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Abstract

This thesis concerns optimal patterns and control for sampling using a network

of mobile sensors. In the current work we are strongly motivated by coordinated

adaptive control of Autonomous Underwater Vehicles (AUV’s) for ocean sam-

pling. With some adaptations, however, this work could apply to other sensor

platforms.

The core value of the work presented in this thesis is in providing guidelines

on how to use multiple vehicles for collecting the data. The goal is to use

available resources in the best possible way, i.e. collect the richest data set. We

make assumptions about the available resources and quantitatively define the

notion of ‘richness’ of a data set in terms of a metric.

To derive such a metric, we review the methods of Objective Analysis (OA),

a powerful data assimilation scheme that is commonly used in evaluating the

performance of a sampling experiment. In its usual form, however, the OA

method is impractical for metric-driven optimization of the sampling tracks due

to the significant computation time. We then present a recent result by Francois

Lekien and colleagues which allows us to compute the OA metric much faster.

The OA metric is then used to find patterns on a simple domain that would

have optimal performance for various experiments. We focus our attention on

structured sampling patterns – parameterizable and repeatable elliptical tracks

– and compare their performance to the ‘lawn mower patterns’ that are tradi-

tionally used for sampling. We present the results of pattern optimization in

terms of dimensionless parameters which allows us to apply those results to a

range of sampling experiments in the ocean as well as in the air.
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After establishing the guidelines for pattern design, we consider the control

laws necessary to stabilize the gliders to those patterns. Some of the control

laws that apply to the patterns presented here were already published by Derek

Paley, Rodolphe Sepulchre and Naomi Leonard. The focus of the work presented

here is extending those results to resonance patterns. Finally, we simulate the

vehicle motion with resonance control and demonstrate the convergence to a

desired configuration.
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Chapter 1

Introduction

The coverage problem refers in general to the measure of quality of service of

a sensor network. It has a variety of applications including telecommunication,

sampling, distribution and wireless networks [15]. In this thesis we focus our

attention on the problem of sampling an area using a network of mobile sensors

in order to collect the best possible data set using the resources available. One

can apply these results to other applications of coverage theory (satellite or

wireless connectivity for example), but to be concrete, we frame the development

in this thesis with a specific application in mind: using mobile sensor network

to optimally cover a region and collect data for an oceanographic experiment.

1.1 The Power of Coordination

There are many applications where coordinated motion of multiple vehicles or

systems is desirable. The applications range from automated highway systems

to coordinated adaptive control of Autonomous Underwater Vehicles (AUV’s).

There is a trend in the military towards autonomous air and underwater vehicles,

where teams of unmanned vehicles are tasked to perform ‘dirty’, ‘dull’, and
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‘dangerous’ operations, such as border patrol and maritime search and rescue

[7], as well as robotic exploration of other planets [28]. One of the peaceful

applications of coordinated motion, Robo Cup, is a competition open to robotic

soccer teams, which is drawing the attention of researchers from all over the

world [10].

With recent technological developments, coordinated control of vehicles has

gained a lot of interest in the oceanographic community [35]. A single vehicle

could be insufficient for large-scale experiments such as AOSN-II or ASAP de-

scribed in Section 1.3.2, and several vehicles (i.e a sensor network) might be

more suitable to collect high-resolution data over large domains. Consider for

example the task of re-constructing a field of temperature distribution in a part

of the ocean. Using a fleet of AUV’s as a mobile sensor network allows us to col-

lect temperature measurements at different spatial and temporal points within

the domain. However, if the vehicles are not coordinated, it is possible that they

will all bunch up in one spot and collect redundant measurements or separate so

far apart that it would be impossible to interpolate the data between the mea-

surement sites. Either case poses severe limitations to our ability to reconstruct

the field in the given domain. A solution to this problem is achieved through

a coordinated motion of the vehicles, such that the entire network is designed

to maximize the usefulness1 of the data. Coordinated periodic trajectories such

as the ones studied in this thesis, provide means to collect measurements with

desired spatial and temporal separation.

1We will define the notion of ‘usefulness’ in Chapter 3 using the theoretical development
and a metric described in Chapter 2
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1.2 Historic Perspective on Coordinated Motion

The problems of collective motion and collective stabilization have been of in-

terest to researchers for a very long time. The classic anecdote of great Dutch

physicist Christiaan Huygens dating back to 1665 marks the beginning of sci-

entific inquiry about such problems. Christiaan Huygens was the inventor of a

pendulum clock and on one day in February 1665 was confined to his bed by a

minor illness [38]. He stared at two clocks he had built, which were hanging side

by side. He noticed something odd: the two pendulums were swinging in perfect

synchrony. He tried disturbing them, but only after a short time, they regained

synchrony. Huygens postulated that the two clocks were somehow influencing

each other, perhaps through tiny air movements or imperceptible vibrations of

their common support. Sure enough, when he moved them to the opposite sides

of the room, the clock gradually fell out of step. It turned out that Huygens’s

observation initiated an entire subbranch of mathematics: the theory of coupled

oscillators [38]. It is important to note that the framework of coupled oscillators

can be applied to a large family of problems seemingly unrelated to the Huy-

gens’s clock. Many physical and biological phenomena can be modeled with

great accuracy using those simple oscillators that retain the essence of their

biological prototypes. Coupled oscillators can be found throughout the natural

world: pace maker cells in the heart and neural networks in the brain and spinal

cord that control such behaviors as breathing, running and chewing. Crickets

chirping in unison and giant congregations of fireflies all flashing synchronously

are examples of oscillators not confined to a single organism. Remarkably, the

behavior of fish schools which motivated research in sensor networks and their

coordinated motion can be modeled using the same principles. The direction of
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each fish can be thought of as an oscillator, so the entire school moving in one

direction is an example of collection of coupled oscillators in synchrony [27].

1.2.1 Kuramoto Model

Collective synchronization was first studied mathematically by Wiener ([41] and

[42]), who recognized its ubiquity in the natural world. Unfortunately Wiener’s

mathematical approach based on Fourier integrals [41] has turned out to be a

dead end [39]. A more fruitful approach was pioneered by Winfree [43] in his

first paper where he formulated the problem in terms of a huge population of

interacting limit-cycle oscillators. Winfree exploited a separation of timescales:

on a short timescale, the oscillators relax to their limit cycles, and so can be

characterized solely by their phases; on a long timescale, these phases evolve

because of the interplay of weak coupling and slight frequency differences among

the oscillators. In a further simplification, Winfree supposed that each oscillator

was coupled to the collective rhythm generated by the whole population [39].

Inspired by Winfree’s discoveries, a Japanese scientist Yoshiki Kuramoto

began working on collective synchronization in 1975. His first paper on the

topic [16] was a brief note announcing some exact results about what would

come to be known as The Kuramoto Model. The Kuramoto model consists of

a population of N coupled phase oscillators θk(t) having natural frequencies

ωk distributed with a given probability density g(ω), and whose dynamics are

governed by

θ̇k = ωk +
N∑

j=1

Kkj sin (θj − θk), k = 1, . . . , N, (1.1)

where Kkj are positive scalars. Thus each oscillator tries to run independently

at its own frequency, while the coupling tends to synchronize it to all the others.
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By making a suitable choice of rotating frame, θk → θk − Ωt in which Ω is the

first moment of g(ω), Eq. (1.1) transforms to an equivalent system of phase

oscillators whose natural frequencies have zero mean. When the coupling is

sufficiently weak, the oscillators run incoherently, whereas beyond a certain

threshold collective synchronization emerges spontaneously [39].

To visualize the dynamics of the phases, it is convenient to imagine a swarm

of points running around the unit circle in the complex plane. The complex

order parameter

reiψ =
1

N

N∑
j=1

eiθj (1.2)

is a macroscopic quantity that can be interpreted as the collective rhythm pro-

duced by the whole population [20]. It corresponds to the centroid of the phases.

The radius r(t) measures the phase coherence, and ψ(t) is the average phase

(see Figure 1.1).

Figure 1.1: Geometric interpretation of the order parameter (1.2). The phases
θj are plotted on the unit circle. Their centroid is given by the complex number
reiψ, shown as an arrow. Reprinted from [39].

For instance, if all the oscillators move in a single tight clump, then r ≈
1 and the population acts like a giant oscillator. On the other hand, if the

oscillators are scattered around the circle, then r ≈ 0; the individual oscillations

act incoherently and no macroscopic rhythm is produced. Defining K as a
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coupling strength common to all oscillators, we rewrite Equation 1.1 as

θ̇k = ωk +
K

N

N∑
j=1

sin (θj − θk). (1.3)

Kuramoto noticed that the governing equation (1.3) can be rewritten neatly

in terms of the order parameter. Multiply both sides of the order parameter

equation (1.2) by e−iθk to obtain

rei(ψ−θk) =
1

N

N∑
j=1

ei(θj−θk).

Equating imaginary parts yields

r sin (ψ − θk) =
1

N

N∑
j=1

sin (θj − θk).

Thus (1.1) becomes

θ̇k = ωk + Kr sin (ψ − θk), k = 1, . . . , N. (1.4)

Much of the future work in coupled phase oscillators theory and coordination

including the approach taken in this thesis is motivated by Kuramoto’s simple

model.

1.3 Current Trends in Ocean Sampling

With recent technological developments, it has became possible to extend the

traditional methods of collecting the data in the ocean such as via sensors lo-

cated on buoys and drifters (quasi-static sensors) and mobile sensors located

on ships, to autonomous vehicles equipped with sensors and capable of navi-
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gating in the ocean for extended periods of time. Not only are such vehicles

less expensive to operate, but also they provide rich data sets in the areas of-

ten unreachable by other means such as underneath ice shelves in Antarctica

[6]. Autonomous vehicles can be used in formation, creating a Mobile Sen-

sor Network where each vehicle is controlled in a way that is optimal for the

performance of the entire network.

Historically, oceanographic sampling has either tended to be done with low

numbers of steerable platforms (ships), or large numbers of nonsteerable plat-

forms (floats). In case of the steerable platforms, the goal is to cover as much of

the domain with as short a track as possible. For experiments involving a fleet

of drifting floats, oceanographers usually space them out as much as possible

and hope for the best. The advent of steerable gliders means that alternative

strategies may be preferable, and this study represents an early step in evaluat-

ing such strategies. With those new technologies at hand, the basic question is

formulated as: what is the best way to deploy mobile sensors to measure a field

that is evolving in space and time, and how do to get the sensors to organize

themselves to optimally sample such a field?

1.3.1 Gliders

A strong motivation for our work is the emergence of Autonomous Underwater

Vehicles (AUV’s) as important observation platforms for oceanographic explo-

ration. One of the types of AUV’s, often referred to as ‘gliders’ due to their

design, relies on buoyancy regulation using a ballast tank and internal mass dis-

tribution for motion control. Gliders do not use thrusters or propellers and have

limited external moving control surfaces, which makes them ideal for long-term

missions due to their energy efficiency. The gliders use fixed wings to provide
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lift which induces motion in the horizontal direction. The nominal motion of a

glider in the longitudinal plane is along a saw-tooth trajectory. While propeller-

driven vehicles operate on the order of hours, the gliders are designed to operate

autonomously for several weeks. Their design allows them to remotely upload

the collected data via satellite link and receive new waypoints without the need

for human input.

The gliders have on-board ‘low-level’ controls that allow them to travel to

the waypoints specified by the ‘high-level’ control. The waypoints can be de-

termined centrally for all gliders based on the data from navigational sensors

onboard gliders as well as environmental data such as temperature, salinity and

flow fields. In this thesis our focus is on the high-level control of the gliders. The

low-level controls are assumed to be ideal in the sense that the gliders do what-

ever they need to follow prescribed waypoints in the absence of disturbances.

With this assumption, the low-level controls are ignored in further analysis.

The reader is referred to [35] for additional information about the gliders and

technical details.

From the fluid mechanics point of view, the motion of an underwater vehicle

is determined by its shape, size, total mass, and distribution of mass as well

as properties of surrounding fluid and disturbances. In this thesis, however, we

are concerned with a high-level picture of the problem and ignore the individual

dynamics of gliders focussing on the dynamics of a formation of multiple gliders,

regarding each of them as a point-mass particle.

1.3.2 Sea Trials

Two major sea trials in Monterey Bay, CA provided a test bed for control al-

gorithms and a real-world demonstration of capabilities of coordinated sensor
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Figure 1.2: Slocum glider used in Monterey Bay experiments.

networks. The Autonomous Ocean Sampling Network II (AOSN-II) project

was aimed at developing a sustainable, integrated observation-modeling sys-

tem for oceans [34]. Among the wide range of objectives of this collaborative

project were developing components of adaptive sampling infrastructure, de-

signing adaptive sampling methods intended to provide optimal data to ocean

models and improving understanding of ocean science through data collected

by various platforms. During the AOSN-II field experiment in August 2003,

oceanographic data from satellites, surface drifters, ships, airplanes, propeller-

driven vehicles and buoyancy-driven gliders were assimilated into predictive

ocean models. Two types of AUVs, Spray and Slocum, played a crucial role

in the experiment collecting vast amounts of data in the given domain that

extended as far as 100 kilometers from shore deeper than 400 meters.

Another large-scale experiment in Monterey Bay was carried out in Au-

gust 2006 as part of the Adaptive Sampling and Prediction (ASAP) project [1].
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Building upon the frameworks of AOSN-II, researchers in the ASAP 2006 ex-

periment introduced a completely automated (no human in the loop) control

system for gliders and collected an invaluable data set for understanding dy-

namic processes in the ocean.

