the branch that is stable for all u decreases into the region

y < 0 we call this a ‘negative unfolding’; this solution represents alternative B being

favoured. In Figure 5.1 we call the bifurcation diagram on the left ‘positive’, and
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the diagram on the right ‘negative’. Understanding whether the bifurcation diagram

for a given system displays a positive or negative unfolding allows us to understand

which alternative the network is biased towards. These biases may be due to genuine

differences in the alternatives being considered, but also due to asymmetry associated

with how agents are located in the network. Developing an understanding of how the

various biases enter the system will improve our ability to design engineered systems;

for instance we can detect and remove unwanted biases.

Let us define

βp = vT1 β,

a scalar quantity that combines the eigenvector centrality with the information vector.

Because we associate alternatives A and B with positive and negative respectively,

we can use the sign of βp to predict the direction of the unfolding according to part

(iii) of Theorem 1 from [40]. When we discussed the universal unfolding of (3.4) in

Chapter 3, Subsection 3.2.3, we noted that our unfolding parameters β enter (3.4) and

the Lyapunov-Schmidt reduction g(y, u,β) of (3.4) linearly. In [35], Golubitksy et al.

show via the Lyapunov-Schmidt reduction that g = 〈vT1 ,f(x, u)〉 and ∂g
∂βi

= 〈vT1 , ∂f∂βi 〉,

hence Theorem 1. Consequently, in the universal unfolding

G(y, u,α) = y3 − uy + α1 + α2y
2, (2.4)

we conclude that this weighted combination of the information values βp = −α1

exactly. Returning to Figure 2.4 we see that for positive values of α1, and therefore

negative values of βp we see a negative unfolding, while for negative values of α1, and

therefore positive values of βp we see a positive unfolding.

Take, for instance, the networks shown in Figure 5.1. For Figure 5.1 (left), for the

network shown βp = 0.29, so βp > 0 and we predict an unfolding towards alternative

A. We can compare these results to the numerical results shown in Figure 5.1, which
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indeed show a positive unfolding. For the network in Figure 5.1 (right), βp = −0.32,

so βp < 0 and, as predicted, we see an unfolding towards the negative alternative B.

The outcome in both cases is predicted correctly by the sign of βp.

Interestingly, both networks contain four nodes with a preference for A, and three

nodes for a preference for B. Intuitively we would expect A to be the preferred alter-

native in both cases, because there are more agents with this preference. However,

we see in Figure 5.1 (right) that alternative B, which is preferred by fewer agents, is

favoured. Clearly, the influence of the nodes with a preference for alternative B is

stronger. In Section 5.3 below we will revisit both networks and discuss the relative

influence of each agent.

5.1.1 Limitations of eigenvector centrality and βp

Theorem 1 addresses the bifurcation behaviour of the scalar equation g(y, u,β), which

is the Lyapunov-Schmidt reduction of our N -dimensional system (3.4). The results

of Theorem 1 show that for β = 0, dynamics (3.4) have S2 symmetry and undergo a

symmetric pitchfork bifurcation at the singularity (y∗, u∗). In Chapter 4 we showed

via Theorem 5 that a symmetric pitchfork also occurs for β 6= 0 when S2 symmetry

is preserved in the network structure and information distribution. If S2 symmetry is

not preserved, we see an unfolding of the pitchfork, and our aim is to understand how

and why this unfolding occurs. Developing a full understanding of how asymmetry

has entered the system is challenging, because there are many different ways in which

the S2 symmetry can be broken.

In the section prior we showed that for our system βp = −α1 in the universal

unfolding, and there is no dependence of α2 on β. α1 and α2 allow us to move

through all regions of Figure 2.4, so when considering the effect of β through the

present analysis, we can only move along one line in the parameter region. We
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are therefore limited in our ability to study the unfolding behaviour, as there are

additional nonlinear, symmetry-breaking effects that we cannot describe analytically.

In Chapter 3, Section 3.1 we defined a balanced graph as a network for which the

in-degree and out-degree of each node are equal. For balanced graphs, just as every

row sums to zero so does every column, so vT1 = 1√
N

1TN . Therefore, the eigenvector

centrality of each agent is equal. In this case, to the level that we have analysed,

there is symmetry between the agents and their influence on the network. Below,

we discuss cases in which the direction of unfolding for balanced graphs cannot be

predicted by the sign of βp, and we extend our analysis for some of these cases.

Recall in Figure 4.2 we considered a directed ring of subgroups of agents in which

the agents with a preference for alternative B have a direct influence on the unin-

formed agents, and the agents with a preference for alternative A do not. Each agent

has exactly seven neighbours, so it is a balanced network. When we set βA = 5 we

found that for βB < 3.849 (βp > 1.33) the unfolding was towards alternative A, and

for βB > 3.849 (βp < 1.33) the unfolding was towards alternative B. Therefore, the

sign of βp does not correctly predict the unfolding direction. For this balanced net-

work, the asymmetry in the graph that causes the unfolding behaviour is not captured

by the Lyapunov-Schmidt reduction and the subsequent analysis of Theorem 1.

Additionally, βp does not allow us to correctly predict the behaviour for the net-

works shown in Figure 5.2. In both cases βp = 0 which we would assume predicts

no unfolding, and the persistence of the symmetric bifurcation diagram. However, in

both cases we see an unfolding towards alternative B. There is an unfolding towards

the alternative preferred by the agents with more direct influence on the agents with

no preference.

Let us consider all balanced graphs with nA agents with βi = βA and nB agents

with βi = βB. Simulations show that if nA = nB, the left eigenvector centrality and

βp are not sufficient to predict the unfolding direction. There is symmetry in the
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Figure 5.2: Bifurcation diagrams for the networks shown inset. Both networks are
balanced graphs with nA = nB, so βp = 0.

eigenvector centrality of all the agents, and also in the number of agents that prefer

the two alternatives, but there still may be sufficient asymmetry in how the agents are

arranged which produces an unfolding. In the following section we consider the special

case of balanced graphs that have a symmetric Laplacian (undirected graphs), and

develop a result that allows us to modify βp and make predictions for these networks.

5.2 Analysis of some nonlocal effects for

undirected graphs

Recall from Chapter 2, Section 2.3 that the equilibria of the scalar equation

g(y, u,β) = 0 evolve on the centre eigenspace of the N -dimensional system f(x, u)

and that the fixed points of g(y, u,β) correspond to the fixed points of f(x, u).

The Lyapunov-Schmidt reduction allows us to consider behaviour locally around the

singular point (0, 1,0), and this analysis proves sufficient for the cases in Figure 5.1

but not Figure 5.2 or Figure 4.2. To analyse the latter, we must move slightly away

from the singularity, and consider higher order terms in ∂g
∂β

. The most natural choice

is to expand this expression in terms of the bifurcation parameter u and consider
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values of u slightly above u = 1. Expanding ∂g
∂β

at u = 1 gives

∂g

∂β
(u) =

∂g

∂β

∣∣∣∣
u=1

+
d

du

(
∂g

∂β

) ∣∣∣∣
u=1

du. (5.1)

We know that ∂g
∂β

∣∣
u=1

= vT1 , so in order to find d
du

(
∂g
∂β

) ∣∣
u=1

we seek
dṽT1
du

∣∣
u=1

. We

let L̃ = D − uA, with L̃ = L at u = 1, and consider how the first left eigenvector

of L̃ perturbs for u > 1. We know balanced graphs have N linearly independent

eigenvectors that will perturb continuously with u, and the first eigenvalue λ̃1 and

associated left eigenvector ṽT1 must satisfy

ṽT1 (u)L̃(u) = ṽT1 (u)λ̃1(u).

To study how ṽT1 perturbs, we take the derivative with respect to u:

dṽT1 (u)

du
L̃(u)− ṽT1 (u)A =

dṽT1 (u)

du
λ̃1(u) + ṽT1 (u)

dλ̃1(u)

du
.

At u = 1, λ̃1 = 0, and ṽT1 = 1TN , so

dṽT1
du

∣∣∣∣
u=1

L− 1TNA = 1TN
dλ̃1

du

∣∣∣∣
u=1

dṽT1
du

∣∣∣∣
u=1

= 1TN

(
A+

dλ̃1

du

∣∣∣∣
u=1

I

)
L†, (5.2)

where L† is the pseudoinverse of L. Let us define the row vectors

bT =
dṽT1
du

∣∣∣∣
u=1

and dT = (diag(D))T .
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Here, dT is row vector with each element dTi corresponding to the degree of agent i.

Like L, the rows and columns of L† sum to 0, so 1TNL
† = 0. Returning to (5.2)

bT = dTL†.

Additionally, assuming a strongly connected network, we can write L† as L† =

V TΛ†V , where Ṽ is a matrix with rows ṽT1 , ..., ṽ
T
N , the left eigenvectors of L̃, and

Λ† is a diagonal matrix with Λ†11 = 0 and Λ†ii = 1
λi

for i ∈ {2, ..., N}. Recall from

Chapter 3 that for strongly connected networks λi > 0 for i = 2, ..., N . Therefore

bT = dTV TΛ†V.

From this expression we can find an expression for bi in terms of the remaining 2, ..., N

eigenvalues and eigenvectors of L. This expression is

bTi =
N∑
j=2

vji

∑N
k=1 d

T
k vjk

λj
.

In the previous section we defined

βp =
∂g

∂β
=

〈
vT1 , β

〉
.

With the analysis of this section we now define

βu(u) =
∂g

∂β
(u) =

〈
vT1 +

dṽT1
du

∣∣∣∣
u=1

du, β

〉
=

〈
vT1 + (u− 1)bT , β

〉

for small (u− 1). βu allows us to predict how the consensus manifold perturbs, and

thus the direction of the unfolding, for some cases in which βp fails.
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Let us now return to the networks shown in Figures 5.2, for which βp = 0. For

Figure 5.2 (left) at u = 1.1, βu = −0.03, and the sign of βu correctly predicts the

unfolding towards alternative B. Similarly for Figure 5.2 (right), βu = −0.02. For

these networks, the sign of βu correctly predicts the unfolding direction.

Figure 5.3: Bifurcation diagrams for the systems shown inset. The network is identical
for both diagrams, but the information distribution has been changed.

We show further how βu makes it possible to distinguish the effect of differences in

information distribution vectors, where βp fails to do so. In Figure 5.3, we consider the

same network from Figure 5.2 (left), but with two different information distributions.

We have already seen that βu is negative for Figure 5.3 (left), corresponding to an

unfolding towards alternative B. For Figure 5.3 (right) βu = 0 which correctly predicts

that there is no unfolding, as the symmetry is preserved to a higher order.

To illustrate further, let us return to the undirected network shown in Figure 5.1

(left), but with a different information distribution such that nA = nB. With βA = βB

(and βp = 0) the bifurcation diagram unfolds towards alternative A, which is predicted

by a value of βu = 0.0133 at u = 1.1. In Figure 5.4 we slowly increase βB, so

βB > βA. For βB = 1.01, βu = 0.0041 predicting an unfolding towards A, while

for βB = 1.02, βu = −0.0051 predicting an unfolding towards B. These results are

confirmed numerically in Figure 5.4. Here the change in sign of βu allows us to
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Figure 5.4: Bifurcation diagrams for the networks shown inset.

predict when the direction of the unfolding changes as we vary βB, to a high degree

of accuracy.

The predictions from βu do not apply to Figure 4.2 however. For all three values

of βB depicted, βu = βp > 0, but clearly the direction of the unfolding changes. This

result is as expected, because the analysis of this section was developed for undirected

graphs, which have a symmetric Laplacian matrix. The shown network in Figure 4.2

is a directed graph, so the Laplacian is not symmetric.

5.3 Implications for design

From the above results and analysis, we now have the following guidelines for pre-

dicting which alternative will be favoured in an unfolding of the symmetric pitchfork:

(a) For non-balanced graphs, and balanced graphs with nA 6= nB, the direction of

the unfolding is predicted by sgn(βp).

(b) For undirected graphs that do not satisfy (a) (with nA = nB) the direction of

unfolding is predicted by sgn(βu(u)) for small (u− 1).

(c) For directed, balanced graphs with nA = nB our criteria do not predict the

unfolding.
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Many networks are covered by (a) and (b), so we are in a powerful position to

predict the effect of information distribution and network structure on the decision-

making outcomes of a group that behaves according to our dynamic model.. If ‘fair-

ness’ is a consideration, and a design criteria of high importance is designing a system

that will maintain a symmetric pitchfork bifurcation for equal alternatives, we can

design networks that satisfy (a) and/or (b) with βp = βu = 0, so there is no bias

due to network structure. Given that many engineered systems will be operating in

uncertain environments it is unlikely that the high level of symmetry required for a

symmetric pitchfork will be maintained in all scenarios, but when designing a system

we can at least ensure that the asymmetry is not entering the system via means that

are preventable.

