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Abstract— We show methods that control cooperative New-
tonian particles to generate patterns on smooth curves. The
spacing between neighboring particles is measured by the relative
arc-length and the distance between a particle and the desired
curve is measured using an orbit function. The orbit value and the
relative arc-length are then used as feedback to control the motion
of each particle to a pattern on the desired curve asymptotically.
Possible applications of the methods to underwater mobile sensor
networks are discussed.

I. INTRODUCTION

Technological advances make it possible today to use fleets
of sensor-equipped autonomous underwater vehicles (AUVs)
to collect oceanographic data in efficient and intelligent ways
never before available. For example, throughout August 2003,
as part of the Autonomous Ocean Sampling Network (AOSN)
field experiment, as many as twelve underwater gliders were
used at once to collect data near Monterey Bay, California.
This data was assimilated into ocean models that computed
real-time predictions of the coupled physical and biological
dynamics in the Monterey Bay region. The data set produced
in August 2003 is uniquely rich and revealing [1].

Adaptive sampling refers to the ability to modify the de-
sign of sampling networks during the course of operation
in response to measurements and real-time model estimation
and predictions. Critical to successful adaptive sampling is
the coordination of the multiple vehicles (mobile sensors) that
make up the network. For instance, if the vehicles get too close
to one another they may become redundant as sensors. In order
to get the greatest advantage from the fleet, the vehicles should
share information on their whereabouts and their observations
and cooperate to best meet sampling objectives. More details
can be found in a recent paper [2] and the references therein.
In August 2006 in Monterey Bay, ten or more gliders will
be coordinated to move on patterns that will be adapted in
response to changes in the ocean and in model sensitivity.
This field experiment is part of the Adaptive Sampling and
Prediction (ASAP) project [3].

In this paper, we present analytical results on achieving
desired patterns on closed curves using a Newtonian particle
model for the idealized vehicles. In Section II, we show that
the particle model can be rewritten as a system under speed
and steering control. In Section III, the interaction between a
controlled particle and a family of closed curves is studied.
In Section IV, we derive a control law based on a Lyapunov
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function to achieve invariant patterns for N particles. We prove
the convergence of the controlled dynamics to the desired
pattern. In Section V, we present some simulation results.

II. PARTICLE MODEL

In this paper, our interest is in the motion of the center of
mass (COM) of a vehicle moving in the plane. We consider
each vehicle as a Newtonian particle that obeys

r̈ = f (1)

where r ∈ R2 and f is the total external force. The state of
a particle is (r, ṙ). If ṙ does not vanish, then we can define a
unit vector x = ṙ/ ‖ ṙ ‖. We define

y =
[

0 −1
1 0

]
x . (2)

Such y is a unit vector perpendicular to x. Therefore f can
be expressed as

f = α2uy + vx (3)

where we define α = ‖ ṙ ‖, α2u = f · y and v = f · x. On the
other hand, we compute

r̈ =
d

dt
(αx) = α̇x + αẋ (4)

which implies that

α̇ + αẋ · x = f · x = v
αẋ · y = f · y = α2u . (5)

The derivative of x can be computed as follows:

ẋ =
d

dt

ṙ
‖ ṙ ‖

=
f
α
− f · x

α
x = αuy . (6)

We substitute ẋ given by (6) into equations (5) to get

α̇ = v. (7)

The time derivative of y is

ẏ =
[

0 −1
1 0

]
(αuy) = −αux . (8)

We conclude that if the speed α of a Newtonian particle is
non-zero, then the motion of the particle can be described as

ṙ = αx
ẋ = αuy
ẏ = −αux
α̇ = v . (9)



The advantage of using these equations instead of equation
(1) comes from the fact that u can be viewed as the steering
control and v can be viewed as the speed control.

We note that even if we let α = 0 in equations (9),
the system appears to agree with Newton’s equation (1) if
f does not vanish i.e. v 6= 0. However, we have to choose
x = f/ ‖ f ‖. In this case there might exist discontinuities in
the orientation of the frame formed by x and y.

III. PARTICLE AND CLOSED CURVES

Suppose we are given a family of closed regular curves
C(σ, z) with σ and z functions in the plane satisfying the
following conditions:
D1) There exists a bounded open set B such that all curves in

C belongs to B and any point in B belongs to a unique
curve in C.