In the AOSN-II field experiment gliders traversed preplanned sampling paths.

The paths were 80-100 km lines perpendicular to the shore for the Spray gliders

whereas for the Slocum gliders the tracks were polygons. The shape of the glider

tracks were chosen based on experience of the collaborating oceanographers tak-

ing into account spatial and temporal scales of interest and physical limitations

of the sensor array and the gliders. In the ASAP field experiment both Spray

and Slocum gliders were controlled to and coordinated on superelliptic tracks

that were adapted over the course of the month-long experiment. A metric to

quantify the richness of the data set was used to help select these tracks and

patterns [23]. This thesis presents a numerical optimization study that provides

some further guidelines on choosing useful sampling patterns for certain kinds

of data-collecting experiments.

1.4 Thesis Overview

Optimal sampling via mobile sensor network involves (1) establishing a metric

for performance evaluation that can be computed quickly, (2) applying this in an

oceanographically relevant context, and (3) figuring out how to get the network

of gliders to organize themselves for optimal performance. The chapters of this

thesis follow this basic outline.

In Chapter 2 we review the methods of Objective Analysis (OA), a powerful

data assimilation scheme originally developed by Eliassen et al [12] in 1954 and

later independently reproduced and popularized by Gandin [13] in 1963. Al-
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though commonly used in evaluating the performance of a sampling experiment

[35], the method may be impractical for metric-driven optimization of the sam-

pling tracks due to the significant computation time. A new theoretical result

due to Francois Lekien and colleagues [21] and presented in Section 2.2 allows

much faster OA metric evaluation.

The OA metric described in Chapter 2 is used in Chapter 3 as a measure of

richness of data collected on a given sampling trajectory. We focus our atten-

tion on structured sampling patterns - parameterizable and repeatable elliptical

tracks. To validate our approach we also consider in Section 3.3 the ‘lawn mower

patterns’ that were traditionally used for sampling ([2] and [14]) and quantita-

tively compare their performance to performance of the structured patterns. We

implement a modified steepest ascent algorithm to find patterns that produce

the richest data set (largest value of the OA metric) as a function of dimension-

less oceanographic parameters Sz and St representing size of the domain and

duration of the experiment with respect to spatial and temporal decorrelation

scales respectively. Noticing certain trends in the resulting patterns, we limit

the parameter set to channel the computational resources to finding the best

patterns as a function of region in (Sz, St) space. The results of pattern opti-

mization are presented in Figure 3.9 and the corresponding subsets of parameter

space (Sz, St) are identified in Figure 3.10.

In Chapter 4 we review the control laws presented in [36] and [31], and

extended those results in Section 4.3 to the resonance patterns. Resonance

patterns include a set of closed curves such that the perimeter of each curve is

an integer multiple of some distance d. This approach allows the vehicle to move

along tracks of different size, yet still be ‘synchronized’. We follow a framework

described in detail in [18] and [23] where the control input uk is the rate of

change of heading of each vehicle. It is an assumption that the vehicles move

11



with uniform speed. Finally, we simulate the vehicle motion with resonance

control in Section 4.3.2 and demonstrate in Figure 4.1 the convergence to a

desired relative phase configuration.

We conclude with Chapter 5 where we give an overview of the results, iden-

tify contributions to the field of sampling via mobile sensor networks, and point

out some of the limitations of the work presented in this thesis. Also in Chap-

ter 5 we provide some directions for future research pertinent to the material

covered in this work.
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Chapter 2

Objective Analysis

In this chapter, we review the classical Objective Analysis (OA) method in

the context of evaluating the performance of sampling paths for mobile sensor

platforms (e.g. gliders and propeller-driven AUV’s) in a specified domain. OA

is a data assimilation and estimation scheme. OA mapping error provides a

measure of uncertainty in the sampling scheme and can be used to evaluate

sampling performance (the reader is referred to [5] and [13] for fundamentals of

OA methods). When designing optimal sampling trajectories or sampling plans,

the metric must be computed for each candidate trajectory. As a consequence,

such optimization problems rely on the ability to compute the metric as fast as

possible. It turns out that computing the metric using the classical Objective

Analysis methods is a computationally costly procedure, making it impractical

for real-time metric-driven optimization of sampling trajectories. Here we derive

analytical results that allow us to compute the metric in a fraction of the time it

would normally take following classical OA schemes. The work presented here

is due to Francois Lekien and collaborators, and some of the derivations appear

in [21].
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Objective Analysis is also commonly referred to as Optimal Interpolation.

It was originally developed by Eliassen et al [12] in 1954 and independently

reproduced and popularized by Gandin [13] in 1963. An extensive study of this

assimilation scheme and its application to ocean science can be found in [3], [5]

and [19]. The goal of Objective Analysis in ocean modeling is to reconstruct the

continuous field of a particular measured quantity. For example a temperature

field in Monterey Bay CA is a continuous field sampled by discrete measurements

of the fleet of underwater gliders. Incorporating measurements from all gliders

and all times on a grid allows us to approximate the temperature distribution

in that area. The more distributed measurements we have the more certain we

are that our approximation reflects reality. Note that the case when lots of

measurements are taken in the same place does not provide a good coverage of

the sampling domain. OA mapping error gives a useful measure of richness of

the data set by taking into account not just the quantity of measurements but

how they are distributed in space and time with respect to the dominant spatial

and temporal scales in the sampled field.

2.1 The Classic Discretized OA

In this section, we derive the classical formulation of Objective Analysis follow-

ing [21]. We also show, based on the OA error map (or equivalently OA certainty

map), how to compute the metric that we use to quantify the performance of

the array.

We view the real system state as a random vector ρbg ∈ RN . Each component

of ρbg represents, for example, the temperature at one of the grid points. We

define N as the number of grid points, which are simply points in space (3D

in general) and in time where the field is to be recreated. Next we define
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ρ̂ = E[ρbg] which is assumed known. We also assume that we have an estimate

on the covariance of that vector:

B = E[(ρbg − ρ̂)(ρbg − ρ̂)>]. (2.1)

Each row i of B corresponds to a grid point (xi, ti) and each column j corre-

sponds to grid point (xj, tj), where xi is the location (in 3D in general) in space

and ti is the time of the ith grid point. The element Bij is the covariance be-

tween these two points. The diagonal elements are variances and represent the a

priori estimated error at a grid point. The goal of OA is to get M measurements

and use them to get a better estimate ρa that minimizes the covariance matrix

A:

A = E[(ρa − ρ̂)(ρa − ρ̂)>]. (2.2)

The diagonal elements of A are variances and represent the a posteriori

error at a grid point. Each measurement is made at a point yk and at a time

tk and results in a measured value Tk of the field. Since the OA works on a

regular grid, chances are that the measurements are not made exactly on a grid

point. For this purpose, we compute a measurement matrix H ∈ RM×N , which

represents both the position and time of the measurements. For example, one

might interpolate the data using the closest point on the mesh. This means

that for any measurement at yk and time tk, we expect to measure the same

value as ρ̂ at the closest grid point. In this case, H contains only M non-zero

elements and each is in a different row. For each measurement, we put a ‘1’ in

the row of H corresponding to this measurement and the column corresponding

to the closest grid point.
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We expect the vector T containing M measurements T = (T1, . . . , TM)> to

be

T = Hρ̂ + ε, (2.3)

where ε is a measurement error. Here, following [25] we assume that E[ε] = 0,

i.e. the measurements are unbiased.

OA is characterized by how it creates the new state ρa based on the back-

ground state ρbg and the new measurements. We present the following hypothe-

ses:

1. The new state ρa is unbiased: E[ρa] = ρ̂.

2. ρa is given by the background state plus a linear increment, T − Hρbg,

which represents the data ‘mismatch’. In other words, we require that

ρa = ρbg + Q(T −Hρbg) (2.4)

for some Q ∈ RN×M .

3. Following [21], the norm of A is defined as1

||A||1 =
1

dim(A)
Tr(A). (2.5)

where dim(A) is the dimension of the matrix A

1Technically, it does not matter whether we have 1/dim(A) or not since it is a constant.
Once we have a norm, we can always multiply it by a constant and we get an equivalent
norm. Furthermore, the original references such as [13] do not have it. So why include it?
Two reasons:
1) If we do not divide Tr(A) by dim(A), the value of the norm increases with the resolution.
That is, suppose that we have a mesh with 100 points, then Tr(A) is roughly 100 times
the average error. With a 1000 grid points, the norm is 10 times what we had with coarse
resolution. If we divide by the dimension, we get a similar number for any resolution.
2) When we do the continuous case, we compute the integral of A over the domain (as if we
had an infinite number of points in the discrete case). So, one way to view the continuous
case is as the limit of the discrete case when the number of (regularly spaced) grid points is
going to infinity. But clearly that would not work if we do not divide by dim(A).
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4. The resulting covariance matrix A is “minimum”. This determines the

matrix Q introduced above. It is not possible to minimize all elements

of A at the same time, so we minimize the norm of A as defined in Eq.

(2.5) to obtain Q:

min
Q∈RN×M

{||A||1}. (2.6)

Rewriting Eq. (2.4) as

ρa − ρ̂ = ρbg − ρ̂ + Q


T −Hρ̂︸ ︷︷ ︸

ε

−H(ρbg − ρ̂)


 , (2.7)

we manipulate Eq. (2.2) as following:

A = E[(ρa − ρ̂)(ρa − ρ̂)>]

= E[(ρbg − ρ̂)(ρbg − ρ̂)>]︸ ︷︷ ︸
=B

+QE[εε>]︸ ︷︷ ︸
=W

Q>

+QHE[(ρbg − ρ̂)(ρbg − ρ̂)>]︸ ︷︷ ︸
=B

H>Q>

+ E[(ρbg − ρ̂)ε>]︸ ︷︷ ︸
=0

Q> − E[(ρbg − ρ̂)(ρbg − ρ̂)>]︸ ︷︷ ︸
=B

H>Q>

+QE[ε(ρbg − ρ̂)>]︸ ︷︷ ︸
=0

−QE[ε(ρbg − ρ̂)>]︸ ︷︷ ︸
=0

H>

QHE[(ρbg − ρ̂)(ρbg − ρ̂)>]︸ ︷︷ ︸
=B

−QHE[(ρbg − ρ̂)ε>]︸ ︷︷ ︸
=0

H>Q>

= B + Q(W + HBH>)Q> −BH>Q> −QHB.

(2.8)

Let Q̂ be the optimal solution that minimizes A and define

Q = Q̂ + δQ.
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The corresponding variation on A is

δA = A|Q=Q̂+δQ −A|Q=Q̂.

Hence, Eq. (2.8) becomes

δA = δQ
(
W + HBH>)

Q̂> + Q̂
(
W + HBH>)

δQ>

−δQHB−BH>δQ>. (2.9)

Using the norm in (2.5) and noting that δ (Tr(A)) = Tr(δA) we have

δTr(A) = Tr
(
δQ(W + HBH>)Q̂> + Q̂(W + HBH>)δQ> − δQHB−BH>δQ>

)

By using the fact that Tr(·) is linear and Tr(X) = Tr(X>), we get

δTr(A) = 2 Tr
((

Q̂(W + HBH>)−BH>
)

δQ>
)

In order to get δTr(A) = 0, the right side of the equation above must vanish

for all δQ>. Noting that Tr(XδQ>) = 0 ⇐⇒ X = 0, we must have

Q̂(W + HBH>)−BH> = 0,

which is a linear equation in Q̂ and accepts one and only one solution:

Q̂ = BH>(W + HBH
>
)−1. (2.10)
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To finish the derivation, we use the result above in Eq. (2.8) to get the usual

form of OA:

A = B−BH>(W + HBH>)−1B. (2.11)

The norm of A in (2.5) can be used as a metric to characterize sampling perfor-

mance [13]. However, this approach proves to be too computationally intensive

to perform any form of optimization with reasonable number of metric eval-

uations that could be completed within reasonable time. We now proceed to

develop a continuous version of Objective Analysis scheme that allows us to

compute the metric much more efficiently. The reader is referred to [23] for an

overview of the OA and its application to oceanographic experiments. Addi-

tional theoretical background and examples of uses of OA can be found in [3]

and [19].

2.2 Continuous Objective Analysis

This section presents work by Francois Lekien and colleagues that has appeared

in [21]. Similar ideas were explored earlier in [25] and [24]. We assume that

we are interested in a random field (e.g. temperature, salinity) that takes real

values at each point x in space and each time t. We denote this field T̂ (x, t) or

more simply T̂ (z) where we use the new vector z to concatenate space and time

z = (x, t).

We introduce a reconstructed function Tobs(z), which is the continuous quan-

tity representing the ‘current-time knowledge’ of the field after a measurement

is made. In practice, discrete measurements are taken and this field must be

reconstructed. For example, Tobs(z) can be the temperature observed by the
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closest sensor to the point z. The exact method how this function is recon-

structed is irrelevant for this theoretical development.

Conceptually, the goal of the measurement process is to determine this re-

constructed function Tobs(z) such that we have

ω(z)
(
T̂ (z) + n(z)− Tobs(z)

)
≈ 0 ∀z, (2.12)

where n(z) is an estimate on the sensor noise with E[n(z)] = 0, and ω(z) is

a weighting function. However, as we will see further, Tobs(z) does not appear

in the final equation that we use to calculate the metric, so we are not con-

cerned how it is determined. With regards to the sensor noise, we also define

N(z) = E[n2(z)] and assume that

E[n(z)n(z′)] = N(z)δ(z− z′).

The function ω(z) represents the generalized position of the sensor in space and

time, and for the purposes of this study is assumed to be a Gaussian centered

at the most probable position of the sensor.

