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Abstract— We study distributed cooperative decision-making
under the explore-exploit tradeoff in the multiarmed bandit
(MAB) problem. We extend state-of-the-art frequentist and
Bayesian algorithms for single-agent MAB problems to cooper-
ative distributed algorithms for multi-agent MAB problems in
which agents communicate according to a fixed network graph.
We rely on a running consensus algorithm for each agent’s
estimation of mean rewards from its own rewards and the
estimated rewards of its neighbors. We prove the performance
of these algorithms and show that they asymptotically recover
the performance of a centralized agent. Further, we rigorously
characterize the influence of the communication graph struc-
ture on the decision-making performance of the group.

I. INTRODUCTION

Cooperative decision-making under uncertainty is ubiqui-
tous in natural systems as well as in engineering networks.
A fundamental feature of decision-making under uncertainty
is the explore-exploit tradeoff: the decision-making agent
needs to learn the unknown system parameters (exploration),
while maximizing its parameter-dependent decision-making
objective (exploitation).

Multiarmed bandit (MAB) problems are canonical formu-
lations of the explore-exploit tradeoff. In a stochastic MAB
problem a set of options (arms) is given. A stochastic reward
with an unknown mean is associated with each option. A
player can pick only one option at a time, and the player’s
objective is to maximize the cumulative expected reward over
a sequence of choices. In an MAB problem, the player needs
to balance the tradeoff between learning the mean reward at
each arm (exploration), and picking the arm with maximum
mean reward (exploitation).

MAB problems are pervasive across a variety of scientific
communities and have found application in diverse areas
including control and robotics [1], [2], ecology [3], [4], and
communications [5]. Despite the prevalence of the MAB
problem, the research on MAB problems has primarily
focused on policies for a single agent. The increasing im-
portance of networked systems warrants the development
of distributed algorithms for multiple communicating agents
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faced with MAB problems. In this paper, we build upon pre-
vious work by extending two popular single-agent algorithms
for the stochastic MAB problem to the distributed multiple
agent setting and analyze decision-making performance as a
function of the network structure.

The MAB problem has been extensively studied (see [6]
for a survey). In their seminal work, Lai and Robbins [7]
established a logarithmic lower bound on the expected num-
ber of times a sub-optimal arm needs to be selected by an
optimal policy in a frequentist setting. In another seminal
work, Auer et al. [8] developed the upper confidence bound
(UCB) algorithm for the stochastic MAB problem, which
achieves the lower bound in [7] uniformly in time.

The MAB problem has also been studied in the Bayesian
setting. Kaufmann et al. [9] proposed the Bayes-UCB algo-
rithm and showed that it achieves Lai-Robbins’ lower bound
for Bernoulli rewards and uninformative priors. Reverdy et
al. [10] developed and analyzed the upper credible limit
(UCL) algorithm for correlated multiarmed bandits by ap-
plying the approach of [9] to the case of Gaussian rewards.

The classical single-agent MAB problem was extended by
Anantharam et al. [11] to the setting of a single-agent with
multiple plays. Recently, researchers [12], [13], [5] have
studied the decentralized multi-player MAB problem with no
communication among agents. Kar et al. [14] investigated the
multi-agent MAB problem in a leader-follower setting. Here,
we use a running consensus algorithm [15] for assimilation
of information. Running consensus, also known as dynamic
consensus, has been used to study related collective decision-
making models in social networks [16].

In the present paper we study the distributed cooperative
MAB problem in which agents are faced with a stochastic
MAB problem and communicate their information with their
neighbors in an undirected and connected communication
graph. We use a set of running consensus algorithms for
cooperative estimation of the mean reward at each arm, and
we design an arm selection heuristic that leads to an order-
optimal performance for the group. The major contributions
of this paper are as follows.

First, we propose and thoroughly analyze the coop-UCB2
and coop-UCL algorithms. We derive bounds on decision-
making performance for the group and characterize the
influence of the network structure on performance. To predict
nodal performance, we propose a measure of nodal “explore-
exploit centrality,” which depends on the location of the node
in the graph.

Second, we demonstrate that the ordering of nodes by
performance predicted by our explore-exploit centrality mea-
sure matches the order obtained using numerical simulations.



We also show that the incorporation of priors that are well-
informative about the correlation structure markedly improve
performance.

The remainder of the paper is organized as follows. In
Section II we introduce the cooperative MAB problem. In
Section III we recall a cooperative estimation algorithm. We
review the coop-UCB algorithm in Section IV, and propose
and analyze the improved coop-UCB2 and new coop-UCL
algorithms. We illustrate our analytic results with numerical
examples in Section VI. We conclude in Section VII.

