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Abstract: We propose a generalizable framework that uses tools of nonlinear dynamics to
rigorously connect model-based investigation of the mechanisms of animal group decision-
making dynamics to systematic, bio-inspired design of coordinated control of multi-agent
systems. We focus on the design of networked multi-agent system dynamics that inherit the
remarkable features of value-sensitive decision-making observed in house-hunting honeybees.
These features include robustness and adaptability in decision-making, all of which are critical
for performance in complex, changing environments.
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1. INTRODUCTION

A fundamental task for many multi-agent system networks
is successful collective decision-making among alternatives
using information distributed across the network. Groups
of individual agents, in applications including transporta-
tion, mobile-sensing, power and synthetic biological net-
works, are often required to make a single choice among
alternatives, such as choosing which option is true, which
action to take or direction to follow, or when something in
the environment or system has changed.

For purposes of designing distributed multi-agent decision-
making, we seek to leverage mechanisms used by animal
groups whose survival relies on successful collective deci-
sions among alternatives. House-hunting honeybees (See-
ley and Buhrman, 2001), schooling fish (Couzin et al.,
2011), and migratory birds (Eikenaar et al., 2014) make ef-
ficient decisions despite disturbances or significant changes
in their environment. They employ decentralized strategies
and face limitations on sensing, communication, and com-
putation (Sumpter (2010), Krause and Ruxton (2002)),
yet they still perform with speed, accuracy, robustness,
and adaptability (Parrish and Edelstein-Keshet, 1999).

Typical mechanisms used to study collective animal be-
havior depend on the animals’ social interactions and on
their perceptions of their external environment. A rigor-
ous understanding of these dependencies makes possible
the translation of the mechanisms into a systematic bio-
inspired design methodology for use in engineered net-
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works. This remains a challenge, however, in part because
most studies of collective animal behavior are empirically
based or rely on mean-field models.

To address this challenge, we present a generalizable
agent-based dynamic model of distributed decision-making
between two alternatives. In this type of decision-making,
the pitchfork bifurcation is ubiquitous (Leonard, 2014);
it appears, for example, in the decision-making dynamics
of house-hunting honeybees and schooling golden shiners
selecting between food sources. Our approach is to derive
the agent-based model so that it too exhibits the pitchfork
bifurcation. This allows the animal group dynamics and
the multi-agent dynamics to be rigorously connected by
mapping to the normal form of the pitchfork bifurcation.

The major contributions of this work are as follows.
First, we present a generalizable agent-based model for
bio-inspired collective decision-making dynamics and use
model reduction and asymptotic expansion to show how
the model captures the adaptive and robust features of
house-hunting honeybee decision-making dynamics. Re-
markably, honeybees reliably select the highest value nest
site alternative, and in the case of alternatives of equal
value, they quickly make an arbitrary choice if the value
is sufficiently high. These honeybee dynamics have been
studied in Seeley and Buhrman (2001), Seeley et al. (2012),
and Pais et al. (2013), and leveraged in Reina et al. (2015).

Second, we present for this model an investigation of
how the value of the alternatives, individual preferences,
and interaction topology influence the decision-making
dynamics. This is motivated by the problem of designing
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collective decision-making dynamics, as these parameters
could serve as control parameters in engineered systems.

In Section 2 the agent-based decision-making dynamic
model is proposed. Section 3 describes the dynamics of
house-hunting honeybees, highlighting the adaptability
through value-sensitive decision-making. In Section 4 a
method for reducing the model to a low-dimensional,
attractive manifold is presented. The reduced model is
used in Section 5 to show how the model recovers the value-
sensitivity of the honeybee dynamics, and brief results
show the influence of other system parameters.

2. AGENT-BASED DECISION-MAKING MODEL

The proposed model is a specialization of the Hopfield
network dynamics (Hopfield (1982), Hopfield (1984)). The
model provides a generalizable network decision-making
dynamic for a set ofN interconnected agents and by design
it exhibits a pitchfork bifurcation. To describe decision-
making between two alternatives A and B, let xi ∈ R
be the state of agent i, representing its opinion, with
i ∈ {1, ..., N}. Agent i is said to favor alternative A (B) if
xi > 0 (< 0), with the strength of agent i’s opinion given
by |xi|. If xi = 0, agent i is undecided or uncommitted.