As in the Classical OA (Sec. 2.1), we use the notion of “data misfit,” which

in the continuous case becomes

Tobs(z
′)− Tb(z

′) (2.13)

where Tb is the current estimate. We create a new state Ta(z) by adding a linear

increment of the “data misfit” to the current state Tb

Ta(z) = Tb(z) +

∫
dz′ α(z, z′)ω(z′) (Tobs(z

′)− Tb(z
′)) . (2.14)

20



At this point coefficient α(z, z′) is the unknown. To get an understanding

of what it is, first note that values from any z′ influence what we are doing at

z. That’s why α has two parameter z and z′. Suppose for example that the

data misfit is Tobs(z
′) − Tb(z

′) = 10. Then we must add 10 × α(z, z′) to Tb(z).

Of course we loop over z′ to check all the points and get Tb(z). That’s why

we have the integral in Eq (2.14). Clearly we expect α(z, z) to be much larger

than α(z, z′ 6= z). That is, the misfit near point z is more likely to result in

a correction to Tb(z) than the misfit at a point z′ far away from z. So, α is

really just the ‘translation’ of adding a linear increment to Tb. When we write

Equation 2.14, we don’t know α(z, z′), but we compute the resulting error (for

an arbitrary α(z, z′)), then we identify the α(z, z′) that minimizes the resulting

error. The solution is Eq (2.28).

Returning to Eq (2.14), we rewrite it as

Ta(z)− T̂ (z) = Tb(z)− T̂ (z)+
∫

dz′ α(z, z′)ω(z′)
(
n(z′)−

[
Tb(z

′)− T̂ (z′)
])

.
(2.15)

Taking the expected value and using the fact that E
[(

Tb(z)− T̂ (z)
)

n(z′)
]

= 0

we get

A(z1, z2) = E
[(

Ta(z1)− T̂ (z1)
)(

Ta(z2)− T̂ (z2)
)]

=

E
[(

Tb(z1)− T̂ (z1)
)(

Tb(z2)− T̂ (z2)
)]

+
∫

dz′
∫

dz′′ α(z1, z
′)α(z2, z

′)ω(z′)ω(z′′)E [n(z′)n(z′′)]

+
∫

dz′
∫

dz′′ α(z1, z
′)α(z2, z

′)ω(z′)ω(z′′)

E
[(

Tb(z
′)− T̂ (z′)

)(
Tb(z

′′)− T̂ (z′′)
)]

− ∫
dz′ α(z1, z

′)ω(z′)E
[(

Tb(z
′)− T̂ (z′)

)(
Tb(z2)− T̂ (z2)

)]

− ∫
dz′ α(z2, z

′)ω(z′)E
[(

Tb(z
′)− T̂ (z′)

)(
Tb(z1)− T̂ (z1)

)]
,

(2.16)
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where we introduced A(z1, z2), the estimated error of the new state Ta. From

here we can represent A in a concise notation

A(z1, z2) = B(z1, z2)

+
∫

dz′
∫

dz′′ α(z1, z
′)α(z2, z

′′)ω(z′)ω(z′′) [N(z′)δ(z′ − z′′) + B(z′, z′′)]

− ∫
dz′ω(z′) [α(z1, z

′)B(z2, z
′) + α(z2, z

′)B(z1, z
′)] ,

(2.17)

where B(z1, z2) is the best estimate on the covariance between two different

points with the norm

||B|| =
√∫

dz B(z, z). (2.18)

Defining the norm of A(·, ·) as

||A|| =
√∫

dz A(z, z) (2.19)

we have

‖A‖2 = ‖B‖2

+
∫

dz
∫

dz′
∫

dz′′α(z, z′)α(z, z′′)ω(z′)ω(z′′) [N(z′)δ(z′ − z′′) + B(z′, z′′)]

−2
∫

dz
∫

dz′ω(z′)α(z, z′)B(z, z′)

(2.20)

Therefore, in parallel with the steps in Section (2.1) we have

δ ‖A‖2 = −2
∫
dz

∫
dz′δα(z, z′)ω(z′)B(z, z′)

+
∫
dz

∫
dz′

∫
dz′′ [α(z, z′)δα(z, z′′) + α(z, z′′)δα(z, z′)] ω(z′)ω(z′′)×

[N(z′)δ(z′ − z′′) + B(z′, z′′)]

(2.21)
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or by substituting z′ for z′′ in the first part of the second line

δ‖A‖2=2
∫
dz

∫
dz′

∫
dz′′δα(z, z′)ω(z′)

× [α(z, z′′)ω(z′′) [N(z′)δ(z′ − z′′)+B(z′, z′′)]−δ(z′−z′′)B(z, z′)]
(2.22)

The equation above is satisfied for any arbitrary distribution δα(z, z′) if and

only if we have ∀z, z′ :

∫
dz′′ω(z′) [α(z, z′′)ω(z′′) [N(z′)δ(z′ − z′′)+B(z′, z′′)]−δ(z′−z′′)B(z, z′)] = 0

(2.23)

or the linear equation

∫
dz′′α(z, z′′)ω(z′)ω(z′′) [N(z′)δ(z′ − z′′)+B(z′, z′′)] = ω(z′)B(z, z′) (2.24)

which we rewrite concisely as

∫
dz′′α(z, z′′)Ψ(z′, z′′) = ω(z′)B(z, z′) , (2.25)

where

Ψ(z′, z′′) = ω(z′)ω(z′′) [N(z′)δ(z′ − z′′)+B(z′, z′′)] . (2.26)

We define the inverse of Ψ as following:

∫
dz′′Ψ−1(z′′, z)Ψ(z′, z′′) = δ(z− z′). (2.27)

Having defined Ψ−1, we can write the solution α of Eq. (2.24) as

α(z, z′′) =

∫
dz′′′ ω(z′′′)B(z, z′′′)Ψ−1(z′′, z′′′) (2.28)
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and we substitute α in Eq. (2.17) to get

A(z1, z2) = B(z1, z2)

−
∫

dz′
∫

dz′′ω(z′)ω(z′′)B(z1, z
′′)Ψ−1(z′, z′′)B(z′, z2). (2.29)

We can further simplify the equations by making the assumption that mea-

surements are comparable to the true value of the field at the exact place and

time of the measurements. In this case, we have

ω(z) =
∑

i

δ(z− zm
i )

where the summation is made over the i = 1, . . . , M measurement taken at

points zm
i . Equation (2.29) now becomes

A(z1, z2) = B(z1, z2)−
∑
i,j

B(z1, z
m
i )Ψ−1(zm

i , zm
j )B(zm

j , z2). (2.30)

Equation (2.30) provides an efficient method to compute A(z, z) which is

already an improvement in terms of computational time over the classical OA

method described in Section 2.1. However, given a specific form of the covari-

ance function B(z, z′), it is possible to do even better by finding an analytical

solution to the integral in Eq. (2.19).

We consider the case

B(z, z′) = e−
(x−x′)2

σ2 − (y−y′)2
σ2 − (t−t′)2

τ2 .

σ and τ here refer to the spatial and temporal scales associated with the ocean,

but from the numerical point of view they do not have to have any physical

significance. By choosing such form of covariance function, Equation (2.30)
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gives

A(z, z) = 1−
∑
ij

Ψ−1(zm
i , zm

j )e−
(x−xm

i )2

σ2 − (y−ym
i )2

σ2 − (t−tmi )2

τ2 − (x−xm
j )2

σ2 − (y−ym
j )2

σ2 − (t−tmj )2

τ2 .

(2.31)

Performing some algebraic manipulations we see that

(x−xm
i )2

σ2 +
(x−xm

j )2

σ2 = 2
σ2

[
x2−2x

xm
i +xm

j

2
+

[
xm

i +xm
j

2

]2

+
[

xm
i −xm

j

2

]2
]

= 2
σ2

[
x− xm

i +xm
j

2

]2

+ 1
2σ2 (x

m
i − xm

j )2

(2.32)

Therefore, Eq. (2.31) is equivalent to

‖A‖ =
∑
ij

Ψ−1(zm
i , zm

j )e−
(xm

i −xm
j )2

2σ2 − (ym
i −ym

j )2

2σ2 − (tmi −tmj )2

2τ2

×
∫

dz e
−

 
x−

xm
i +xm

j
2

!2

(σ/
√

2)2 e
−

 
y−

ym
i +ym

j
2

!2

(σ/
√

2)2 e
−

 
t−

tmi +tmj
2

!2

(τ/
√

2)2 . (2.33)

The only task that is left to do at this point is to solve the integrals. In

Chapter 3 we are using the quantity in Eq. (2.33) as a metric to evaluate the

performance of the sampling trajectories. Although the integral in Eq. (2.33)

could be a challenge to solve on complicated domains, in this work we only apply

it to square domains: (x, y, t) ∈ [−Dx, Dx]× [−Dy, Dy]× [−Dt, Dt]. Under those
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simple domains the value of the OA metric can be computed as

‖A‖ =
∑
ij

Ψ−1(zm
i , zm

j ) e−
(xm

i −xm
j )2

2σ2 − (ym
i −ym

j )2

2σ2 − (tmi −tmj )2

2τ2

×
∫ Dx

−Dx

dx e
−

 
x−

xm
i +xm

j
2

!2

(σ/
√

2)2

∫ Dy

−Dy

dy e
−

 
y−

ym
i +ym

j
2

!2

(σ/
√

2)2

∫ Dt

−Dt

dt e
−

 
t−

tmi +tmj
2

!2

(τ/
√

2)2 (2.34)

=
σ2τ

64
(2π)

3
2

∑
ij

Ψ−1(zm
i , zm

j ) e−
(xm

i −xm
j )2

2σ2 − (ym
i −ym

j )2

2σ2 − (tmi −tmj )2

2τ2

×
[
erf

(√
2

σ

(
Dx−

xm
i +xm

j

2

))
+ erf

(√
2

σ

(
Dx+

xm
i +xm

j

2

))]

×
[
erf

(√
2

σ

(
Dy−

ym
i +ym

j

2

))
+ erf

(√
2

σ

(
Dy+

ym
i +ym

j

2

))]

×
[
erf

(√
2

τ

(
Dt−

tmi +tmj
2

))
+ erf

(√
2

τ

(
Dt+

tmi +tmj
2

))]
(2.35)

where the error function

erf(s) =
2√
π

∫ s

0

dξ e−ξ2

is tabulated.

Qualitatively, we have to balance two forces to minimize the metric in

Eq. (2.35). On one hand, we need to space the measurements as far as pos-

sible (to minimizes the terms e−(zm
i −zm

j )2) and, at the same time, try to keep

the measurements as close to the center of the domain as possible to minimize

the terms erf(·). Equation (2.35) evaluates the metric but does not require the

computation of the error map A at any grid point. A typical sample size nec-

essary to evaluate candidate patterns is M ∼ 300 measurements. In this case,

we need to invert a 300× 300 matrix to find Ψ−1. Once this is done, the metric

is obtained by a double sum (M × M) where each element only requires the

numerical computation of three error functions. The major advantage is the
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complete disappearance of N , the number of grid points which is, in extended

phase space (i.e. space-time), much larger than M . This lets us compute the

metric for one set of trajectories in less than a second. For a 250 × 250 × 250

grid, this new method reduces the computation time needed by the classical OA

algorithm by a factor 2503.
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Chapter 3

Optimal Patterns

The goal of this chapter is to define the optimization problem, explain the

approach to identify the best sampling patterns for a given region, and to present

the results for a class of experiments on simple domains. Objective Analysis

(OA) as described in Chapter 2 sets the stage for optimization by giving us a

quantitative measure to compare candidate patterns. We characterize the region

by spatial and temporal scales used in oceanography as well as dimensionless

parameters representing the shape and size of the domain. We then use the

OA metric in conjunction with a modified steepest ascent algorithm to identify

sampling patterns that perform best for an experiment involving four gliders on

a simple domain.

3.1 Structured Sampling Patterns

The underlying question that we seek to answer is: what is the best way to

use multiple sensors to collect data? In the context of underwater gliders and

oceanographic exploration as described in Chapter 1, we need to devise a way

to direct gliders so that they collect the richest possible data set for a given
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length of experiment. In light of Chapter 2 we know qualitatively that we need

to keep the gliders from bunching up and collecting redundant data and, at

the same time, prevent them from spreading the measurements too far apart

in space and time in order to have greater certainty in interpolating the data.

Note that this work is specialized to the plane, so the patterns discussed below

should be interpreted as 2D.

Using the OA metric as a quantitative measure of richness of the data set,

it is conceivable to devise control laws that would take into account the dis-

tances between measurements in space and time, and would drive the gliders

away from each other when they are clustered and pull them back if they get

far apart. This would produce irregular paths, resembling a bowl of noodles.

Although the performance of such control methods might be comparable to the

Structured Sampling Patterns that we propose here, such an approach has a

number of disadvantages which we briefly mention below to motivate the work

in this thesis. Structured Sampling Patterns are pre-determined closed tracks

that would be traversed by gliders. Here the control effort is directed to keep

the gliders moving along the tracks, and it is decoupled from the performance

optimization. We contrast this idea with gradient type algorithms where con-

trol decisions for each glider are made upon evaluation of current distribution

of other gliders and a low-level performance optimization is performed ‘on the

fly’. Examples of a gradient type approach using the ideas of computational

geometry and Voronoi partitions can be found in [8] and [9], and yet another

take on the coverage problems that can be viewed as an alternative to what is

presented here is described in [26].

