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Abstract— This paper proposes a design methodology to sta-
bilize isolated relative equilibria in a model of all-to-all coupled
identical particles moving in the plane at unit speed. Isolated
relative equilibria correspond to either parallel motion of all
particles with fixed relative spacing or circular motion of all
particles with fixed relative phases. The stabilizing feedbacks
derive from Lyapunov functions that prove exponential stability
and suggest almost global convergence properties. The results of
the paper provide a low-order parametric family of stabilizable
collectives that offer a set of primitives for the design of higher-
level tasks at the group level.

Index Terms— Cooperative control, geometric control, multi-
agent systems, stabilization.

I. INTRODUCTION

THE collective control of multi-agent systems is a rapidly
developing field, motivated by a number of engineering

applications that require the coordination of a group of in-
dividually controlled systems. Applications include formation
control of unmanned aerial vehicles (UAVs) [1], [2] and space-
craft [3], cooperative robotics [4]–[6], and sensor networks [7],
[8]. A specific application motivating the results of the present
paper is the use of autonomous underwater vehicles (AUVs) to
collect oceanographic measurements in formations or patterns
that maximize the information intake, see e.g. [9], [10]. This
can be achieved by matching the measurement density in space
and time to the characteristic scales of the oceanographic
process of interest. Coordinated, periodic trajectories such as
the ones studied in this paper, provide a means to collect
measurements with the desired spatial and temporal separation.

The design focus of collective stabilization problems is on
achieving a certain level of synchrony among possibly many
but individually controlled dynamical systems. The primary
design issue is not how to control the individual dynamics, but
rather how to interconnect them to achieve the desired level of
synchrony. This motivates the use of simplified models for the
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individuals. For instance, synchrony in populations of coupled
oscillators has been studied primarily by means of phase
models; these models only retain the phase information of
individual oscillators as the fundamental information pertain-
ing to synchrony measures of the ensemble [11]. Even these
simplified models raise challenging issues for the analysis or
design of their interconnection. They have recently motivated
a number of new developments in stability analysis [12], [13].
The interconnected control system is high dimensional, both
in the number of state variables and control variables. It is
nevertheless characterized by a high level of symmetry, which
is maximal when all the individual models are assumed identi-
cal. Symmetry properties make these models well suited to the
reduction techniques of geometric control [14]. Symmetry and
geometry play a central role in the analysis of cyclic pursuit
strategies for kinematic unicycle models studied in [15].

Motivated by the issues above, we consider in the present
paper the model of identical, all-to-all coupled, planar particles
introduced in [16]. The particles move at constant speed and
are subject to steering controls that change their orientation. In
addition to a phase variable that models the orientation of the
velocity vector, the state of each particle includes its position
in the plane. The synchrony of the collective motion is thus
measured both by the relative phasing and the relative spacing
of particles.

In previous work [17], [18], we observed that the norm of
the average linear momentum of the group is a key control
parameter: it is maximal in the case of parallel motions of
the group and minimal in the case of circular motions around
a fixed point. We exploited the analogy with phase models
of coupled oscillators to design steering control laws that
stabilize either parallel or circular motions. Expanding on
this idea, the design methodology in the present paper is
to construct potentials that reach their minimum at desired
collective formations and to derive the corresponding gradient-
like steering control laws as stabilizing feedbacks. We treat
separately phase potentials that control the relative orientation
of particles and spacing potentials that control their relative
spacing. We show that the design can be made somewhat
systematic and versatile, resulting in a simple but general
controller structure. The stabilizing feedbacks depend on a
restricted number of parameters that control the shape and
the level of symmetry of parallel or circular formations. This
low-order parametric family of stabilizable collectives offers
a set of primitives that can be used to solve path planning or
optimization tasks at the group level.

The results of the paper rest on two idealistic assumptions:
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all-to-all communication and identical individuals. Neither
of these assumptions is realistic in a practical environment,
not in engineering models nor in models of natural groups.
The all-to-all assumption is instrumental to the results of
the paper but this strong assumption is completely relaxed
in a companion paper [19] where we extend the present
results to communication topologies where communication is
limited. The assumption of identical individuals is fundamental
to the symmetry properties of the closed-loop vector field,
which is instrumental to the proposed stability analysis. It is
known that the individual dynamics may exhibit much more
complicated behaviors away from this ideal situation. Many
earlier studies nevertheless suggest that synchrony is robust
and that an ensemble phenomenon resulting from a specific
interconnection structure will persist in spite of individual
discrepancies. The analysis of the celebrated Kuramoto model
(see [20] for a recent review) exemplifies both the robustness
of synchronization at the ensemble level and its mathematical
mysteries at the individual level in a population of non-
identical, all-to-all coupled oscillators. In this sense, the ideally
engineered models considered in this paper may help in
capturing gross dynamical properties of more realistic, multi-
agent, simulation models or of biologists’ observations of
animal groups.

The rest of the paper is organized as follows: Section II
reviews the geometric properties of the considered model. Sec-
tion III introduces a basic phasing potential that controls the
group linear momentum. In Section IV we introduce a spacing
potential that is minimum in circular formations. These results
provide the basic control laws to achieve either parallel or
circular formations, the only possible relative equilibria of the
model. Due to symmetry, the dimension of the equilibrium
set is high and can be reduced with the help of symmetry
breaking controls laws that derive from further potentials. We
show in Sections V, VI and VII how to stabilize isolated
relative equilibria of the model, both in circular formations
(Sections V and VI) and in parallel formations (Section VII).
Exponential stabilization of isolated circular relative equilibria
is presented in Section VI. Section VIII illustrates how to
combine the results of the previous sections in a low-parameter
catalog of stabilizable collectives. Conclusions are presented
in Section IX.

II. A MODEL OF STEERED PARTICLES IN THE PLANE

We consider a continuous-time model of N identical parti-
cles (of unit mass) moving in the plane at unit speed [1]:

ṙk = eiθk

θ̇k = uk, k = 1, . . . , N.
(1)

In complex notation, the vector rk = xk + iyk ∈ C ≈ R2

denotes the position of particle k and the angle θk ∈ S1

denotes the orientation of its (unit) velocity vector eiθk =
cos θk + i sin θk. The scalar uk is the steering control for
particle k. We use a bold variable without index to denote
the corresponding N -vector, e.g. θ = (θ1, . . . , θN )T and u =
(u1, . . . , uN )T . In the absence of steering control (θ̇k = 0),
each particle moves at unit speed in a fixed direction and its

motion is decoupled from the other particles. We study the
design of various feedback control laws that result in coupled
dynamics and closed-loop convergence to different types of
organized or collective motion. We assume identical control
for each particle. In that sense, the collective motions that
we analyze in the present paper do not require differentiated
control action for the different particles (e.g. the presence of
a leader for the group).

The model (1) has been recently studied by Justh and Kr-
ishnaprasad [1]. These authors have emphasized the Lie group
structure that underlies the state space. The configuration space
consists of N copies of the group SE(2). When the control
law only depends on relative orientations and relative spacing,
i.e., on the variables θkj = θk − θj and rkj = rk − rj ,
j, k = 1, . . . , N , the closed-loop vector field is invariant under
an action of the symmetry group SE(2) and the closed-
loop dynamics evolve on a reduced quotient manifold. This
(3N − 3)-dimensional manifold is called the shape space
and it corresponds to the space of all relative orientations
and relative positions. Equilibria of the reduced dynamics are
called relative equilibria and can be only of two types [1]:
parallel motions, characterized by a common orientation for
all the particles (with arbitrary relative spacing), and circular
motions, characterized by circular orbits of the particles around
a fixed point. Both types of motion have been observed in
simulations in a number of models that are kinematic or
dynamic variants of the model (1), see for instance [21].