If we consider just the left eigenvector vT1 and also ṽT1 , we can develop an under-

standing of the most influential nodes in the network. In our motivating example of a

search and rescue task, we discussed that different agents may have different sensing

capabilities. In some cases there may be a difference in the quality of sensor that

each agent is equipped with, so some agents will receive more reliable data. vT1 and

ṽT1 show us which nodes are the most influential in the network, and to improve the

accuracy of the group, the agents with better sensors should be placed in these more

influential positions. We can use vT1 and ṽT1 to determine how to arrange the agents

in a communication network, based on sensor quality.

To provide some intuition into how the centrality measures vT1 and ṽT1 distinguish

the influence of the agents, consider the the networks from Figure 5.1, which are

reproduced in Figure 5.5 with the values of vT1 and ṽT1 indicated. In Figure 5.5 (left)

we show the undirected network. For u = 1, vT1 = 1√
12

1N ≈ 0.291N . For u = 1.1,

(ṽT1 )i increases for agents 1 and 3-6, stays roughly the same for agents 2, 8 and 9 and

decreases for agents 7 and 10-12. Agents 6 and 9 both have the highest number of

neighbours (5), but the neighbours of 6 have more neighbours than the neighbours
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Figure 5.5: Values of ṽT1 for the networks from Figure 5.1. Left: the network is in
category (b), so we consider ṽT1 . Right: the network is in category (a), so vT1 suffices.

of 9, and this is reflected in ṽT1 . Eigenvector centrality considers both the direct and

indirect influence of an agent on its neighbours, hence the difference between agents

6 and 9.

In Figure 5.5 (right) there is a much larger inter-agent variation in the values of

vT1 . The most influential agent is agent 1, and the least influential is agent 11. Recall

from Figure 5.1 (right), agents 4, 6, 10 and 11 had a preference for alternative A and

agents 3, 8 and 9 for alternative B. Now that we have examined the values of vT1 , we

can easily see why alternative B was preferred by the group, as agents 3 and 9 have

a larger influence than all other informed agents.

5.4 Decision-making in the presence of noise

We now move to consider the network decision-making dynamics (3.4) in the presence

of uncertainty. We will also encounter a noisy system in Chapter 7, when we perform

experiments with robotic agents. Uncertainty or noise can enter the system through

the inter-agent communication channels or the sensing of external information. Suc-

cessful performance in the flexibility-stability trade-off requires sufficient robustness

to reject this uncertainty, while still remaining sensitive to system parameters. Suc-

cessful performance can be defined in a number of ways, for instance [43, 93, 94]

87



consider the robustness of consensus under uncertainty, and [71,72] study the contri-

bution of each agent to the overall uncertainty. For our system, we will consider the

performance of the group average, and the outcome of the group decision as defined

in Chapter 3.

To consider uncertainty we will use additive noise, and assume a zero mean and

independent and uncorrelated noise for each agent. The dynamics (3.4) become

dx = (−Dx+ uAS(x) + β)dt+ σdWN(t), (5.3)

where σ is the diffusion rate, which is homogeneous for all agents and WN(t) is the

standard N -dimensional vector of Weiner processes, which represents the additive

noise. We have only briefly defined these new terms here, but in the following subsec-

tion we will develop further understanding. Analysis of the noisy nonlinear dynamics

proves largely intractable, but like the deterministic nonlinear dynamics, these noisy

dynamics were designed around the linear consensus dynamics, and we can use anal-

ysis of the noisy linear system to make predictions for this nonlinear system. In the

next subsection we introduce the drift-diffusion model and Ornstein-Uhlbeck process,

which are the stochastic linear systems on which this (5.3) is based. We first present

the associated theory for these models, and then perform analysis that allows us to

predict the decision-making outcomes in the presence of noise for the linear dynamics,

and the nonlinear dynamics by extension.

5.4.1 The linearised, stochastic model

The linearisation of the noisy model at u = 1 is the drift-diffusion model (DDM),

which is often applied to the study of human performance in free-response two-

alternative choice tasks [10, 74, 75]. A free-response task is one in which there is

no time limit on making the decision, and a two-alternative choice task is a decision
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between alternatives A and B, as in our nonlinear model. Many other forms of two-

alternative choice models can be shown to be equivalent to the DDM under optimal

parameter conditions [10]. The DDM models the integration over time of evidence

for the two alternatives, and a decision is made when the evidence crosses one of two

thresholds ±η. For a single agent, the DDM is

dx(t) = βdt+ σdW1(t). (5.4)

Here β is the drift rate, and the sign of β drives x towards ±η, while σ is the diffusion

rate, which scales the effects of the random noise simulated by the Weiner process

W1. Here E[W1(t)] = 0 and E[W1(t)2] = t. Results are given in [10] for how the

choice of β, σ and η values affect the dynamics and decision results. The DDM for a

network of agents with network Laplacian L is given by

dx(t) = (β − Lx(t))dt+ σdWN(t), (5.5)

so we see the drift term is modified to include the effects of an agent’s neighbours.

Prior analysis of the linear-stochastic model

In [83,84] Srivastava et al. used principal component analysis to separate the network

DDM into the principal component xp(t) = 1√
N
vT1 x(t) and the residual components

ε(t) = x(t)− xp(t)1N . The dynamics for these components are

dxp(t) = β̄pdt+ σdW1(t)

dε(t) =
(
(β − β̄p1N)− Lε(t)

)
dt+ σ(IN − v1v

T
1 )dWN(t),

where IN is the N × N identity matrix and β̄p = 1√
N
vT1 β = 1√

N
βp. Recalling that

the first eigenvalue of L, λ1 = 0, they showed that the expected value and variance
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of the principal component satisfy

E[xp(t)] = lim
λ1→0

β̄p
λ1

(1− e−λ1t) = β̄pt

Var[xp(t)] = lim
λ1→0

σ2

2λ1

(1− e−2λ1t) = σ2t.

We see that the outcome of the centralised component depends on β̄p = 1√
N
vT1 β, a

scaling of the product of the eigenvector centrality and external preference vector.

Additionally, in [83], Srivasatava et al. discussed the speed-accuracy trade-off. This

is analogous to the flexibility-stability trade-off discussed in this thesis, but seeking

to balance decision-making performance that will favour a quick decision or a highly

accurate one. They showed that performance in this trade-off depends on the selection

of the threshold η.

Considering u > 1

Thus far we have considered the linearisation of the nonlinear model at u = 1 only.

We now wish to consider values of u > 1, so we introduce the Ornstein-Uhlbeck

process [15]

dx(t) = (β − L̃x(t))dt+ σdWN(t). (5.6)

As in Section 5.2, we let L̃ = D − uA to consider values of u > 1. The eigenvalues

and left eigenvectors of L̃ are denoted λ̃Ti and ṽi respectively. For u > 1, λ̃1 > 0,

and we restrict ourselves to values of u ∈ [1,Ψ) for which λ̃1 is the only non-positive

eigenvalue. The condition on u for which there is only one non-positive eigenvalue

was found in [26], with

u <
1

λn−1(D−1A)
= Ψ,
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where λn−1(D−1A) is the second largest eigenvalue of the matrix D−1A. When u = 1,

L̃ = L. (5.6) is a mean-reverting model: over time the process drifts towards some

mean value.

5.4.2 Analysis of the linear-stochastic dynamics

The analysis of [83, 84] considered the central component xp(t) = 1√
N
vT1 x(t), but we

wish to consider the performance of the group average y(t) = 1
N

∑N
i=1 xi(t), which

differs from xp(t) when (ṽT1 )i 6= (ṽT1 )j ∀ i 6= j with i, j ∈ {1, ..., N}. We consider all

graphs for which the network Laplacian L and the adapted form L̃ are diagonalisable,

and therefore have N linearly independent left eigenvectors.

Theorem 6. For dynamics (5.5), with information vector β and L̃ diagonalisable,

we define Ṽ , a matrix with rows ṽT1 , ..., ṽ
T
N , the left eigenvectors of L̃.

i. The expected value of the average opinion y(t) is given by

E[y(t)] ≈ g11β̃p

−λ̃1

e−λ̃1t

where β̃p = ṽT1 β and g11 = 1
N

1TN Ṽ
−1
∗1 . Ṽ −1

∗1 is the first column of Ṽ −1. We know

g11 > 0 and −λ̃1 > 0, so sgn
(
E[y(t)]

)
= sgn(βp).

ii. For u = 1, this reduces to

E[y(t)] ≈ g11βpt,

iii. and for balanced graphs at u = 1

E[y(t)] =
βp√
N
t.
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Proof of Theorem 6.

(i) L̃ is diagonalisable so we can write L̃ = Ṽ −1Λ̃Ṽ , where Ṽ is a matrix with

rows ṽT1 , ..., ṽ
T
N , the left eigenvectors of L̃ and Λ̃ is a diagonal matrix of the associated

eigenvalues. We define the change of coordinates

x =



x1

x2

...

xN


→ z =



y

x2

...

xN


where y(t) = 1

N
1TNx(t). The transformation matrix z(t) = Tx(t) is therefore

T =



1
n

1
n

1
n

. . . 1
n

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


,

so dz = Tdx. Applying this change of coordinates to (5.5) we may write

dz(t) = (Tβ − TL̃T−1z(t))dt+ TσdW n(t).

The expected value of z(t) is given by

E[z(t)] =

∫ t

0

e−T L̃T
−1τTβdτ

=

∫ t

0

Te−L̃τβdτ

=

∫ t

0

T Ṽ −1e−Λ̃τ Ṽ βdτ. (5.7)

92



We are interested in E[y(t)], which is the first entry of (5.7), and we let

Ge−Λ̃τ = T Ṽ −1e−Λ̃τ .

For large t, the 2,...,N entries of the first row of matrix Ge−Λτ will decay quickly to

zero as 0 < λ2 < ... < λN . Therefore the first entry g11e
−λ̃τ will dominate and we can

write

E[y(t)] ≈
∫ t

0

g11e
−λ̃1tṽT1 βdτ

≈ g11β̃p

−λ̃1

e−λ̃1t.

We know that g11,−λ̃1 > 0, so the sign of the expected value of y and therefore the

expected alternative chosen are determined by β̃p.

(ii) For u = 1 we have L̃ = L and λ1 = 0, and in this case e−Λτ is a diagonal

matrix with (e−Λτ )11 = 1. The 2,...,N entries will decay to zero, so

E[y(t)] ≈
∫ t

0

g11ṽ
T
1 βdτ

≈ g11βpt.

(iii) The eigenvectors vT2 , ...,v
T
N are all orthogonal to vT1 which is 1√

N
1TN for bal-

anced graphs, so the first row of TV −1 is [ 1√
N
, 0, ..., 0], and we can therefore write the

first entry of (5.7) exactly as

E[y(t)] =
βp√
N
t. �

Theorem 6 shows that, as in the deterministic nonlinear case, we can use the sign

of β̃p to predict how the network structure and information distribution will affect

the outcome of the decision for the linear-stochastic dynamics. Unlike the previous
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analysis in Section 5.2, where βp was a local result around the singularity (0, 1,0),

the analysis of this section allows us to consider behaviour for u > 1 via β̃p. The

changes in ṽT1 with u are incorporated in the result, and our extension with βu is not

necessary. In the next section we will use results from simulations to examine how

well this analysis of the noisy linear dynamics allows us to predict the results of the

noisy nonlinear dynamics (5.3).

5.5 Results for the linear and nonlinear models

with noise.

We now perform Monte Carlo simulations on the noisy nonlinear system (5.3), to

demonstrate how the results of Theorem 6 for the linearised system predict the

decision-making outcomes of the nonlinear system in the presence of noise. Fig-

ure 5.6 shows results for a variety of networks that we have discussed throughout this

chapter. Each simulation advances dynamics (5.3) with the parameter values shown

until the average opinion of the group of agents being considered crosses one of the

two decision thresholds ±η. We performed 5000 simulations for each data point, over

u ∈ [1.5, 4] and in all simulations the decision threshold η = 1, and the diffusion

rate σ = 0.2. When the average opinion of the group crosses η = 1 we say that the

group has chosen alternative A, and when it crosses η = −1 we say that the group

has chosen alternative B. The initial opinion of each agent xi(0) = 0 for all trials.

To guarantee that a decision was made in reasonable time, we used values of u that

correspond to |y(t)| > |η| on the bifurcation diagrams of the networks. In each trial

we recorded whether alternative A or B was chosen, and then for each value of u we

found the percentage of trials for which the alternative chosen was predicted by the

sign of β̃p.
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Figure 5.6: Results of the Monte Carlo simulations of dynamics (5.3) for Networks 1
- 5 shown. In all simulations σ = 0.2 and η = ±1.