D2) z is a C2 smooth function. On the set B, the value of z
is bounded below by a real number zmin and bounded
above by zmax > zmin i.e. z ∈ (zmin, zmax). The closed
curves in C are the level curves of function z. We further
assume that ‖∇z ‖ 6= 0 on the set B. We call z the orbit
function.

D3) There exists a regular curve Γ that intersects each curve
in C at a unique point. We call these intersections the
starting points.

D4) σ is the curve length parameter for a unique curve in C
measured from the starting point.

One example of such a family is the family of ellipses given
by r2

x + e r2
y = z where e > 0 is the eccentricity of the

ellipses (see Figure 1). If we select zmin > 0 and zmax to be
a finite number greater than zmin then this family satisfies the
assumptions D1) and D2) with

B = {(rx, ry) ∈ R2|zmin < r2
x + e r2

y < zmax}. (10)

The positive horizontal axis can be viewed as Γ and σ can
be chosen as the curve length parameter of any ellipse in the
family. Hence D3) and D4) are also satisfied.

Fig. 1. The interaction between a particle and a family of ellipses, each
ellipse is a level curve of some function z. The solid dot represents the
vehicle and the hollow dots represent the starting points. The frame (x,y)
and (x1,y1) are illustrated and the angle φ measures the difference in their
orientation. The arc-length s is the length of the curve segment between the
starting point and the vehicle. If we map the ellipses to circles preserving
arc-length, then Φ can be visualized as the phase angle on the circles.

Along the trajectory of a moving particle in the set B, the
value of z is changing with respect to time. We have

ż = ∇z · ṙ = −α ‖∇z ‖ sinφ (11)

where we define

sinφ = − ∇z

‖∇z ‖
· x . (12)

The angle φ is the angle between the velocity vector of the
particle and the tangent vector to the curve determined by
z. For convenience we let x1 denote this tangent vector and
y1 = ∇z

‖∇z ‖ . The direction of x1 is selected so that x1 and y1

form a right handed coordinate system with x1 × y1 pointing
to the reader as shown in Figure 1. Then along the trajectory
of the moving particle, the vector y1 changes as

ẏ1 =

(
∇2z ṙ
‖∇z ‖

− (∇z · ∇2z ṙ)∇z

‖∇z ‖3

)
=

α

‖∇z ‖
(
∇2zx− (y1 · ∇2z x)y1

)
(13)

where ∇2z is the Hessian matrix of function z(r). From
equation (12) we have

cos φ φ̇=−ẋ · y1 − x · ẏ1

=−(αuy) · y1 − x · ẏ1

=−αu cos φ−
α

‖∇z ‖
(
x · ∇2zx + (y1 · ∇2z x) sinφ

)
. (14)

Considering that x = cos φx1 − sinφy1, we know that

x · ∇2zx + (y1 · ∇2z x) sinφ
= cos2 φ(x1 · ∇2zx1)− sinφ cos φ(x1 · ∇2z y1).(15)

Therefore,

φ̇ = α (κ1 cos φ + κ2 sinφ− u) (16)

where we define

κ1 = − 1
‖∇z ‖

x1 · ∇2z x1

κ2 =
1

‖∇z ‖
x1 · ∇2z y1 . (17)

We let s be the curve length of a curve in the family
measured from the starting point. The curve length s is a
function of σ and z. Since all curves in C are closed, the
total curve length L of each curve is finite and a function of
z. As the particle moves, the variation of the curve length is

ṡ =
∂s

∂σ
σ̇ +

∂s

∂z
ż

=
ds

dt
|z=const +

∂s

∂z
ż

= α cos φ− α
∂s

∂z
‖∇z ‖ sinφ . (18)

The total curve length L is a function of z only. Its variation
is

L̇ =
∂L

∂z
ż = −α

∂L

∂z
‖∇z ‖ sinφ . (19)

We define the phase variable

Φ = 2π
s

L
. (20)



This angle is measured from the vector to the starting point
of each curve and its value belongs to the interval [0, 2π), as
shown in Figure 1. We then have

Φ̇ = 2π

(
ṡ

L
− s

L2
L̇

)
=

2π α

L

[
cos φ−

(
∂s

∂z
− s

L

∂L

∂z

)
‖∇z ‖ sinφ

]
. (21)

Using z, φ, Φ and α to describe the state of the particle, the
system equations are summarized as follows:

ż = −α ‖∇z ‖ sinφ
φ̇ = α(κ1 cos φ + κ2 sinφ− u)

Φ̇ =
2π α

L
[cos φ + P ‖∇z ‖ sinφ]

α̇ = v (22)

where

P = −
(

∂s

∂z
− s

L

∂L

∂z

)
. (23)

IV. ACHIEVING PATTERNS

We now consider the motion of N particles in the bounded
open set B. For i = 1, ..., N , the ith particle satisfies equation
(22) indexed by i. We first define an invariant pattern for these
particles.

