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In the dance studio: Analysis of human flocking

Naomi E. Leonard, George Young, Kelsey Hochgraf, Daniel Swain, Aaron Trippe, Willa Chen, Susan Marshall

Abstract— Flock Logic is an art and engineering project that
explores how the feedback laws used to model flocking translate
when applied by a group of dancers. The artistic goal is to
create tools for choreography by leveraging dynamics of multi-
agent systems with designed feedback and interaction. The
engineering goal is to develop insights and design principles for
multi-agent systems, such as human crowds, animal groups and
mobile robotic networks, by examining the connections between
what individual dancers do and what emerges at the level of the
group. We describe our methods to create dance and investigate
collective motion. To illustrate, we analyze the overhead video
of an experiment in which thirteen dancers moved according
to simple rules of cohesion and repulsion in response to the
relative position and motion of their neighbors. Importantly,
because we have prescribed the interaction protocol, we can
estimate from the tracked trajectories the time-varying graph
that defines who is responding to whom as time evolves. We
compute time-varying status of nodes in the graph and infer
conditions under which certain individuals emerge as leaders.

I. INTRODUCTION

The Flock Logic project [1] is inspired by the complex
and beautiful motion of bird flocks and fish schools and, in
particular, by the understanding that collective animal group
motion emerges not from a prescribed choreography nor even
from a designated leader, but rather from simple rules of
response that each individual obeys. These feedback rules
govern how each individual moves in response to the relative
position or motion of its close neighbors. For instance,
basic flocking rules typically have a cohesive element and
a repulsive element [2]. The cohesive element requires that
while each individual moves around it should remain a
comfortable distance from a few others; the repulsive element
requires that each individual should move away from others
that get too close in order to avoid collision.

Flock Logic explores what happens when a group of
dancers apply these and related feedback laws as they move
around a space together. If the prescribed feedback rules
approximate well how individual birds and fish interact, and
if the dancers carry out the feedback laws faithfully, then
the motion of the group resembles flocking or schooling.
However, unlike in animal groups where the individual rules
and interactions are only hypothesized, in the human groups
where the individual rules and interactions are designed, we
can use a systematic approach to understand how individual-
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level behaviors connect to the aesthetics and functionality of
the emergent group-level behaviors.

Heterogeneity in the group enters naturally as people may
respond differently to different people and may prioritize
rules and resolve conflicts differently. This affects how
information passes through the group and how the group
as a whole responds to external forces. By further imposing
different feedback and interconnection rules, environmental
signals and perturbations, and heterogeneity in information,
we create a wide range of artistic and scientific possibilities.

Our artistic goal is to develop the means to enable interest-
ing, appealing collective motion that emerges from individual
interactions; we have focused on the influence of information
passing, local versus global sensing, relative motion, hetero-
geneity, perturbations, and external pressures. In theater and
dance, there is a long history of performance derived from
rules and games [3]. Contemporary choreographer Forsythe
has studied synchrony and pattern in dance [4]. Sgorbati
explores dance through “Emergent Improvisation,” which is
modeled after ordering principles observed in nature [5].

Our engineering goal is to gain insight into mechanisms
of animal group and human crowd dynamics and into de-
sign principles for control of natural and robotic groups.
Dancers moving in a studio, responding to local neighbors
and environment, provide a reasonable approximation to the
collective motion of a mammal herd. The walls of the studio
are like trees or topography, and the heterogeneity among
the dancers (experience, height, confidence) is similar to that
in a herd [6]. Dancers are particularly well suited because
they are trained to be physically aware and can comfortably
handle a number of feedback rules. We aim to understand
from the human data how influence among individuals in
the network is distributed and how that is reflected in the
spatial distribution of individuals and in the group-level
shape and motion dynamics. This could, e.g., lead to insights
on how animals organize themselves to reduce vulnerability
to predators [7], and to bio-inspired methods for designing
robust and responsive networks of heterogeneous robots.

Motivating and complementary scientific studies of human
collective motion, many of which focus on crowd dynamics,
do not, as far as we are aware, engage dancers as participants.
Experiments on leadership and decision making in human
crowds are described in [8]. In [9] analysis of natural
pedestrian group motion revealed the influence of social
interactions on crowd dynamics. In [10] a design method
for human collective behaviors used evolutionary dynamics.