The values of η and σ naturally affect the results of the decision, and these could

be optimised to improve the accuracy and speed of decision-making. Our interest is

in how well the sign of βp predicts which alternative is chosen by the group, so we do

not consider the affects of our choices for these parameters.
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In the first set of simulations, in Figures 5.6 (top, left and right) we set βA = 1.5

and βB = 1. For all networks, this means β̃p > 0 (shown in Figure 5.6 (top, left)) so

we expect the network to choose alternative A by crossing the positive threshold. As

shown in Figure 5.6 (top, right) for u = 1.5 the groups chose alternative A in > 80%

of the trials. Network 1 is the closest to 100% accurate, as nA > nB, so there is a

bias for alternative A both in the values of β, and the number of agents with that

preference. Generally we see an overall correlation between the magnitude of |β̃p|

for each network, and the level of accuracy across all u values. As u increases, the

accuracy for all networks declines. If we recall dynamics (5.3), we see that the drift

rate of each agent is affected by the agent’s preference value βi as well as the opinions

of the agent’s neighbours. As u increases the influence of each agent’s neighbours

will increase relative to the value of its preference, so less importance is placed on

this information value. Notice that the performance of Networks 4 and 5 decays the

most. In Chapter 4 we discussed how increasing the total group size improved the

performance of the group by lowering the level of social effort u required to break

a deadlock between alternatives. Here we see that increasing the group size also

improves the ability of the group to reject disturbances in a noisy system.

Recall from Chapter 2, Figure 2.5, we showed that close to the bifurcation point, an

unfolding of the bifurcation diagram causes very different behaviour to the symmetric

pitchfork, while far away from the bifurcation point (u >> 1) the unfolded bifurcation

diagram remains similar to the symmetric diagram. As we increase u in Figure 5.6

(top, right) we move to a part of the bifurcation diagram where the bias due to the

different β values is less prevalent, and this is likely why the percentage of times

that the result is predicted by βp decreases. In all simulations here, the value of u

was constant during each simulation, so for higher values of u, the system did not

come close to the highly sensitive bifurcation point. There is only one branch of the

bifurcation diagram that is stable for u < 1, so if a simulation is begun with u < 1
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and the value of u is increased, the equilibrium of that system will remain on that

stable branch and move in the direction of that unfolding. Here for simulations with

large u we did not move through the bifurcation point, but began already past it, so

the system does not benefit from the high sensitivity around the bifurcation point.

High values of u may be advantageous to force a system to make a decision quickly,

but in order to remain highly sensitive to system parameters the value of u should

be slowly raised from u < 1. In the next chapter we design an adaptive feedback

dynamic which does exactly this.

In the second set of simulations, shown in Figures 5.6 (bottom), we set βA =

βB = 1, so here we consider the effect of asymmetry due to the network structure

and information distribution rather than information value. For an all-to-all network,

with nA = nB, we would expect each alternative to be chosen 50% of the time because

the system is symmetric, but here we consider networks that introduce asymmetry. In

the deterministic case these networks cause an unfolding of the symmetric pitchfork,

and a bias towards one of the two alternatives.

For Network 1 nA > nB and β̃p > 0, therefore we predict that alternative A

would be chosen. This prediction is correct > 60% of the time, but less often than

in the first set of simulations. In the first set, nA > nB and βA > βB. For the

first set of simulations the value of the external information in the expression for the

average opinion y is 0.75, while in the second set the value is 0.25. The value of the

diffusion rate is 0.2, which is much closer to the value of the external information in

the expression for y in the second set of simulations, so it is harder for the system to

distinguish between the noise and the external information.

The percentage of times that either alternative is chosen is close to 50% for Net-

works 2-4. These are cases where nA = nB, so the noise seems to inhibit some of

the bias that appears due to the asymmetric information distribution. Given than

βA = βB, we can consider the bias in the networks due to asymmetrical network struc-
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ture as an unwanted effect. The addition of noise appears to counteract the sources

of bias, and we see results close to what we would expect for a symmetric pitchfork

bifurcation. Note that nA = nB for Network 5 also but there is more apparent bias.

This could be due to the fact that there are fewer uninformed agents, or fewer agents

overall. We discussed above how increasing the number of agents in a network im-

proves the performance, and if we interpret the removal of bias as an advantage, we

observe a similar improvement with increasing group size here.

The results of this chapter can be applied to several of our six design consider-

ations, and therefore aid design choices. We again saw that the influence of system

parameters, particularly the total group size, improves the performance of the system.

Also, the eigenvector centrality vT1 and adapted vector ṽT1 provide an understanding

of the role of the network structure. In our search and rescue example this result

would inform where in a communication network to place robots with higher quality

sensors. Finally, the results of this last section demonstrated the sensitivity close to

the bifurcation point, and robustness far away from the bifurcation point that we

have discussed as an important result for the flexibility-stability trade-off. In the

next chapter, where we design an adaptive feedback dynamic, we must ensure that

our dynamics allow the trajectory to pass through the region around the bifurcation

point in order to remain sensitive to environmental parameters.
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Chapter 6

Adaptive dynamics to ensure a

decision

In this chapter we design a decentralised adaptive feedback dynamic that increases

the value of u, the bifurcation parameter and social effort level, until the magnitude of

the average opinion |y| of a group of agents reaches some set threshold. u is increased

slowly, so that the dynamics move through the region close to the bifurcation point,

thus ensuring that we retain the high level of sensitivity that occurs in this parameter

region. We present a feedback algorithm that can be implemented by a group of agents

with or without external information, and with any strongly connected network. The

work in this chapter was originally presented in [40]. I was the co-lead contributor to

the section relevant to this chapter along with Alessio Franci, who wrote the version

of Theorem 7 that appeared in [40]. Vaibhav Srivastava and Naomi Ehrich Leonard

provided oversight and guidance. The writing and results presented here are a revision

of the work presented in [40], and provide a more thorough presentation. Theorem

7 has also been revised. In Section 6.2 we reference a video that implements the

proposed feedback dynamics with a robotic system. The video was created for [48] a

99



Princeton University senior thesis written by Sofi Inglessis, with guidance from myself

and Naomi Ehrich Leonard. The video was created by Sofi Inglessis and myself.

6.1 Design objectives

In the previous chapters we have seen how the network topology and system param-

eters influence the behaviour of systems with the decision-making dynamics (3.4), by

altering the underlying bifurcation diagram. For instance, we know that increasing

the value of the alternatives being considered will delay the bifurcation point for dy-

namics (3.4) with bifurcation parameter u, and make the bifurcation appear earlier

for dynamics (3.3) with bifurcation parameter uS. In this chapter we consider the

network topology and the system parameters to be characteristics determined exter-

nally, i.e., by the environment. In our example setting of a search and rescue task, the

agents will be sensing values of β as they explore the environment, and the network

topology may change depending on the availability of communication. The range and

values of β and disruptions to the communication will not be known ahead of time,

but the group must still be able to make a decision. We wish to design feedback

dynamics which can ensure that a group of autonomous agents will be able to make

a decision in any set of environmental conditions.

Recall from the introduction to the model in Chapter 3, we defined a decision as

occurring when the magnitude of the steady state value average opinion |y| is greater

than a threshold η and when all the opinion of all agents has the same sign, which is

the case when the disagreement δ = |yss| − 1
N
‖xss‖1 = 0. In order to ensure that a

decision is made, we must ensure that |y| crosses the threshold, and the agent opinions

remain sufficiently close to the average. The value of u at which the stable branches of

the bifurcation diagram and therefore |y| will cross η depend on the network topology

and system parameters, and how they alter the bifurcation diagram.
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In the literature, typical objectives in control of nonlinear systems that exhibit

bifurcation behaviour involve controlling characteristics of the bifurcation diagram.

For instance, in [90], Wang et al. delay the onset of an inherent bifurcation and

introduce a new bifurcation, while in [1,2], Abed et al. stabilise a bifurcated solution

or branch. For our system, the shape of the bifurcation diagram should remain

unconstrained and free to respond to the environmental conditions, as this is what

provides system sensitivity. Therefore we seek to change the value of u without

affecting the behaviour of the underlying bifurcation. Additionally, we saw in the

previous chapter how systems that begin deliberating with u > u∗ (the bifurcation

point) do not have the same sensitivity as systems with u close to u∗. The dynamics

on u must begin at u < u∗ and increase u slowly to allow the trajectory to pass

through the region around the singularity.

The parameter u was inspired by the inhibitory stop-signalling performed by hon-

eybees during their nest-site selection process. As shown in [69,81], when the bees are

considering equal alternatives, the level of stop-signalling required to break a dead-

lock between alternatives is sensitive to the value of the alternatives being considered.

Pais et al. postulated in [69] that the bees may increase the level of stop-signalling

during the decision-making process. The bees do not feed during the deliberation, so

over time they may feel an increased urgency to make a decision. We take inspiration

from this hypothesis here, and design dynamics that slowly increase u proportional to

the distance of the group average y from a threshold yth. yth could be set as equal to

the decision threshold η, or slightly higher to allow for disturbances. The dynamics

on u are

u̇ = ε(y2
th − y2) (6.1)
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where ε is a small constant that ensures the dynamics are sufficiently slow. We begin

by considering a system in which each agent has identical u̇ dynamics, and then

generalise to systems for which this is not the case, i.e., where the control is fully

decentralised.

6.2 Adaptive dynamics for an all-to-all network

with β = 0

In order to demonstrate the adaptive feedback dynamics and the associated theory,

we begin with an all-to-all network with β = 0. In an all-to-all network every agent

has access to every other agent’s opinions and therefore can calculate the average

opinion of the group y = 1
N

∑N
i=1 xi. We consider an idealised case in which the

dynamics on the bifurcation parameter u are a function of the global parameters y,

yth and u(0) only, and each agent has identical u̇ dynamics.

To design adaptive feedback dynamics for an all-to-all network with N uninformed

agents we modify dynamics (3.4) as follows:

ẋ = −Dx+ uAS(x) (6.2a)

u̇ = ε(y2
th − y2). (6.2b)

We may use the centre manifold theorem [41, Theorem 3.2.1] to show that dynam-

ics (6.2) converge to a low-dimensional manifold. We augment (6.2) with a dummy

dynamic for ε, giving

ẋ = −Dx+ uAS(x) (6.3a)

u̇ = ε(y2
th − y2), (6.3b)

ε̇ = 0. (6.3c)
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For strongly connected graphs, the linearisation of (6.3) and (x, u, ε) = (0, 1, 0) has

N − 1 eigenvalues with negative real parts and three zero eigenvalues. The corre-

sponding null eigenvectors are

e1N
=


1TN

0

0

 , eu =


0

1

0

 , eε =


0

0

1

 ,

where 1TN is the N-dimensional row vectors of ones. By the centre manifold theorem

dynamics (6.3) possess a three-dimensional center manifold W c = span{e1T
N
, eu, eε}

that is exponentially attracting. Dropping the dummy dynamics and letting y = 1TNx

we may describe dynamics (6.3) on the centre manifold W c by

ẏ = −(N − 1)y + u(N − 1)S(y)

u̇ = ε(yth − y2).

This is a slow-fast system [7]; a system with two families of dynamic variables that

evolve on different time-scales. The slow-fast dynamics in time τ = εs are

εy′ = −(N − 1)y + u(N − 1)S(y) (6.4a)

u′ = y2
th − y2 (6.4b)

where ′ = d
dτ

. The dynamics of y and u evolve on different time-scales, with the ratio

between the two time-scales given by the parameter ε. As we take the limit ε → 0,

the boundary layer dynamics of (6.4) evolving in the fast time s are

ẏ = −(N − 1)y + u(N − 1)S(y) (6.5a)

u̇ = 0, (6.5b)
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and the reduced dynamics evolving in the slow time τ are

0 = −y + uS(y) (6.6a)

u̇ = y2
th − y2. (6.6b)

These dynamics can be analysed using geometric singular perturbation theory from

[22], see [52, Chapters 1 & 2] for a review.

The reduced dynamics in slow time are defined on the slow manifold M =

{(y, u) | y = ȳ(u)}, where ȳ(u) is the solution to −ȳ + uS(ȳ) = 0. The manifold

is normally hyperbolic; the eigenvalues have non-zero real parts. The reduced dy-

namics (6.6) describe the behaviour of the system (6.2) close to the slow manifold

M, while the boundary layer dynamics (6.5) describe the behaviour far away from

M. At ε = 0 we can consider the two sets of dynamics separately, but this does not

allow us to understand the full behaviour of the system. Geometric singular pertur-

bation theory [22, 52] allows us to study both simultaneously, and requires that ε be

small but non-zero.

Fenichel theory [22], [52, Theorems 1 and 3] states that for small ε > 0, there

exists a manifoldMε that lies within O(ε) ofM. Mε is diffeomorphic toM, locally

invariant under dynamics (6.2) and Cr for r < ∞. Additionally, there exist stable

and unstable manifolds W s(Mε) and W u(Mε) that lie within O(ε) of W s(M) and

W u(M). The results of these theorems tell us that the flow of our adaptive feedback

system (6.2) remains (ε) close to the flow of (6.5a) for small ε.