Definition 4.1: We say N particles form an invariant pat-
tern determined by (cz, cs, cv) if (zi, φi,Φi, αi) satisfies

zi = czi

φi = 0
Φj − Φj+1 = csj

min
i
{αi} = cv (24)

for all i = 1, ..., N and j = 1, ..., N − 1. Here czi is the ith
component for the N dimensional constant vector cz , csj is
the jth component for the N − 1 dimensional constant vector
cs. The constants satisfy cv > 0, zmin < czi < zmax and
0 < csj < 2π.

We design control laws for (ui, vi) so that from an arbitrary
initial configuration, the particles achieve a given pattern as-
ymptotically. Our control laws are based on control Lyapunov
functions.

We let hzi(z) be a smooth function on (zmin, zmax) and
fzi(z) = d hzi

dz satisfying the following conditions:
A1) limz→zmin hzi(z) = limz→zmax hzi(z) = +∞
A2) fzi(z) is a monotone increasing smooth function with

fzi(z) = 0 if and only if z = czi.
Function fzi(z) can be constructed as

fzi(z) = tan
(

π(2z − zmax − zmin)
2(zmax − zmin)

)
−

tan
(

π(2czi − zmax − zmin)
2(zmax − zmin)

)
. (25)

We let hsj(Φ) be a smooth function on (0, 2π) and
fsj(Φ) = d hsj

dΦ satisfying the following conditions:
A3) limΦ→0 hsj(Φ) = limΦ→2π hsj(Φ) = +∞

A4) fsj(Φ) is a monotone increasing smooth function with
fsj(Φ) = 0 if and only if Φ = csj .

We let ha(α) be a smooth function on (0,+∞) and fa(α) =
d ha

dα satisfying the following conditions:
A5) limα→0 ha(α) = limα→+∞ ha(α) = +∞
A6) fa(α) is a monotone increasing smooth function with

fa(α) = 0 if and only if α = cv .
Without loss of generality, we assume that the curve cor-

responding to z1 = cz1 has the minimum length among the
curves determined by cz . Intuitively, in order to maintain the
invariant pattern, the particle indexed by 1 on this shortest
curve has to travel at the minimum speed among all particles.
We will justify this intuition later.

Consider the following Lyapunov candidate function:

V =
N∑

i=1

(− log
(

cos2
φi

2

)
+ hzi(zi))+

N−1∑
j=1

(hsj(Φj − Φj+1) +
1
2
(
αj

Lj
− αj+1

Lj+1
)2)+

ha(α1) . (26)

This Lyapunov function candidate is based on the Lyapunov
function for boundary tracking and obstacle avoidance for a
single vehicle first proposed in [4]. We make extensions by
introducing the coupling terms controlling relative separation
and speed between vehicles. This function is designed so that
the invariant pattern defined by (24) is a critical point. We will
show that V remains finite if V is initially finite and thus φi

can never be π for all i = 1, 2, ..., N and Lj can never be 0
for all j = 1, 2, ..., N − 1.

We want to compute the time derivative of the Lyapunov
function along the controlled system trajectory. To simplify
the process, we compute the time derivatives of each term
in equation (26) separately. We also use fzi and fsj as
abbreviated notations for fzi(zi) and fsj(Φj − Φj+1).