In this paper, we describe the Flock Logic project and tools
used for our artistic and engineering investigations. As an
illustration, we examine one experiment with thirteen dancers



in a studio following the flocking rules of cohesion and repul-
sion. Using the trajectories tracked from an overhead video
camera and the prescribed interaction rules, we estimate the
time-varying graph that encodes who is sensing whom as a
function of time. We compute the time-varying status of each
node in the graph and use these to infer emergent leaders.

In Section II we describe the project, our on-line Flock-
Maker software tool, and the human flocking experiments.
Trajectory tracking is described in Section III. In Section IV
we review graphs and FlockGrapher, our tool for visualizing
graphs. In Section V, we estimate the time-varying graph
of the network. In Section VI we estimate node status
and discuss the influence of individuals. We conclude in
Section VII.

II. HUMAN FLOCKING

A. Flock Logic

Flock Logic began as a collaboration between a con-
trol engineer (Leonard) and a choreographer (Marshall) to
explore artistically and scientifically how individual rules
of interaction and response within a network of dancers
yield complex emergent collective motion of the group.
Initially the exploration was with professional dancers and
then subsequently with students, most of whom had previous
dance training, as part of a semester-long course in Fall 2010.

To generate human flocking, the dancers were asked to
move around a space and follow rules that were defined in
advance. To enable cohesion, each dancer was given the rule
to keep m of their neighbors at a distance of arm’s length
with the selection of the m neighbors freely changeable. To
enable repulsion, each dancer was asked to avoid letting any
dancer get closer than arm’s length. To prevent tripping, the
dancers were asked to avoid moving backwards.

These three rules (cohesion, repulsion, backwards avoid-
ance) were among the most fundamental rules examined,
and yet rich and beautiful collective behaviors were routinely
observed. In part because each dancer’s motion was relatively
under-prescribed, there was considerable room for variation
among individuals, e.g., in speed, facing direction relative
to motion, selection of neighbors, positioning relative to
neighbors, and response to walls or obstacles.

Variations on the three fundamental rules were prescribed
as well as a range of additional and alternative rules. For
example, rules for alignment with neighbors, response to
obstacles and walls, motion in the vertical, arm movements,
etc., were implemented. More complex informational struc-
tures were imposed – for example, two or three dancers in
the group were secretly given additional rules, such as to
move to a particular location or according to a particular
pattern. The dancers also performed rules for other kinds of
behaviors such as dynamic coverage and pursuit and evasion.

In early December 2010, volunteers from the community
joined the dancers in two site-specific performance events.
Video clips from these events are publicly available [1].

B. FlockMaker

FlockMaker is a Java WebStart application developed to

aid the Flock Logic project and designed for simulation
and exploration of collective motion [11]. Although intuitive
for a curious layperson, FlockMaker has the capability to
model complex combinations of flocking rules and initial
configurations. In the model, each dancer is represented as
a single particle in two-dimensional space, with variable
velocity. Speed and facing angle (but not acceleration) are
taken to be approximately continuous in time.

The simulation user can assign a variety of flocking
rules to the dancers, such as “Pursue Someone,” “Repel
Neighbors,” and “Slow Down Near Neighbors.” To further
control behavior, the user can set values for a wide range
of parameters pertaining to a dancer’s rules or initial con-
figuration, including radius of sensing, number of neigh-
bors sensed, maximum speed of rotation, and magnitude of
random noise. Different rules can be assigned to different
dancers. Furthermore, each dancer can be assigned to follow
multiple rules at a time, each rule potentially carrying a
different relative weight representing its level of priority.

Dancers interact not only with each other, but also with the
room in which they are moving, represented as a rectangular
space contained within four walls. The FlockMaker user can
change the size of the room, add obstacles to the room, and
add rules applicable only within certain zones of the room.

C. Experiments

A series of human flocking experiments was run in mid
December 2010 in the 62’ 7” x 28’ 4” New South dance
studio at Princeton University. Groups of dancers carried out
the three basic rules of flocking with manipulations on initial
conditions, number of dancers N , and number of neighbors
m for cohesion. Alignment with neighbors was tested as was
the assignment of an additional rule to two of the dancers
(of which the others were not aware). The dancers also
implemented the rules for cyclic pursuit.

Six Trendnet IP-600 cameras, synchronized over a local
wired network, were set up in fixed locations to record the
motion of the dancers. Two cameras were hung on the ceiling
near either end of the studio, facing inward towards each
other, and four were mounted high up on one side wall.
Camera views covered the majority of the space in the studio
and overlapped significantly. Using built-in software, the
cameras recorded video and stored it on a laptop. The video
provided 640 x 480 resolution and 20 frames per second.