For dynamics (6.2), from the above theory and Corollary 2, we know that for u < 1

the slow manifold M consists of one globally exponentially stable branch at ȳ = 0,

and for u > 1 that branch becomes exponentially unstable and we see the appearance

of two locally exponentially stable branches at ȳ = ±ys(u) where ys

S(ys)
= u. The
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boundary layer dynamics converge to stable branches of Mε close to M and are

repelled by unstable branches.

As mentioned previously, at the bifurcation point (ȳ∗ = 0, u∗ = 1) the flow

of (6.2a) is very slow, and analysis of the dynamics as a slow-fast system may break

down. We need additional theory in order to understand what happens as we pass

through this point. For initial conditions y(0), u(0), we use [7, Theorem 2.2.4], which

shows that for u(t) < u∗ the trajectory of y reaches an ε-neighbourhood of the slow

manifold ȳ = 0. The u̇ dynamics (6.2b) are positive for |y| < yth, so u(t) increases

slowly and passes through the bifurcation point u∗ = 1. Because y ≡ 0 is a particular

solution of (6.2), y(t) approaches exponentially closely, and when the manifold be-

comes unstable at u = 1 it takes a time of order 1 for the trajectory y(t) to move away

from the unstable manifold and approach one of the two stable manifolds ȳ = ±ys.

This phenomenon is known as bifurcation delay ; the length of the delay in terms of

u(t) is given by [7]:

Π(u(0)) = inf

{
u(t) > 1

∣∣∣∣ ∫ u(t)

u(0)

(u− 1)(N − 1)

y2
th

du > 0

}

= 2− u(0).

Formally, for y(0) 6= 0, u(0) < 1 in a small neighbourhood N of (y = 0, u = 1)

there exists a constant c1 > 0 and

u1 = u(0) +O(ε
∣∣ log(ε)

∣∣)
u2 = 2− u(0)−O(ε| log(ε)|)

u3 = u2 +O(ε| log(ε)|),
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such that

0 ≤ y(t) ≤ ε for u1 ≤ u(t) ≤ u2

|y(t)| − ys(u) ≤ c1ε for u(t) ≥ u3,

for all times t such that (y(t), x(t)) ∈ N . See [7, Theorem 2.2.4] for the full theorem

and proof. This theorem describes how the trajectory (y(t), u(t)) converges to the

deadlock equilibrium ȳ = 0 for u(0) < 1, slides along it past the bifurcation point and

then after a delay (until u(t) > 2−u(0)) converges to one of the two stable branches.

We can now describe the trajectory y(t) under the adaptive dynamics (6.2).

Finally, it remains to show that the dynamics converge to |y(t)| = yth. By inspec-

tion of dynamics (6.2b), we see that for |y(t)| < yth, u̇ > 0 and for |y| > yth, u̇ < 0.

The dynamics (6.2b) drive u to increase until |y| reaches the threshold value yth.

Therefore the adaptive feedback ensures a group of agents with dynamics (6.2) will

make a decision for yth > η.

Figure 6.1: Bifurcation diagram and sample trajectory for a group of 12 agents with
dynamics (6.2), with ε = 0.01.

Figure 6.1 shows the bifurcation diagram and trajectory for an all-to-all system

of 12 agents with dynamics 6.2, threshold yth = 2 and ε = 0.01. The bifurcation

diagram is shown with the stable branches in blue and the unstable branch in red,
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while the trajectory for (y(t), u(t)) is shown in purple. The trajectory begins at the

initial conditions (y(0), u(0)) and as |y(t)| < yth, u̇ > 0. As u(t) increases from u(0)

to u1, y(t) approaches ±ε of the stable branch ȳ = 0. u(t) continues to increase and

passes through the bifurcation point u∗ = 1, but due to the bifurcation delay effect,

y(t) remains within ε of the now unstable branch ȳ = 0 until u(t) = u2. As u(t)

increases from u2 to u3, y(t) approaches ±ε of the positive stable branches ȳ = ys.

For u(t) > u3, y(t) increases along the stable branch until y(t) = yth.

Thus we have, for a special case, shown that with the addition of adaptive feed-

back to decision-making dynamics (3.4), the behaviour of the group average y of the

adapted system (6.2a) remains close to the behaviour of the original system (3.4).

The effect of the feedback (6.2b) is to increase the social effort term u, until the

group average y has reached a (positive or negative) threshold and therefore can en-

sure that the group has made a decision. Note that whether y crosses the positive

or negative threshold, i.e. chooses alternative A or B, will depend on initial con-

ditions and no agent in the group will know in advance which alternative will be

chosen. Because the consensus manifold x = y1N is globally attracting, these re-

sults hold globally. The dynamics (6.2) are demonstrated in a video, which can be

found at https://youtu.be/6ismnvwTmjc [48]. There are several screenshots below

in Figure 6.2.

In the top left frame of Figure 6.2, u(t) ≈ u0, and the robots are at their initial

positions, with y(0) 6= 0. In the top right frame u(t) ≈ u1, and the robots have

converged close to the stable equilibrium ȳ = 0. In the bottom left frame u(t) ≈ u2,

and the value of u(t) has passed beyond the bifurcation point and the equilibrium

ȳ = 0 has become unstable. We see that the yellow spot in the light strip have

moved away from ȳ = 0 but the robots remain at this location due to the bifurcation

delay. In the bottom right frame u(t) ≈ u3 and the robots have ‘caught up’ to the

equilibrium value, and we say that a decision has been made. The robotic system
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Figure 6.2: Screenshots from a video made with Sofi Inglessis [48]. The video can be
found at https://youtu.be/6ismnvwTmjc. The robots implement dynamics (6.2).
Each robot represents an agent so N = 3. The colour of the light strips under each
robot represents the current value of u (see the bottom of each frame for a key). The
yellow spots represent the stable values of y∗ for the current value of u. The video
illustrates the bifurcation delay, as the yellow lights representing y∗ move away from
y = 0 before the robots do (see the bottom left frame denoted u2).

used in the demonstration is very simple, with very little uncertainty, but in more

complex systems the adaptive feedback allows us to ensure that a decision is made

by an autonomous system. The group of robots has the flexibility to choose which

alternative to decide for, and no external interaction with the system is required.

In Figure 6.3 we plot the trajectory of the group average y for dynamics (6.2) for

two groups of different sizes. The teal line represents a small group with N = 12,

while the purple line represents a larger group with N = 50. Both networks had the

same initial control value u(0). We see that the bifurcation delay for the larger group

is much smaller. The bifurcation delay occurs because the trajectories approach the

deadlock solution y = 0 very closely, so even after the bifurcation point has been

crossed, it takes time for the flow to grow large enough for the trajectory to move
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Figure 6.3: Bifurcation diagram and trajectories of the average group opinion for two
all-to-all networks with β = 0.

away from y = 0. With a larger group, the higher number of agents seem to develop

enough ‘momentum’ to move the trajectory away from the deadlock sooner. The

effect of group size is not captured in the bound on the bifurcation delay Π(u(0), so

we may consider this effect part of the error O(ε|log(ε)|). In Figure 6.1, ε = 0.05, so

ε|log(ε)| ≈ 0.35, which accounts for the difference in delay lengths of the trajectories.

Throughout this thesis, we have seen benefits in system performance that result from

an increase in total group size. We saw in Chapter 4 that larger groups of decision-

making agents can lead to a decrease in the value of the bifurcation point u∗ and

in [18], Couzin et al. found that larger groups require proportionally less informed

agents to ensure that the correct alternative is chosen by the group. Here we see that

there is a shorter delay as the trajectory of the group moves through the bifurcation

point. From a design perspective, there are certainly benefits to designing systems

with a larger group of agents.
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6.3 Generalising to all strongly-connected

networks and β 6= 0

Now that we have an understanding of the principles of our adaptive feedback dynam-

ics, we generalise to any network and to systems with β 6= 0. One of the differences

between this general case and the specialised case we have just considered is that the

dynamics do not converge to y1N , so we cannot reduce to the scalar dynamics of y

on the consensus manifold. Additionally, the agents do not have access to all other

agents’ opinions, so must estimate the group average in order to implement the feed-

back law (6.1) and every agent i has its own control parameter ui. We will address

these challenges individually, hence, the proposed decentralised adaptive controller

consists of two phases.

6.3.1 Phase 1: Estimating the group average

In the first phase, each agent performs an estimate of the group average y using the

finite-time dynamic consensus algorithm proposed in [34]

ẇ = −αsgn(Lŷ) (6.7a)

ŷ = Lw + x, (6.7b)

where ŷ is the vector of agent estimates of y =
∑N

i=1 xi, wi are auxiliary variables,

and α > 0 is the estimator gain. During this phase, u̇i = ẋi = 0, ∀i ∈ {1, ..., N}

and sgn(·) is the signum function. It is shown in [34, Theorem 1] that the consensus

algorithm given by (6.7) guarantees that the error ỹ = ŷ−y1N is globally finite-time

convergent to zero. The convergence time s∗ is explicitly given by

s∗ ≤ ||ỹ(s0)||
λ2(L)

,
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where λ2(L) is the second smallest eigenvalue of L. Therefore ŷi(s) = y for all s ≥ s∗.

Here, we assume that each agent can compute a lower bound on λ2(L), which can be

accomplished distributedly using algorithms developed in [5]. This allows the agents

to calculate the value of s∗ if necessary.

6.3.2 Phase 2: Adaptive feedback dynamics

For s > s∗, ŷ = y1n, and we may now turn to the adaptive feedback and the behaviour

of x. We let xi and ui, i ∈ {1, . . . , N}, evolve according to the two-time scale adaptive

dynamics

ẋ = −Dx+ UAS(x) + β,

u̇ = ε
(
y2
th1N − ŷ2

)
= ε

(
y2
th − y2

)
1N ,

where U = diag(u1, . . . , uN) and ŷ2 is the vector of the squares of the elements of ŷ.

We omit specifying s ≥ s∗ from now on. Because u̇i ∝ ȳ2 − y2, which is the same for

all agents, the rate of change of ui for each agent is also the same, and the individual

differences are due to initial conditions only. If we define the average social effort

ū = 1
N

∑N
i=1 ui, then for s > s∗, u̇i = ˙̄u, ∀i ∈ {1, ..., N}. The differences ũi = ui − ū

between the average social effort ū and the individual social efforts ui are constant so

we may consider ˙̄u only, and the adaptive dynamics reduce to

ẋ = −Dx+ UAS(x) + β, (6.8a)

˙̄u = ε
(
y2
th − y2

)
, (6.8b)

where U = diag(ū+ ũ1, . . . , ū+ ũN).
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As discussed previously, the dynamics of x do not converge to y1N , so instead

we must find a suitable low-dimensional invariant manifold for (6.8) by means of the

centre manifold theorem [41, Theorem 3.2.1]. To use the centre manifold computation

we extend (6.8) with dummy dynamics for ε and β [91, Section 18.2]:

ẋ = −Dx+ UAS(x) + β, (6.9a)

˙̄u = ε
(
y2
th − y2

)
, (6.9b)

ε̇ = 0, (6.9c)

β̇ = 0. (6.9d)

By Theorem 3, if the graph is strongly connected, the linearisation of (6.9) at

(x, ū, ε,β) = (0, ū∗(ũ), 0,0) has N − 1 eigenvalues with negative real part and 3 +N

zero eigenvalues, with corresponding null eigenvectors

ev̄TN =



v̄TN

0

0

0


, eu =



0

1

0

0


, eε =



0

0

1

0


, eβ,i



0

0

0

ei


, i = 1, ..., N,

where v̄N is defined in Theorem 3 as the right null eigenvector of the linearisation

of the dynamics (3.6). ei is the i-th vector of the standard basis of RN . It follows

by the centre manifold theorem, that (6.9) possesses an (N + 3)-dimensional centre

manifold W c = span{ev̄TN , eu, eε, eβ,i, i = 1, ..., N} that is exponentially attracting.
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Dropping the dummy dynamics and introducing yc, a scalar that represents the

dynamics of (6.8a) on the centre manifold W c, we can describe the dynamics of (6.9)

on W c by

ẏc = gc(yc, ū,β), (6.10a)

˙̄u = ε
(
y2
th − y2

)
, (6.10b)

where gc is the reduction of the vector field (6.9a) onto its centre manifold. Simi-

lar to the Lyapunov-Schmidt reduction, the center manifold reduction preserves the

symmetries of the vector-field [36, Section 1.3]. It follows similarly to Theorem 3

that for β = 0, the reduced fast vector field gc(yc, ū,0) possesses an S2-symmetric

pitchfork singularity at the bifurcation point(y∗c , ū) = (0, ū∗(ũ)), and gc(yc, ū,β) is

an N -parameter unfolding of the pitchfork. The centre manifold theorem is a local

result, so dynamics (6.10) capture the qualitative behaviour of dynamics (6.8) for

initial conditions sufficiently close to (x, ū) = (0, ū∗(ũ)) and small β.