First, similar to [4] and [5]

d

dt

(
− log

(
cos2

φi

2

)
+ hzi(zi)

)
=

αi sin φi

2

cos φi

2

[κ1i cos φi + κ2i sinφi − ui−

2fzi ‖∇zi ‖ cos2
φi

2
]

= −µ1

αi sin2 φi

2

cos φi

2

+
αi sin φi

2

cos φi

2

ūi , (27)

where we let for i = 1, 2, ..., N ,

ūi = −µ1 sin
φi

2
+ κ1i cos φi+

κ2i sinφi − 2fzi ‖∇zi ‖ cos2
φi

2
− ui (28)

and µ1 > 0 is a constant.
Next, for j = 1, 2, ..., N − 1,

d

dt

(
hsj(Φj − Φj+1) +

1
2
(
αj

Lj
− αj+1

Lj+1
)2
)



= (Φ̇j − Φ̇j+1)fsj + (
αj

Lj
− αj+1

Lj+1
)
(

vj

Lj
− vj+1

Lj+1
+

α2
j

L2
j

∂Lj

∂zj
‖∇zj ‖ sinφj−

α2
j+1

L2
j+1

∂Lj+1

∂zj+1
‖∇zj+1 ‖ sinφj+1

)
. (29)

We let for i = 1, 2, ..., N ,

v̄i = vi +
α2

i

Li

∂Li

∂zi
‖∇zi ‖ sinφi . (30)

Then for j = 1, 2, ..., N − 1

d

dt

(
hsj(Φj − Φj+1) + (

αj

Lj
− αj+1

Lj+1
)2
)

= (Φ̇j − Φ̇j+1)fsj + (
αj

Lj
− αj+1

Lj+1
)
(

v̄j

Lj
− v̄j+1

Lj+1

)
. (31)

Notice that

Φ̇j − Φ̇j+1

= 2π

(
αj

Lj
cos φj −

αj+1

Lj+1
cos φj+1−

αjPj

Lj
‖∇zj ‖ sinφj +

αj+1Pj+1

Lj+1
‖∇zj+1 ‖ sinφj+1

)
= 2π

(
αj

Lj
− αj+1

Lj+1
− αj

Lj
2 sin2 φj

2
+

αj+1

Lj+1
2 sin2 φj+1

2
−

αjPj

Lj
‖∇zj ‖ sinφj +

αj+1Pj+1

Lj+1
‖∇zj+1 ‖ sinφj+1

)
(32)

for j = 1, 2, ..., N − 1. Furthermore, if we add equations (27)
and (31) and sum over i and j, the following term appears
and can be simplified as follows:
N∑

i=1

αi sin φi

2

cos φi

2

ūi +
N−1∑
j=1

(
−αj

Lj
2 sin2 φj

2
+

αj+1

Lj+1
2 sin2 φj+1

2
−

αjPj

Lj
‖∇zj ‖ sinφj +

αj+1Pj+1

Lj+1
‖∇zj+1 ‖ sinφj+1

)
2πfsj

=
N∑

i=1

αi sin φi

2

cos φi

2

[ūi−

2π(fsi − fs(i−1))
(

1
Li

sinφi + 2
Pi

Li
‖∇zi ‖ cos2

φi

2

)
] (33)

where fs0 = fsN = 0 . We let for i = 1, 2, ..., N ,

ūi = 2π(fsi − fs(i−1))
(

1
Li

sinφi + 2
Pi

Li
‖∇zi ‖ cos2

φi

2

)
(34)

so that equation (33) vanishes. Then

V̇ =
N∑

i=1

(−µ1

αi sin2 φi

2

cos φi

2

) + fa(α1)v1+

N−1∑
j=1

(
αj

Lj
− αj+1

Lj+1

)(
v̄j

Lj
− v̄j+1

Lj+1
+ 2πfsj

)
. (35)

We let for j = 1, 2, ..., N − 1,

v̄j

Lj
− v̄j+1

Lj+1
+ 2πfsj = −µ2

(
αj

Lj
− αj+1

Lj+1

)
(36)

and
v1 = −µ3fa(α1) (37)

where µ2 > 0 and µ3 > 0. Then

V̇ =
N∑

i=1

(−µ1

αi sin2 φi

2

cos φi

2

)−
N−1∑
j=1

µ2

(
αj

Lj
− αj+1

Lj+1

)2

−µ3fa(α1)2 ≤ 0 . (38)

We summarize our control laws for i = 1, 2, ..., N and j =
1, 2, ..., N − 1 as follows:

ui = κ1i cos φi + κ2i sinφi − 2fzi ‖∇zi ‖ cos2
φi

2
−

2π(fsi − fs(i−1))
(

1
Li

sinφi + 2
Pi

Li
‖∇zi ‖ cos2

φi

2

)
−µ1 sin

φi

2
v1 = −µ3fa(α1)

vi = v̄i −
α2

i

Li

∂Li

∂zi
‖∇zi ‖ sinφi

v̄j

Lj
− v̄j+1

Lj+1
= −2πfsj − µ2

(
αj

Lj
− αj+1

Lj+1

)
. (39)