For the December 2010 series of experiments, part of the
room was blocked off so that the motion of all of the dancers
could be fully captured by one of the six cameras (one of the
two fixed to the ceiling). The dancers wore bright colored
hats, black clothing and bare feet to aid trajectory tracking.

In this paper we examine one experiment from the series
in which there were N = 13 dancers – two professional
dancers and eleven students. All thirteen dancers were asked
only to follow the three basic rules of flocking with cohesion
to m = 2 neighbors. The total time for the experiment was
185 seconds, corresponding to the period from the start to
the stop of the music. We study the tracked trajectories of
the dancers from the first 72 seconds of this experiment.



III. TRAJECTORY TRACKING

Trajectories were estimated using custom tracking soft-
ware applied to the overhead video from one camera for the
first 72 seconds of the experiment. The tracked trajectories
comprise an ordered set of 1440 planar position vectors
(x, y) for each of the thirteen dancers. A velocity vector is
computed for each dancer at every time step by differencing
the position vectors. Speed and heading are computed as
the magnitude and angle of the velocity vector. Figure 1
shows one frame from the video with superimposed tracked
positions and directions of motion.

The custom tracking software uses a modified version
of a real-time tracking algorithm that we have developed
and used successfully for experiments involving multiple
fish and robots [12]. The algorithm is implemented using
the MADTraC C++ library [13], which in turn relies upon
OpenCV [14] for low-level image processing routines. The
original tracking software was designed to address the chal-
lenges of tracking potentially densely distributed objects that
are very similar to one another in appearance. It was there-
fore applicable to the task of estimating dancers’ trajectories.

The tracking algorithm follows three steps that are iterated
for each video frame. In the first step, image segmentation
produces a set of “blobs”, such that each blob is a collection
of contiguous pixels with high likelihood of belonging to
any dancer’s hat. Likelihood is determined by thresholding
each pixel’s value in HSV color space and mapping to a
binary image. Blobs are extracted from the binary image
using OpenCV’s built-in blob labelling algorithm, which is
based on [15]. A blob is often associated with more than
one dancer because of the physical proximity of dancers to
one another, the proximity of dancers in the image due to
the angle of the camera and noise in the image.

In the second step, the blobs are analyzed in order to
extract a noisy measurement for the position of each dancer.
If a single dancer is associated with a blob, then that dancer’s
position measurement is taken as the centroid of all pixels in
that blob. Otherwise, to resolve multi-dancer blobs or clus-
ters of densely-spaced blobs, an expectation-maximization
mixture-of-gaussian (EMMG) algorithm is used, which it-
eratively adjusts dancer positions for a given cluster and
provides position measurements as output.

In the third step, the noisy position measurements are
used with an unscented Kalman filter (UKF) for each dancer
to provide a more accurate estimated position (x, y) in
the current frame and to predict the position in the next
frame. The estimated position of each dancer is stored as the
current point in the dancer’s tracked trajectory. The predicted
positions are used to inform the next tracking iteration. The
(x, y) position vector is expressed in a coordinate frame
that is parallel to the floor. The transformation to these
coordinates from image plane coordinates was determined
by applying camera calibration techniques to an image of
several objects placed at known locations in the scene. The
average height of each dancer is assumed to be 1.65 meters.

Fig. 1. One frame from the video of the experiment with superimposed
tracked positions (colored dots) and normalized velocity vectors (colored
arrows). Images of dancers are are deliberately blurred.

IV. GRAPH THEORY AND VISUALIZATION

A. Background on Graphs

Let N be the number of dancers. For each dancer i we
define the set of neighbors,Ni, to be the set of dancers whose
positions are observed and used for cohesion by dancer i.

We associate to the system a sensing graph G = (V, E , A),
where V = {1, 2, . . . , N} is the set of nodes, E ⊆ V × V
is the set of edges and A is the N × N adjacency matrix
with ai,j = 1 when edge (i, j) ∈ E and ai,j = 0 otherwise.
Every node in the graph corresponds to a dancer, while the
graph contains edge (i, j) when j ∈ Ni. An edge (i, j) ∈ E
is said to be undirected if (j, i) is also in E ; otherwise it is
directed. A graph is undirected if every edge is undirected,
that is, if A is symmetric; otherwise it is directed.

A graph can be represented visually by drawing a dot for
each node and a line between the appropriate pair of nodes
for each edge. An undirected edge is typically drawn as a
simple line, while a directed edge (i, j) will have an arrow
head pointing from node i to node j.