Now that we have addressed the two challenges of estimating the group average y,

and finding the centre manifold W c we may use a similar analysis to the specialised

case of Section 6.2. Behaviour of equations (6.10) can again be analysed using geo-

metric singular perturbation theory [7,22,52]. In the slow time τ = εs, the equivalent

slow-fast dynamics of (6.10) are

εy′c = gc(yc, ū,β),

ū′ =
(
y2
th − y2

c

)
, (6.11)
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In the singular limit ε→ 0, the boundary layer dynamics evolving in fast time s are

ẏc = gc(yc, ū,β),

˙̄u = 0, (6.12)

and the reduced dynamics evolving in slow time τ are:

0 = gc(yc, ū,β),

ū′ =
(
y2
th − y2

c

)
. (6.13)

The slow dynamics are defined on the slow manifoldM = {(yc, ū) | gc(yc, ū,β) = 0}.

The specialised case of the all-to-all network with β = 0 contains a symmetric

pitchfork, which was analysed using the theory from [7]. We know that the general

system (6.8) is an N -parameter unfolding of the symmetric pitchfork, so we must also

consider the additional bifurcation diagrams we saw in Figure 2.4 in our discussion of

the unfolding of the symmetric pitchfork in Chapter 2. In Theorem 7 below, for the

general case, we consider the symmetric pitchfork, the ‘smooth’ unfolding (Figure 2.4

regions (1) and (2)) and the ‘folded’ unfolding (Figure 2.4 regions (3) and (4)).

All three cases are illustrated in Figure 6.4. In Figure 6.4 (left) we show the bi-

furcation diagrams and singular phase portraits of the symmetric, smooth and folded

cases. The thin black lines with double arrows represent the boundary layer dynam-

ics, which converge to the stable branches of Mε. The thick lines with single arrows

represent the reduced dynamics. Regions (1) and (2), and (3) and (4) respectively,

are reflections, so we consider one example of each case only. In Figure 6.4 (right) we

overlay trajectories for a network of 12 agents with various values of β. The purple

line represents the group average y, and the dotted black lines are the individual

agent trajectories xi.
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Figure 6.4: Singular phase portrait (left) and trajectories (right) of the slow-fast adap-
tive dynamics (6.8). The purple trajectory is the agent average. Dotted trajectories
are individual agents.
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Theorem 7. For dynamics (6.10), with a strongly connected interconnection network,

there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄] and all yth > 0, the following hold.

i. Case 1: Symmetric Pitchfork, shown in Figure 6.4 (top). For all initial con-

ditions yc(0), ū(0) in a small neighbourhood N of ((y∗, < ū∗(ũ)) such that

|yc(0)| > 0 is sufficiently small, 0 < ū(0) < ū∗(ũ), and |ū(0) − ū∗(ũ)| suffi-

ciently small, let us define

a(yc, ū) =
dgc
dyc

Π(ū(0)) = inf

{
ū(t) > ū∗

∣∣∣∣ ∫ ū(t)

ū(0)

a(y∗, ū)

y2
th

dū > 0

}
.

There exists a constant c1 > 0 and

ūa = ū(0) +O(ε
∣∣ log(ε)

∣∣)
ūb = Π(ū(0))−O(ε| log(ε)|)

ūc = ūb +O(ε| log(ε)|),

such that

0 ≤ yc(t) ≤ ε for ūa ≤ ū(t) ≤ ūb

|yc(t)− ȳ(ū)| ≤ c1ε for ū(t) ≥ ūc,

for all times t such that (yc(t), ū(t)) ∈ N . For ū ≥ uc and |yc(t)| < yth, the

trajectory of (6.10) slides along the stable branch ±ȳ(ū) until |y(t)| = yth.

ii. Case 2: ‘Smooth’ Unfolding, shown in Figure 6.4 (middle). For all initial con-

ditions yc(0), ū(0) such that |yc(0)| > 0 is sufficiently small, 0 < ū(0) < ū∗(ũ),

and |ū(0)− ū∗(ũ)| sufficiently small, the trajectory of (6.10) exponentially ap-
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proaches the manifold ȳ(ū) at ū = ū(0) + O(ε
∣∣ log(ε)

∣∣), and slides along ȳ(ū)

with ˙̄u > 0 until |y(t)| = yth.

iii. Case 3: ‘Folded’ Unfolding, shown in Figure 6.4 (bottom). Note that there are

two saddle node bifurcations at (ȳSN1, ūSN1) and (ȳSN2, ūSN2). For all initial

conditions yc(0), ū(0) such that |yc(0)| > 0 is sufficiently small, 0 < ū(0) <

ū∗SN1, and |ū(0)− ū∗SN1| sufficiently small, there exist constants c1, c2, c3 and c4

such that

|yc(t)− ȳS1| ≤ c1
ε

ū(t)
for ū(0) ≤ ū(t) ≤ ūSN2 − c2ε

2
3

|yc(t)− ȳSN2| ≤ c3ε
1
3 for ūSN2 − c2ε

2
3 ≤ ū(t) ≤ ūSN2 + c4ε

2
3 .

yc(t) then approaches ȳS2 and slides along it until yc(t) = yth.

Proof of Theorem 7

i. Case 1: For all times such that ū(t) ≤ ūc, the behaviour of the trajectory follows

exactly from [7, Theorem 2.2.4]. The behaviour of the trajectory is exactly as

described for the all-to-all network in section 6.2 with the appropriate constants

given above, and with the exceptions that the consensus manifold y is replaced

by the centre manifold yc. For ū(t) ≥ ūc we note that for |yc(t)| < yth, ˙̄u > 0,

so yc(t) increases until |yc(t)| = yth.

ii. Case 2: The smooth branch of the bifurcation diagram is normally hyperbolic

and attracting, so the behaviour of the trajectory follows directly from Fenichel

theory [22], [52, Theorems 1,3]. That is, the trajectory approaches the smooth

branch ȳ(ū) of the slow manifoldM for ū > ū(0)+O(ε
∣∣ log(ε)

∣∣), ˙̄u > 0. There is

no bifurcation point between the ‘deadlock’ region with ȳ(ū) close to 0, and the

‘decision’ region with ȳ(ū) close to yth, so yc(t) slides along the smooth branch

until |yc(t)| = yth.
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iii. Case 3: For all times such that ū(t) ≤ ūSN2 + c4ε
2
3 , the behaviour of the

trajectory follows exactly from [7, Theorem 2.2.2]. As the trajectory approaches

the bifurcation point (ȳSN2, ūSN2), the stable branch ȳS1 becomes less attracting,

and approaches a vertical tangent. Rather than staying ε-close to the slow

manifold M, the trajectories are ε
1
3 -close. The stable branch ȳS2, is normally

hyperbolic and attracting, so after a delay in ū of ε
2
3 , the trajectory leaves

the neighbourhood of the bifurcation point ūSN2 and is attracted to the stable

branch ȳS2 which follows from Fenichel theory [22], [52, Theorems 1,3]. For

|yc(t)| < yth, ˙̄u > 0, so yc(t) increases until |yc(t)| < yth. �

Note that since centre manifold theorem is a local theory, Theorem 7 captures

the behaviour of the full dynamics (6.8) close to the singular point (x, ū,β) =

(0, ū∗(ũ),0), and is a global result for the specialised case of an all-to-all network

with β = 0 only. Numerical simulations suggest that the results of Theorem 7 hold

globally in the generic case of a strongly connected graph with non-zero information

and non-zero agent social effort differences.

Theorem 7 shows that in all cases the adaptive dynamics (6.8) ensure that the

average opinion of a group of agents reaches the desired threshold, therefore enabling

them to make a decision. Figure 6.4 (right) shows trajectories for the dynamics

when implemented with the network shown in Figure 3.5, with various values of β.

The adaptive dynamics (6.8) perform as expected in all cases, and the average value

reaches threshold yth. The adaptive dynamics change very little in the system, and

the control law is very close to open-loop control. The system behaviour is allowed

to remain sensitive to environmental parameters, while still ensuring that a decision

can be made when required.

Figure 6.5 shows the adaptive dynamics and the estimator dynamics for the net-

work of five agents shown. The system is S2 symmetric (with βp = βu = 0), so there

is a symmetric pitchfork bifurcation. βi 6= 0 for agents 2 and 3, so the dynamics
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Figure 6.5: Trajectories of the feedback dynamics (6.8) and estimator dynamics (6.7)
for a small system of five agents, with ε = 0.05.

of the average y evolve on the centre manifold, rather than the consensus manifold.

We can see that the trajectories of agent 2 and 3 remain distant from the average y

throughout the simulation. It is interesting to note the behaviour of agent 5, shown

in orange. The trajectory x5 lags behind the group during the large shift in opinion at

s ≈ 13, and the estimate ŷ5 experiences a disturbance at the same time. Agent 5 has

the least connections to other agents, and we see that the location of this agent in the

group affects its behaviour. Agent 5 has the smallest possible number of neighbours,

while still remaining part of a strongly connected network, and we see that despite

this, the trajectory of agent 5 still remains fairly close to the group average.

The adaptive feedback dynamics provide a valuable design tool for robotic systems.

Initiation of the adaptive dynamic could be triggered both by an external operator, as
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well as in response to measurements of the environment by the agents. Let us return

to our example of a search and rescue task, and discuss how these dynamics could

be applied in this situation. With the adaptive dynamics ‘on’, the agents are in a

state that enforces decision-making quickly, while with the dynamics ‘off’ the agents

have more time to explore and measure the environment. In our introduction to the

search and rescue task we discussed how the agents need to be able to transition

between searching separately, and rescuing together, and turning these dynamics on

and off provide a means for facilitating this transition. Additionally, in the early

stage of a search and rescue response, the operators may want the group of agents

to assemble and fully investigate every possible location to search for survivors, but

as time passes the agents should require more evidence to decide on a location. The

adaptive dynamics can be used to modulate how reactive a system is, and how quickly

they make a decision.

Initiating the adaptive dynamics is a simple way for a human operator to interact

with the system at a high level. With these dynamics we provide a method for humans

to interact with the system that does not overly burden them. If the operator was

required to manually adjust the value of u or the decision threshold, it would require

a knowledge of the system dynamics, and how the choices of parameter values will

affect them. With our adaptive dynamics the operator is simply choosing between

“would I like the robots to make a decision soon?” or “would I prefer them to keep

searching?”. The human operator can switch the system between these two states

easily and with limited interaction. In the next chapter, we use a robotic system to

demonstrate more involved interactions between the operator and the system, as well

as to illustrate the flexibility-stability properties of the dynamics.
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Chapter 7

Robotic Implementation

7.1 Experimental set-up

In this chapter we present the results of experiments performed with a robotic test

platform to demonstrate the application of the decision-making dynamics (3.4) to

a physical system. The format is very simple, and represents the decision-making

sub-system of a full robotic system. The robots choose between two alternatives A

and B, by driving to the right and left sides respectively of the experiment space.

Their horizontal position in the space represents their opinion xi, with the centre of

the room representing xi = 0, and the far right and left of the space strong opinions

for alternatives A (xi > 0) and B (xi < 0). When the robots have collectively reached

a decision they circle in place at the location they have chosen, which represents the

task that a full robotic system would perform once a decision has been made. The

experimental process is depicted in Figure 7.1.

Information about the environment is represented using a coloured light field. Blue

light represents evidence that supports the selection of alternative A and red light

represents evidence that supports the selection of alternative B. The light intensity

corresponds to the evidence strength. In these experiments the light field is controlled
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Figure 7.1: Flowchart of the experiment process.

by the operator, i.e., the operator assigns the design parameters, but it can also be

thought of as being set by environmental conditions. The light field is not uniform,

as it is created using six spotlights and the intensity is stronger closer to the centre

of the spotlight; this introduces noise into the system.

The robots used were the two-wheeled TurtleBot2 [47], a robot kit for educa-

tional purposes based on the iClebo Kobuki [54]. Each robot has a platform built

on top that supports a single-board computer and light sensor, and the robots can
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be identified by the platform colour. The robots are each fitted with a light sensor

and take measurements to compute their value of βi, based on a running average.

In our experiments, the pink robot senses red light and the green robot senses blue

light, while the orange robot is an uninformed agent. The robots are connected in a

communication network, which is shown in Figure 7.2.

Figure 7.2: Communication network for the robots.

To achieve a closed-loop system, we use a Vicon motion-capture system that

measures the position and orientation of each robot. We use the horizontal (xi)

position of each robot to represent their opinion xi in the decision-making dynamics,

and the vertical position and orientation for steering commands. The positions x1, x2

and x3 are sent between robots in the communication network, and this is how they

communicate their opinions with each other. We also use the motion capture data in

post-processing, to create the visualisations shown later in this chapter.