It is easy to check that our Lyapunov function V has com-
pact sub-level sets. Under the feedback control laws defined
by (39), starting in the compact sub-level set determined by
the finite initial value of the function V, the system equations
given by (22) are Lipschitz continuous in the sub-level set and
piecewise Lipschitz continuous with respect to time. Therefore
a solution exists and is unique. Since the value of the Lyapunov
function is time-independent and non-increasing, we conclude
that if the initial value of V is finite, then the entire solution
stays in the sub-level set so that V is finite for all time. This
and conditions A3) and A5) imply that along such a solution,
the speed of the first particle satisfies α1 > 0 and the phase
differences satisfy Φj − Φj+1 6= 0 for j = 1, 2, ..., N − 1.

Applying Theorem 4.4 on page 192 in [6], we conclude that
as t → ∞, the controlled system converges to the set where
V̇ = 0. This set is equivalent to

φi = 0, α1 = cv and
αj

Lj
=

αj+1

Lj+1
(40)

where i = 1, 2, ..., N and j = 1, 2, ..., N − 1. On this set,
α1 ≤ αi because L1 ≤ Li for i = 1, 2, ..., N . In order to
show that the controlled dynamics converges to the invariant
pattern given by (24), we use the facts that φ̇i → 0 and

d

dt

(
αj

Lj
− αj+1

Lj+1

)
→ 0. (41)

To prove these facts, notice that under the control laws given
in (39)

d

dt

(
αj

Lj
− αj+1

Lj+1

)
= −2πfsj − µ2

(
αj

Lj
− αj+1

Lj+1

)
. (42)

We know that fsj(Φj−Φj+1) is a smooth function on (0, 2π).
Furthermore, as a function of t, Φj − Φj+1 is bounded in
the compact sub-level set determined by the finite initial



value of the Lyapunov function. Therefore, fsj is a uniformly
continuous function with respect to t. On the other hand,
µ2

(
αj

Lj
− αj+1

Lj+1

)
is also a smooth and bounded function in

the compact sub-level set. Hence as the solution of equation
(42),

(
αj

Lj
− αj+1

Lj+1

)
is a uniformly continuous function of t.

Therefore, the right hand side of equation (42) is uniformly
continuous with respect to time. Since we know that(

αj

Lj
− αj+1

Lj+1

)
→ 0 (43)

as t → +∞, by the Barbalat lemma we conclude that for
j = 1, 2, ..., N − 1

d

dt

(
αj

Lj
− αj+1

Lj+1

)
→ 0. (44)

This further implies that fsj → 0. Thus according to property
A4) we conclude that

Φj − Φj+1 → csj . (45)

Let us now study the equation for φ̇i,

φ̇i = αi(κ1i cos φi + κ2i sinφi − ui)

= αi

[
µ1 sin

φi

2
+ 2fzi ‖∇zi ‖ cos2

φi

2
+

2π(fsi − fs(i−1))
(

1
Li

sinφi + 2
Pi

Li
cos2

φi

2

)]
. (46)

As t → +∞, since φi(t) → 0 and fsi → 0, we have

lim
t→+∞

φ̇i(t) = lim
t→+∞

(2αifzi ‖∇zi ‖). (47)

Since ‖∇zi ‖ and fzi are smooth functions on a compact sub-
level set of V , they are all bounded. Their time derivatives
are bounded because ż is bounded on the compact sub-level
set. Thus they are uniformly continuous. As proved in [7],
an extension of the Barbalat lemma claims that φ̇(t) → 0
because φ̇(t) converges to a uniformly continuous function and
φ(t) → 0. Therefore, we conclude that as t → +∞, fzi → 0.
Using property A2), we have zi → czi for i = 1, 2, ..., N .

Notice that all our arguments are based on the assumptions
that αi(t) 6= 0 for i = 2, 3, ..., N (with α1(t) 6= 0 guaranteed
by the finiteness of the Lyapunov function). These assumptions
are not very difficult to be satisfied if the initial speed for
each of the particles is large enough and the desired speed
for the first particle is also large enough. We have observed
convergence in simulations even if αi = 0 for some i.
However, to justify this observation we need to use non-
smooth system theory.