A path in G is a (finite) sequence of nodes containing
no repetitions and such that each node is a neighbor of the
previous one. The length of a path is given by the number
of edges traversed by the path. The distance, di,j , between
nodes i and j in a graph is the shortest length of any path
from i to j. If no such path exists, di,j is infinite.

The graph G is connected if it contains a globally reach-
able node k; i.e. there is a path in G from i to k for every
node i. G is said to be strongly connected if there is a
path between every pair of nodes in the graph. A strongly
connected component of G is a maximal subset of nodes such
that there is a path in G between every pair of nodes in the
subset. G is weakly connected if it is connected when every
directed edge is replaced by an undirected edge. A weakly
connected component is a maximal subset of nodes that
forms a strongly connected component when every directed
edge in G is replaced by an undirected edge.

The status, sk, of a node k is the average inverse dis-
tance between every other node and k. That is, sk =
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. sk will be maximum (equal to 1) if there
is an edge from every other node to node k, and minimum
(equal to 0) if there are no edges leading to node k.

B. Visualization of Graphs

FlockGrapher is our Matlab tool that computes, visualizes
and evaluates different kinds of graphs derived from flock
position data. Using a graphical user interface, the tool
accepts tracked position and direction of motion data for
individuals in a flock in two or three dimensions. It can
visualize data from one specific instant in time or create
a time series animation of data sets corresponding to suc-
cessive time steps. The user can create graphs from the data
by defining an individual’s neighborhood in terms of either
a prescribed number of nearest neighbors or a prescribed
sensing radius. For data that includes the direction of motion
of nodes, FlockGrapher can incorporate a limited viewing
angle, assumed to be symmetric about the individual’s di-
rection of motion. In the case of a fixed number of nearest
neighbors and a limited viewing angle, if there are fewer
than the required number of neighbors visible to a node, the
viewing angle will be rotated with respect to the direction of
motion until enough neighbors are visible. Edge weights can
be automatically manipulated, e.g., as a function of distance
between nodes, or they can be prescribed by the user.

Once a sensing graph has been computed, FlockGrapher
can evaluate a range of graph properties, including number
of strongly and weakly connected components, algebraic
connectivity, speed of convergence and node status. The tool
also displays some properties on the graph visualization; for
example, directed and undirected edges can be distinguished
with different colors. For sets of data corresponding to suc-
cessive time steps, the time-varying values of these properties
will be displayed as the graph visualization changes. In the
case of the human flocking experiment, this dynamic graph
visualization can be run at the same time as the video of
the dancers to compare computed and observed behavior.
FlockGrapher can save all the computed data to allow for
further analysis. A screenshot of FlockGrapher is shown in
Figure 2; the graph and its properties corresponds to the
frame from the video shown in Figure 1.

V. SENSING MODEL AND GRAPH COMPUTATION

Since each dancer was given the same specific rules to
follow, it is in principle possible to apply the same rules
to our tracked data and reconstruct the sensing graph used
by the dancers. However, certain aspects of both the rules
and human behavior make this task challenging. Although
the dancers were each told to stay arm’s length from two
other dancers, no instruction was given for how they were to
choose these two neighbors. In addition, although humans
have a field of view of up to 200◦ [17], there was no
compulsion for the dancers to keep both of their neighbors
visible at all times.

Given these limitations, we made two key assumptions
in order to estimate the dancers’ sensing graph. First we
assumed that each dancer only chose neighbors from within

a limited angular range centered about the direction they
were travelling. Since no dancer was observed to be rapidly
moving their head, the direction of motion is a reasonable
proxy for direction of the head and therefore for center of
viewing range. Second, we assumed that each dancer was
applying the cohesion rule with the two nearest neighbors
within this range. Since every dancer was trying to keep
two neighbors at arm’s length (and let no dancers closer
than arm’s length), a dancer’s neighbors would naturally be
among the closest of the other dancers.

With these assumptions we used FlockGrapher to estimate
the sensing graph at each time (frame) by computing the two-
nearest neighbor graph with a limited viewing angle. When
fewer than two other dancers were visible using the direction
of motion to center the viewing region, this region was
allowed to rotate until two dancers became visible. However,
we did not know a priori what viewing angle to choose to
best represent the dancers’ behavior.

For collective behavior, it is impossible to guarantee that
a group will remain together if the communication graph is
not connected [18]. When the graph is disconnected, there
is nothing to prevent different subgroups from moving in
different directions and splitting the group. However, other
features of the environment (such as the limited space in the
room) can drive the group back together. Since fissions and
fusions of the group were observed, we selected the viewing
angle for our sensing model as the one that produced a graph
that was disconnected when the group of dancers split and
remained connected when the group of dancers was cohesive.