The network interconnections define which agents can
measure the state of which other agents, and this is
encoded using a network adjacency matrix A ∈ RN×N .
Each aij ≥ 0 for i, j ∈ {1, ..., N} and i 6= j gives the weight
that agent i puts on its measurement of agent j. Then
aij > 0 implies that j is a neighbor of i. We let aii = 0 for
all i and D ∈ RN×N be a diagonal matrix with diagonal

entries di =
∑N
j=1 aij . L = D−A is the Laplacian matrix

of the graph associated with the interaction network.

We define the change in opinion of each agent over time as
a function of the agent’s current state, the state of their
neighbors and a possible external stimulus βi:

ẋi = −dixi +

N∑
j=1

uaijS(xj) + βi. (1)

Each βi ∈ {βA, 0−βB}, βA, βB ∈ R+ describes the external
stimulus received by each agent i, and can also be thought
of as the agent’s preference among alternatives. βi = βA
means agent i has a preference for alternative A, βi = −βB
means agent i has a preference for alternative B, and
βi = 0 means agent i has no preference. u ≥ 0 is a non-
negative control parameter and S : R → R is a smooth
sigmoidal function that satisfies the following conditions:
S′(z) > 0 ∀z ∈ R (monotone); S(z) belongs to sector (0, 1];
and sgn S′′(z) = −sgn(z), where (·)′ denotes the derivative
with respect to the argument of the function.

The term uS(xj) can be interpreted as the opinion of agent
j as perceived by agent i. S(x) is a saturating function,
that reduces the influence of larger opinions. The control
parameter u determines the function scaling, so u can be
thought of as the social effort; larger values of u mean a
higher importance is placed on the opinions of others.

Let x = (x1, . . . , xN )T , β = (β1, . . . , βN )T and S(x) ∈ RN
be a vector with entries S(xi). Then (1) can be written in
vector form:

ẋ = −Dx+ uAS(x) + β. (2)

To see that these dynamics exhibit a pitchfork bifurca-
tion, let the interconnection graph be fixed and strongly
connected. Then rank(L) = N − 1 and L1N = 0, where
1N is the N -column vector with unitary entries. L has a
zero eigenvalue with corresponding eigenvector x = ζ1N ,
ζ ∈ R, and every other eigenvalue has positive real part.
Observe that the linearization of (2) at x = 0 for u = 1 and
β = 0 is the linear consensus dynamics ẋ = −Lx, which
converges to the consensus x = ζ1N . This implies the
possibility of a bifurcation with center manifold tangent to
the consensus manifold (Guckenheimer and Holmes, 2002,
Theorem 3.2.1). By odd symmetry of (1) for β = 0, this
will generically be a pitchfork (Golubitsky and Schaeffer,
1985, Theorem VI.5.1).

This is illustrated in Theorem 1 and Figure 1 for an all-
to-all network and β = 0:

ẋi = −(N − 1)xi +
N∑

j=1,j 6=i
uS(xj). (3)

Theorem 1. The following statements hold for the stability
of invariant sets of dynamics (3):

(i) The consensus manifold is globally exponentially sta-
ble for each u ∈ R ≥ 0;

(ii) x = 0 is globally exponentially stable for u ∈ [0, 1)
and globally asymptotically stable for u = u∗ := 1;

(iii) x = 0 is unstable and there exist two stable equilib-
rium points on the consensus manifold for u > 1.

Proof. Beginning with (i); consider a Lyapunov function

Vij(x) =
(xi−xj)

2

2 . It follows that

V̇ij(x) = −(N − 1)(xi − xj)(xi − xj + u(S(xi)− S(xj)))

< −(N − 1)(xi − xj)2 = −2(N − 1)Vij ,

for all xi 6= xj . Therefore, for V (x) =
∑n
i=1

∑n
j=1 Vij(x),

V̇ (x) < −2(N − 1)V (x),

for all x 6= ζ1N , ζ ∈ R. V̇ (x) = 0 for xi = xj = ζ, so
by LaSalle’s invariance principle, the consensus manifold
is globally exponentially stable.

Using (i), it suffices to study dynamics (3) on the consensus

manifold, where, for y = 1
N

∑N
i=1 xi, they reduce to the

scalar dynamics

ẏ = −(N − 1)y + u(N − 1)S(y).

(ii) and (iii) follow by inspection of these dynamics. �

The pitchfork remains for β 6= 0 when the symmetry of
the system is preserved, i.e., when βA = −βB and the
number of agents with preference A is equal to the number
of agents with preference B. Proof of this, extension to
more general cases, and results for the non-symmetric case
rely on singularity theory (see Golubitsky and Schaeffer
(1985)), and these will be presented in later work. Asym-
metry in the system leads to an unfolding of the pitchfork
bifurcation, and this unfolding imparts decision-making
dynamics organized by the pitchfork and the robustness
seen in honeybee decision-making.