A simplification of the model (1) occurs when the feedback
laws depend on relative orientations only. The control has then
a much larger symmetry group (N copies of the translation
group), and the reduced model becomes a pure phase model
θ̇ = u where the phase variable θ belongs to the N -
dimensional torus TN . This phase model still has an S1-
symmetry if the feedback only depends on phase differences.
Phase-oscillator models of this type have been widely studied
in the neuroscience and physics literature. They represent a
simplification of more complex oscillator models in which the
uncoupled oscillator dynamics each have an attracting limit cy-
cle in a higher-dimensional state space. Under the assumption
of weak coupling, the reduction of higher-dimensional models
to phase models by asymptotic methods (singular perturbations
and averaging) has been studied in e.g. Ermentrout and Kopell
[22] and Hoppensteadt and Izhikevich [23].

The results in this paper build upon an extensive literature
on phase models of coupled oscillators [11], [20], [24], [25].
We will stress the close connection between collective motions
in groups of oscillators and collective motions in groups of
moving particles.

Euler discretization of the continuous-time model (1) yields
the discrete-time equations

rk(t+ 1)− rk(t) = eiθk(t)

θk(t+ 1)− θk(t) = uk(t), k = 1, . . . , N.
(2)

The direction of motion of particle k is updated at each time
step according to some feedback control uk. We consider
continuous-time models in this paper, but we mention a few
relevant references that study their discrete-time counterpart.
Couzin et al. [26] have studied such a model where the
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feedback control is determined from a set of simple rules:
repulsion from close neighbors, attraction to distant neigh-
bors, and preference for a common orientation. Their model
includes stochastic effects but also exhibits collective motions
reminiscent of either parallel motion or circular motion around
a fixed center of mass. Interestingly, these authors have shown
coexistence of these two types of motion in certain parameter
ranges and hysteretic transition from one to the other. A
discrete stochastic phase model has been studied by Vicsek
et al. [27].

III. PHASE STABILIZATION

We start our analysis with a basic but key observation for
the results of this paper: the (average) linear momentum Ṙ of
a group of particles satisfying (1) is the centroid of the phase
particles pθ, that is

Ṙ =
1
N

N∑
k=1

ṙk =
1
N

N∑
k=1

eiθk , pθ = |pθ|eiΨ . (3)

The parameter |pθ| is a measure of synchrony of the phase
variables θ [11], [20]. It is maximal when all phases are syn-
chronized (identical). It is minimal when the phases balance to
result in a vanishing centroid. The set of synchronized states is
an isolated point modulo the action of the symmetry group S1.
It defines a manifold of dimension one. The set of balanced
states, which we call the balanced set, is defined as all θ ∈ TN
for which pθ = 0. For N odd, the equation pθ = 0 has
full rank everywhere and the set of balanced states defines
a manifold of codimension two. For N even, the balanced set
is not a manifold of codimension two. The equation loses rank
at points where there are two anti-synchronized, equally-sized
clusters, i.e., each cluster consists of N

2 synchronized phases
and the phase of one cluster equals the phase of the other
cluster plus π.

In the particle model (1), synchronization of the phases cor-
responds to a parallel formation: all particles move in the same
direction. In contrast, balancing of the phases corresponds to
collective motion around a fixed center of mass. Control of
the group linear momentum is thus achieved by minimizing
or maximizing the potential

U1(θ) =
N

2
|pθ|2, (4)

which suggests the gradient control u = −KgradU1, i.e.

uk = −K∂U1

∂θk
= −K < pθ, ie

iθk >= −K
N

N∑
j=1

sin θjk . (5)

The inner product < ·, · > is defined by < z1, z2 >=
Re{z̄1z2} for z1, z2 ∈ C. For vectors, we use the analogous
boldface notation < z1, z2 > = Re{z̄T

1 z2} for z1, z2 ∈ CN .
This all-to-all sinusoidal coupling (5) is the most frequently
studied coupling in the literature of coupled oscillators [11],
[20], [25]. Its gradient nature enables the following global
convergence analysis.

Theorem 1: The potential U1 = N
2 |pθ|

2 reaches its unique
minimum when pθ = 0 (balancing) and its unique maximum
when all phases are identical (synchronization). All other

critical points of U1 are isolated in the shape manifold TN/S1

and are saddle points of U1.
The phase model θ̇ = u with the gradient control (5) forces

convergence of all solutions to the critical set of U1. If K < 0,
then only the set of synchronized states is asymptotically stable
and every other equilibrium is unstable. If K > 0, then only
the balanced set where pθ = 0 is asymptotically stable and
every other equilibrium is unstable.

Proof: The gradient dynamics θ̇ = −KgradU1 forces
convergence of all solutions to the set of critical points of U1,
characterized by the N algebraic equations

< pθ, ie
iθk >= 0, 1 ≤ k ≤ N . (6)

Critical points where pθ = 0 are global minima of U1. As a
consequence, the balanced set is asymptotically stable if K >
0 and unstable if K < 0. From (6), critical points where
pθ = |pθ|eiΨ 6= 0 are characterized by sin(θk − Ψ) = 0, that
is, N −M phases synchronized at Ψ mod 2π and M phases
synchronized at (Ψ + π) mod 2π, with 0 ≤ M < N

2 . At
those points, |pθ| = 1 − 2M

N ≥ 1
N . The value M = 0 defines

a synchronized state and corresponds to a global maximum
of U1. As a consequence, the set of synchronized states is
asymptotically stable if K < 0 and unstable if K > 0.

Every other value 1 ≤ M < N
2 corresponds to a saddle

and is therefore unstable both for K > 0 and K < 0. For
|pθ| > (1/N), this is because the second derivative

∂2U1

∂θ2k
=

1
N
− < pθ, e

iθk >=
1
N

− cos(Ψ− θk)|pθ| (7)

takes negative values if θk = Ψ and positive values if θk =
Ψ+π. As a consequence, a small variation δθk at those critical
points decreases the value of U1 if θk = Ψ and increases the
value of U1 if θk = Ψ+π. For |pθ| = (1/N), a small variation
of two angles can be used to prove the desired result.

The consequence of Theorem 1 is that parallel formations
are stabilized by all-to-all sinusoidal coupling of the phases
differences, i.e. the control law (5) with K < 0. With K >
0, the same control law stabilizes the center of mass of the
particles to a fixed point. The fact that the remaining equilibria
are saddles suggests that the conclusions of Theorem 1 are
almost global, that is, almost all solutions either converge to
the synchronized state (K < 0) or to the balanced set (K > 0).

We note that the conclusions of Theorem 1 can be equiva-
lently stated in a rotating frame, that is, for the phase model

θ̇ = ω01−KgradU1, ω0 ∈ R . (8)

The convergence analysis is unchanged because of the prop-
erty < grad U1,1 >= 0, which is a consequence of the
invariance of U1 under the action of the symmetry group S1.

For ω0 = 0, the steady state of the phase model (8) gives rise
to straight orbits in the particle model (1): synchronization then
means parallel motion in a fixed direction, with arbitrary but
constant relative spacing, which is a relative equilibrium of the
model. In contrast, balancing means straight orbits towards or
away from a fixed center of mass, which does not correspond
to a relative equilibrium of the model.

For ω0 6= 0, the steady state of the phase model (8) gives rise
to circular orbits of radius ρ0 = |ω0|−1 in the particle model
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Fig. 1. The four different types of collective motion of N = 12 particles
obtained with the phase control (8). The position of each particle, rk , and its
time-derivative, ṙk , are illustrated by a circle with an arrow. The center of
mass of the group, R, and its time-derivative, Ṙ, are illustrated by a crossed
circle with an arrow. (a) ω0 = 0 and K < 0; (b) ω0 = 0 and K > 0;
(c) ω0 6= 0 and K < 0; (d) ω0 6= 0 and K > 0. Only (a) is a relative
equilibrium of the particle model (1).