A structured approach allows us to simplify the coverage problem and make

it more suitable for systematic study. Instead of being faced with a decision

how to proceed further for optimal sampling performance every time a glider
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surfaces, we decouple the problem into two parts: (1) design of the tracks and

(2) control of the gliders to the tracks during the experiment. By dealing with

optimization of patterns separately, not only do we take away the computational

burden from routine operations during observation, but we also allow analytical

solution through introduction of parameters and a more systematic analysis of

performance using repeatable paths.

Another important issue is the effectiveness and reliability of the method.

OA metric evaluation is inherently a computationally costly procedure, and it

becomes even slower and more cumbersome as the number of sensors in the

network and sampling time increases. If such analysis is necessary every time

a glider surfaces and needs new waypoints, such control system will quickly

become impractical as the gliders would waste a lot of time waiting for instruc-

tions. In the case of structured patterns, such analysis involving OA metric

evaluation is done only once, when the shape of the patterns is determined via

optimization for a given set of oceanographic parameters. During the course of

an experiment, a much more quickly computed set of control laws, designed to

keep the gliders on tracks, provides them with new waypoints without the need

for evaluation of the OA metric.

In the context of oceanographic exploration, data collected on repeated

tracks are more meaningful than that from random places in the domain. Some

of the tools for analyzing fluxes and large scale currents were developed for sen-

sor platforms with limited mobility such as instruments dragged behind ships

(see for example [14] and [2]). In those experiments data was collected on

straight lines or ‘lawn mower patterns’ (see Section 3.3 for details about such

patterns). As a consequence, the current generation of experts in the field is

accustomed to working with this kind of data.
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3.1.1 Problem Definition

Although we are strongly motivated by the application of this work to under-

water gliders, we want to keep our assumptions as general as possible to allow

application of this work to other coverage problems. Keeping the assumptions

as close to reality as possible, we introduce a certain degree of abstraction and

simplification to make the problem tractable. For the purposes of this study,

we impose the following constraints:

1. In light of the discussion in Section 3.1, we must have Structured patterns,

meaning that they will be determined for the entire length of experiment

and expressed using parameters. In addition, in order to derive some pre-

dictable and repeatable results, we require that the patterns are periodic.

In other words, the spatial distribution of the gliders at some time t1 in

the domain must repeat itself at some later time t2 = t1 + T, for fixed

T > 0.

2. We have four gliders moving at equal and uniform speed. The absolute

speed itself is of little importance, but rather its relation to the ratio of

spatial and temporal scales of the sampled field. The assumptions that

(1) all gliders are moving at the same speed and (2) their speed does not

change throughout their trajectory are important. The first is consistent

with the underwater gliders used in the Monterey Bay experiments (see

Chapter 1). The second, on the other hand, is a simplification of the

current study and in fact it is one of the shortfalls of this work. One can

imagine that in the presence of currents and other disturbances in the

real ocean, a glider’s effective speed would not be uniform throughout its

trajectory, even if the ‘still water’ speed remains constant. The number of

the gliders is chosen as a compromise between a generality of the results
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and computational complexity. Four gliders is not as much of a special

case for the coverage problem as it might seem. In Appendix A we present

results for two- and three-glider formations from which we see that the

results for fewer gliders are similar to those for four, with obvious limita-

tions. Small domains with more than four gliders become crowded and the

advantages of using smart coverage methods diminish: with overwhelming

number of sensors any coverage method will give acceptable results. For

large domains on the other hand, using very long tracks that span the

entire domain becomes impractical, so the large domains cold be split up

into smaller subdomains covered by four or fewer gliders.

The requirement that the patterns must be periodic implies that the paths

must be some sort of a closed shape. The approach that we take in this thesis is

to use elliptical tracks parameterized by the location of the center (Cx, Cy) and

size of semimajor and semiminor axes denoted by a and b respectively. Paley et.

al in papers such as [31] describes control laws to an even more general shape

called the superellipse, a rounded rectangle formed by using exponent p > 2 in

Eq. (3.1). ∣∣∣x
a

∣∣∣
p

+
∣∣∣y
b

∣∣∣
p

= 1. (3.1)

p = 2 gives the formula for a regular ellipse that we use in this study. With

a = b it becomes a circle and with a À b or a ¿ b we can approximate a linear

path.

3.1.2 Parameters

Suppose we have gliders and want to design elliptical tracks that they will follow.

The parameters that we will optimize over include the following:
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1. The relative phases of the gliders θjk.

2. Center of each elliptical track Ck = (xk, yk). Note that in general each

glider will follow its own track, but if the tracks are the same, several

gliders may effectively follow the same track.

3. Shape parameters ak and bk corresponding to the semimajor and semimi-

nor axes of ellipses.

All together we have 4 shape parameters per glider plus 3 relative phases,

which for four gliders makes it 19 parameters to optimize over. Even with the

fast OA metric evaluation derived in Chapter 2, this is a lot. By running a

crude-resolution optimization (see Section 3.2) and observing preliminary re-

sults, we were able to extract certain characteristics of those results and reduce

the parameter set.

First of all, we note that in order to have periodic patterns, the perimeters of

all tracks must either be equal (we refer to such patterns as single-beat patterns

because the period of each glider is the same), or one should be a rational mul-

tiple of the other, such as 1
2

or 2
3
, which we later define as 1-2 and 2-3 resonance

patterns respectively. We distinguish the single-beat versus the resonance cases

and study them separately. For each of those cases, once the parameters a and

b are picked for one track, the perimeter of the ellipses is set for all the rest. In

this case we only vary a for other tracks while b is determined by the choice of

a to ensure the proper perimeter.

We also noticed that because of the symmetry of the domain, under certain

combinations of spatial and temporal scales, the optimization algorithm would

align the centers of the tracks along the line of symmetry of the domain. We

study those cases as a subclass by locking the xk component of the centers,

while varying yk.
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For some combination of the scales we noticed that the optimal pattern

would be such that the centers of the tracks aligned symmetrically with respect

to the center of the domain as in Figure 3.1. This gave rise to another reduced-

parameter case where we fixed the centers of the tracks on the vertices of the

square inscribed in the domain such that its center coincides with the center of

the domain. We varied the length of the edge l of the inscribed square, which

determined Ck for all tracks.

l

(x1, y1)(x2, y2)

(x3, y3) (x4, y4)

Figure 3.1: Sampling trajectory with centers of the four tracks symmetrically
distributed with respect to the center of domain.

Lastly, during the preliminary optimizations, we saw some patterns when

two or more gliders would occupy the same track, always 2π
M

out of phase where

M is the number of gliders on the combined track. Trying out several com-

binations of multiple gliders coupled to one track and comparing the resulting

metrics, we came to conclusion that ‘two and two’ configuration for single beat

patterns (two tracks with two gliders on each) was the only pattern that has

advantage over all other patterns for certain parameter values. We then studied

this subclass in more detail by pairing the gliders and optimizing over only two
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sets of shape and center parameters and three relative phases. The resulting

classes of patterns are summarized in Figure 3.2.

Resonance PatternsResonance Patterns

Single-Beat Patterns

Subgroup PatternsSubgroup Patterns

Bijective PatternsBijective Patterns

sbbi1:  xk locked to the center line of the domain

sbbi2: Ck locked to vertices of the square about the center of the domain

sbsg: Two pairs of gliders locked to the same track; xk locked to the center

    line of the domain

rp:  Perimeters of the tracks are discretely set to be multiple of others.

Figure 3.2: Optimization of parameter sets and resulting classes of Structured
Sampling patterns.

3.1.3 Decorrelation scales

When studying various oceanographic phenomena, one has to look at how the

variability in collected data is significant between different measurement sites

as well as between measurements at the same site, but taken at different times.

In other words, one has to have an estimate of the typical size and ‘life time’ of

coherent features such temperature fronts and eddies. Such statistical measure

in oceanography is often referred to as the decorrelation scales, which indicate

the distance and time over which variations in data become decorrelated.

The Gaussian form of correlation function assumed in the development of the

Objective Analysis method (Chapter 2) gives rise to the e-folding decorrelation

scales, meaning that the distance and time at which the correlation reaches

1/e ≈ 37% is set to be σ and τ respectively. For instance, during the AOSN
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experiment in Monterey Bay the scales were computed to be σ = 25 km and

τ = 2.5 days [23] using the data collected by the underwater gliders during

the experiment decribed in [35]. An intuitive view of the decorrelation scales is

how useful is a new data point. Suppose we make a new measurement that is

removed a distance d from other measurements. If d is much larger than σ, it is

not too useful in the sense of richness of the data set since the size of the features

under investigation is small and we cannot resolve it with measurements spread

so far apart. Similarly, if the measurement is taken time t after the previous one

at this location, and t À τ the last measurement is too old and we can no longer

resolve what happened during time t. The scales are computed empirically and,

in general, would be different for different regions of the ocean and different

features studied in the experiment (see for example [35] and [11]). Note that in

a semi-enclosed body of water such as the Monterey Bay, decorrelation scales are

somewhat different from what one would expect in the open ocean. Notably,

[40] presents an analysis of temporal decorrelation scales in the open ocean

and comes up with somewhat longer decorrelation scales (σ = 50 km and τ = 6

days). Poulain and Niiler in [33] consider Lagrangian drifter trajectories offshore

of Coastal California and get a spatial scale of 40− 50 km and a temporal scale

of 7− 10 days.

Although much of the work in this thesis is motivated by the AOSN and

ASAP experiments in Monterey Bay for which the scales have been computed

and can be used as parameters for optimization of sampling trajectories, we

extend the work done previously by studying the optimal patterns as a function

of decorrelation scales. The purpose of the further development, application of

OA methods and optimization is to provide insight into which patterns would

perform best to collect data in various environments. This is an important piece

of information if one is considering applying the techniques of ocean exploration
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using a network of mobile sensors to other fields. Decorrelation scales in the

atmosphere for example are very different from those in the ocean [4], and

the sampling paths producing the richest data sets would be different. In this

sense, the work presented in this thesis facilitates cross-discipline transition of

sampling techniques developed for underwater gliders.

Performing optimization over a range of decorrelation scales and parameters

described in Section 3.1.2 allowed us to identify patterns that perform best on

subsets of scale domain. Figure 3.3 shows a plot of OA metric values of several

patterns and how they compare for different values of σ and τ . It is clear that

performance of one pattern relative to others varies depending on what scales

apply. Careful study of patterns and subsets of parameter space allow us solve

the inverse problem where we will be able to tell which pattern is the best for

a given set of oceanographic parameters.

It turns out that the use of σ and τ is slightly limiting in terms of applica-

bility of results, because in such a representation, results depend on specific

parameters of the experiment such as size and shape of the domain and du-

ration of the experiment. In order to represent results independent of those

variables, we consider dimensionless parameters as developed in [23]. Defining

Ba and Bb as width and height of the domain, and T as the duration of the

experiment, let the dimensionless parameters be

• Sz =
√BaBb/σ to represent the size of the domain,

• St = T /τ for sampling time interval

• Sh = Bb/Ba for shape of the domain, and

• Sp = vτ/σ for normalized speed of the vehicle.
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Figure 3.3: OA metric surfaces representing performance of various patterns
over (σ, τ) grid for 100d × 100d square domain and v = 1 d/t, T = 1000t.
Substituting d = km and t = hours provides a reasonable representation for
typical gliders.

3.2 Optimization Routine

The OA metric as described in Chapter 2 gives a measure of richness of informa-

tion collected given a list of positions and times of measurements sites. It does

not matter what quantity we are measuring or what the values are, just the fact

that a measurement has been acquired at certain points. When we propose a

candidate pattern, we specify the parameters of the tracks (Ck, ak, bk) as well as

the relative phases for each pair of gliders θjk. We then simulate their motion

and record the measurement sites along their respective tracks, assuming that

the gliders follow their tracks exactly. This information gets passed to the OA

metric evaluation routine which outputs a scalar telling us the level of certainty

that the recreated field is correct. Equivalently one can compute the level of un-

certainty (estimation error), but in this work recording certainty seemed more

38



intuitive. If this certainty value is better than the previous one, we update our

notion of best pattern and make the next optimization step.

Let d be an arbitrary unit of distance and t be an arbitrary unit of time. For

various experiments d, for example, can be assigned the units of meters, km,

miles, etc. In the actual optimization we used a 100d× 100d square domain so

Sh = 1 was held constant. The parameter Sp was not fixed. Instead the speed

of the vehicles was set to be 1 d/t, while the duration of the experiments was set

to be T = 1000t. The frequency of sampling along the track was chosen to be

1 measurement per t, and the range of decorrelation scales was set [1 - 100] for

both σ and τ in units of d and t, respectively. The idea here is that the values

of σ and τ for a real experiment would fall somewhere between the spacing

between individual measurements and the size of the domain being sampled. A

choice of d = km and t = hours makes for a reasonable evaluation of typical

underwater gliders.

To find the pattern that produces the richest data set, we have implemented

a modified version of the steepest ascent algorithm. For each parameter, we

make a small perturbation and note the direction in which the value of the

metric increases. Then we propose a new path configuration that incorporates

all the incremental improvements for each parameter, recompute the metric,

and compare it with the previous value.

Although it is impossible to visualize the parameter space due to its high

dimensionality, we know from experiments that it is a pretty ‘jagged’ space with

lots of local extrema. See for example Figure 3.4 where we fixed all parameters

except the relative phase of two gliders and plotted the OA metric as a function

of the relative phase angle.

As a consequence, simply using the steepest ascent algorithm, it would be

very easy to get ‘stuck’ on one of the local maxima. To combat this situation,
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Figure 3.4: OA metric as a function of the relative phase of two gliders.

we created a new mode of the optimization routine where we first make smaller

steps in the direction we were headed before, and then, if this fails to find a new

peak, we explore the vicinity of the peak with random jumps.