3. HOUSE HUNTING HONEYBEES AND
VALUE-SENSITIVE DECISION-MAKING

When a honeybee colony grows too large for its hive,
part of the colony must leave to find a new nest site.
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Fig. 1. For u = 1, dynamics (3) exhibit a pitchfork bifur-
cation at x = 0. The steady-state branches emerg-
ing at the singularity lie on the consensus manifold
{xi = xj |i, j ∈ {1, ..., N}} shown in gray. Branches of
stable and unstable solutions are shown as solid and
dashed lines, respectively.

The new site must be of high quality, in order for the
colony to survive the next winter, and the choice must be
made quickly due to limited food supply. The departing
bees wait in a swarm while scout bees search out and
assess potential nest sites. Each scout returns to the swarm
repeatedly to advertise and recruit others to its candidate
site. A collective decision by the swarm for one of the
alternative sites is made by a quorum.

The value of a site is related to its volume, height above
the ground, and the size and location of its entrance cavity.
It has been shown that honeybee swarms quickly and
accurately choose the highest-value site among alterna-
tives based on these criteria (Seeley and Buhrman, 2001).
The adaptability and robustness of this process is one of
the features we seek to capture with the proposed agent-
based model. Notably, the honeybees efficiently choose one
of the sites when they are of equal or near-equal value
(Seeley et al., 2012). The decision is sensitive to both the
relative and absolute value of the available sites (Pais et al.,
2013), and thus the process is referred to as value-sensitive
decision-making. Sensitivity to absolute value makes the
honeybees adaptive to environmental change: if two equal
or near-equal sites have high value, the honeybees will
arbitrarily choose one with little effort from the group.
However, if they have low value, the honeybees will refrain
from choosing either, and will eventually choose one of
them after significant group effort.

The mechanisms that explain the value-sensitive decision-
making have been extensively studied in (Pais et al.,
2013), using the mean-field model presented in (Seeley
et al., 2012), which is a well mixed population model. The
mean-field model exhibits a pitchfork bifurcation in the
case of equal-value alternatives, which is critical to the
remarkable decision-making behavior of the honeybees.
However, we cannot use the mean-field model to design
distributed control strategies or to examine the influence
on the dynamics of network topology or distribution of
preferences across the group. Our approach instead is to do
this with the generalizable agent-based model (2). Because
the agent-based model (2) exhibits a pitchfork bifurcation,
it can be rigorously connected to the mean-field model
and its results. Then, we can examine the value-sensitive
decision-making dynamics of the agent-based model in
terms of distributed properties of the system, and we

can use it for design of adaptive and robust multi-agent
network decision-making.

In the decision-making process honeybees are known to
use two communication mechanisms: the “waggle dance”
for recruitment and the “stop-signal” for cross-inhibition.
Seeley et al. (2012) showed that the stop-signal is used to
inhibit the dancing and recruitment of bees for competing
sites, allowing the bees to break a deadlock between near-
equal alternatives. They derived a model of the mean-
field population-level dynamics, assuming a large total
bee population N . The model describes the evolution of

three population fractions: yA(t) = NA(t)
N , yB(t) = NB(t)

N ,

and yU (t) = NU (t)
N , where NA, NB, and NU are the

sub-populations of bees committed to sites A, B and
uncommitted bees respectively. Because NA+NB +NU =
N and therefore yA + yB + yU = 1, it suffices to study the
evolution of the two committed populations only:

dyA
dt

= γAyU − yA(αA − ρAyU + σByB)

dyB
dt

= γByU − yB(αB − ρByU + σAyA). (4)

Here γi is the rate of scouting discovery and commitment,
αi is the rate of spontaneous abandonment, ρi is the rate
of recruitment and σi is the rate of stop-signalling. It is
assumed that γi = ρi = νi and αi = 1

νi
where νi is the

assessed value of nest site i. Also, σi = σ, and so is equal
for all sub-populations. A quorum decision is reached when
yA or yB crosses some threshold ω ∈ (0.5, 1].