(1). In general, particles orbit different circles. Synchronization
imposes parallel orientation of all velocity vectors whereas
balancing imposes a fixed center of mass. A collective motion
with fixed center of mass corresponds to a relative equilibrium
of the model only if all particles orbit the same circle.

The four different types of collective motion associated with
the phase model (8) are illustrated in Figure 1.

IV. STABILIZATION OF CIRCULAR FORMATIONS

In contrast to the phase control designed in the previous
section, we now propose a spacing control that achieves global
convergence to a circular relative equilibrium of the particle
model (1).

We start our analysis with the observation that under the
constant control uk = ω0 6= 0, each particle travels at constant,
unit speed on a circle of radius ρ0 = |ω0|−1. The center of the
circle traversed by particle k is ck = rk+iω−1

0 eiθk . Multiplied
by the constant factor −iω0, ck becomes

sk = −iω0ck = eiθk − iω0rk . (9)

A circular relative equilibrium is obtained when all the centers
coincide; this corresponds to the algebraic condition

P s = 0, P = IN − 1
N

11T . (10)

This suggests to choose a stabilizing control that minimizes
the Lyapunov function

S(r,θ) =
1
2
‖ P s ‖2 . (11)

Noting that
ṡk = ieiθk(uk − ω0), (12)

the time-derivative of S along the solutions of (1) is

Ṡ =< P s, P ṡ >=
N∑
k=1

< Pks, ieiθk > (uk − ω0), (13)

where Pk denotes the k-th row of the matrix P and where we
have used the fact that P is a projector, i.e. P 2 = P . Choosing
the control law

uk = ω0 − κ < Pks, ieiθk >, κ > 0 (14)

results in

Ṡ = −κ
N∑
k=1

< Pks, ieiθk >2 ≤ 0 . (15)

Noting that

Pks = sk −
1
N

1Ts = eiθk − iω0rk − (Ṙ− iω0R),

we obtain

< Pks, ieiθk > = −< ω0(rk −R), eiθk > − < Ṙ, ieiθk >

= −< ω0r̃k, e
iθk > −∂U1

∂θk
(16)

where we denote by r̃k = rk − R the relative position of
particle k from the group center of mass R = 1

N

∑N
k=1 rk.

Using (16), we rewrite the control law (14) as

uk = κ
∂U1

∂θk
+ω0(1+κ < r̃k, ṙk >), κ > 0, ω0 6= 0 . (17)

Lyapunov analysis provides the following global convergence
result.

Theorem 2: Consider the particle model (1) with the spac-
ing control (17). All solutions converge to a relative equilib-
rium defined by a circular formation of radius ρ0 = |ω0|−1

with direction determined by the sign of ω0 6= 0.
Proof: The Lyapunov function S(r,θ) defined in (11) is

positive definite and proper in the reduced shape space, that
is, when all points (r,θ) that differ only by a rigid translation
r+1r0 and a rigid rotation θ +1θ0 are identified. From (15),
S is nonincreasing along the solutions and, by the LaSalle
Invariance principle, solutions for the reduced system on shape
space converge to the largest invariant set Λ where

κ < Pks, ieiθk >≡ 0 (18)

for k = 1, . . . , N . In this set, θ̇k = ω0 and sk is constant
for all k = 1, . . . N . This means that (18) can hold only if
P s ≡ 0. As a result, s = 1s0 for some fixed s0 ∈ C, i.e., all
particles orbit the same circle of radius ρ0.

V. PHASE SYMMETRY BREAKING IN CIRCULAR
FORMATIONS

The spacing control law of Section IV stabilizes particle
motions to a unique set in the physical plane modulo the
symmetry group of rigid displacements. In contrast, the phase
arrangement of the particles is arbitrary. To reduce the dimen-
sion of the equilibrium set, we combine the spacing potential
S(r,θ) defined in (11) with a phase potential U(θ) that is
minimum at the desired phase configuration. We require that
U(θ) preserves the S1 symmetry of rigid rotation, that is,
< grad U,1 >= 0.
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Theorem 3: Consider the particle model (1) and a smooth
phase potential U(θ) that satisfies < grad U,1 >= 0. The
control law

uk = ω0(1 + κ < r̃k, ṙk >)− ∂(U − κU1)
∂θk

, ω0 6= 0 (19)

enforces convergence of all solutions to the set of relative
equilibria defined by circular formations where all particles
move around the same circle of radius ρ0 and direction given
by the sign of ω0 with a phase arrangement in the critical set
of U . Every (local) minimum of U defines an asymptotically
stable set of relative equilibria. Every relative equilibrium
where U does not reach a minimum is unstable.

Proof: We use the composite Lyapunov function

V (r,θ) = κS(r,θ) + U(θ) (20)

which is lower bounded since S ≥ 0 and U takes values in a
compact set. The time-derivative of V along the solutions of
(1) is

V̇ =
N∑
k=1

(κ < Pks, ieiθk > (uk − ω0) +
∂U

∂θk
uk) (21)

which, using the property < gradU,1ω0 >= 0, becomes

V̇ =
N∑
k=1

(κ < Pks, ieiθk > +
∂U

∂θk
)(uk − ω0) . (22)

Because the control (19) is

uk = ω0 − κ < Pks, ieiθk > − ∂U

∂θk
, (23)

the Lyapunov function V satisfies V̇ = −
∑N
k=1(uk−ω0)2 ≤

0 along the closed-loop solutions. By the LaSalle Invariance
principle, solutions for the reduced system on shape space
converge to the largest invariant set Λ where

κ < Pks, ieiθk >= − ∂U

∂θk
(24)

for k = 1, . . . , N . In the set Λ, the dynamics reduce to θ̇k =
ω0, which implies that U is constant. Therefore the right-hand
side of (24) vanishes in the set Λ, which implies P s = 0
since ṡ = 0. We conclude that solutions converge to a circular
relative equilibrium and that the asymptotic phase arrangement
is in the critical set of U .

Consider the set E of circular relative equilibria of radius
ρ0 with a phase configuration in the critical set of U . Because
V (r,θ) = U(θ) in E, local minima of U correspond to local
minima of the Lyapunov function. Any connected subset of
E on which U reaches a strict minimum is therefore asymp-
totically stable. Note that because E is a set of equilibria,
U is constant on any connected subset. In contrast, consider
x̄ = (r̄, θ̄) ∈ E such that U(θ̄) is not a minimum and denote
by Ex̄ the connected component of E containing x̄. U is
constant in Ex̄. To show instability of x̄, consider a compact
neighborhood B(x̄) in E such that B(x̄)\Ex̄ contains no other
relative equilibrium. A solution with initial condition in B(x̄)
either asymptotically converges to Ex̄ or leaves B(x̄) after a
finite time. Let x = (r̄,θ) ∈ B(x̄) such that U(θ) < U(θ̄).
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Fig. 2. Circular formations achieved with the control (19) with N = 12,
ω0 = κ = 0.1, and U = KU1. (a) Convergence to a balanced circular
formation (K > 0); (b) Convergence to a circular formation with no constraint
on the asymptotic phase arrangement (K = 0); (c) Convergence to a
synchronized circular formation (K < 0).

Then the solution with initial condition x cannot converge
to Ex̄ (and therefore leaves B after a finite time) since V
decreases along solutions and V (r̄,θ) < V (r̄, θ̄). Because
V (x̄) is not minimum, x can be chosen arbitrary close to x̄,
which proves instability of x̄.