II. COOPERATIVE MULTIARMED BANDIT PROBLEM

Consider an MAB problem with N arms and M decision-
making agents. The reward associated with arm i ∈
{1, . . . , N} is a random variable with an unknown mean mi.
Let the communication topology of agents be modeled by an
undirected graph G in which each node represents an agent
and edges represent the communication between agents. Let
A ∈ RM×M be the adjacency matrix associated with G and
let L ∈ RM×M be the corresponding Laplacian matrix. We
assume that the graph G is connected, i.e., there exists a path
between each pair of nodes.

Let the k-th agent choose arm ik(t) at time t ∈ {1, . . . , T}
and receive a reward rk(t). The objective of each decision-
maker k is to choose using its local information a sequence
of arms {ik(t)}t∈{1,...,T} such that the total expected cumu-
lative reward

∑M
k=1

∑T
t=1mik(t) is maximized, where T is

the horizon length of the sequential allocation process.
For an MAB problem, the expected regret of agent k

at time t is defined by Rk(t) = mi∗ − mik(t), where
mi∗ = max{mi | i ∈ {1, . . . , N}}. The collective
objective of the M decision-makers can be equivalently
defined as minimizing the expected cumulative regret defined
by
∑M
k=1

∑T
t=1R

k(t) =
∑M
k=1

∑N
i=1 ∆iE[nki (T )], where

nki (T ) is the cumulative number of times arm i has been
chosen by agent k until time T and ∆i = mi∗ − mi is
the expected regret due to picking arm i instead of arm i∗.
It is known that the regret of any algorithm for an MAB
problem is asymptotically lower bounded by a logarithmic
function of the horizon length T [7], [11], i.e., no algorithm
can achieve an expected cumulative regret smaller than a
logarithmic function of horizon length as T →∞.

In this paper, we focus on Gaussian rewards, i.e., the
reward at arm i is sampled from a Gaussian distribution
with mean mi and variance σ2

s . We assume that the variance
σ2
s is known and is the same at each arm. In the context

of Gaussian rewards, the lower bound [11] on the expected
number of times a suboptimal arm i is selected by a fusion
center that has access to reward for each agent is

M∑
k=1

E[nki (T )] ≥
(

2σ2
s

∆2
i

+ o(1)

)
lnT. (1)

In the following, we will design policies that sample a
suboptimal arm i within a constant factor of the above bound.

III. COOPERATIVE ESTIMATION OF MEAN REWARDS

In this section we recall the algorithm for cooperative es-
timation of mean rewards proposed in our earlier work [17].

A. Cooperative Estimation Algorithm

For distributed cooperative estimation of the mean reward
at each arm i, we employ two running consensus algorithms
to estimate (i) total reward provided at the arm, and (ii) the
total number of times the arm has been sampled.

Let ŝki (t) and n̂ki (t) be agent k’s estimate of the total
reward provided at arm i per unit agent and the total number
of times arm i has been selected until time t per unit agent,
respectively. Using ŝki (t) and n̂ki (t) agent k can calculate
µ̂ki (t), the estimated empirical mean of arm i at time t as

µ̂ki (t) =
ŝki (t)

n̂ki (t)
. (2)

Let ik(t) be the arm sampled by agent k at time t and
let ξki (t) = 1(ik(t) = i). 1(·) is the indicator function,
here equal to 1 if ik(t) = i and 0 otherwise. For simplicity
of notation we define rki (t) as the realized reward at arm
i for agent k, which is a random variable sampled from
N (mi, σ

2
s), and the corresponding accumulated reward is

rk(t) = rki (t) · 1(ik(t) = i). Let P be a row stochastic
matrix given by

P = IM −
κ

dmax
L, (3)

where IM is the identity matrix of order M , κ ∈ (0, 1]
is a step size parameter [18], dmax = max{deg(k) | k ∈
{1, . . . ,M}}, and deg(k) is the degree of node k.

The estimates n̂ki (t) and ŝki (t)are updated locally using
running consensus [15] as follows:

n̂i(t) = P n̂i(t− 1) + Pξi(t), (4)
and ŝi(t) = P ŝi(t− 1) + P (ri(t) ◦ ξi(t)), (5)

where n̂i(t), ŝi(t), ξi(t), and ri(t) are vectors of n̂ki (t),
ŝki (t), ξki (t), and and rki (t), k ∈ {1, . . . ,M}, respectively,
and ◦ denotes element-wise multiplication (Hadamard prod-
uct).