In the equal-alternative case (νA = νB = ν), there exists

a critical value of stop signalling strength σ∗ = 4ν3

(ν2−1)2 . If

σ < σ∗ the system has one globally stable equilibrium at
yA = yB, i.e. deadlock or no decision. For σ > σ∗ the
deadlock solution is unstable and there are two stable
equilibria, each corresponding to a decision for one of
the two alternatives. This is a pitchfork bifurcation with
bifurcation parameter σ and bifurcation value σ = σ∗.
The critical value of σ is inversely dependent on the value
ν of the two alternatives, which allows the bees to adapt
to their environment. Suppose that the bees use a fixed
rate of stop-signalling σ. Then, when choosing between
two low-valued alternatives they will remain in deadlock,
presumably waiting for another nest site candidate to be
discovered. But if the two equal alternatives are of high
value, they will quickly choose one arbitrarily. There is
also the possibility that the bees could increase the rate of
stop-signalling over time, when it becomes apparent that
no better alternatives will appear.

Figure 2 shows the range of values ν and stop-signalling
rate σ for which one solution (deadlock) and three so-
lutions (two stable decisions and one unstable deadlock)
exist, as well as the two-dimensional simplexes on which
the dynamics evolve. The curve between regions describes
the inverse relationship between the bifurcation point σ∗

and the value ν.

To explore these dynamics for equal alternatives in the
agent-based model, we define a mapping of (2) using a
time scale change τ = νt, which gives

dx

dτ
= −1

ν
Dx+ µAS(x) + ν (5)
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Fig. 2. From Pais et al. (2013). Value-sensitive decision-
making for alternatives with equal value ν in mean-
field model (4). The simplex on the left, representative
of the grey area, shows convergence to the single
stable equilibrium (black circle) at deadlock. The
simplex on the right, representative of the white
area, shows convergence to two stable equilibria at
a decision for A or B. The curve that separates the
region describes the inverse relationship of σ∗ to ν.

where ν = (ν1, ..., νN )T , νi ∈ {ν,−ν, 0} such that ν =
√
β,

and µ = u
ν . This mapping will be used in Section 5 to

connect results of the agent-based model to the honeybee
mean-field model dynamics.

4. MODEL REDUCTION TO LOW-DIMENSIONAL,
ATTRACTIVE MANIFOLD.

Returning now to the agent-based model, for certain
classes of network graph it is possible to identify a globally-
attractive, low-dimensional manifold on which to reduce
the dynamics (1), and to perform analysis on the reduced
model. The dimensionality N of the system is treated
as a discrete parameter, allowing for the study of the
sensitivity of the dynamics to the sizes of the committed
and uncommitted populations.

Let n1 and n2 be the number of agents with preference
βi = βA = β̄1 and βi = −βB = β̄2 respectively, and
let n3 = N − n1 − n2 be the number of agents with no
preference (βi = 0 = β̄3). From Mesbahi and Egerstedt
(2010), a partition of vertices into cells C1, ..., Cr is said
to be equitable if each node in Ci has the same number
of neighbors in Cj for all i, j. Let Ik ⊂ {1, ..., N}, k ∈
{1, 2, 3} be the index set associated with each of the three
groups n1, n2, n3, such that Ik ⊂ {1, ..., N}, k ∈ {1, 2, 3}
defines an equitable partition. We can then define the
opinion dynamics of each agent i ∈ Ik, k ∈ {1, 2, 3} as

ẋi = −d̄kxi+u
∑
j∈Ik

S(xj)+u
∑

m∈{1,2,3}
m �=k

∑
j∈Im

ākmS(xj)+β̄k,

(6)
for i ∈ Ik, where d̄k is the in-degree of each agent in group
k, and ākm is the number of neighbors that each node in
group k has in group m (including m = k).

Fig. 3. Model reduction for (2) defined on an all-to-all
graph with N = 10 nodes (left) reduces to a 3-
dimensional system described by the graph on the
right. Agents are grouped by the information value
(middle), and opinion within each group converges
to consensus according to dynamics (7). Blue agents
have βi = 1, pink agents βi = −1 and green agents
βi = 0. In the reduced model, the agents have self
loops, which represent the influence of the others in
the same group.

The following theorem allows the analysis of (6) to be
restricted to the subspace where each agent in the same
group has the same opinion. The central idea of the
theorem is summarized in Figure 3.