Theorem 3 thus provides a global convergence analysis
of closed-loop dynamics achieved with the control law (19).
It shows that solutions either converge to circular relative
equilibria with a phase configuration that (locally) minimizes
the phase potential U or belong to the stable manifold of an
unstable equilibrium. As an illustration, simulation results in
Figure 2 illustrate the convergence result for the choice U =
KU1. For K = 0, the control law (19) achieves convergence
to a circular formation but the asymptotic phase arrangement
is not constrained. For K < 0, the control law (19) forces
convergence to the synchronized circular formation. For K >
0, the control law (19) forces convergence to a balanced
circular formation. Note that for K = κ, the expression of
the control law simplifies to

uk = ω0(1 + κ < r̃k, ṙk >) .

The stability analysis in Theorem 3 is entirely determined by
the critical points of the phase potential U : (local) minima cor-
respond to stable equilibria and other critical points correspond
to unstable relative equilibria. When a critical point is nonde-
generate, this analysis extends to the Jacobian linearization of
the closed-loop system, providing (local) exponential stability
conclusions. We say that a critical point θ̄ is nondegenerate (in
TN/S1) if all eigenvalues of the Hessian ∂2U

∂θ2 (θ̄) are different
from zero, except for the zero eigenvalue (with eigenvector 1)
associated to the rotational symmetry.

Theorem 4: Consider as in Theorem 3 the particle model
(1), a smooth phase potential U(θ) that satisfies < grad
U,1 >= 0, and the control law (19). A relative equilibrium
determined by a nondegenerate critical point θ̄ of U is expo-
nentially stable if θ̄ is a (local) minimum and exponentially
unstable otherwise.
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Proof: The proof is a local version of the proof of
Theorem 3 around the relative equilibrium x̄ = (r̄, θ̄). In the
coordinates (s,θ), the quadratic approximation of V at x̄ is

δV =
1
2
(κ < P s, P s > +δθTHδθ)

where δθ = θ − (θ̄ + ω0t1) and H = ∂2U
∂θ2 (θ̄). Likewise, the

control law (23) linearizes to

δuk = −κ < Pks, iei(θ̄k+ω0t) > −Hkδθ,

where Hk is the kth row of H . Then,

˙δV = κ
N∑
k=1

< Pks, iei(θ̄k+ω0t) > δuk + (Hδθ)T δu

=
N∑
k=1

(κ < Pks, iei(θ̄k+ω0t) > +Hkδθ)δuk

= −
N∑
k=1

(δuk)2 ≤ 0

along the closed-loop solutions of the linearized system.
The stability analysis then proceeds as in the proof of

Theorem 3: if θ̄ is a minimum, then H ≥ 0 and the
LaSalle invariance principle proves asymptotic stability of
the linearized (periodic) closed-loop system, which implies
exponential stability of the equilibrium. In contrast, if θ̄ is not
a minimum, then there exist initial conditions for which δV <
0. The corresponding solutions of the linearized system cannot
converge to the equilibrium and must diverge exponentially.

The above result yields a systematic and general design
methodology by reducing the design of exponentially stabi-
lizing control laws to the construction of phase potentials.
Specifically, control laws that exponentially stabilize isolated
relative circular equilibria are automatically derived from
phase potentials U that have nondegenerate minima at the
desired location. The phase potential U1 of (4) achieves this
objective for the stabilization of the synchronized circular
formation. The next section focuses on the construction of
more general phase potentials that can be used to isolate
specific balanced circular formations.

VI. EXPONENTIAL STABILIZATION OF ISOLATED
CIRCULAR RELATIVE EQUILIBRIA

A. Stabilization of higher momenta

When the phase potential U1 reaches its minimum, the phase
arrangement of the particles is only stabilized to the balanced
set, which is high dimensional. More general phase potentials
are introduced in this section in order to reduce the dimension
of this equilibrium set. A natural generalization of the potential
U1 is a potential

Um =
N

2
|pmθ|2, (25)

which depends on the mth moment pmθ of the phase distri-
bution on the circle, defined as

pmθ =
1
mN

N∑
k=1

eimθk , m = 1, 2, . . . . (26)

Note that p1θ = pθ. The next proposition is a direct general-
ization of Theorem 1.

Theorem 5: Let m ∈ N. The potential Um = N
2 |pmθ|

2

reaches its unique minimum when pmθ = 0 (balancing modulo
2π
m ) and its unique maximum when the phase difference
between any two phases is an integer multiple of 2π

m (syn-
chronization modulo 2π

m ). All other critical points of Um are
isolated in the shape manifold TN/S1 and are saddle points
of Um.

Proof: Critical points of Um are the roots of

∂Um
∂θk

=< pmθ, ie
imθk >= 0, k = 1, . . . , N. (27)

Critical points for which pmθ = 0 are global minima of
Um. Critical points for which pmθ = |pmθ|eiΨm 6= 0 are
characterized by N−M phases satisfying mθk = Ψm mod 2π
and M phases satisfying mθk = (Ψm + π) mod 2π, with
0 ≤M < N

2 . At those critical points, m|pmθ| = 1− 2M
N ≥ 1

N .
Um is maximized when M = 0. Critical points for which
1 ≤ M < N

2 and m|pmθ| > (1/N) are saddles because the
second derivative

∂2Um
∂θ2k

=
1
N

−m < pmθ, e
imθk >

=
1
N

− cos(Ψm −mθk)m|pmθ| (28)

takes negative values if mθk = Ψm and positive values if
mθk = Ψm + π. As a consequence, a small variation δθk
at those critical points decreases the value of Um if mθk =
Ψm and increases the value of Um if mθk = Ψm + π. For
m|pmθ| = (1/N), a small variation of two angles can be used
to prove the desired result.

We show in the next section how linear combinations of
the potentials Um enable the stabilization of specific sets of
isolated relative equilibria characterized by various discrete
symmetry groups.

B. Symmetric balanced patterns

Let 1 ≤ M ≤ N be a divisor of N . An (M,N)-
pattern is a symmetric arrangement of N phases consisting
of M clusters uniformly spaced around the unit circle, each
with N/M synchronized phases. For any N , there exist at
least two symmetric patterns: the (1, N)-pattern, which is the
synchronized state, and the (N,N)-pattern, which is the splay
state, characterized by N phases uniformly spaced around
the circle. Figure 3 provides an illustration of all symmetric
balanced patterns for N = 12.

Symmetric balanced patterns are extremals of the potentials
Um. As a consequence, they are characterized as minimizers
of well-chosen potentials; these can be written as linear
combinations of the Um. This result for M = N , i.e. the splay
state, was also presented in [28]. We first prove a technical
lemma that we will use in making this characterization explicit.

Lemma 1: Consider the following sum where m,M ∈ N,

P (M)
m ,

M∑
j=1

ei
2πm
M j . (29)
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Fig. 3. The six possible different symmetric patterns for N = 12
corresponding to M = 1, 2, 3, 4, 6 and 12. The top left is the synchronized
state and the bottom right is the splay state. The number of collocated phases
is illustrated by the width of the black annulus denoting each phase cluster.

If m
M ∈ N, then P (M)

m = M , otherwise P (M)
m = 0.

Proof: If m
M ∈ N then ei

2πm
M j = 1 for all j ∈ N which

proves the first part of the lemma. To prove the second part,
we treat (29) as the sum of a geometric series and evaluate it
for all m ∈ N that satisfy m

M /∈ N. Multiplying both sides of
equation (29) by ei

2πm
M gives,

P (M)
m ei

2πm
M =

M∑
j=1

ei
2πm
M (j+1) =P (M)

m − ei
2πm
M + ei

2πm
M (M+1).