Throughout this thesis we have thought of the bifurcation parameter u as the

social effort of the decision-making agents, and also as a control parameter. Here

we focus on the control parameter perspective and consider u a global parameter

that is set by the operator. In other applications the value of u could be set by a

human interacting with the system, or by the robots in response to environmental

parameters. In the previous chapter we discussed thinking of the adaptive feedback on

u as a switch that can be turned on or off, depending on whether a human operator

wishes to enforce a decision being made. In these experiments we can think of a

slightly more complex interaction between a human and the system, where the value

of u is set by a dial, and we will demonstrate ways in which the human can control

various aspects of the behaviour.
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For ease of use, the decision-making dynamics (3.4) are run on a central computer,

with only the resulting velocities sent to each robot. However, the dynamics of

each agent are calculated separately, so remain distributed, and the system is still

decentralised.

As shown at the bottom of Figure 7.1, the robots can be in one of two states:

the ‘deliberating’ state and the ‘decision’ state. To define the decision state we use

the decision criteria defined in Chapter 3: the decision state is reached if |yss| > η

where η is some threshold value. To determine yss we use the magnitude of the group

average |y|, as well as the `1 norm of the rate of change of their opinion ||ẋ||1. The

condition below on on ||ẋ||1 ensures that the value of y is a steady-state value. For a

choice of threshold η and constants ξ1, ξ2 and ξ3, the robots are in the decision state

if

i. y − η = 0 and ||ẋ||1 < ξ1; the robots have chosen alternative B

ii. y + η = 0 and ||ẋ||1 < ξ1; the robots have chosen alternative A

iii. |y| < ξ2 and ||ẋ||1 < ξ3; the robots are in deadlock, they have chosen to remain

at y = 0.

Otherwise they are in the deliberating state. When they are in the decision state

their velocities are calculated to give a circling motion, and when they are in the

deliberating state their velocities are calculated to represent their changing opinion

ẋi(t).

The experiments were designed to demonstrate the performance of the decision-

making dynamics and to highlight how the model (3.4) can provide performance that

is both flexible and stable. We describe the results of the experiments and discuss

the performance of the system below.
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7.2 Results

Videos of each experiment are linked in the text below. This chapter also includes

screenshots of important video frames. Each screenshot shows the network diagram

and the colour of light sensed by each agent, as well as the values of β being broadcast

by the light field and the control value u set by the operator. Additionally, the data

recorded from the motion capture system was used to plot the trajectory of the

average position of the robots against the control value u. The bifurcation diagram

and phase portrait for the current values of u and β parameters are also shown. The

value of the threshold η is represented on the bifurcation diagrams by a dashed black

line. The information displayed showing the values of β are based on the values set by

the operator, not the measurements made by the robots. Hence, the true bifurcation

diagram will differ slightly from what is shown, but due to the robustness properties

of the decision-making dynamics, the expected performance is still achieved.

7.2.1 Experiment 1: Social effort breaks deadlock

Video found at: https://youtu.be/mLdyPezCwQM

The first experiment demonstrates how the social effort u breaks a deadlock between

equal alternatives, and one of the two alternatives is then chosen at random. The

external information parameters were βA = βB = 0.5, and the value of u was raised

and lowered throughout the experiment. In this experiment, both alternatives have

equal value, so when the robots select one of the alternatives for u > u∗, their choice

is determined by their initial conditions. Figures 7.3-7.6 show key frames of the video

of the experiment, with a description of the events shown in each given below.

i. Figure 7.3 : With βA = βB the bifurcation diagram is a symmetric, supercritical

pitchfork. The value of u = 0.8 < u∗ and thus the robots are circling because

they have chosen to remain at the deadlock equilibrium.
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Figure 7.3: Experiment 1: First screenshot.

Figure 7.4: Experiment 1: Second screenshot.
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Figure 7.5: Experiment 1: Third screenshot.

Figure 7.6: Experiment 1: Fourth screenshot.
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ii. Figure 7.4 : The value of u was quickly increased to u = 2.5 > u∗. The dead-

lock equilibrium has become unstable, and the robots move to the equilibrium

corresponding to alternative A and enter the decision state.

iii. Figure 7.5 : The value of u was quickly decreased to u = 0.8 < u∗. The

equilibria representing a decision for either alternative has become unstable,

and the robots return to circle the stable deadlock equilibrium at y = 0.

iv. Figure 7.6 : The value of u was again increased to u = 2.5 > u∗. This time

the position of the robots when they stopped circling was such that they were

closer to the side of the space representing alternative B, so they chose this

alternative.

Although the information broadcast by the lights represented equal alternatives,

due to the non-uniformity of the light field and sensor error, the values of βi sensed by

the robots were not equal. However, as the value of u was quickly increased to a value

much larger than the bifurcation point, the trajectory was in an area of the bifurcation

diagram that is highly robust to disturbances, so we still saw behaviour that we would

expect in a system exhibiting a symmetric pitchfork. By choosing a high u-value, we

chose to prioritise robustness for this experiment, and as such experienced a lower

level of sensitivity. This is a design choice that could be replicated in other situations

when a high level of robustness is required. With high u values, alternatives that

are of near equal value are treated as equal valued, and only a very strong difference

between alternatives would influence the system. Similar to switching on the adaptive

feedback dynamics from the previous chapter, quickly raising the value of u forces

the agents to make a choice, but unlike the adaptive dynamics quickly raising u does

not maintain sensitivity to the environment, except to highly unequal alternatives.

From a design perspective, this experiment shows how a human can interact with
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the system via the control parameter u, a concept that we will continue to explore

throughout this chapter.

7.2.2 Experiment 2: Hard and soft decision-making

Video found at: https://youtu.be/dKcr4zBIkic

The second experiment demonstrates the differences between hard and soft decision-

making discussed in Chapter 4, Section 4.2.5. The screenshots shown in Figures 7.7-

7.10 show footage from two experiments with identical control values u. The footage

has been superimposed such that the values of u in each video are equal at all times. In

the top video, denoted by a yellow marker and border, a high value of βA = βB = 1.4

was broadcast and we see the symmetric unfolding described in Chapter 4. This

represents the hard decision-making. In the bottom video, denoted by the teal border

and marker, a lower value of βA = βB = 0.5 was used, and the bifurcation diagram

is the supercritical pitchfork, which is the soft decision making. The value of u was

lowered and raised to demonstrate the difference in the response of the hard and soft

cases.

In this experiment, as we were interested in the specific effect that occurs for

symmetric β, the robots took binary measurements that set their βi values at 0.5 or

1.4 exactly. We thus eliminated error in measurement of β and could focus on the

effect of the parameter u. The sequence of events is described below:

i. Figure 7.7 : The value of u = 3 is sufficiently high such that in both cases

the robots have made a decision for alternative A. The equilibria for this value

of u are higher along the branch of the bifurcation diagram, but in all experi-

ments the robots were constrained to stop once they passes the threshold η with

sufficiently small ||ẋ||1, so the marker remains at y = 1.5
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Figure 7.7: Experiment 2: First screenshot.

Figure 7.8: Experiment 2: Second screenshot.
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Figure 7.9: Experiment 2: Third screenshot.

Figure 7.10: Experiment 2: Fourth screenshot.
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ii. Figure 7.8 : The value of u was slowly decreased to u = 1.5. In the hard decision-

making (top) case, u < uSN the value of u at the bifurcation of the saddle

node on the upper branch of the diagram, and the robot opinions are attracted

towards to stable branch at y = 0. In the soft decision-making (bottom) case,

the branch of the bifurcation diagram representing a decision for alternative

B remains stable, so the robots stay in the decided state. If u was decreased

further, the trajectory of y would slide down the stable branch towards y = 0,

but would not converge to y = 0 until u < u∗, the bifurcation point of the

supercritical pitchfork.

iii. Figure 7.9 : In the hard decision-making (top) case the robots have converged

to the deadlock equilibrium, which is currently the only stable equilibrium for

this system. In the soft decision-making (bottom) case the robots remain at a

decision for alternative A.

iv. Figure 7.10 : The value of u is slowly increased again back to u = 3. As we

saw in the previous chapter, when u is slowly increased passed the bifurcation

point of a symmetric pitchfork there is some delay before the robots move away

from the now unstable deadlock equilibrium and return to one of the stable

decision branches. In this experiment, the robots returned to choose alternative

A, but either alternative could have been chosen as the bifurcation diagram is

symmetric. Again, in the soft decision-making (bottom) case, the position is

unchanged.

In the hard decision-making case, slowly lowering and then raising u causes hys-

teresis in the trajectory. If the trajectory of the agents is on a branch of the bifurcation

diagram representing a decision for alternatives A or B, when u is lowered past uSN ,

the agents will return to the deadlock solution. The same occurs in reverse if the value

of u is raised again. In the region around the saddle nodes that create the positive

132



and negative branches, the system is highly sensitive to the value of the bifurcation

parameter u, and small changes in u can cause large changes in the average opinion

y.

In the soft decision-making case, slowly lowering u causes the trajectory to slide

down the positive or negative branches. In this case, the change in u was sufficiently

small for the agents to remain at a decision for alternative A for the entire experiment.

If u had been decreased further the trajectory would slide down the positive branch,

and the agents would return to the deliberating state. They would be at a steady-state

value that is less than the threshold, so they would remain in the deliberating state

indefinitely, until the value of u was raised again or lowered below the bifurcation

point.

The symmetric unfolding that leads to hard decision-making occurs for large,

symmetric values of β, and the soft decision-making occurs for small values. Once

the size of a group of agents and the network structure is known, we can determine

that value of β at which the change will occur, and then design gains that multiply

β and determine whether the system is implementing hard or soft decision-making.

When we consider the value of u as a means for human interaction with the system,

adding a tunable gain to β would provide further refinement for how the human

controlling the value of u can affect the system. Alternatively, we can think of u

as being set by a parameter in the environment, or by autonomous dynamics of the

system. The transition from hard to soft decision-making provides a tool to determine

how much changes in the value of u affect the system, or how sensitive the system is

to the value of u.

7.2.3 Experiment 3: Hysteresis due to unfolding

Video found at: https://youtu.be/d12Is2MRrME

In this experiment, we demonstrate the hysteresis that occurs when the value of the
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two alternatives β is slowly varied, and the shape of the unfolding of the bifurcation

diagram changes. We again show footage from two experiments, with the same values

of β, but with different values of u. The teal markers and border denote the system

with a higher u value, and the yellow markers and border denote the system with a

lower value of u. The yellow system is closer to the bifurcation point, and therefore

more sensitive to the changes in β. Important frames from the video are shown in

Figures 7.11-7.16, and a description of the important events is given below:

i. Figure 7.11 : Initially, βA = 1 and βB = 0, so the bifurcation diagram has

unfolded towards alternative A. For both systems, the value of u is sufficiently

high for them to cross the threshold η, and enter the decision state at alternative

B.

ii. Figure 7.12 : Now βA is slowly lowered from 1 to 0 and βB is slowly raised

from 0 to 1. The shape of the unfolding has changed and for the system at the

lower value of u (yellow/bottom), the equilibrium value of y < η, the decision

threshold, and the trajectory is attracted in the negative direction.

iii. Figure 7.13 : Here, βA < βB, and the direction of the unfolding has changed.

The system with the higher value of u (teal/top) has u > uSN , the value of u at

which the saddle node that creates the positive branch appears, so the robots

in the teal/top remain in the decision state for alternative A.

iv. Figure 7.14 : The trajectory of the (yellow/bottom) system with the lower u

value has now converged to the negative equilibrium branch, and the robots

have made a decision for alternative B

v. Figures 7.15 and 7.16 : As βA is slowly raised from 0 to 1 and βB is slowly

lowered from 1 to 0, we see the same behaviour as Figures 7.13 and 7.14, but

in reverse.
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Figure 7.11: Experiment 3: First screenshot.

Figure 7.12: Experiment 3: Second screenshot.
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Figure 7.13: Experiment 3: Third screenshot.

Figure 7.14: Experiment 3: Fourth screenshot.
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Figure 7.15: Experiment 3: Fifth screenshot.

Figure 7.16: Experiment 3: Sixth screenshot.
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This experiment demonstrates how asymmetry unfolds the bifurcation diagram,

and how the values of the unfolding parameter β affect the shape of the unfolding.

We see the effect of the hysteresis described in Chapter 3, Section 3.2.3, and we

again see how in parameter regions close to the bifurcation point the system is more

sensitive and responds to the changes that occur, while in parameter regions away

from the bifurcation point, the system is more robust and does not respond to the

same changes.

Our decision-making dynamics (3.4) were designed to include a pitchfork bifurca-

tion so that they would inherit the associated characteristics of hypersensitivity and

hyper-robustness in the corresponding parameter regions. This experiment shows

how a human operator can smoothly modulate the behaviour of the system to move

between these two regions, in this case by controlling the value of u. This is a high

level interaction, and provides a method of interacting with a robotic system that is

highly intuitive. One could also design an autonomous system that benefits from this

smooth transition, by designing dynamics on u that are determined, for instance, by

the agent’s confidence in their measurement values.