In summary, we have proved the following proposition.
Proposition 4.2: Consider an invariant pattern given by

(cz, cs, cv) and (24). Assume that conditions A1)-A6) and
D1)-D4) hold and the initial conditions of N Newtonian
particles in the plane are such that the initial value of V
given by (26) is finite. Suppose further that αi(t) 6= 0 for all
t and i = 1, 2, ..., N . Then, the invariant pattern is achieved
asymptotically by the system of N particles under the control
laws (39).

Fig. 2. The initial positions of the three vehicles and the desired super-
elliptic track. The horizontal axis and the vertical axis indicates the longitude
and latitude values respectively.

Fig. 3. The three vehicles move counter-clockwise on the desired 40km by
16km super-elliptic track.

V. SIMULATIONS AND APPLICATIONS

Our control laws will be applied to coordinate a mobile
sensor network for ocean sampling. One class of closed curves
that will play an important role in the upcoming ASAP field
experiment in August 2006 is the class of super-ellipses. A
super-ellipse looks like a rectangular box with rounded cor-
ners. Oceanographers who operate AUVs are interested in the
super-ellipse because large segments of the curve are almost
straight lines. In addition, the almost rectangular shape allows
one to easily divide a large region into smaller rectangular
blocks. As ocean dynamics change, an AUV can be directed
from patrol of the boundary curve of the large block to patrol
of the smaller block.

We simulate such a scenario in a region near Monterey Bay,
CA where the ASAP field experiment will be held. In the first
example, three vehicles are controlled to patrol a 40km by
16km super-elliptic box. Furthermore, vehicles 1 and 2 and
vehicles 2 and 3 should be separated along the track such that
Φ1 − Φ2 = Φ2 − Φ3 = cs1 = cs2 = π/2. The minimum
speed for the vehicles is cv = 1km per hour. Figure 2 shows
the initial positions of the vehicles and Figure 3 shows the
controlled configuration at time equal to 62.5 hours. After
80 hours, we control vehicles 1 and 3 to be on a smaller
12km by 4.8km box while vehicle 2 stays on the larger box.
The separations between vehicles 1 and 2 as well as between



Fig. 4. The vehicles 1 and 3 move on a 12km by 4.8km super-elliptic box
and vehicle 2 moves on the 40km by 16km box.

Fig. 5. The orbit value z1, which is the length of the semi-major axis, as a
function over time.

vehicles 2 and 3 are still controlled to cs1 = cs2 = π/2 as
shown in Figure 4. In this case vehicles 1 and 3 travel at
lower speed than vehicle 3. After 140 hours, the vehicles are
commanded to resume the original pattern on the larger box.

Figure 5 shows the value of the orbit function z1 of vehicle
1 as a function of time. The value of the orbit function is
the length of the semi-major axis of the super-ellipse that
the vehicle instantly occupies. Figure 6 shows the separation
Φ1 − Φ2 between vehicles 1 and 2 over time. From these
figures, one can observe the asymptotic convergence under
the control laws. It can be seen that it takes less than 20
hours to set up the pattern on the larger box and about 30
hours to transit from this pattern to the second pattern with
vehicles 1 and 3 on the smaller box. The time required for
the vehicles to set up the sensor network is long mainly
because the vehicles are slow and the boxes are large. This
is generally the case for underwater gliders. Traveling at 1km
per hour, it takes a vehicle 40 hours to cover the long side
of the large box. In our simulation, the initial conditions
for the vehicles are arbitrarily given. However, in the field
experiments, by other methods such us time optimal control,
we will set up the initial configurations to be close enough to
the desired configuration and the control laws will maintain
the network under disturbances. We are currently studying how
the disturbances caused by ocean flow, positioning error and

Fig. 6. The separation between vehicles 1 and 2, Φ1 − Φ2, as a function
of time.

measurement noise affect the performance of the control laws.

VI. SUMMARY

We have shown an approach for achieving invariant patterns
for mobile sensor networks. In this paper, the patterns obtained
are on tracks which serve as the planned paths for the vehicles.
Our approach may also have applications in using multiple
sensor platforms to detect and survey natural boundaries. Other
recent methods for this purpose can be found in [8], [9]
and [10]. In those papers coherent patterns are established
using methods that are different from ours. Our approach has
provided a general theoretical frame work in developing means
for systematic pattern generation on closed curves.
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