Rearranging terms and solving for P (M)
m yields,

P (M)
m = ei

2πm
M

ei2πm − 1
ei

2πm
M − 1

, (30)

which shows that P (M)
m = 0 since the numerator of (30)

vanishes for all m ∈ N that satisfy m
M /∈ N.

Theorem 6: Let 1 ≤ M ≤ N be a divisor of N . Then
θ ∈ TN is an (M,N)-pattern if and only if it is a global
minimum of the potential

UM,N =
M∑
m=1

KmUm (31)

with Km > 0 for m = 1, . . . ,M − 1 and KM < 0.
Proof: The global minimum of UM,N is reached (only)

when KmUm is minimized for each m. If Km > 0 for
m = 1, . . . ,M − 1 and KM < 0, following (25) and (26)
this means the global minimum corresponds to pmθ = 0
for m = 1, . . . ,M − 1 and pMθ = 1

M . We show that this
implies an (M,N)-pattern configuration. From the condition
pMθ = 1

M and Theorem 5, we can conclude that there are M
clusters such that the kth cluster is of size Nk ≥ 0 at phase
Θk = 2π

M k, k = 1, . . . ,M , where
∑M
k=1Nk = N . We would

like to show that Nk = N
M ∈ N for all k = 1, . . . ,M . We

have

pmθ =
1
mN

M∑
k=1

Nke
i 2πmM k = 0, m = 1, . . . ,M − 1 (32)

and

MpMθ =
1
N

M∑
k=1

Nke
i2πk = 1. (33)

Equations (32) and (33) are a system of linear equations in
the unknown variables x = (N1, . . . , NM )T . Namely, (32) and
(33) can be written as Ax = b where A = AT ∈ CM×M with
[A]kj = ei

2π
M kj , j, k = 1, . . . ,M and b = (0, . . . , 0, N)T ∈

RM . The inverse of A is given by A−1 = 1
M ĀT , where the

bar denotes the complex conjugate. To see this, observe that

[AĀT ]kj =
M∑
l=1

ei
2π(k−j)

M l, j, k = 1, . . . ,M. (34)

For j = k, equation (34) evaluates to M by Lemma 1. For
j 6= k, we have |k − j| < M and equation (34) evaluates to
zero by Lemma 1. Therefore, the solution to the system of
equations (32) and (33) is x = 1

M ĀTb. Since both the M th
row and column of ĀT are all ones, we find that Nk = N

M for
all k = 1, . . . ,M .

Next, we show that an (M,N)-pattern configuration min-
imizes each KmUm for m = 1, . . . ,M . For an (M,N)-
pattern, the size of cluster k is N/M and its phase is given by
Θk = 2π

M k, where k = 1, . . . ,M . Recall that the mth moment
pmθ of the phase distribution is given by (26). Evaluated at
an (M,N)-pattern, the mth moment becomes

p
(M)
mθ =

1
Nm

N

M

M∑
j=1

eimΘj

=
1

Mm

M∑
j=1

ei
2πm
M j , m = 1, . . . ,M. (35)

By Lemma 1, p(M)
mθ = 1

m for m
M ∈ N and zero otherwise.

Therefore, for phases in an (M,N)-pattern, pmθ = 0 for m =
1, . . . ,M − 1 and pMθ = 1

M .
Corollary 1: Let M = N . Then θ ∈ TN is an (N,N)-

pattern, i.e. the splay state, if and only if it is a global minimum
of the potential

UN,N =
bN2 c∑
m=1

KmUm (36)

with Km > 0 for m = 1, . . . ,
⌊
N
2

⌋
, where

⌊
N
2

⌋
is the largest

integer less than or equal to N
2 .

Proof: By Theorem 6, the phases are in the splay state
if and only if they correspond to the global minimum of the
potential (31) with M = N . Since pmθ = 0 imposes two
constraints on the system for each m, minimizing the potential
UM,N imposes 2N constraints on the phase arrangement.
However, for potentials with S1 symmetry, the dimension of
the shape space is N−1. Therefore, we need only set pmθ = 0
for m = 1, . . . ,

⌊
N
2

⌋
since that imposes 2

⌊
N
2

⌋
≥ N − 1

independent constraints.
Due to the characterization of Theorem 6, stabilizing control

laws for (M,N)-pattern circular formations are directly and
systematically provided by Theorem 3.
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Theorem 7: Each (M,N)-pattern circular formation of ra-
dius ρ0 is an isolated relative equilibrium of the particle model
(1) and is exponentially stabilized by the control law

uk = ω0(1 + κ < r̃k, ṙk >)− ∂(UM,N − κU1)
∂θk

. (37)

Proof: The theorem is a consequence of Theorems 3, 4,
and 6. We only need to prove that each (M,N)-pattern defines
a nondegenerate critical point of the potential U (M,N).

Let the negative gradient of the potential UM,N be defined
in terms of the coupling function, Γ(θkj), i.e.

−∂U
M,N

∂θk
=

N∑
j=1

M∑
m=1

Km

m
sinmθkj ,

N∑
j=1

Γ(θkj), (38)

where Km > 0 for m = 1, . . . ,M −1 and KM < 0. Also, let
Γ′(θkj) be the derivative of Γ(θkj) with respect to θkj , given
by

Γ′(θkj) =
M∑
m=1

Km cosmθkj . (39)

As shown in [29], the linearization of coupling functions of
this form about an (M,N)-pattern has N eigenvalues that can
be described as the union of two sets. The first set consists
of the eigenvalue λ̃(M) with multiplicity N − M . These
eigenvalues are associated with intra-cluster fluctuation. The
second set consists of M eigenvalues λ(M)

p , p = 0, . . . ,M−1.
These eigenvalues are associated with inter-cluster fluctuation.

Both sets of eigenvalues can be expressed as functions of
the Fourier coefficients of Γ′(θkj). For a general coupling
function, the Fourier expansion of Γ′(θkj) is

Γ′(θkj) =
∞∑
l=1

(a′l cos lθkj + b′l sin lθkj) . (40)

The formulas for calculating the (real part of) the eigenvalues
are as follows [29]:

λ̃(M) =
∞∑
l=1

a′Ml (41)

Re{λ(M)
p } =

∞∑
l=1

(
a′Ml −

a′M(l−1)+p + a′Ml−p

2

)
. (42)

Note that only the a′l coefficients determine stability and that
Re{λ(M)

p } = Re{λ(M)
M−p}.

The a′l coefficients are given by integrating

a′l =
1
π

∫ π

−π
Γ′(θkj) cos lθkjdθkj (43)

which gives
a′l = Kl, l = 1, . . . ,M (44)

and
a′l = 0, l = 0 or l > M. (45)

As a result, a′Ml = 0 for l > 1, which, using (41), yields
λ̃(M) = KM < 0. In addition, using (42), we find that λ(M)

p =
KM − Kp+KM−p

2 < 0 for p = 1, . . . ,M − 1 and λ
(M)
0 = 0.

The zero eigenvalue corresponds to rigid rotation of all N
phases [29]. Since the coupling function (38) is the gradient
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Fig. 4. The result of a numerical simulation starting from random initial
conditions and stabilizing the splay state formation using the control (37)
with M = N = 12, ω0 = κ = 0.1, Km = ω0 for m = 1, . . . ,

j
N
2

k
, and

Km = 0 for m >
j

N
2

k
.

of the potential UM,N , its Jacobian is the Hessian of UM,N

and, consequently, all the eigenvalues are real. Therefore, each
(M,N)-pattern defines a nondegenerate critical point of the
potential UM,N since the Hessian has rank N − 1.