Table I shows the results of estimating the sensing graph
across the whole tracked period using different viewing
angles. We can see that reducing the viewing angle from 360◦

to 270◦ significantly improves the amount of time the graph
is connected, with the maximum connectedness occurring
with a viewing angle of 120◦. However, our goal was not
simply to maximize connectedness but rather to match the
observed behavior of the group.

Early in the experiment, between about 1 and 3 seconds, a
small group of four dancers split from the rest of the group.
The dancers within this group appeared to be observing only
one another. Eight of the remaining dancers also formed a
group, only observing one another. The final dancer was
able to observe both groups, but since no other dancer was
observing this individual, the group remained split. Even-
tually, the dancers in the larger group turned and observed
the smaller group, leading to a single “flock” again. This
disconnection event was reflected in the estimated graphs for
viewing angles of 150◦ and greater, but not for the smaller
angles. However, with a viewing angle of 150◦ the graph
became connected at a few points within this interval when
direct observation of the video suggests that the group was
still split. This was not the case with a viewing angle of
180◦; thus, 180◦ was chosen as providing the best match
of the splitting behavior of the dancers. Figure 1 shows the
group during this disconnection event and the graph in Figure
2 (corresponding to the frame of Figure 1) is computed using
a viewing angle of 180◦.



Fig. 2. Screenshot of FlockGrapher using dancer data corresponding to the instant shown in Figure 1. Nodes are shown as small green circles connected
by edges. Directed edges are blue with arrow heads and undirected edges are red. Computed graph properties are displayed on the right.

TABLE I
EFFECTS OF VIEWING ANGLE ON GRAPH CONNECTEDNESS OVER THE

WHOLE TRACKED PERIOD

Total viewing
angle

Percentage of time
connected

Number of
disconnection events

360◦ 59.58% 40
270◦ 91.67% 43
210◦ 97.5% 10
180◦ 98.47% 3
150◦ 98.68% 5
120◦ 99.65% 3
90◦ 99.58% 3

Although our estimate of the sensing graph captured a
split in the group and remained connected during the rest
of the tracked period, we acknowledge that it remains a
crude estimate. For example, some nodes changed their
neighbors rapidly in our estimated graph, which is likely an
overestimation of the rate at which dancers switch neighbors.
Instead, once a dancer chose a particular neighbor, it is
likely that they maintained this neighbor for a period of time
before switching. Thus, a more realistic sensing model might
include a reluctance or “inertia” to change neighbors that
have just been chosen.

VI. ANALYSIS OF INDIVIDUAL INFLUENCE

We used the estimated time-varying sensing graph to begin
investigating the influence of each individual within the
group. Our method was to compute and compare node status.
Without knowing precisely how each individual implemented
the flocking rules, node status can provide an estimate of an

individual’s importance within the group. A dancer with a
status of 0 has no influence since no one else in the group
is observing that dancer. A dancer with a status of 1 has
the maximum possible influence as every other individual is
directly observing that dancer. However, due to the time-
varying nature of the graph, an individual’s importance
depends not only on the current node status but also on
its node status in the past. Therefore, as a first estimate of
instantaneous importance we looked at each node’s average
status over the past 1 second. A plot of averaged node status
for part of the tracked period is shown in Figure 3.

By examining our plot of averaged node status, we looked
for “leadership events” where one particular node achieved
the greatest importance within the group (with a high status
value) for an extended period of time. In Figure 3 we can
observe one such event when node 10 became a leader
between approximately 28.75 and 31.45 seconds. Looking
at the video, we observed that during this time the group
was moving from the back left corner of the room toward
the front right corner, with node 10 at the front of the group.
This suggests that our node status measurements can capture
emergent leadership.

Another leadership event was observed during a period
when one dancer stopped moving and the remaining dancers
started circling around this individual. However, the indi-
vidual with the highest status during this event was not the
stationary one, but one who was very close by and who kept
moving in a circle. This seems particularly interesting since
at other times (however not during our tracked period) one
dancer would stop and the whole group would eventually



stop too. The difference between these two kinds of events
(circling versus stationary group motion) may be due to the
differences between the status of the stationary and nearby
dancers in the first case as compared to the second case.

Fig. 3. Plot of 1-second running average of node status, along with a
sample video frame and sensing graph near the end of the leadership event
from t = 28.75 seconds to t = 31.45 seconds. The red edge is undirected
while all blue edges are directed. We can observe that node 10, with the
highest status, corresponds to the dancer in the front of the group.