7.2.4 Experiment 4: Changes during decision-making

Video found at: https://youtu.be/8W7vCJM5zEI

Thus far we have only shown how the robots respond to changes that occur once a

decision has been made. In this experiment the changes in environmental parameters

occur when the robots are in the deliberation state, and they respond quickly to the

changes.

i. Figure 7.17 : The robots begin in a decision state at the deadlock equilibrium.

The value of u is raised and βA > βB, so the robots begin to move towards the

alternative A. The value of u is lowered again, so the robots stop and return to

deadlock.
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Figure 7.17: Experiment 4: First screenshot.

Figure 7.18: Experiment 4: Second screenshot.
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Figure 7.19: Experiment 4: Third screenshot.

Figure 7.20: Experiment 4: Fourth screenshot.
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ii. Figure 7.18 : The value of u is raised again and the robots again move towards

alternative A.

iii. Figure 7.19 and 7.20 : The values of βA and βB are adjusted such that the

unfolding changes direction. The robots change their heading direction, and

eventually converge to a decision for alternative B.

The changes in heading that occur due to changes in β and u occur much faster

in this experiment than the previous three, where the changes were made once the

robots had reached the decision state. In all phase portraits in this chapter, we see

that the flow close to the equilibria is small. Unlike the previous experiments, in this

experiment changes in parameters occur when the agents are far from the equilibria,

they respond quickly as their |ẋi| dynamics are larger. This experiment shows that

while in the deliberation state, the robots remain highly sensitive to environmental

changes.

In this chapter, we have presented experiments that emphasise an important con-

cept we have revisited throughout this thesis: decision-making dynamics organised by

a pitchfork bifurcation have the ability to balance sensitivity to parameter changes,

and robustness to disturbances. In particular we have seen how the dynamics are

highly sensitive to parameter changes close to the the bifurcation point, and highly

robust far away from it.

Additionally we have shown ways in which humans can interact with a robotic

decision-making system at a high level, and smoothly modulate whether the system

prioritises sensitivity or robustness. The transitions between the parameter regions

that lead to these two behaviours could also be performed autonomously, for instance

with dynamics that vary the value of u based on the agents’ confidence in their

measurements.

We have also illustrated a number of behaviours that we discussed earlier in this

thesis, including the hysteresis due to changing parameter values seen in Chapter 3
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and the transition to the subcritical pitchfork seen in Chapter 4. Also, although we

used a different mechanism to increase the value of u, we saw the same bifurcation

delay that we discussed in Chapter 6, which occurs when the bifurcation parameter

u is slowly varied across the bifurcation point.
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Chapter 8

Final remarks

In this dissertation, we presented a nonlinear, agent-based model for collective

decision-making between two alternatives. The model was inspired by the dynamics

of a swarm of honeybees selecting a new nest-site. These honeybee dynamics can

be modelled by a pitchfork bifurcation, and by organising our agent-based model

around the same, we can translate mechanisms from the honeybee dynamics to the

agent-based model. The model was derived by Alessio Franci, Vaibhav Srivastava

and Naomi Ehrich Leonard, who also proved, prior to my involvement in the project,

that the agent-based model possesses the pitchfork bifurcation. My contribution to

this project was to analyse and extend the behaviour of the model; to characterise

the behaviour of the model in various parameter regimes, to analyse the influence

of network structure and system parameters on the dynamics, and to demonstrate

ways to augment the model via an adaptive feedback on the social effort parameter,

and interaction with a human operator.

The agent-based dynamics were designed with two aims; to allow us to leverage

mechanisms from the biological settings for application in engineered systems, and

also to ask additional questions about the biological sources of inspiration. In this

thesis we focus on the former aim, and consider how the model and the results of
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our analysis of the model can be applied to the design of collective decision-making

dynamics for multi-agent systems. We used the example of a network of robotic

agents performing a search and rescue task to consider the results of our analysis in

the context of a real system and also implemented the model with a simple robotic

platform.

We focussed on six design objectives, and discussed how the results of our analysis

improve our abilities to make design choices when implementing our decision-making

dynamics. In Chapter 4 we considered how the system parameters and heterogeneity

affected the dynamics, and showed that, generally speaking, adding heterogeneity to

the system will delay the bifurcation point, and increasing the number of agents in

a group has the opposite effect. We developed a method that reduced the model

to a low-dimensional system for special cases of graphs, which provided additional

tractability for analysis. We used the low-dimensional model to develop a detailed

understand of how the values of the external information about the two alternatives,

the number of uninformed and total number of agents, and heterogeneity in the social

effort parameters affects the decision-making before by changing the location of the

bifurcation point. In the context of a robotic search and rescue task, these results

can be used to inform decisions about the level of social effort u that is required for

the system to make a decision.

In Chapter 5 we showed how the combination of the distribution of external in-

formation and the network structure can lead to a bias in the network even if the

value of the alternatives is equal. This bias is unrepresented by an unfolding of the

symmetric pitchfork bifurcation. We defined two scalar quantities that allow us to

predict the direction of the unfolding for most networks. We then considered the

effects of additive noise, and used analysis of the linearisation of the noisy dynamics

to show that the predictions from the deterministic case could also be applied to the

noisy dynamics. These results are pertinent to our design considerations of the effect
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of system parameters and the role of the network structure and again, these results

can be applied to making design decisions for decision-making in a robotic network.

Additionally, we showed that the left eigenvector corresponding to the zero eigenvalue

of the network Laplacian is a centrality measure that describes the relative influence

of the nodes in a graph, and can be used to inform decisions about where to place

sensors in a robotic network.

In Chapter 6 we designed decentralised adaptive feedback dynamics that slowly

increase the value of the bifurcation parameter u to ensure that the group will make

a decision. These dynamics addressed the design consideration that the group must

be able to transition from indecision to decision. The slow increase ensures that the

dynamics pass through the region around the bifurcation parameter; an area of high

sensitivity to system parameters.

In Chapter 7 we considered how a human operator can interact with the system, by

performing a series of experiments with a simple network of three agents that choose

which side of the room to drive towards, and received information about the external

environment through sensing a coloured light field. We showed how an operator can

modulate the behaviour of the system through the parameter u. By raising and

lowering the value of u, a human operator can control whether or not a decision is

made, and how sensitive the system is to external parameters. Although this external

control is not necessary for operation of the system, it provides an intuitive means by

which humans can be a part of the decision-making dynamics.

Our final design consideration was the flexibility-stability trade-off; the tension

between designing a system that is sensitive to environmental parameters, but also

robust to disturbances. Throughout this thesis, we saw how the decision-making

dynamics that can be modelled by a pitchfork bifurcation perform successfully in this

trade-off. The dynamics are highly sensitive to environmental and system parameters

in the region close to the bifurcation point, and highly robust far away from it. We
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can use the value of the bifurcation parameter u to control how close the dynamics

are to the bifurcation point, and therefore how sensitive the system will be at the

given moment. Additionally, through universal unfolding theory we can characterise

all possible behaviours that will occur with perturbations of the dynamics, so there

will be no unexpected behaviour.

8.1 Future directions

A future direction for this work is to return to the other objective identified during the

design of the model; how can we use these dynamics to ask further questions about

the biological sources of inspiration? Previous models for the honeybee dynamics

modelled the decision-making at the population level, and did not allow for consid-

eration of agent heterogeneity or communication network structure. The results of

Chapter 4 prompt questions about the role of heterogeneity in the system; we saw

that an increased level of heterogeneity delayed the bifurcation point, which means

that more social effort is required to break a deadlock and to make a decision. In

our robotic system raising the value of the parameter u was not costly, as it is simply

a parameter in the internally computed dynamics of each agent. We can therefore

easily respond to the level of heterogeneity in a system by changing the value of u. In

the biological setting, raising the level of social effort may be costly. In the honeybee

dynamics the social effort level corresponds to the level of stop-signalling between

bees, and a higher level of social effort requires more activity and energy expenditure.

It may be advantageous for the honeybee dynamics to minimise the amount of het-

erogeneity in the system, so that the decision-making dynamics require less energy

overall.

The results of Chapter 5 show how some agents in a network are more influential

than others, and this can cause a bias in the decision-making dynamics. We used the
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eigenvector centrality to determine the influence of each node, and this result could

be used to create testable hypotheses for the study of decision-making dynamics in

animal groups. We can model communication networks using proximity or sightlines,

and then use the combination of the simulated networks and eigenvector centrality

to develop an understanding of the role of the communication network for decision-

making in natural systems.

We discussed in Chapter 5 how the external information parameters β entered

the dynamics linearly, and also the Lyapunov-Schmidt reduction. There are two

parameters in the universal unfolding of the symmetric pitchfork, α1 and α2, but with

our model α1 = −βp and α2 = 0. A future project is to adapt the dynamics (3.4)

such that there are analytical relations for both unfolding parameters. This would

allow us to control our location in the parameter region shown in Figure 2.4 (of the

possible unfoldings of the symmetric pitchfork) exactly, and therefore have a higher

level of control over the shape of the bifurcation diagram.

At times in this dissertation we have touched on the speed of decision-making. In

Chapter 4 we discussed the effect of increasing the information value in a system with

S2 symmetry, which led to a sharpening of the pitchfork bifurcation and a transition

from the supercritical pitchfork bifurcation to a subcritical pitchfork bifurcation. If

the value of u was increased at a constant rate, the value of the average opinion y

would increase more quickly for ‘sharper’ bifurcation diagrams. With our current

analysis we can only think about the rate of change of y with respect to the control

parameter u and not time s. Additionally, in Chapter 7 we performed an experiment

which showed that the robots responded to changes in environmental parameters more

quickly when these changes occur while they are in the deliberating state, rather than

the decision state. These observations do not quantify the speed of decision-making

and a extension to this work would be to find bounds on the time until decision, and

to understand the effect of system parameters on the decision-making speed.
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8.1.1 Current extensions and applications

The transition from the supercritical pitchfork bifurcation to the subcritical pitchfork

bifurcation, and the associated transition from soft to hard-making was considered by

Zhong et al. in [95]. In this work they studied cascade dynamics in a network, and used

the transition between bifurcation diagrams to model when a cascade would or would

not propagate throughout a network. They used similar methods to the analysis

presented here in Chapter 4 to find the parameter values at which the transition

occurs for networks with S2 symmetry.

In this dissertation, we considered a group of N agents choosing between two

alternatives, and in some instances we considered systems with S2 symmetry. An on-

going extension to this work is to consider decision-making between a higher number

of alternatives. In [8], Bizyaeva et al. study decision-making dynamics in systems

with S2 × S2 symmetry; two identical agents choosing between two identical alterna-

tives. The S2 × S2 case is a starting point from which to generalise to higher orders

of symmetry in the number of agents and alternatives, which is the subject of [29].

The ability to decide between a larger number of alternatives would further improve

the applicability of the model to engineered systems.
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Appendix A

Supporting material for Chapter 3

The following proofs are taken verbatim from [40]. Alessio Franci was the lead con-

tributor to the analysis and writing for these sections, and Vaibhav Srivastava and

Naomi Ehrich Leonard also contributed to and provided guidance for all aspects. An

earlier version of Corollary 2 was presented in [39], provided by Alessio Franci and

Vaibhav Srivastava.

A.1 Proof of Theorem 1

(i) Let V (x) = 1
2
xTx. Then, for 0 < u ≤ 1,

V̇ = x>(−Dx+ uAS(x))

= x>(−Dx+ uDS(x)− uDS(x) + uAS(x))

= −x>D(x− uS(x))− uxTLS(x))

< −ux>LS(x) ≤ 0, ∀x 6= 0,

since uS is a monotone function in the sector [0, 1], D is diagonal and positive definite,

and L is positive semi-definite. Local exponential stability for 0 < u < 1 follows since
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the linearization of (3.4) at x = 0 is

˙δx = (−D + uA)δx,

and (−D + uA) is a diagonally dominant and Hurwitz matrix.

(ii) Let F (x, u,β) = −Dx + uAS(x) + β, i.e., the right hand side of dynamics

(3.4). Observe that, by odd symmetry of F in x,

F (−x, u,0) = −ẋ = −F (x, u,0).

That is, for β = 0, F commutes with the action of −IN . It follows by [35, Propo-

sition VII.3.3] that the Lyapunov-Schmidt reduction of F at (x, u) = (0, 1) is also

an odd function of its scalar state variable, that is, g(−y, u,0) = −g(y, u,0). To

show that g, and therefore F , possesses a pitchfork bifurcation at the origin for

u = 1, it suffices to show that gyyy(0, 1,0) < 0 and gyu(0, 1,0) > 0. This follows

because all of the degeneracy conditions in the recognition problem of the pitchfork

(gyy(0, 1,0) = gu(0, 1,0) = 0) are automatically satisfied by odd symmetry of g,

and g(0, 1,0) = gy(0, 1,0) = 0 because of the properties of the Lyapunov-Schmidt

reduction [35, Equation I.3.23(a)].