Theorem 7 does not exclude convergence to circular for-
mations that correspond to other critical points of the phase
potential U (M,N). However, no other local minima were
identified and simulations suggest large regions of attraction of
the (M,N)-pattern circular formations. Figure 4 illustrates a
simulation of the splay state stabilization for N = 12 particles
using the control law (37).

VII. SPATIAL SYMMETRY BREAKING IN PARALLEL
FORMATIONS

As shown in Theorem 1, the phase control u = gradU1 suf-
fices to stabilize parallel equilibria. However, the asymptotic
relative positions of particles are arbitrary. In this section, we
show how to reduce the dimension of the equilibrium set in
close analogy to the design of the spacing control in Section
IV.

We choose an arbitrary isolated parallel relative equilibrium
in the shape space by imposing on the relative position r̃k of
particle k with respect to the center of mass a fixed length
ρ̄k and a fixed orientation ψ̄k relative to the group direction.
Assuming that all phases are synchronized at the relative
equilibrium, this gives in complex notation

r̃k = rk −R = ρ̄ke
i(θk−ψ̄k) , d−1

k eiθk (46)

where dk = eiψ̄k
ρ̄k

is a constant complex number. The relative
positions with respect to the center of mass must balance, that
is,
∑
r̃k = 0, which imposes the constraint

n∑
k=1

d−1
k = 0. (47)
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Motivated by the derivation of the spacing control in Section
IV, we observe that the definition

tk =
dk

1 + dk
(r̃k + eiθk)

allows one to specify the parallel relative equilibrium of
interest by the conditions

P t = 0, |pθ| = 1, P = IN − 1
N

11T . (48)

Indeed, the condition |pθ| = 1 imposes phase synchronization,
that is, θ = 1θ0 for some θ0 ∈ S1, whereas the condition
P t = 0 implies t = 1t0 for some t0 ∈ C, which in turn gives
r̃k + eiθ0 = (1 + d−1

k )t0. Summing over k yields t0 = eiθ0 ,
which corresponds to the desired relative equilibrium.

The desired relative equilibrium thus minimizes the Lya-
punov function

V (r,θ) = κ

(
1
2
‖ P t ‖2 −U1(θ)

)
, κ > 0 (49)

which, in analogy with the results of Section IV, suggests the
control law

uk = (1 + κ)
∂U1

∂θk
− κ < Pkt,

dk
dk + 1

ieiθk >, κ > 0. (50)

Lyapunov analysis provides the following result.
Theorem 8: Consider the particle model (1) with the control

law (50). The parallel relative equilibrium defined by (48)
is Lyapunov stable and a global minimum of the Lyapunov
function (49). Moreover, for every κ > 0, there exists an
invariant set in which the Lyapunov function is nonincreasing
along the solutions. In this set, solutions converge to a parallel
relative equilibrium that satisfies

< Pkt,
dk

dk + 1
ieiθ0 > (51)

for some θ0 ∈ S1 and for k = 1, . . . , N .
Proof: In the coordinates (t,θ), the system (1) becomes

ṫk = dk
dk+1 (Pkeiθ + ieiθkuk)

θ̇k = uk .
(52)

Writing the control law (50) as uk = ∂U1
∂θk

+ vk = − <

Pke
iθ, ieiθk > +vk, and using the identity

Pke
iθ − ieiθk < Pke

iθ, ieiθk >=< Pke
iθ, eiθk > eiθk

one obtains

ṫk = dk
dk+1 (< Pke

iθ, eiθk > eiθk + ieiθkvk)
θ̇k = ∂U1

∂θk
+ vk.

(53)

Setting vk = 0, the time-derivative of the Lyapunov function
(49) along solutions of (53) is

V̇ |v=0 = −κ ‖ gradU1 ‖2 + (54)

κ
N∑
k=1

< Pkt,
dk

dk + 1
eiθk >< Pke

iθ, eiθk >

Fix an arbitrary compact neighborhood N of the parallel
equilibrium (46) that contains no critical point of U1 other than

the synchronized state. Then there exists a constant c1 > 0
such that the inequality

| < Pkt,
dk

dk + 1
eiθk > | ≤ c1 ‖ P t ‖ (55)

holds in N for k = 1, . . . , N . We show that a similar constant
c2 > 0 exists for the inequality

| < Pke
iθ, eiθk > | ≤ c2 ‖ gradU1 ‖2 . (56)

Because the set N is compact, it is sufficient to establish (56)
in the vicinity of critical points of U1, that is when the right
hand side of (56) vanishes. By assumption, the synchronized
state is the only critical point of U1 in the set N . Locally
around that state, we write ∂U1

∂θj
= θj − θav + h.o.t. where

θav = 1
N

∑N
i=1 θi and h.o.t. stands for “higher-order terms”.

We then obtain

‖ gradU1 ‖2=
N∑
j=1

(θj − θav)2 + h.o.t. (57)

The left-hand side of (56) rewrites as

| 1− 1
N

N∑
j=1

cos(θj − θk) |=
1

2N

N∑
j=1

(θj − θk)2 +h.o.t. (58)

Using θj−θk = θj−θav+θav−θk and the triangle inequality
yield

1
2N

N∑
j=1

(θj − θk)2 ≤
1
N

N∑
j=1

(θj − θav)2 + (θk − θav)2

≤ N + 1
N

N∑
j=1

(θj − θav)2

which, from (58), provides the inequality

| 1− 1
N

N∑
j=1

cos(θj − θk) |≤
N + 1
N

N∑
j=1

(θj − θav)2 + h.o.t.

(59)
Comparing (57) and (59), we see that (56) holds for (any) c2 >
N+1
N in the vicinity of the synchronised state and therefore also

for some uniformly bounded constant c2 in the compact set
N . Using the inequalities (55) and (56) in (54) yields

V̇ |v=0≤ −κ(1−Nc1c2 ‖ Pt ‖) ‖ gradU1 ‖2 (60)

This implies that for every κ > 0, there exists a neighborhood
of the parallel equilibrium (46) where the Lyapunov function
V satisfies

V̇ |v=0≤ −ε ‖ gradU1 ‖2 (61)

for some ε > 0. With vk = uk − ∂U1
∂θk

defined from (50), one
obtains

V̇ ≤ −ε ‖ gradU1 ‖2 −

κ
N∑
k=1

(
∂U1

∂θk
− < Pkt,

dk
dk + 1

ieiθk >

)
vk

= −ε ‖ gradU1 ‖2 −
N∑
k=1

v2
k ≤ 0 . (62)
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For a fixed κ > 0, let V̄κ be the largest value such that (62)
holds in the set Ωκ = {(t,θ) | V (t,θ) ≤ V̄κ}. Then the set
Ωκ is invariant and solutions in Ωκ converge to the largest
invariant set where θ = θ01 for some θ0 ∈ S1 and vk = 0,
k = 1, . . . , N . This is a set of parallel equilibria satisfying
(51).

The phase control u = gradU1 stabilizes the set of parallel
equilibria, which is of dimension 2(N−1) in the shape space.
Away from singularities, the N algebraic constraints (51) are
independent. As a result, the control law (50) isolates a subset
of parallel equilibria of dimension N − 2 in the shape space.

The result of Theorem 8 is thus weaker than the results
for circular equilibria for two reasons: the result is only
local and the control law does not isolate the desired parallel
equilibrium for N > 2. A simple calculation indeed shows that
the Jacobian linearization of (52) at the parallel equilibrium
(46) possesses N − 2 uncontrollable spatial modes with zero
eigenvalue. This means that the Jacobian linearization of the
closed-loop system will possess N − 2 zero eigenvalues for
any smooth static state feedback. For N > 2, no smooth static
state feedback can achieve exponential stability of an isolated
relative parallel equilibrium.