We extensively tested this approach against the ‘visualizable’ parameter

spaces with three or fewer free parameters displaying the optimization results

and the calculated matric values on a 3D plot. Although there is no guaran-

tee that this algorithm was able to find the global maximum in all cases, it

performed flawlessly in those that we could check.

To generalize the performance of the patterns for different scales, sampling

times and speeds, we ran the optimization on a fine grid of parameters Sz and

St and identified in Section 3.1.3 the specific patterns with subsets of parameter

space where they perform best.
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3.3 Lawn Mower Patterns

To make useful assessment of performance of Structured Sampling Patterns and

specifically the elliptical, closed loop approach that we take in this thesis, we

compare those to a generalization of the traditional ‘lawn mower’ approach to

coverage problems. With one survey vehicle it has been customary to collect

data on the domain via repeating back-and-forth sweeps as those made by a

lawn mower (see for example Figure 3.5) [2]. The same patterns are sometimes

called ‘radiator patterns’ in the literature because the shape is reminiscent of

radiators [14]. Although it is not obvious how to extend this approach to the

situation when we have more than one mobile sensor, we postulate a solution for

two-vehicle network and compare its performance to the a two-vehicle symmet-

ric pattern solution developed in this chapter. See Appendix A for two-glider

formation optimized patterns.

Figure 3.5: Sample Lawn Mower Patterns on square domains. Three passes
(n=3) left, five passes (n=5) center, seven passes (n=7) right.

3.3.1 Parameters of the Lawn Mower Pattern

With just one sensor, we can follow a lawn mover track such as in Figure 3.5

to sample the area. There is a number of ways two gliders can utilize the

same pattern to collect data on the domain. For example, they can simply

follow one another, directly on the track with some defined lag between them.
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Alternatively, they can start from the opposite ends of the pattern, meet in

the middle and again go off to opposite ends. Another option is to keep them

some distance apart, but following the same ‘virtual leader’ which follows the

Lawn Mower Pattern. How they follow the virtual leader is a separate problem

and can involve artificial potentials as described by E. Fiorelli and others in

[22] and references therein. The solution that we have tried in this thesis is

a much simpler one with a static ‘rod’ of length d pivoted at the center and

rotated by the angle θ from the horizontal, so that the center point follows the

Lawn Mower pattern (see Figure 3.6 for illustration). We have seen from metric

evaluation that even such a simple solution (with d and θ chosen within certain

range) performs better than the ‘lag’ or the ‘opposite ends’ ways of following

the pattern. Since our purpose in considering the Lawn Mower patterns in

this thesis is merely to roughly compare its performance to that of symmetric

patterns, we use this simple approach here and leave the more sophisticated

pattern following schemes for future work.

For simple domains, a Lawn Mower pattern such as in Figure 3.6 can be

characterized using the following parameters:

• X width of the pattern

• Y height of the pattern

• n frequency of the passes

• d separation between the sensors (for two-sensor array)

• θ shift angle of the sensors
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Figure 3.6: Parameters of Lawn Mower Patterns.

3.3.2 Optimization for Lawn Mower Pattern

Essentially we used the same optimization scheme here as we used for symmetric

patterns, which facilitates a more direct comparison between the two classes of

patterns. Again, we ran the optimization on the grid of parameters Sz and St

and compiled the ‘best option for this set of parameters’ surface that we show

in Figure 3.7. Similar to the case with symmetric patterns where we find that

different types of patterns are more suitable for different scales, Lawn Mower

patterns with different frequency of passes n were shown to be more appropriate

than others for a given range of scales. Since Lawn Mower patterns are not the

focus of this thesis and are presented here to benchmark the performance of
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the Symmetric patterns, we extend the notion of ‘best option for this set of

parameters’ to include variations in n. In practice this meant that we ‘patched

together’ the surface in (σ, τ) space with segments of maximum metric values

across all n. As seen in Figure 3.7 even such ‘best option’ surface is inferior

in performance to a typical symmetric pattern that is optimal on a subset of

parameter space. If we were to patch up a similar ‘best option surface’ for

symmetric patterns, the difference would be even more stark. Note that the

difference in performance grows with σ and τ . This is due to the fact that the

two vehicles in lawn mower pattern are close together while in sbbi1s symmetric

pattern they are more uniformly spread in the sampled domain. For large σ and

τ the ability of symmetric pattern to sample the field at locations that are far

apart plays increasingly important role.
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Figure 3.7: Comparison of OA metrics for patched ‘best option for this set of
parameters’ Lawn Mower patterns with two vehicles and comparable sbbi1s
symmetric pattern for two vehicles (see Appendix A for the shape of the pat-
tern). For this plot we used for 100d × 100d square domain and v = 1 d/t,
T = 1000t.
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3.4 Single-Beat and Resonance Patterns

To achieve optimal sampling using Structured Symmetric Sampling patterns,

it is necessary to control the gliders so that they are on their tracks and are

correctly distributed relative to one another on the tracks. Relative phase of

the gliders around closed curves plays an important role and synchronization or

balancing of the phases can only be achieved for certain types of patterns. In

papers such as [31] and [23], control of the relative phases is developed for the

gliders on tracks with equal perimeter. With equal speed along the tracks, phase

synchronization can be stabilized. If the perimeters of the tracks are different,

the gliders cannot simultaneously be on tracks and stay in phase.

3.4.1 Design and Application

One of the original contributions presented in this thesis is a treatment of a new

type of sampling trajectories where gliders are placed on tracks with different

perimeter, yet still able to keep synchrony. This is achieved by allowing the

perimeters of tracks to differ by rational factors. Figure 3.8 for example shows

tracks such that the perimeter of track B is 2/3 of A, and the perimeter of C is

1/3 of A. If we were to use those tracks as a candidate sampling trajectory, we

would call the pattern a 3-2-1 resonance, according to the number of segments

necessary to return the gliders to the original configuration.

Optimization of pattern configurations involving resonant modes is tricky.

It is inherently a discrete problem in a sense that there is no smooth transition

between single-beat configuration (length of all tracks is the same) and any

resonant mode such that synchrony is attainable at every intermediate step.

Once a single-beat pattern is optimized for a set of parameters, it does not

make sense to simply change the length of some tracks and see if it performs
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A B C

Figure 3.8: Resonance Patterns. Perimeter of B is 2/3 of A, and perimeter of
C is 1/3 of A. Equal length arcs are marked with small circles.

better. It requires a whole new optimization during which the best shape and

location of the tracks is determined. In fact, the author could not come up with

anything better than to exhaustively check a number of patterns and compare

the resulting performance metric values. A significant improvement to the work

presented here would be a more clever way of selecting candidate patterns.

3.4.2 Resonance in the Context of Ocean Sampling

Technically, one can come up with an unlimited number of resonance patterns;

perimeters of almost every pair of sampling tracks can be expressed (or approx-

imated) as a fraction of one another making them resonance patterns. We must

restrict this in some way so that resonance pattern candidates are meaningful

in the context of physical problem. A 31-47 ‘resonance pattern’ for example

is not of much use in the real experiment since it would take 31 revolutions of

the larger track and 47 revolutions of the smaller track to get in-sync again.

The gliders will be effectively unsynchronized and the data collected in such

manner will likely be suboptimal. We must set the threshold of what we can

call ‘synchrony’ in the context of the problem. For the optimizations that were

done in the current work where each glider goes around its loop 8 to 10 times

depending on the length of the path, a reasonable limit would be 4, so that the
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original configuration is achieved twice. The resulting combinations 1-4, 1-3,

1-2, 2-3, 3-4 were used as track perimeter restrictions as described in Section

3.1.2.

Note that the resonance pairs 1-2 and 2-4 are the same in the context of the

problem. We used this to check the optimization routine since from the point of

view of the algorithm, those are different parameters and the location of maxima

in OA metric space would be scaled accordingly. As reassurance, optimal track

shape parameters and OA metric values for 2-4 resonance were indeed identical

to those of 1-2 resonance when appropriately shifted. Similar test was performed

for 2-2, 3-3 and 4-4 combinations, which gave results equivalent to single-beat

(1-1) patterns.

3.4.3 List of Patterns

In the previous section we made certain assumptions to limit the number of

possible resonance patterns. We set the threshold S = 4 which effectively limits

the time during which we allow the gliders to be out of the desired synchroniza-

tion. Since the number of possible patterns is equals to how many times the

OA optimization will be performed we must assure that this number is minimal.

For an N -glider formation with a threshold S, the number of patterns is found

by
((

S
N

))
=

(
S+N−1

N

)
, where double parentheses denote “S multichoose K”, the

multiset notation. For four gliders this number is 35, and in the context of the

sampling problem can be reduced to 29 by excluding 2-2-2-2, 3-3-3-3, 4-4-4-4

and 2-2-2-4, 2-2-4-4, 2-4-4-4 that are equivalent to 1-1-1-1, 1-1-1-2, 1-1-2-2, 1-

2-2-2 respectively. Those can be used to check the optimization algorithm as

mentioned in the previous section. The remaining resonance combinations that

were used to arrive at results in Section 3.5 are listed in Table 3.1.
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1-1-1-2 1-2-2-2 1-3-3-3 2-2-2-3 2-3-3-3 3-3-3-4
1-1-1-3 1-2-2-3 1-3-3-4 2-2-3-3 2-3-3-4 3-3-4-4
1-1-1-4 1-2-2-4 1-3-4-4 2-2-3-4 2-3-4-4 3-4-4-4
1-1-2-2 1-2-3-3 1-4-4-4
1-1-2-3 1-2-3-4
1-1-2-4 1-2-4-4
1-1-3-3
1-1-3-4
1-1-4-4

Table 3.1: Possible resonance patterns for four gliders.

3.5 Results and Implications

Two main results of this thesis are presented in Figures 3.9 and 3.10. Figure 3.9

shows results of the optimization of sampling patterns on the simple domain as

described in Section 3.2. The patterns were found to be optimal on a subset

of dimensionless parameters Sz and St, and the map identifying each pattern

with the subset of parameters is shown in Figure 3.10.

To use this information, one can measure oceanographic quantities such as

spatial (σ) and temporal (τ) decorrelation scales in the region of interest via

methods such as described in [4] or [11]. Then this information is combined with

specific parameters of the experiment, such as size of the domain and length of

the experiment to compute the dimensionless quantities Sz and St. Those two

values allow to determine the patterns that will work best for this experiment.

Note that the Resonance pattern rp1 is the best on a relatively large range

of parameters compared to other patterns. It is a 1-3-3-3 resonance pattern

with phases of the three gliders that share the large loop evenly distributed

around the phase space with 2π
3

phase difference. Although not restricted during

optimization, the centers of both loops in the optimal solution are collocated

at the center of the domain. The other resonance pattern that was found to

be optimal on a subset of parameter space, rp2, is a 1-1-2-2 resonance where
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two gliders on the larger loop are π out of phase. Here again, the optimization

process has placed the center of the larger loop on the center of the domain.

Note that the location marked by ∆1 on Figure 3.10 corresponds to para-

meter values in the Monterey Bay field experiments with the actual gliders (see

Section 1.3.2) where decorrelation scales were estimated to be σ = 25 km and

τ = 60 hours, and glider speeds are approximately 1 km/hr [23]. Location

marked by ∆2 corresponds to a similar domain size experiment in the air with

σ = 10 km and τ = 20 hours [17]. Note that for the 2006 ASAP field experiment

in Monterey Bay a pattern most resembling sbsg1 was used to collect the data.

According to our results however, the performance of the array would be better

if the gliders would be controlled to sbbi2b or rp1.
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Resonance PatternsResonance Patterns

Single-Beat Patterns

Subgroup PatternsSubgroup Patterns
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Bijective PatternsBijective Patterns

synchronizedsynchronized balancedbalanced

sbbi1s sbbi1b sbbi1g

sbbi2s sbbi2gsbbi2b

rp2

sbsg2sbsg1

rp1

Figure 3.9: Classification of optimized symmetric patterns.
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∆1

∆2

Figure 3.10: Best patterns on the grid of parameters Sz and St corresponding
to the patterns classified in Figure 3.9. ∆1 corresponds to the AOSN-II experi-
ment in Monterey Bay (see Section 1.3.2) and ∆2 corresponds to a similar-scale
experiment in the air with σ = 10 km and τ = 20 hours [17]
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Chapter 4

Control and Resonance Patterns

In Chapter 3 we suggested the use of structured sampling patterns that allow us

to decouple the control problem into two separate parts: design of the tracks and

control of the gliders to those tracks. We also performed analysis and arrived

at families of patterns most appropriate for specific types of experiments, which

satisfies the first part of the control problem. In this chapter we focus on the

second part - controls to stabilize the selected patterns. First we review some

of the published results on control of the gliders to single-beat patterns (as

described in Chapter 3), and provide references for a more in-depth study of

the topic. Next, we suggest an extension of that work that deals with control

to resonance patterns and relate this new approach to existing methods.

4.1 From Oscillator Models to Collective Motion

Following the Kuramoto approach as outlined in Section 1.2.1, we think about

the individual gliders as phase oscillators and the collection of gliders as a net-

work of coupled oscillators. The phase here refers simply to the direction in

which a particular glider is headed at constant speed. When the oscillators are
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in phase, gliders are headed in the same way, hence they are synchronized. The

other interesting family of equilibrium states occurs when the oscillators are

anti-synchronized. In this case, the phases of the oscillators are (in general)

randomly distributed around the unit circle so that their centroid is at the ori-

gin1. It is important to note that in such anti-synchronized state the collective

of particles has a fixed center of mass.