Theorem 2. Every trajectory of the opinion dynamics (6)
converges exponentially to the three-dimensional manifold

E = {x ∈ RN |xi = xj , ∀i, j ∈ Ik, k = 1, 2, 3}.
The dynamics on E are

ẏ1 = −d̄1y1 + u(n1 − 1)S(y1) + u
(
n2ā12S(y2)

+ n3ā13S(y3)
)
− βA

ẏ2 = −d̄2y2 + u(n2 − 1)S(y2) + u
(
n1ā21S(y1) (7)

+ n3ā23S(y3)
)
+ βB

ẏ3 = −d̄3y3 + u(n3 − 1)S(y3) + u
(
n1ā31S(y1)

+ n2ā32S(y2)
)
.

Proof. Consider a Lyapunov function V (x) =
∑3

k=1 Vk(x),
where

Vk(x) =
1

2

∑
i∈Ik

∑
j∈Ik

(xi − xj)
2, for k ∈ {1, 2, 3}.

If follows that

V̇k(x) =
∑
i∈Ik

∑
j∈Ik

(xi − xj)(ẋi − ẋj)

=
∑
i∈Ik

∑
j∈Ik

(
− d̄k(xi − xj)

2 − u(xi − xj)(S(xi)− S(xj))
)

≤ −d̄kVk(x),

so V̇ (x) ≤ −d̄kV (x). By LaSalle’s invariance principle,
every trajectory of (6) converges exponentially to the

largest invariant set in V̇ (x) = 0, which is the manifold E .
Let yk = xi, for any i ∈ Ik, k ∈ {1, 2, 3}. Then dynamics
(6) reduce immediately to (7). �

5. RECOVERING VALUE-SENSITIVITY AND THE
INFLUENCE OF SYSTEM PARAMETERS

A vector field F : RN → RN is Z2-symmetric when it
commutes with the linear transformation

γ =




0n×n −In 0n×(N−2n)

−In 0n×n 0n×(N−2n)

0(N−2n)×n 0(N−2n)×n −IN−2n


 ,



for some even 2n < N . Thus, the opinion dynamics (2) are
Z2-symmetric if βA = −βB = β and n1 = n2 = n. That is,
reversing the sign of βA and βB is equivalent to applying
the transformation x 7→ −x. Considering (7) under Z2

symmetry, an approximation û∗ to the bifurcation point
u∗ can be found.

5.1 Approximating the bifurcation point for a Z2 symmetric,
all-to-all network.

Under the above assumptions, and with n3 = N − 2n
uncommitted agents, dynamics (7) reduce to

ẏ1 = −(N − 1)y1 + u
(
(n− 1)S(y1)

+ nS(y2) + n3S(y3)
)

+ β

ẏ2 = −(N − 1)y2 + u
(
nS(y1) (8)

+ (n− 1)S(y2) + n3S(y3)
)
− β

ẏ3 = −(N − 1)y3 + u
(
nS(y1)

+ nS(y2) + (n3 − 1)S(y3)
)
.

Then y∗ = (y∗,−y∗, 0) is always an equilibrium, where y∗

is the solution to

(N − 1)y∗ + uS(y∗)− β = 0. (9)

When β = 0, the deadlock state y = 0 is an equilibrium
of (8) for all u ∈ R. For β 6= 0, under Z2-symmetry,
the implicit function theorem implies that the deadlock
manifold perturbs smoothly and that the equilibrium point
y∗ = (y∗,−y∗, 0) where y∗ = y∗(u, β), such that y∗(u, 0) ≡
0, depends smoothly on u and β. Then, an approximation
to y∗ can be found.

For illustration, let S(·) = tanh(·) and begin with the
Taylor series expansion of y∗(u, β) with respect to β:

y∗(u, β) = βyI + β2yII + β3yIII + β4yIV + O(β5).

Then substitute y∗(u, β) into (9) and differentiate with
respect to β to obtain

(N − 1)y∗′(u, β) + usech2
(
y∗(u, β)

)
y∗′(u, β)− 1 = 0.

Substituting in β = 0 yields yI = 1
N−1+u . Proceeding

similarly for higher orders gives yII = yIV = 0 and

yIII =
u

3(N − 1 + u)4
.

Therefore

y∗ =
1

N − 1 + u
β +

u

3(N − 1 + u)4
β3 + O(β5).

At a bifurcation point u∗, the Jacobian of (8) computed
at y∗ drops rank. The expression for the Jacobian, too
lengthy to reproduce here, is a function of N,n3 and y∗.