VIII. STABILIZABLE COLLECTIVES

In this section, we focus on the control structure (19) and
discuss the role of key parameters. The constant ω0 determines
the type of relative equilibrium. For ω0 6= 0, the control (19)
produces circular motion with radius ρ0 = |ω0|−1 and sense
of rotation determined by the sign of ω0. The potential U
determines the steady-state phase arrangement. For ω0 = κ =
0 and U = KU1, K < 0, the control (19) produces parallel
motion.

In the following subsections, we investigate removing the
SE(2) symmetry of the control (19), i.e. its invariance to
rigid translation and rotation in the plane [1]. We stabilize
circular motion about a fixed beacon and parallel motion along
a fixed reference direction. We define behavior primitives to
enable the group to track piecewise-linear trajectories with
fixed waypoints.

A. SE(2) Symmetry Breaking

The control (19) depends only on the relative spacing, rkj =
rk−rj , and relative phase, θkj = θk−θj , variables. As a result,
the model (1) with control (19) is invariant to rigid translations
and rotations in the plane, which corresponds to the action of
the symmetry group SE(2). In this subsection, we investigate
breaking this symmetry first by adding a fixed beacon to break
the R2 symmetry and, second, by adding a heading reference
to break the S1 symmetry.

We break the R2 translation symmetry of the spacing control
(19) by stabilizing circular motion with respect to a fixed
beacon. Let R0 ∈ C be the location of a fixed beacon
and (re)define the vector from the beacon to particle k by
r̃k = rk −R0. We obtain the following extension of Theorem
3.

Corollary 2: Consider the particle model (1) and a smooth
phase potential U(θ) that satisfies < grad U,1 >= 0. The

control law (19) where r̃k = rk −R0, R0 is the location of a
fixed beacon, and U1 is removed, i.e.,

uk = ω0(1 + κ < rk −R0, ṙk >)− ∂U

∂θk
, ω0 6= 0 (63)

enforces convergence of all solutions to a circular formation
of radius ρ0 = |ω0|−1 about R0. Moreover, the asymptotic
phase arrangement is a critical point of the potential U .

Proof: We use the Lyapunov function V0(r,θ) which is
the sum of the composite Lyapunov function V (r,θ) defined
by (20) in the proof of Theorem 3 and a new term that is
minimized when the center of the circular relative equilibrium
is at R0:

V0(r,θ) = V (r,θ) +
1

2N
‖1T s + iNω0R0‖2. (64)

Recall that
V (r,θ) =

κ

2
‖P s‖2 + U(θ)

with s given by (9) and P the projector defined in (10). We
compute

V̇0 =
N∑
k=1

(
κ < Pks +

1
N

1T s+

iω0R0, ie
iθk > +

∂U

∂θk

)
(uk − ω0).

Since

Pks +
1
N

1T s + iω0Ro = eiθk − iω0(rk −R0),

using the control law (63), we once again obtain V̇0 =
−
∑N
k=1(uk − ω0)2 ≤ 0 along the solutions of the closed-

loop system. Solutions converge to the largest invariant set Λ
where

κ < ω0r̃k, ie
iθk >=

∂U

∂θk
(65)

for k = 1, . . . , N . Proceeding as in the proofs of Theorems 2
and 3, we use the result that on Λ the control is uk = ω0 for
k = 1, . . . , N . This implies that the right hand side of (65)
is constant for each k. Since θ̇k = ω0, r̃k 6= 0 and the left
hand side of (65) is constant only if it is zero. This implies a
circular relative equilibrium centered at R0.

Next, we break the S1 rotational symmetry of the control
(19) by introducing a heading reference θ0, where θ̇0 = ω0.
We couple the dynamics of the particle group to the reference
heading by adding a new coupling term to only one of the
particles in the group. This yields the following extension of
Theorem 3.

Corollary 3: Consider the particle model (1) and a smooth
phase potential U(θ) that satisfies < grad U,1 >= 0. Let
uk, k = 1, . . . , N − 1 be given by (19) and

uN = ω0(1 + κ < r̃N , ṙN >)− ∂(U − κU1)
∂θN

+

d sin(θ0 − θN ) (66)

where θ̇0 = ω0 and d > 0. This control enforces convergence
of all solutions to relative equilibria as in Theorem 3. In ad-
dition, relative equilibria with phase arrangement minimizing
U and satisfying θN = θ0 define an asymptotically stable set.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 11

Proof: Consider the potential

W (r,θ) = V (r,θ) + d(1− cos(θ0 − θN )) (67)

with V (r,θ) given by (20). The time-derivative of W along
the solutions of the particle model is

Ẇ = V̇ + d sin(θ0 − θN )(θ̇0 − θ̇N ). (68)

The control law (66) with θ̇0 = ω0 and uk given by (19) for
k = 1, . . . , N−1 results in Ẇ = −

∑N
k=1(uk−ω0)2. Solutions

therefore converge to the largest invariant set Λ where (24)
holds for k = 1, . . . , N − 1. The N − 1 equations Pks = 0,
k = 1, . . . , N − 1, imply P s = 0 because the matrix P has
rank N − 1. Likewise, the N − 1 equations ∂U

∂θk
= 0, k =

1, . . . , N − 1, imply gradU = 0 because the Hessian of U
has rank N − 1. The relation uN = ω0 then reduces to

d sin(θ0 − θN ) = 0 (69)

which implies that θN = θ0 or θ0 + π. Therefore, relative
equilibria with θN = θ0 which minimize V are asymptotically
stable since they also minimize the potential W .

We note that in the case ω0 = 0, Corollary 3 proves
asymptotic stability of parallel collective motion to a fixed
heading reference, θ0. We use this result in the following
subsection.

B. Trajectory tracking with behavior primitives

We use the control (19) to define four behavior primitives
which can be combined to track piecewise-linear trajectories
following [18]. The behavior primitives include impulsive
controls to align the particles with the reference input tra-
jectory and feedback controls to stabilize this trajectory. The
behaviors are referred to as circular-to-parallel, parallel-to-
parallel, parallel-to-circular, and circular-to-circular. In par-
allel motion, the group center of mass follows a fixed reference
heading. In the circular state, particles orbit a fixed beacon
with a prescribed radius and sense of rotation.

Circular-to-parallel. Starting from circular motion, this
behavior stabilizes parallel motion along a fixed reference
heading. The inputs to this behavior are the reference heading,
θ0, and the gain, d. The impulse control which aligns the
particles in the reference direction is

4θk = θ0 − θk. (70)

The feedback control that stabilizes parallel motion is of the
form (19) for k = 1, . . . , N − 1 and (66) for k = N with
ω0 = κ = 0 and U = KU1, K < 0.

Parallel-to-parallel. Starting from parallel motion, this be-
havior stabilizes parallel motion along a different reference
trajectory. The inputs to this behavior are the new reference
heading, θ0, and the gain, d. The impulsive control used to
align the particles in the input direction is given by (70). The
feedback control that stabilizes parallel motion is of the form
(19) for k = 1, . . . , N−1 and (66) for k = N with ω0 = κ = 0
and U = KU1, K < 0.