One of the core contribution of the work presented in this thesis to sampling

technologies using mobile sensor networks is the introduction and analysis of

the resonance patterns presented in Chapter 3. In order for those methods to

be useful in science, we must provide a method to control the gliders in a way

that enables them to follow resonance-type patterns. As we will see shortly,

the existing control laws presented in [36], [37] and other papers by Professor

Leonard’s group have components that are responsible for (1) driving the gliders

to a track of specified shape and (2) making sure gliders maintain the prescribed

relative phasing around those tracks. Since the shape of the resonance patterns

presented in this thesis is the same as that used for regular formations, the same

shape controls can be used for resonance patterns. The phase control, on the

other hand, would have to be different, since in the case of resonance patterns

the notions of ‘synchronization’ and ‘balancing’ are modified. Therefore, we

focus our attention in this chapter on the phase component of the control law

for resonance patterns. To familiarize the reader with notation and general

terminology, we briefly review the particle model and phase controls associated

with single-beat tracks. We have used elliptical shapes throughout Chapter 3 to

derive optimal patterns for sampling, but for readability of this thesis we further

1Referring back to Chapter 3 where we present results of the optimization of the sampling
patterns we see that among optimal patterns we find both synchronized and anti-synchronized
configurations. Note also that anti-synchronized patterns are not randomly distributed in
phase space, but rather evenly distributed (balanced) or congregations of gliders are evenly
distributed (grouped). This of course is a subclass of anti-synchronized states.
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focus our attention here to circular patterns. Our approach to controls is much

more intuitively described by considering this special case in the shape space.

The extension to ellipses and even to a more general shape, the superellipse, is

fairly straight-forward (but messy) and is described in [31] as well as in greater

detail D. Paley’s PhD thesis [30].

4.2 Single-Beat Patterns

Throughout this chapter we regard the individual gliders as point-mass particles

with unit mass. Hence, we sometimes refer to a model that ignores individual

glider dynamics as the particle model. Here, we review some of the results that

were extensively studied by N. E. Leonard group at Princeton and colleagues

(see for example [23], [32], [31], and references therein) as well as elsewhere [18]

and [9]. The work in those papers builds on the fundamental discoveries in the

field of coupled oscillators by Kuramoto and others in [16] and [20]. See Section

1.2 for a brief treatment of the major developments in this field. The reader is

also referred to an article by Steven H. Strogatz [39] that nicely summarizes the

results and challenges in the field of coupled oscillators.

4.2.1 Particle Model

Consider N particles of unit mass, characterized by their position and heading

and traveling at unit speed. We require that the particles maneuver only by

steering and not by speeding up or slowing down. The position of the kth particle

is a pair of numbers in the XY plane, which for conciseness we represent in

complex notation rk = xk + iyk, rk ∈ C ≈ R2. Similarly, we represent the

velocity of the kth particle moving at unit speed as eiθk = cos θk + i sin θk where

θk ∈ S1, the unit circle, and θ = (θ1, . . . , θN)T ∈ TN , the N -torus.
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We denote the steering control uk, which is a feedback control law that is a

function of particle position and heading. We use bold to indicate a complex

vector such as r = (r1, . . . , rN)> and we denote the Hermitian inner product as

< x,y >= Re{x∗y}, where x,y ∈ Cn, n ∈ N, and ∗ is the conjugate transpose.

Using this notation, we express the particle model as the following continuous-

time system:

ṙk = eiθk

θ̇k = uk, k = 1, . . . , N.
(4.1)

With simple control inputs the behavior of the model is easily visualized.

For instance, if the control is constant and zero, that is uk = 0 for all k, then

each particle moves in a straight line in the direction it was initially pointing.

If the control is constant but not zero, uk = ω0 6= 0, then each particle travels

around the circle with radius |ω0|−1. To allow for more complex behaviors, in

the next section we seek to derive uk with desired properties.

It is useful to independently consider the subsystem of particle headings

(phases2). Effectively we split the control input uk into three terms: a constant

term ω0, the spacing control uspac
k and the phase control uphase

k .

uk = ω0 + uspac
k (r,θ) + uphase

k (θ), ω0 ∈ R, k = 1, . . . , N. (4.2)

We further restrict the steering control to be a function only of relative

positions and headings denoting them e−iθkrkj = e−iθk(rk−rj) and θkj = θk−θj

respectively. Controls of this form preserve the continuous symmetries of Eq.

(4.1) that make it invariant to rigid rotation and translation of the particle

group [32].

2Note that in this context phases represent the headings.

55



4.2.2 Phase Control for Single Beat Patterns

In this section we focus our attention on studying the phase model following

[36]:

θ̇k = uk = ω0 + uphase
k (θ). (4.3)

As in Kuramoto model [20], we introduce the order parameter :

p (θ) =
1

N

N∑

k=1

eiθk . (4.4)

We note that controlling the linear momentum of the group in the particle

model is equivalent to controlling the coherence of particle phases in the phase

model. For that purpose we introduce the following rotationally symmetric

phase potential:

U1(θ) =
N

2
|p(θ)|2. (4.5)

Being proportional to the square of the order parameter (4.4), the phase po-

tential is maximum for synchronized phase arrangements where p(θ) = 1, and

minimum for balanced phase arrangements where p(θ) = 0. The gradient of

U1(θ) is given by

∂U1

∂θk

=< ieiθk , p(θ) >, k = 1, . . . , N. (4.6)

Since U1(θ) is rotationally symmetric, it is invariant to rigid rotations of

particle phases, so its gradient is orthogonal to 1 = (1, 1, . . .)>:

∂U1

∂θ

>
1 =

N∑

k=1

< ieiθk , p(θ) >= N < ip(θ), p(θ) >= 0. (4.7)
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We choose the heading control in the phase model (4.3) to be the signed gradient

of U1(θ),

uphase
k = −K1 < ieiθk , p(θ) >, K1 6= 0, k = 1, . . . , N. (4.8)

Putting pieces together we obtain

U̇1(θ) =
∂U1

∂θ

T

θ̇ = −K1

N∑

k=1

< ieiθk , p(θ) >2,

which is needed to prove the Lyapunov stability of the model. And finally,

using the definition of p(θ) in (4.4) we note that the gradient control (4.8) is

equivalent to

θ̇k = ω0 +
K1

N

N∑
j=1

sin θkj. (4.9)

which is a simplified version of Kuramoto model [20] for K1 < 0, which stabilizes

synchronized phase arrangements.

Implicit in control (4.8) is the assumption that each particle has access to

the relative heading of every other particle in computing its own heading, which

is often referred to as ‘all-to-all communication’ in literature [36]. Clearly this

would not be true at all times during a real experiment where gliders establish

communication only when they surface. This issue is solved using interconnec-

tion graphs that describe which relative headings and positions are available to

each particle for feedback. Such models are often referred to as ‘particle models

with limited communications’ and described in detail in papers such as [32] and

[37].
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4.2.3 Spacing Control for Single-Beat Patterns

In contrast to the phase control presented in the previous section, we now

review a spacing control that achieves convergence of the particles to a circular

track following [36]. We start our analysis with the observation that under the

constant control uk = ω0 6= 0, each particle travels at constant, unit speed on

a circle of radius ρ0 = |ω0|−1. The center of the circle traversed by particle k is

ck = rk + iω−1
0 eiθk . Multiplied by the constant factor −iω0, ck becomes

sk = −iω0ck = eiθk − iω0rk. (4.10)

A circular relative equilibrium is obtained when all the centers coincide; this

corresponds to the algebraic condition

P s = 0, P = IN − 1

N
11>. (4.11)

This suggests to choose a stabilizing control that minimizes the Lyapunov func-

tion

S(r, θ) =
1

2
‖P s‖2. (4.12)

Noting that

ṡk = ieiθk(uk − ω0), (4.13)

the time-derivative of S along the solutions of (4.1) is

Ṡ =< P s, P ṡ >=
N∑

k=1

< Pks, ie
iθk > (uk − ω0) (4.14)
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where Pk denotes the k-th row of the matrix P and where we have used the fact

that P is a projector, i.e. P 2 = P . Choosing the control law

uk = ω0 − κ < Pks, ie
iθk >, κ > 0 (4.15)

results in

Ṡ = −κ

N∑

k=1

< Pks, ie
iθk >26 0. (4.16)

Noting that

Pks = sk − 1

N
1>s = eiθk − iω0rk − (Ṙ− iω0R), (4.17)

we obtain

< Pks, ie
iθk > = − < ω0(rk −R), eiθk > − < Ṙ, ieiθk >

= − < ω0r̃k, e
iθk > −∂U1

∂θk

(4.18)

where we denote by r̃k = rk − R the relative position of particle k from the

group center of mass

R =
1

N

N∑

k=1

rk.

Using (4.18), we rewrite the control law (4.15) as

uk = κ
∂U1

∂θk

+ ω0(1 + κ < r̃k, ṙk >), κ > 0, ω0 6= 0. (4.19)

Lyapunov analysis provides the following global convergence result given in [36].

Theorem 1: Consider the particle model (4.1) with the spacing control (4.15).

All solutions converge to a relative equilibrium defined by a circular formation

of radius ρ0 = |ω0|−1 with direction determined by the sign of ω0 6= 0.
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Proof: The Lyapunov function S(r, θ) defined in (4.12) is positive definite

and proper in the reduced shape space, that is, when all points (r, θ) that differ

only by a rigid translation r+1r0 and a rigid rotation θ+1θ0 are identified. From

(4.16), S is nonincreasing along the solutions and, by the LaSalle Invariance

principle, solutions for the reduced system on shape space converge to the largest

invariant set Λ where

κ < Pks, ie
iθk >≡ 0 (4.20)

for k = 1, . . . N . In this set, θ̇k = ω0 and sk is constant for all k = 1, . . . N . This

means that (4.20) can hold only if P s ≡ 0. As a result, s = 1s0 for some fixed

s0 ∈ C, i.e., all particles orbit the same circle of radius ρ0. ¥

A slightly more sophisticated version of the analysis allows for coordinated

control to shapes that don’t necessarily share the same center [31].

4.3 Resonance Patterns

As set out in Section 4.1, we present an adaptation of the control laws devel-

oped for single-beat patterns to resonance formations, focussing on the heading

(phase) component. The form of the control and the stability proof mirrors

that of the single beat pattern control presented in detail in [36]. A logical

extension of the work presented in this thesis would be the controls for lim-

ited communication conditions similar to those presented in [37] for single-beat

patterns.
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4.3.1 Phase control for Resonance Patterns

Consider N particles moving at constant speed. Let

αk ∈ N, k = 1, . . . , N (4.21)

and

αo = max
k

αk

be scalar coefficients determining the order of the resonance in phase coordi-

nates. For example, for the two particles in Figure 4.1 α1 = 1, α2 = α0 = 2,

resulting in a 1-2 resonance formation. We desire the particle k to move around

a circle of radius αk

|ωo|αo
. In this case, the particle would be rotating with fre-

quency ωk = ωoαo

αk
where positive values of ωk correspond to counterclockwise

rotation. We consider the phase dynamics:

αkθ̇k = αoωo + K

N∑
j=1

sin (αkθk − αjθj), k = 1, . . . , N (4.22)

where K is a scalar gain. From a rotating frame at αoωo this becomes

αkθ̇k = K

N∑
j=1

sin (αkθk − αjθj) . (4.23)

Introducing a change of coordinates φk = αkθk, (4.23) becomes

φ̇k = K

N∑
j=1

sin (φj − φk) (4.24)

which are gradient dynamics where

φ̇k =
∂U

∂φk

= αkθ̇k, (4.25)
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U =
N

2
|p(αθ)|2 =

N

2
|p(φ)|2 (4.26)

and

p(φ) =
1

N

N∑

k=1

eiφk =
1

N

N∑

k=1

eiαkθk = p(αθ), (4.27)

where αθ = (α1θ1, . . . , αNθN)>.

From (4.24),(4.25) and (4.6) the control law becomes for k = 1, . . . , N

θ̇k = uk =
1

αk

φ̇k = − 1

αk

K < ieiφ, p(φ) >=
1

αk

K

N∑

k=1

sin (αkθk − αjθj) , (4.28)

and the expression for U̇ becomes

U̇ = −K

N∑

k=1

< p(φ), ieiφk >
2 6 0. (4.29)

If the inequality in (4.29) were strict, that would be the end of the stability

proof. Since U̇ is less or equal than zero, we must consider the case when

< p(φ), ieiφk >= 0. Notably, this problem has been studied by Sepulchre, Paley

and Leonard and presented in [36] and other papers on that topic. Therefore,

the theorem below from [36] directly applies to the present problem and is

presented here merely for completeness of the argument. The important feature

of the resonance patterns that is apparent from what we have shown above

is that control for resonance patterns is compatible with that for single-beat

patterns extensively studied by others. This makes it possible to use resonance

patterns in ways that compliment the existing methods and, in light of Chapter

3, enhance the performance of the sampling array.

One difference as compared to the control law for single-beat patterns is that

for resonance patterns control no longer depends only on relative phases θjk, but

instead on measurements of the form φj −φk = αjθj −αkθk. This difference has

62



some implications on the design of a sensor network from a practical engineering

standpoint. Consider a mobile sensor network design where vehicles are capable

of measuring the relative phase θjk between themselves and other vehicles. If in

the case of single-beat patterns this was enough to determine the control effort,

this information is no longer sufficient for resonance tracks. In addition we need

to know αj, αk, and the k’th vehicle would have to know its own absolute angle

θk to determine the ‘relative phase’ in its new meaning.