Let v̄ ∈ (Im(L))⊥ be a null left eigenvector of L with |vT1 | =
√
N , and P =

IN − 1√
N

1v̄> be a projector on Im(L) = 1⊥N . Then, using [35, Equation I.3.23(c)] it

holds that

gyyy(0, 1,0) =
〈
v̄, d3F0,1,0(1,1,1)− 3d2F0,1,0(1, L−1Pd2F0,1,0(1,1))

〉
,
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where 〈·, ·〉 denotes the inner product, and dkFy,u,β is the k-th order derivative defined

by [35, Equation I.3.16]:

dkFx,u,β(v1, . . . ,vk) =
∂

∂t1
. . .

∂

∂tk
F

(
k∑
i=1

tivi, u,β

)∣∣∣∣
t1=...=tk=0

.

Note that d2F0,1,0 = 0N×N×N because S ′′(0) = 0. On the other hand

∂3

∂xlxkxh
Fi(x, u,0) = uδkl δ

h
kδ

j
haijS

′′′(xj),

which implies that d3F0,1,0(1,1,1)i = uS ′′′(0)
∑N

j=1 aij < 0. Since v̄ is a non-negative

vector and not all entries are zero, it follows that gyyy(0, 1,0) < 0.

Similarly, using [35, Equation I.3.23(d)], we have

guy(0, 1,0) =

〈
v̄, d

∂F0,1,0

∂u
(1)

〉
=

〈
v̄,

[
N∑
j=1

aij

]N
i=1

〉
> 0,

where we have already neglected the second-order term depending on d2F0,1,0, which

is zero.

It follows by the recognition problem for the pitchfork [35, Proposition II.9.2] that

(3.4) undergoes a pitchfork bifurcation at the origin when u = 1. For u > 1 and |u−1|

sufficiently small, there are exactly three fixed points. The origin is a saddle with an

(N − 1)-dimensional stable manifold corresponding to the N − 1 negative eigenvalues

of −L at the bifurcation and a one-dimensional unstable manifold corresponding to

the bifurcating eigenvalue. The other two fixed point are both locally exponentially

stable because they share the same N − 1 negative eigenvalues as the origin and the

bifurcating eigenvalue is also negative by [35, Theorem I.4.1]. Noticing that (3.4) is a

positive monotone system and that all trajectories are bounded for |u−1| sufficiently

small, it follows from [44, Theorem 0.1] that almost all trajectories converge to the

two stable equilibria, the stable manifold of the saddle separating the two basins of
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attractions. The location of the three equilibria follows by direct substitution in the

dynamic equations.

(iii) The first part of statement is just the definition of an N -parameter unfolding.

The second part follows directly by [35, Equation I.3.23(d)] �

A.2 Proof of Corollary 2

To prove (i) consider a Lyapunov function Vij(x) =
(xi−xj)2

2
. It follows that

V̇ij(x) = −(N − 1)(xi − xj)(xi − xj + u(S(xi)− S(xj)))

< −(N − 1)(xi − xj)2 = −2(N − 1)Vij,

for all xi 6= xj. Therefore, for V (x) =
∑n

i=1

∑n
j=1 Vij(x), V̇ (x) < −2(N−1)V (x), for

all x 6= ζ1N , ζ ∈ R. V̇ (x) = 0 for xi = xj = ζ, so by LaSalle’s invariance principle,

the consensus manifold is globally exponentially stable.

Using (i), it suffices to study dynamics (3.5) on the consensus manifold, where

they reduce to the scalar dynamics

ẏ = −(N − 1)y + u(N − 1)S(y).

(ii) and (iii) follow by inspection of these scalar dynamics and properties of S. �

A.3 Proof of Theorem 3

Let F̃ (x, ū, ũ,0) denote the right hand side of (3.6) for β = 0. Observe that

F̃ (0, ū, ũ,0) ≡ 0. We show that there exists a smooth function ū∗(ũ) with ū∗(0) = 1

such that the Jacobian J(ū, ũ) = ∂F
∂x

(0, ū, ũ,0) is singular for ū = ū∗(ũ) and suffi-

ciently small ũ. Moreover, there exist no other singular points close to (0, ū∗(ũ), ũ).
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To show this, we apply the implicit function theorem [35, Appendix 1] to the scalar

equation

det (J(ū, ũ)) = 0.

Using Jacobi’s formula for the derivative of the determinant of a matrix, we obtain

∂

∂ū
det J(ū, ũ) = tr

(
adj(J)

∂J

∂ū

)
,

where adj(J) is the adjugate matrix of J [87]. Because Jadj(J) = adj(J)J = det(J)IN

and det(J(1,0)) = detL = 0, it follows that at (ū, ũ) = (1,0) the image of adj(J)

is the kernel of J and that the image of J is in the kernel of adj(J). Recalling that

rank adj(J) = N − rank J = 1, it follows that adj(J(1,0)) = c1Nv
T
0 , where vT0 is a

left null eigenvector of L and c 6= 0. Now, at (ū, ũ) = (1,0),

∂J

∂ū
= A.

A is non-negative and, by the strong connectivity assumption, at least one element

in each of its columns is different from zero. Furthermore, adj(J)∂J
∂ū

= c1Nv
T
0A,

and it follows that tr(adj(J)∂J
∂ū

) = cvT0A1N , which is non-zero. Consequently,

∂
∂ū

det J(ū, ũ) 6= 0. The existence of the smooth function ū∗(β) with the properties

of the statement now follows directly from the implicit function theorem.

Using continuity arguments and the odd symmetry of (3.6), the rest of the theorem

statement follows by Theorem 1. �
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[68] M. Orsag, T. Haus, D. Tolić, A. Ivanovic, M. Car, I. Palunko, and S. Bogdan.
Human-in-the-loop control of multi-agent aerial systems. In 2016 European Con-
trol Conference (ECC), pages 2139–2145. IEEE, 2016.

[69] D. Pais, P. M. Hogan, T. Schlegel, N. R. Franks, N. E. Leonard, and J. A. R. Mar-
shall. A mechanism for value-sensitive decision-making. PloS ONE, 8(9):e73216,
2013.

[70] J. K. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary
trade-offs in animal aggregation. Science, 284(5411):99–101, 1999.

[71] I. Poulakakis, L. Scardovi, and N. E. Leonard. Node classification in networks
of stochastic evidence accumulators. arXiv preprint arXiv:1210.4235, 20.

[72] I. Poulakakis, G. F. Young, L. Scardovi, and N. E. Leonard. Information central-
ity and ordering of nodes for accuracy in noisy decision-making networks. IEEE
Transactions on Automatic Control, in press, 2016.

[73] S. R. Ramp, R. E. Davis, N. E. Leonard, I. Shulman, Y. Chao, A. Robinson,
J. Marsden, P. Lermusiaux, D. Fratantoni, J. D. Paduan, et al. Preparing to
predict: the second autonomous ocean sampling network (aosn-ii) experiment in
the Monterey Bay. Deep Sea Research Part II: Topical Studies in Oceanography,
56(3-5):68–86, 2009.

[74] R. Ratcliff. A theory of memory retrieval. Psychological Review, 85(2):59, 1978.

[75] R. Ratcliff and G. McKoon. The diffusion decision model: theory and data for
two-choice decision tasks. Neural Computation, 20(4):873–922, 2008.

[76] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under dy-
namically changing interaction topologies. IEEE Transactions on automatic con-
trol, 50(5):655–661, 2005.

[77] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems in
multi-agent coordination. In Proceedings of the 2005, American Control Confer-
ence, 2005., pages 1859–1864. IEEE, 2005.

[78] T. D. Seeley. Consensus building during nest-site selection in honey bee swarms:
the expiration of dissent. Behavioral Ecology and Sociobiology, 53(6):417–424,
2003.

[79] T. D. Seeley. Honeybee democracy. Princeton University Press, 2010.

[80] T. D. Seeley and S. C. Buhrman. Nest-site selection in honey bees: how well
do swarms implement the “best-of-N” decision rule? Behavioral Ecology and
Sociobiology, 49:416–427, 2001.

[81] T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, and J. A. R.
Marshall. Stop signals provide cross inhibition in collective decision-making by
honeybee swarms. Science, 335(6064):108–111, 2012.

159



[82] T. Simon, B. Adini, M. El-Hadid, A. Goldberg, and L. Aharonson-Daniel. The
race to save lives: demonstrating the use of social media for search and rescue
operations. PLoS currents, 6, 2014.

[83] V. Srivastava and N. E. Leonard. Collective decision-making in ideal networks:
The speed-accuracy trade-off. IEEE Transactions on Control of Network Sys-
tems, 1(1):121–132, 2014.

[84] V. Srivastava and N. E. Leonard. On first passage time problems in collective
decision making with heterogeneous agents. In American Control Conference,
pages 2113–2118, Chicago, IL, June 2015.

[85] K. Stephenson and M. Zelen. Rethinking centrality: Methods and examples.
Social Networks, 11(1):1–37, 1989.

[86] K. J. Stewart and A. H. Harcourt. Gorillas’ vocalizations during rest periods:
signals of impending departure? Behaviour, pages 29–40, 1994.

[87] G. Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Belmont,
CA, 2006.

[88] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering. Westview Press, 2000.

[89] D. J. T. Sumpter. Collective Animal Behavior. Princeton University Press, 2010.

[90] H. O. Wang and E. H. Abed. Bifurcation control of a chaotic system. Automatica,
31(9):1213–1226, 1995.

[91] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos.
Springer Science & Business Media, 2003.

[92] M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons,
2009.

[93] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-
square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46,
2007.

[94] G. F. Young, L. Scardovi, and N. E. Leonard. Robustness of noisy consensus
dynamics with directed communication. In Proceedings of the 2010 American
Control Conference, pages 6312–6317. IEEE, 2010.

[95] Y. D. Zhong and N. E. Leonard. A continuous threshold model of cascade
dynamics. Submitted to IEEE Conference on Decision and Control, 2019.

160


	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Multi-agent systems
	1.1.1 Collective decision-making

	1.2 Contributions and thesis outline

	2 Background: Collective decision-making organised by a pitchfork bifurcation
	2.1 The honeybee nest-site selection process
	2.2 Decision-making dynamics in schooling fish
	2.3 The pitchfork bifurcation
	2.3.1 The flexibility-stability trade-off

	2.4 Design of engineered systems

	3 The agent-based model for collective decision-making
	3.1 Relevant theory, terms and notation
	3.2 A model for agent-based decision-making organised by a pitchfork singularity
	3.2.1 Inspiration for the agent-based model
	3.2.2 The agent-based model
	3.2.3 A pitchfork bifurcation by design in generic networks
	3.2.4 A pitchfork bifurcation with heterogeneous u

	3.3 Behaviour of the model with respect to design considerations

	4 Analysis of the agent-based model on a low dimensional manifold
	4.1 Reducing the agent-based dynamics to a low-dimensional manifold
	4.2 Exploring behaviours and their implications for design
	4.2.1 Transcritical singularity
	4.2.2 A symmetric pitchfork for bold0mu mumu  =bold0mu mumu 000000
	4.2.3 Value-sensitivity
	4.2.4 Influence of group size
	4.2.5 Symmetric unfolding of pitchfork

	4.3 Heterogeneity in social effort parameter values

	5 The symmetry-breaking effects of agent preferences
	5.1 Results from singularity theory: eigenvector centrality and p
	5.1.1 Limitations of eigenvector centrality and p

	5.2 Analysis of some nonlocal effects for undirected graphs
	5.3 Implications for design
	5.4 Decision-making in the presence of noise
	5.4.1 The linearised, stochastic model
	5.4.2 Analysis of the linear-stochastic dynamics

	5.5 Results for the linear and nonlinear models with noise.

	6 Adaptive dynamics to ensure a decision
	6.1 Design objectives
	6.2 Adaptive dynamics for an all-to-all network with bold0mu mumu  = 0
	6.3 Generalising to all strongly-connected networks and bold0mu mumu  =bold0mu mumu 000000
	6.3.1 Phase 1: Estimating the group average
	6.3.2 Phase 2: Adaptive feedback dynamics


	7 Robotic Implementation
	7.1 Experimental set-up
	7.2 Results
	7.2.1 Experiment 1: Social effort breaks deadlock
	7.2.2 Experiment 2: Hard and soft decision-making
	7.2.3 Experiment 3: Hysteresis due to unfolding
	7.2.4 Experiment 4: Changes during decision-making


	8 Final remarks
	8.1 Future directions
	8.1.1 Current extensions and applications


	A Supporting material for Chapter 3
	A.1 Proof of Theorem 1
	A.2 Proof of Corollary 2
	A.3 Proof of Theorem 3

	Bibliography