Recall that y∗ is also a function of u∗, so by setting
the determinant of the Jacobian equal to zero we get a
transcendental equation in u∗ that can be solved numer-
ically for u∗. To approximate u∗ begin with the Taylor
series expansion u∗(β) = 1 + βu∗1 + β2u∗2 + β3u∗3 + O(β4).
Proceeding as for y∗ above, leads to the following O(β4)
approximation to u∗:

û∗ = 1 +
(1 + 3N3)2(N − n3)

9N9
β2. (10)

The approximation (10) of bifurcation point u∗ is a func-
tion of value β, total group size N and the size of the un-
committed group n3; it explicitly describes the sensitivity
of the bifurcation to group size and preference strength.

Fig. 4. Value-sensitive decision-making for alternatives
with equal value ν in agent-based model (5). The
curve shows how µ∗ depends inversely on ν, recovering
the value sensitivity of the honeybee mean-field model
(4); compare with Figure 2. The blue line shows the
approximation µ∗ (11) while the red crosses show
µ∗ computed numerically using continuation software.
The group sizes are n = n3 = 30.

5.2 Recovering the value-sensitivity of honeybee dynamics

To recover the value-sensitivity of the honeybee mean-field
model in the agent-based model dynamics, we consider the
dynamics in the form (5) for equal alternatives, where the
bifurcation parameter is µ = u

ν with ν =
√
β. Applying

the approximation (10) for u∗ gives the approximation to
the bifurcation point µ∗ for dynamics (5) as

µ̂∗ =
1

ν
+

(1 + 3N3)2(N − n3)

9N9
ν3 + O(ν7). (11)

Figure 4 shows how well µ̂∗ approximates µ∗ com-
puted using MatCont continuation software (Govaerts
and Kuznetsov, 2015). As in the case of the honey-
bee mean-field model (see Figure 2), the bifurcation
point in the agent-based model depends inversely on
the value of the alternatives ν (see (11) and Figure 4).
Thus, our agent-based decision-making model recovers the
value-sensitive decision-making of the honeybee mean-field
model. This value-sensitivity allows for efficient and adapt-
able decision-making dynamics.

The dependence of µ∗ on ν is demonstrated further in
Fig. 5a, where bifurcation diagrams for the agent-based
model are given for a range of value ν. We observe that the
bifurcation point decreases as ν is increased. There is also
an increase in the sharpness of the bifurcation branches
as ν is increased; this corresponds to a faster increase in
average opinion.

5.3 Influence of system parameters

An advantage of the agent-based framework is that it
makes it possible to study sensitivity of the dynamics to
system parameters that vary over the group. This will
be explored in more detail in later work, but some brief
results are presented here. Fig. 5b - Fig. 5c show the same
relationship for µ̂∗ in terms of ν as shown in Fig. 4, but
with different numbers of agents and different subgroup
arrangements. The effects in this case are small, but there
are still some clear trends.



(a) (b) (c)

Fig. 5. (a) Bifurcation diagrams for agent-based model (5) with n3 = 20, N = 60 and a range of ν, showing the
dependence of the bifurcation point and diagram sharpness on ν. (b)-(c) The approximation to the bifurcation
point µ̂∗ as a function of ν for different group sizes. (b) shows increasing N with fixed n3 = N

3 , and (c) shows
increasing n3 for fixed N = 7.

Fig. 5b shows how µ̂∗ decreases with increasing total group
size N , implying that less social effort is required to make
a decision with a larger group. Also, there is a limiting
value of µ∗ = 1

ν that is approached quickly for N > 30.
From a design perspective, this shows that if the aim is to
minimze the required social effort for a group of agents,
there is a diminishing return on increasing group size.

Fig. 5c shows that the amount of social effort also decreases
when the number of uncommitted agents n3 increases.
Couzin et al. (2011) have shown that the number of
uninformed agents plays an important role in the decision
dynamics of schooling fish, so this result suggests that the
agent-based model could also be mapped these dynamics.

6. CONCLUSION

The agent-based decision-making model introduced in this
paper connects animal group and multi-agent network
dynamics. It provides a generalizable framework to enforce
the salient properties of animal collective decision-making
(robustness, adaptability) in engineered network systems.
In the simplest case of all-to-all communication, it captures
the value-sensitivity of decision making in house-hunting
honeybees. Preliminary results suggest that it may capture
democratic consensus dynamics in schooling fish. Future
work will rely on singularity theory to develop a principled
sensitivity analysis of the proposed model, both in the
all-to-all and balanced interconnection cases. Other exten-
sions include the design of suitable evolutionary dynamics
for the different control parameters.
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