The following theorem and proof is taken from [36].

Theorem 2: The potential U = N
2
|p(φ)|2 reaches its unique minimum when

p(φ) = 0 (balancing) and its unique maximum when all phases are identical

(synchronization). All other critical points of U are isolated in the shape man-

ifold TN/S1 and are saddle points of U . The phase model θ̇k = uk with the

gradient control (4.28) forces convergence of all solutions to the critical set of

U . If K < 0, then only the set of synchronized states is asymptotically stable

and every other equilibrium is unstable. If K > 0, then only the balanced set

where p(φ) = 0 is asymptotically stable and every other equilibrium is unstable.

Proof: The gradient dynamics φ̇k = ∂U
∂φk

forces convergence of all solutions

to the set of critical points of U , characterized by the N algebraic equations

< p(φ), ieiφk >= 0, k = 1, . . . , N. (4.30)

Critical points where p(φ) = 0 are global minima of U . As a consequence,

the balanced set is asymptotically stable if K > 0 and unstable if K < 0.

From (4.30), critical points where p(φ) , |p(φ)|eiΨ 6= 0 are characterized by

sin(p(φ) − Ψ) = 0, that is, N −M phases synchronized at Ψ mod 2π and M

phases synchronized at (Ψ + π) mod 2π, with 0 6 M < N
2
. At those points,

|p(φ)| = 1− 2M
N

> 1
N

. The value M = 0 defines a synchronized state and corre-
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sponds to a global maximum of U . As a consequence, the set of synchronized

states is asymptotically stable if K < 0 and unstable if K > 0.

Every other value 1 6 M < N
2
. corresponds to a saddle and is therefore

unstable both for K > 0 and K < 0. This is because the second derivative

∂2U

∂φk
2 =

1

N
− < p(φ), ieiφk >=

1

N
− cos Ψ− φk|p(φ)| (4.31)

takes negative values if φk = Ψ and positive values if φk = Ψ + π. As a conse-

quence, a small variation δφk at those critical points decreases the value of U if

φk = Ψ and increases the value of U if φk = Ψ + π. ¥

4.3.2 Control to Resonance Patterns in Simulation

We illustrate by simulation the phase control law (4.28) developed in Section

4.3.1 in conjunction with the spacing controls presented in [31] for N = 2

particles, and the gain K = −0.5. The sequence of representative frames show

convergence of the two particles starting from random initial conditions to a

specified configuration (both shape and relative phase). The desired tracks

were given as two circular paths with R2 = 1
2
R1 where R1 and R2 are the radii

of the tracks, and the center of smaller circle offset upward by R2 from the

center of the larger circle to illustrate synchronization. Note that in Frame 9,

a 1-2 resonance is achieved with two gliders in phase. Recall from Chapter 3

that in a 1-2 resonance pattern, the perimeter of the larger track is twice the

perimeter of the smaller track, which allows for a phase synchronization such

that the two particles meet at the top of their tracks every other revolution of

the particle on the smaller track.
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1 2 3

4 5 6

7 8 9

Figure 4.1: Representative frames illustrating the performance of the phase
control for 1-2 resonance formation in conjunction with the spacing (shape)
control developed in [31] for single-beat patterns. Two particles start from
random initial conditions in Frame 1 and are controlled to the final configuration
achieved in Frame 9 circling the respective tracks in counter-clockwise direction.
The frames illustrate last 200 time steps of the particle motion, and small circles
denote the final position of the particle in snap shot.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The core value of the work presented in this thesis is in providing guidelines on

how to use multiple vehicles for collecting the data. In Chapter 1, we gave a

general overview of the coverage problem, identified relevant theoretical frame-

works, and focussed our development on application of this work to Autonomous

Underwater Vehicles (AUVs) in the context of ocean exploration. In Chapter

2 we reviewed the methods of Objective Analysis (OA), and described a new

fast metric evaluation scheme that is used in Chapter 3 as a measure of richness

of data collected on a given sampling trajectory. We performed a numerical

optimization study to identify trajectories that have the best performance in

various environments characterized by spatial and temporal scales. In Chapter

4 we reviewed the control laws presented in [36] and [31] and extended those

results in Section 4.3.1 to achieve phase control of resonance patterns.
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5.1.1 Objective Analysis

The derivation in Section 2.1 showed that the matrix A given by

A = B−BH>(W + HBH>)−1B

with the appropriate norm

‖A‖ =
1

dim(A)
Tr(A)

can be used as a metric for evaluating the performance of sampling patterns.

This result has been known since it was first developed by Eliassen et al [12]

in 1954 and later independently reproduced and popularized by Gandin [13] in

1963. This method however involves a large matrix inversion, which even with

the current-day powerful computing systems take significant computation time.

This limitation makes this method impractical for metric-driven optimization of

sampling tracks since we rely on evaluations of the metric for each optimization

step.

We then proceeded in Section 2.2, following [21], to describe equations sim-

ilar to those in Section 2.1 in continuous space, which with reasonable assump-

tions about the domain and the form of covariance function, allowed us to

express ‖A‖ in a ‘computationally friendly’ way:

‖A‖ =
∑
ij

Ψ−1(zm
i , zm

j ) e−
(xm

i −xm
j )2

2σ2 − (ym
i −ym

j )2

2σ2 − (tmi −tmj )2

2τ2

×
∫ Dx

−Dx

dx e
−

 
x−

xm
i +xm

j
2

!2

(σ/
√

2)2

∫ Dy

−Dy

dy e
−

 
y−

ym
i +ym

j
2

!2

(σ/
√

2)2

∫ Dt

−Dt

dt e
−

 
t−

tmi +tmj
2

!2

(τ/
√

2)2 .
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The integrals above are solved analytically yielding an expression involving

error functions erf(·), which are easily (and quickly) computed using built-in

function in Matlab.

5.1.2 Track Design

In Chapter 3 we took on the task of designing the tracks that would best suit the

needs of a sampling experiment. The goal was identified as collecting the richest

data set given four gliders moving at uniform speed in a simple domain. The

measure of “richness of data set” was provided by the OA metric developed in

the previous chapter. We made the choice to focus on structured sampling pat-

terns - parameterizable and repeatable elliptical tracks. We also gave references

to alternative approaches to sampling using mobile sensor networks that have

been studied in the past. To validate our approach we quantitatively compared

it to the ‘lawn mower patterns’ that have been traditionally used for sampling.

We implemented a modified steepest ascent algorithm to find patterns that

produce the richest data set (largest value of the OA metric) as a function of

oceanographic parameters Sz and St incorporating spatial and temporal decor-

relation scales. Noticing certain trends in resulting patterns, we limited the pa-

rameter set to channel the computational resources to finding the best patterns

as a function of region of (Sz, St) space. The results of pattern optimization

are presented in Figure 3.9 and the corresponding subsets of parameter space

(Sz, St) are identified in Figure 3.10.

5.1.3 Controls

In Chapter 4 we considered control laws necessary to stabilize the vehicles to

the tracks designed in Chapter 3. We used the particle model that has appeared

68



earlier in numerous publications such as [31], [18], and [23] to name a few:

ṙk = eiθk

θ̇k = uk, k = 1, . . . , N.

The control input uk is the rate of change of heading of each vehicle. We as-

sume that the vehicles move with uniform speed, and control can be interpreted

as a steering control.

The controls are the sum of spacing (shape) and phase controls. The former

ensures that vehicles follow a track of appropriate shape, while the latter puts

the vehicles into a desired relative phase arrangement:

uk = ω0 + uspac
k (r,θ) + uphase

k (θ), ω0 ∈ R, k = 1, . . . , N.

Following [36] and [31] we reviewed the control laws for single-beat patterns.

Then, focussing on the phase portion of the control, we extended those results

to cases involving resonance patterns. Remarkably, the derivation of control

laws for phase resonance followed similar steps as in [36], which made controls

for single-beat patterns a special case of the resonance (with all α equal). Con-

sequently, this new approach can be viewed as a generalization of the previous

work that adds more capabilities to the sampling array rather than a new par-

adigm that will require restructuring of existing frameworks. One difference

as compared to the control law for single-beat patterns is that for resonance

patterns control no longer depends only on relative phases θjk, but instead on

measurements of the form φj − φk = αjθj − αkθk.

Finally, we simulated the vehicle motion with resonance control and demon-

strated in Figure 4.1 the convergence to desired phase configuration.
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5.2 Future Work

5.2.1 Robustness Analysis

A whole set of limitations of the work presented in this thesis arises from the

fact that we do not take into account currents and other disturbances. Velocity

of the currents can sometimes be as large in magnitude as the that of the gliders

[35]. This can increase or decrease a glider’s effective speed and push the gliders

off their tracks. In fact, during the experiments in Monterey Bay (see Section

1.3.2) there were occasions when gliders were driven so far off the tracks by the

strong currents that the entire design of the sampling trajectories had to be

adjusted to account for such disturbances.

Given our ability to separate the coverage problem into track design and

track control subproblems, we have an option of dealing with currents sepa-

rately for each subproblem. Consider the track design. One way to introduce

currents would be to simply simulate the motion of the gliders under a specified

flow field using the existing control laws. This would provide positions of the

measurement points which can be used to evaluate sensor array performance

in that configuration under the specified flow conditions. This approach, how-

ever, has a number of limitations. For instance, it requires a fairly accurate

knowledge of the currents, which is not always the case, especially if there were

no previous experiments in that domain, or the goal of the experiment is to

collect data about currents. If the anticipated currents differ from reality by

a large margin, the pattern would not be optimal for this environment, and

we would not gain much with this added complexity over the original no-flow

approach. The second important limitation is that this approach requires that
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we run the glider simulator on every step of the optimization, which increases

computational time to the point when it becomes impractical.

From the track optimization point of view, it is irrelevant how the list of

measuring sites was generated – by a low-level spacing routine directly on the

tracks (as considered in this thesis), or by a sophisticated glider simulator with

currents and disturbances, or by any other means. If one could come up with a

clever (and fast) way to generate the list of measuring sites that would take into

account effects of currents, this would eliminate the issue with computation

time. However, this would not do much good unless we have an estimate of

the trends of the currents. Therefore, it might be more useful to think of the

currents issue in terms of robustness analysis.

Instead of computing the performance of a pattern just when the gliders stay

exactly on tracks, one can characterize patterns for a neighborhood of tracks.

That way we can gain insight into how a particular configuration will perform

if the gliders get pushed off tracks slightly or they are unable to coordinate

relative phases as required. It may happen that performance of a pattern with

no disturbances would be significantly diminished if the gliders were blown off

track by the currents, while a good but not the best pattern may stay good even

under disturbances. Consider Figure 5.1 where we sketched the ‘bandwidth of

performance’ of three hypothetical patterns. A pattern corresponding to Panel

A performs very well, but for a small family of curves near the optimal one. This

means that if the gliders are forced off the optimal track, the performance of the

array will decrease dramatically. A pattern corresponding to the performance

curve in Panel B, on the other hand, is not as good as A on the peak, but it is

more robust to the disturbances. Similarly, Panel C depicts a case with mediocre

peak performance, but large ‘margin of error’. This kind of information would

be useful to a scientist planning an experiment. She would have an option to

71



choose among candidate patterns that either provide high performance or high

flexibility, or somewhere in between.

A CB

Figure 5.1: The bandwidth of optimal performance. Tracks can be characterized
not only by their peak performance when the gliders stay exactly on tracks, but
also how they perform if the gliders are a little bit off.

5.2.2 Transient Performance and Control

Often in the real experiment it is infeasible or impractical to deploy the gliders

(or other mobile sensors) in the exact spot where they need to be to start

collecting data in formation. Usually the vehicles are deployed from one spot

and then ‘driven’ to their designated locations, after which the controls do their

job of keeping them on tracks. They are typically collecting data while getting

to their respective spots. It takes time and resources to do that, and there

might be an efficient way to get the gliders to their designated positions so

that they collect useful data while enroute. One can design a transient pattern

with associated controls, and optimize it using the methods similar to those

described in this thesis. That way the experiment starts from the minute the

vehicles are released and the useful data (perhaps pertaining to the costal areas

if the vehicles are released form near the shore) is generated while they are

moving to where they eventually need to be.
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5.2.3 Improvements to Resonance Control Law

In Chapter 4 we develop a control law for phase synchronization of resonance

patterns that parallels the development in [36] for single-beat patterns with all-

to-all communication. The next step would be to consider the the case with

limited communication as presented in [37] for single-beat patterns, and extend

those results to allow synchronization for resonance patterns. Also, one could

extend the results of Section 4.3.1 to include control of the resonance patterns

to elliptical/superelliptical shapes following the work in [31].

5.2.4 Lawn Mower Patterns

The idea of using lawn mower patterns to collect data as described in Section

3.3 is not a bad one and may, for certain applications, lead to interesting results.

It was shown in Figure 3.7 that the performance of such patterns are in general

not as good as that of the symmetric patterns. However, if the scientific interest

provides substantial incentives to collect data on straight lines and we have few

mobile sensors to work with, a properly optimized lawn mower pattern could

be a good option.

The approach that we took in this thesis with regards to how multiple gliders

follow a lawn mower pattern is admittedly a simplistic one. We assumed that

the gliders were separated by a static ‘rod’ of length d pivoted at the center

and rotated the angle θ form horizontal, so that the center point follows the

lawn mower pattern (see Figure 3.6 for illustration). One could explore the

possibilities of using the ideas of ‘virtual leaders’ (as describes for example in

[22] and references therein) to enhance the performance of lawn mower patterns.