Parallel-to-circular. Starting from parallel motion, this
behavior stabilizes circular motion about the location of the
center of mass at the time the behavior is initiated. The input
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Fig. 5. Trajectory tracking with N = 12 starting from random initial
conditions. The reference input is a piecewise-linear curve. The behavior
sequence starts in the vicinity of A by stabilizing circular motion with
ω0 = 1/25 and then follows A circular-to-parallel, B parallel-to-parallel,
and C parallel-to-circular. This sequence repeats for the points C, D, and E
and then ends with the circular-to-circular behavior at E with ω0 = −1/50.
See text for control parameters.

to this behavior are the parameters, ω0 6= 0 and κ > 0, the
initial center of mass of the group, R0, and the phase potential
U(θ). The impulsive control used to align the particles in the
input rotation direction is given by

4θk = arg(iω0r̃k)− θk. (71)

The feedback control used to stabilize circular motion is of
the form (63), which is (19) with r̃k = rk −R0, where R0 is
a fixed beacon and U1 is removed.

Circular-to-circular. Starting from circular motion, this
behavior stabilizes circular motion with a different radius, i.e.
dilation/contraction, about the same fixed reference. The input
to this behavior are the parameters, ω0 6= 0 and κ > 0,
the initial center of mass of the group, R0, and the phase
potential U(θ). There is no impulsive control used to realign
the particles. The feedback control used to stabilize circular
motion is of the form (63), which is (19) with r̃k = rk −R0,
where R0 is a fixed beacon and U1 removed.

Next, we use the behavior primitives to construct a behavior
sequence that tracks a sample reference trajectory. The admis-
sible references are piecewise-linear paths specified by a list of
desired heading and duration pairs. An example of trajectory
tracking is shown in Figure 5. In this example, twelve particles
start from random initial conditions in the vicinity of the origin
(point A). Each step in the behavior sequence is simulated for
200 time steps. The behavior sequence starts by stabilizing
circular motion about the origin with ω0 = κ = 1/25,
R0 = 0, and U(θ) = 0. The next behavior in the sequence
is circular-to-parallel with reference heading θ0 = π/8 and
gain d = 1/N , which takes the sensor network from point
A to point B in Figure 5. At point B, the behavior parallel-
to-parallel is used to track the reference input θ0 = −3π/8
to point C. Then the parallel-to-circular behavior stabilizes
circular motion about a fixed center of mass with ω0 = −1/25,
κ = |ω0|, and U(θ) = 0. The sequence is repeated for the
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points C, D, and E. Lastly, the circular-to-circular behavior
stabilizes circular motion in the same direction with the new
radius ρ0 = |ω0|−1 = 50 and U(θ) = 0.

C. Relevance and limitations for engineering applications

The proposed coordinated group trajectory design method-
ology has been developed on the basis of simplified models
that may seem only remotely connected to the engineering
applications presented in the introduction. We briefly discuss
the relevance and the limitations of the proposed approach,
in particular in the context of the specific ocean sampling
application that motivated much of this work.

Models of point-mass particles steered at constant speed
are of course a strong simplification of dynamic models.
Our approach is to decouple the trajectory design problem,
that we primarily view as a collective design problem, from
the tracking control problem, that we primarily view as an
individual design problem. This decoupling may not hold in
full generality but seems at least reasonable in applications
where the time-scale of the collective mission is significantly
slower than the time-scale of the individual dynamics.

In such situations, we envision the use of the controlled
models primarily in the task of trajectory design (and related
collective optimization designs). This means that given an
initial condition and a desired collective motion for the group,
the simulated closed-loop trajectory of the model provides
a reference trajectory for each of the vehicles. In such a
scheme, each vehicle is equipped with an internal tracking
controller whose task is to resolve the discrepancies between
the reference and the actual trajectory. The natural place to
use a more detailed model is in the design of the tracking
controller of the individual vehicles. This hierarchical control
scheme is common in applications. It does not necessarily
imply that the design of the reference trajectories be offline
and centralized. In fact, the whole purpose of the present work
is to make the design of such reference trajectories adaptive
and decentralized. This means that the initial conditions of the
controller that produces the coordinated trajectory design will
be continuously refreshed but typically at a slower time scale
than the time scale of the individual tracking controllers. The
all-to-all communication setting of the present paper limits
application to a centralized path planning controller, but this
limitation will be overcome in a companion paper.

In the ocean sampling application described in [10], we
provide further details on the integration of the proposed
design in a sensor network of underwater vehicles. In this
application, the collective task is to maximize the information
intake. Solving this dynamic optimization problem over the
individual trajectories is a formidable and unrealistic task in
a changing environment that involves several distinct time
scales. We rather propose to restrict the optimization problem
over the few parameters that define simple collective shapes
like the ones proposed in this paper. We explicitly discuss
an example involving several vehicles tracing elliptical shapes
with prescribed relative spacing around the ellipses; this re-
quires some generalization of the circular shapes discussed in
the present paper. This setup has already been successfully

demonstrated in a major field experiment with a fleet of ten
autonomous underwater gliders in Monterey Bay, California,
throughout the month of August 2006. We note that the
all-to-all communication setting works best for this ocean
sampling application because the vehicles do not communicate
directly with one another but rather each communicates (albeit
asynchronously) with a common central computer.

Decoupling the collective trajectory design problem from
the individual reference tracking problem does not mean that
the setup of the present paper is sufficient to address all of the
many challenges of collective engineering applications. For
instance, the issue of avoiding collisions (between vehicles
or between vehicles and obstacles) is not addressed in the
present paper. For the described ocean sampling application,
the spatial scales are such that collision avoidance is not a
primary issue for the trajectory generation controller. Rather, it
is a design specification for the individual controllers. In other
applications, such as collective flight in narrow formations,
collision avoidance might be a primary issue that should be
addressed at the level of the coordinated trajectory design.
Control laws with this capability have been proposed in [1] and
it is of interest in future research to include collision avoidance
in the present setting.

There are several further stability and robustness issues that
also deserve to be addressed at the group level and not only
at the individual level. A concrete example in the context of
the ocean sampling application is the issue of sea currents. In
real ocean conditions, currents can be of the same magnitude
or greater than the propulsion capability of some underwater
vehicles. As a consequence, they should be taken into account
even in the simplified models used for the trajectory design.
Further collective measures, such as the string stability notion
considered in the framework of vehicle platooning [30], may
prove useful to assess the relevance of the proposed approach
to engineering applications.

IX. CONCLUSION

This paper proposes a design methodology to stabilize
isolated relative equilibria in a model of all-to-all coupled
identical particles moving in the plane at unit speed. The
stabilizing feedbacks derive from potentials that reach their
minimum in the desired configuration and possess no other
identified local minima. Lyapunov analysis of the closed-
loop system thus proves exponential stability of the desired
equilibria and suggests almost global convergence properties.

Stabilization of the phase variables, θk, is based on min-
imizing or maximizing successive momenta associated to
the N phasors, eiθk . The m-th moment is minimum when
particle phases balance modulo 2π/m and is maximum when
phases synchronize modulo 2π/m. For parallel formations,
maximizing the first moment results in synchronization of the
orientations and a spacing potential can be added to (locally)
correct the relative distances between particles. For circular
formations, a spacing potential is proposed that reaches its
minimum when all particles orbit the same point. This spacing
potential is combined with the phase potentials in order to
stabilize symmetric pattern circular configurations. The last
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section of the paper proposes a low-order parametrized family
of stabilizable collectives that can be combined to solve path-
planning or optimization problems at the group level.

The results of the paper rest on two idealistic assumptions:
all-to-all communication and identical individuals. The as-
sumption of all-to-all communication is completely relaxed in
a companion paper [19] where we extend the present results
to restricted communication topologies. The assumption of
identical individuals is fundamental to the symmetry properties
of the closed-loop vector field, but the exponential stability
of isolated relative equilibria implies some robustness of the
corresponding collective motions to individual variations. It is
of interest to study in future work how the ideally engineered
models considered in this paper may help in capturing gross
dynamical properties of more realistic simulated multi-agent
models or empirical observations of animal groups.
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