By averaging each individual’s status over the whole
tracked period we investigated whether some individuals had
a disproportionate influence on the group. Figure 4 shows the
average of each node’s status over the tracked period. We
can see that nodes 12 and 10 had the highest average status,
with values 1.9σ and 1.7σ higher than the group mean. This
suggests that rather than leadership simply arising as a result
of random mixing within the group, the behavior of some
individuals makes them more likely to assume positions of
high influence. We note that the dancers corresponding to
nodes 10, 11 and 12 are three of the four dancers in the small
disconnected group of Figures 1 and 2, suggesting further
possible consequences of emergent leaders.

VII. FINAL REMARKS

We described the artistic and scientific goals and methods
for investigation in the Flock Logic project. To illustrate we
tracked and analyzed the trajectories of thirteen dancers in
a dance studio carrying out basic rules of flocking. We esti-
mated the time-varying interconnection graph and computed
node status; the results suggest emergence of leadership,
where no such leadership was assigned. In ongoing work

Fig. 4. Average node status over the whole tracked period.

we are comparing experimental results to simulated flocking
to examine human bias. We are also computing correlations
between leadership and shape, polarity and momentum of
the group.

REFERENCES

[1] N. E. Leonard and S. Marshall, “Flock Logic,” 2010. [Online].
Available: www.princeton.edu/∼flocklogic

[2] J. C. M. Breder, “Equations descriptive of fish schools and other
animal aggregations,” Ecology, vol. 35, no. 3, pp. 361–370, 1954.

[3] K. Clemente, “Playing with performance: The element of the game in
experimental dance and theater,” The Journal of Popular Culture, vol.
XXIV, pp. 1–10, 1990.

[4] W. Forsythe, M. Palazzi, and N. Z. Shaw, “Synchronous objects,”
2009. [Online]. Available: http://synchronousobjects.osu.edu/

[5] S. Sgorbati, “Emergent improvisation,” 2005. [Online]. Available:
http://emergentimprovisation.org/essay.html

[6] S. Gueron, S. A. Levin, and D. I. Rubenstein, “The dynamics of herds:
From individuals to aggregations,” J. Theor. Biol., vol. 182, 1996.

[7] I. R. Fischhoff, S. R. Sundareson, J. Cordingley, and D. I. Rubenstein,
“Habitat use and movements of plans zebra (equus burchelli) in
response to predation danger from lions,” Behavioral Ecology, vol. 18,
no. 4, pp. 725–729, 2007.

[8] J. R. G. Dyer, A. Johansson, D. Helbing, I. D. Couzin, and J. Krause,
“Leadership, consensus decision making and collective behaviour in
humans,” Phil. Trans. R. Soc. B, vol. 364, pp. 781–789, 2009.

[9] M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz,
“The walking behaviour of pedestrian social groups and its impact on
crowd dynamics,” PLoS ONE, vol. 5, no. 4, pp. 1–7, 2010.

[10] P. Funes, B. Orme, and E. Bonabeau, “Shaping collective behavior:
an exploratory design approach,” in Artificial life IX: Proc. Ninth Int.
Conf. on the Simulation and Synthesis of Artificial Life, 2004.

[11] W. Chen, N. E. Leonard, and S. Marshall, “FlockMaker: Simulator for
collective motion,” 2010. [Online]. Available: dcsl.princeton.edu/dance

[12] D. T. Swain, I. D. Couzin, and N. E. Leonard, “Real-time feedback-
controlled robotic fish for behavioral experiments with fish schools,”
Proceedings of the IEEE, in press 2011.

[13] D. T. Swain, “MADTraC framework source documentation,” 2011.
[Online]. Available: poincare.princeton.edu/MADTraC/docs/

[14] G. Bradski, “OpenCV (Open Computer Vision) library,” March 2011.
[Online]. Available: opencv.willowgarage.com/wiki/Welcome

[15] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and
Image Understanding, vol. 93, no. 2, pp. 206–220, 2004.

[16] B. Mohar, “The Laplacian spectrum of graphs,” Graph theory, Com-
binatorics and Applications, vol. 2, pp. 871–898, 1991.

[17] E. Werner and C. Rossi, Manual of visual fields. New York, NY:
Churchill Livingstone, 1991.

[18] W. Ren, R. Beard, and E. Atkins, “A survey of consensus problems
in multi-agent coordination,” in Proc. ACC, 2005, pp. 1859–1864.