A point on the lawn mover track moving at some speed (perhaps dynamically

controlled) would be the virtual leader that the real gliders would follow.
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Further, one can develop a ‘dynamic rod’ approach where d and θ are allowed

to change dynamically using feedback from the position of the vehicles on a

lawn mower track. There might be some interesting dynamics as the vehicles

curve around the corners of the lawn mower sweeps: sharp edges are somewhat

unnatural for the optimized glider motion and a dynamic rod could be a good

way to smooth them out. Note that by saying ‘rod’ we do not imply that we

only consider this pattern for two-vehicle formation. The ‘rod’ can become a

‘Y’ or a ‘cross’ when more vehicles are involved. This possibility can be realized

using the virtual bodies approach of [29].

5.2.5 Gain Parameters

As we mentioned in Chapter 3, control laws used to control the gliders in Mon-

terey Bay experiments [35] such as developed in [31], [36] and [37], consist of

two parts: phase control that is responsible for keeping gliders in a desired rel-

ative phase configuration and spacing control that drives the gliders to their

respective tracks. Each of those components has a scalar gain parameter that

determines how strongly the individual vehicles are affected by each control

term. In some sense, this sets the priorities of the control effort. For example,

if the gain on spacing control is set higher than on phase control, the gliders

would be strongly driven to their tracks, and as a second priority, the phase

control will try to distribute the vehicles according to their prescribed phase

arrangement.

Currents in a real ocean experiment such as the one performed in Monterey

Bay (see Section 1.1.2) could be as large as the still-water speed of the gliders

[35]. This means that if the gliders are opposing the current and the gains on

control are set high, the gliders will make little or no progress forward. This of
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course is detrimental to the performance because during that time the gliders are

collecting redundant data. In those circumstances, decisions have to be made

as to how best to compromise between staying on track and making headway

along the path. Such a trade-off can be accomplished by lowering the gains on

the controls and allowing the gliders to be pushed off the tracks. At this point,

this is a human-in-the-loop operation that requires presence and attention of

scientists. It would be a significant contribution to the field to have an algorithm

to dynamically adapt control gains so that the overall performance of the sensor

array is optimized.

Controlling the gains on control effort is also important from the oceano-

graphic point of view. In an ocean environment such as Monterey Bay, the

temperature gradients are likely to be associated with velocity gradients. Cut-

ting through such gradients is likely to be the preferred strategy (for scientific

purposes), rather than simply trying to run the gliders up current. Relaxing

the gains in an optimal way would allow the gliders to collect more valuable

oceanographic data as well as avoiding the hinderance of the strong currents.
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Appendix A

Two- and Three-Glider

Formations
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Figure A.1: Classification of optimized symmetric Three-Glider patterns.
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Figure A.2: Best patterns on the grid of parameters Sz and St for Three-Glider
formations corresponding to the patterns classified in Figure A.1.
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Figure A.3: Classification of optimized symmetric Two-Glider patterns.
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Figure A.4: Best patterns on the grid of parameters Sz and St for Two-Glider
formations corresponding to the patterns classified in Figure A.3.
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Appendix B

Numerical Results of Pattern

Optimization

The figures below show the numerical results parameters for optimal patterns

gl(n).a semimajor axis of the elliptical track

gl(n).b semimajor axis of the elliptical track

gl(n).cx x-coordinate of the track

gl(n).cy y-coordinate of the track

gl(n).phase phase of the n-th glider1

where n is the identification number of the glider. The values are given on the

x ∈ [−50, 50], y ∈ [−50, 50] square domain with gl(n).phase = 0 corresponding

to the positive x direction. Note that those values would change slightly when

computed for exact values of (Sz, St). The values presented here correspond

to the values on the grid points on which the optimization was performed (see

1Recall that only the relative phase is important. The parameter gl(n).phase should not
be considered as fixed, but rather in relation to phases of other gliders in that pattern.
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Section 3.2 for details). Also note that the numerical values of the metric would

change slightly if we are not precisely on the grid point. In general, patterns were

determined to be optimal on subsets of parameter space (Sz, St) by comparing

the OA metric values of all candidate patterns. The OA metric values differ

from grid point to grid point, and we do not display the values here since the

patterns are found to be optimal over many grid points. Optimization results

are displayed for each pattern such that they overlay the faint picture of the

corresponding track on the background.
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gl(1).a=39.15;

gl(1).b=39.15;

gl(1).cx=0;

gl(1).cy=0;

gl(1).phase=pi/6;

gl(2).a=39.15;

gl(2).b=39.15;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=5*pi/6;

gl(3).a=39.15;

gl(3).b=39.15;

gl(3).cx=0;

gl(3).cy=0;

gl(3).phase=3*pi/2;

gl(4).a=13.05;

gl(4).b=13.05;

gl(4).cx=0;

gl(4).cy=0;

gl(4).phase=pi/2;

gl(1).a=40.01;

gl(1).b=37.93;

gl(1).cx=0;

gl(1).cy=0;

gl(1).phase=0;

gl(2).a=40.01;

gl(2).b=37.93;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=pi;

gl(3).a=24.31;

gl(3).b=14.06;

gl(3).cx=0;

gl(3).cy=24.13;

gl(3).phase=pi/2;

gl(4).a=24.31;

gl(4).b=14.06;

gl(4).cx=0;

gl(4).cy=-24.13;

gl(4).phase=3*pi/2;

gl(1).a=35.22;

gl(1).b=8.70;

gl(1).cx=0;

gl(1).cy=37.53;

gl(1).phase=pi/2;

gl(2).a=35.22;

gl(2).b=8.70;

gl(2).cx=0;

gl(2).cy=12.51;

gl(2).phase=pi/2;

gl(3).a=35.22;

gl(3).b=8.70;

gl(3).cx=0;

gl(3).cy=-12.51;

gl(3).phase=pi/2;

gl(4).a=35.22;

gl(4).b=8.70;

gl(4).cx=0;

gl(4).cy=-37.53;

gl(4).phase=pi/2;

gl(1).a=35.86;

gl(1).b=8.49;

gl(1).cx=0;

gl(1).cy=37.55;

gl(1).phase=pi/2;

gl(2).a=35.86;

gl(2).b=8.49;

gl(2).cx=0;

gl(2).cy=12.57;

gl(2).phase=2*pi/2;

gl(3).a=35;.86

gl(3).b=8.49;

gl(3).cx=0;

gl(3).cy=-12.57;

gl(3).phase=3*pi/2;

gl(4).a=35.86;

gl(4).b=8.49;

gl(4).cx=0;

gl(4).cy=-37.55;

gl(4).phase=4*pi/2;

gl(1).a=35.82;

gl(1).b=8.32;

gl(1).cx=0;

gl(1).cy=37.56;

gl(1).phase=pi/2;

gl(2).a=35.82;

gl(2).b=8.32;

gl(2).cx=0;

gl(2).cy=12.48;

gl(2).phase=3*pi/2;

gl(3).a=35.82;

gl(3).b=8.32;

gl(3).cx=0;

gl(3).cy=-12.48;

gl(3).phase=pi/2;

gl(4).a=35.82;

gl(4).b=8.32;

gl(4).cx=0;

gl(4).cy=-37.56;

gl(4).phase=3*pi/2;

gl(1).a=18.03;

gl(1).b=18.03;

gl(1).cx=22.16;

gl(1).cy=22.16;

gl(1).phase=pi/2;

gl(2).a=18.03;

gl(2).b=18.03;

gl(2).cx=-22.16;

gl(2).cy=22.16;

gl(2).phase=pi/2;

gl(3).a=18.03;

gl(3).b=18.03;

gl(3).cx=-22.16;

gl(3).cy=-22.16;

gl(3).phase=pi/2;

gl(4).a=18.03;

gl(4).b=18.03;

gl(4).cx=22.16;

gl(4).cy=-22.16;

gl(4).phase=pi/2;

gl(1).a=18.41;

gl(1).b=18.41;

gl(1).cx=22.07;

gl(1).cy=22.07;

gl(1).phase=pi/2;

gl(2).a=18.41;

gl(2).b=18.41;

gl(2).cx=-22.07;

gl(2).cy=22.07;

gl(2).phase=2*pi/2;

gl(3).a=18.41;

gl(3).b=18.41;

gl(3).cx=-22.07;

gl(3).cy=-22.07;

gl(3).phase=3*pi/2;

gl(4).a=18.41;

gl(4).b=18.41;

gl(4).cx=22.07;

gl(4).cy=-22.07;

gl(4).phase=4*pi/2;

gl(1).a=18.36;

gl(1).b=18.36;

gl(1).cx=22.14;

gl(1).cy=22.14;

gl(1).phase=pi;

gl(2).a=18.36;

gl(2).b=18.36;

gl(2).cx=-22.14;

gl(2).cy=22.14;

gl(2).phase=0;

gl(1).a=18.36;

gl(1).b=18.36;

gl(1).cx=22.14;

gl(1).cy=22.14;

gl(1).phase=pi;

gl(2).a=18.36;

gl(2).b=18.36;

gl(2).cx=-22.14;

gl(2).cy=22.14;

gl(2).phase=0;

gl(1).a=37.26;

gl(1).b=18.87;

gl(1).cx=0;

gl(1).cy=23.54

gl(1).phase=0;

gl(2).a=37.26;

gl(2).b=18.87;

gl(2).cx=0;

gl(2).cy=23.54

gl(2).phase=pi;

gl(3).a=37.26;

gl(3).b=18.87;

gl(3).cx=0;

gl(3).cy=-23.54

gl(3).phase=pi/2;

gl(4).a=37.26;

gl(4).b=18.87;

gl(4).cx=0;

gl(4).cy=-23.54

gl(4).phase=3*pi/2;

gl(1).a=38.26;

gl(1).b=24.47;

gl(1).cx=0;

gl(1).cy=14.93;

gl(1).phase=pi/2;

gl(2).a=38.26;

gl(2).b=24.47;

gl(2).cx=0;

gl(2).cy=14.93;

gl(2).phase=3*pi/2;

gl(3).a=38.26;

gl(3).b=24.47;

gl(3).cx=0;

gl(3).cy=-14.93;

gl(3).phase=pi/2;

gl(4).a=38.26;

gl(4).b=24.47;

gl(4).cx=0;

gl(4).cy=-14.93;

gl(4).phase=3*pi/2;

Figure B.1: Numerical results for optimized patterns (Four-Glider formations)
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gl(1).a=38.74;

gl(1).b=15.10;

gl(1).cx=0;

gl(1).cy=25;

gl(1).phase=0;

gl(2).a=18.51;

gl(2).b=16.03;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=pi;

gl(3).a=38.74;

gl(3).b=15.10;

gl(3).cx=0;

gl(3).cy=-25;

gl(3).phase=0;

gl(1).a=38.09;

gl(1).b=11.00;

gl(1).cx=0;

gl(1).cy=28.37;

gl(1).phase=0;

gl(2).a=38.09;

gl(2).b=11.00;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=0;

gl(3).a=38.09;

gl(3).b=11.00;

gl(3).cx=0;

gl(3).cy=-28.37;

gl(3).phase=0;

gl(1).a=38.62;

gl(1).b=10.78;

gl(1).cx=0;

gl(1).cy=28.44;

gl(1).phase=0;

gl(2).a=38.62;

gl(2).b=10.78;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=pi;

gl(3).a=38.62;

gl(3).b=10.78;

gl(3).cx=0;

gl(3).cy=-28.44;

gl(3).phase=0;

gl(1).a=31.27;

gl(1).b=15.80;

gl(1).cx=0;

gl(1).cy=25.35;

gl(1).phase=0;

gl(2).a=44.49;

gl(2).b=8.74;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=0;

gl(3).a=31.27;

gl(3).b=15.80;

gl(3).cx=0;

gl(3).cy=-25.35;

gl(3).phase=0;

gl(1).a=38.42;

gl(1).b=38.42;

gl(1).cx=0;

gl(1).cy=0;

gl(1).phase=pi/2;

gl(2).a=38.42;

gl(2).b=38.42;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=3*pi/2;

gl(3).a=16.21;

gl(3).b=16.21;

gl(3).cx=0;

gl(3).cy=0;

gl(3).phase=0;

Figure B.2: Numerical results for optimized patterns (Three-Glider formations)
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gl(1).a=36.69;

gl(1).b=36.69;

gl(1).cx=0;

gl(1).cy=0;

gl(1).phase=pi/2;

gl(2).a=12.23;

gl(2).b=12.23;

gl(2).cx=0;

gl(2).cy=0;

gl(2).phase=pi/2;

gl(1).a=38.20;

gl(1).b=24.62;

gl(1).cx=0;

gl(1).cy=14.02;

gl(1).phase=0;

gl(2).a=38.20;

gl(2).b=24.62;

gl(2).cx=0;

gl(2).cy=-14.02;

gl(2).phase=0;

gl(1).a=36.27;

gl(1).b=15.84;

gl(1).cx=0;

gl(1).cy=23.75;

gl(1).phase=0;

gl(2).a=36.27;

gl(2).b=15.84;

gl(2).cx=0;

gl(2).cy=-23.75;

gl(2).phase=pi;

gl(1).a=36.11;

gl(1).b=16.60;

gl(1).cx=0;

gl(1).cy=23.34;

gl(1).phase=0;

gl(2).a=36.11;

gl(2).b=16.60;

gl(2).cx=0;

gl(2).cy=-23.34;

gl(2).phase=0;

Figure B.3: Numerical results for optimized patterns (Two-Glider formations)
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