B. Analysis of the Cooperative Estimation Algorithm

We now recall the performance of the estimation algorithm
defined by (2–5). Let ncent

i (t) ≡ 1
M

∑t
τ=1 1

>
Mξi(τ) be the

total number of times arm i has been selected per unit agent
until time t, and let scent

i (t) ≡ 1
M

∑t
τ=1 ξ

>
i (τ)ri(τ) be the

total reward provided at arm i per unit agent until time t.
Also, let λi denote the i-th largest eigenvalue of P , ui the
eigenvector corresponding to λi, udi the d-th entry of ui, and

εn =
√
M

M∑
p=2

|λp|
1− |λp|

. (6)

Note that λ1 = 1 and u1 = 1M/
√
M . Let us define

ν+sum
pj =

M∑
d=1

udpu
d
j1(ukpu

k
j ≥ 0)

and ν-sum
pj =

M∑
d=1

udpu
d
j1(ukpu

k
j ≤ 0).



We also define

apj(k) =


ν+sum
pj ukpu

k
j , if λpλj ≥ 0 & ukpu

k
j ≥ 0,

ν-sum
pj ukpu

k
j , if λpλj ≥ 0 & ukpu

k
j ≤ 0,

νmax
pj |ukpukj |, if λpλj < 0,

(7)

where νmax
pj = max {|ν-sum

pj |, ν+sum
pj }. Furthermore, let

εkc = M

M∑
p=1

M∑
j=2

|λpλj |
1− |λpλj |

apj(k). (8)

We note that both εn and εkc depend only on the topology
of the communication graph and are measures of distributed
cooperative estimation performance. We now recall the fol-
lowing results from [17].

Proposition 1 (Performance of cooperative estimation):
For the distributed estimation algorithm defined in (2–5),
the following statements hold

(i) the estimate n̂ki (t) satisfies

ncent
i (t)− εn ≤ n̂ki (t) ≤ ncent

i (t) + εn;

(ii) the following inequality holds for the estimate n̂ki (t)
and the sequence {ξji (τ)}τ∈{1,...,t}, j ∈ {1, . . . ,M}

t∑
τ=1

M∑
j=1

(
M∑
p=1

λt−τ+1
p ukpu

j
p

)2

ξji (τ) ≤ n̂ki (t) + εkc
M

.

Theorem 1 (Estimator Deviation Bounds): For the esti-
mates ŝki (t) and n̂ki (t) obtained using equations (4) and (5),
the following concentration inequality holds

P

(
ŝki (t)−min̂

k
i (t)(

1
M

(
n̂ki (t)+εkc

)) 1/2
>δ

)
<

⌈
ln (t+εn)

ln (1+η)

⌉
exp

(
−δ2

2σ2
s

G(η)

)
,

(9)
where δ > 0, η > 0, G(η) = (1 − η2

/
16), and εn and εkc

are defined in (6) and (8), respectively.
Proof: See [17].

IV. FREQUENTIST COOPERATIVE DECISION-MAKING

In this section, we first review the coop-UCB algorithm
proposed in our earlier work [17]. We then improve on this
algorithm with a new algorithm: coop-UCB2. Unlike coop-
UCB the improved algorithm does not require each agent to
know the global graph structure. Finally, we compute bounds
on the performance of the group for this algorithm as a
function of the graph structure.

A. The coop-UCB Algorithm
The coop-UCB algorithm is analogous to the UCB al-

gorithm [8], and uses a modified decision-making heuristic
that captures the effect of the additional information an agent
receives through communication with other agents as well as
the rate of information propagation through the network.

The coop-UCB algorithm is initialized by each agent
sampling each arm once and proceeds as follows. At time
t each agent k selects the arm with maximum Qki (t− 1) =
µ̂ki (t− 1) + Cki (t− 1), where

Cki (t− 1) = σs

√
2γ

G(η)
· n̂

k
i (t− 1) + εkc
Mn̂ki (t− 1)

· ln (t− 1)

n̂ki (t− 1)
, (10)

γ > 1, η ∈ (0, 4), and G(η) = 1 − η2
/

16 . Then, at each
time t, each agent k updates its cooperative estimate of the
mean reward at each arm using the distributed cooperative
estimation algorithm described in (2–5).

The coop-UCB provides a distributed, cooperative solution
to the MAB problem such that every agent in the network
achieves logarithmic regret. However, the heuristic Qki may
be overly restrictive in the sense that it requires the agent k to
know εkc , which depends on the global graph structure. Fur-
ther, agents with a relatively high εkc are essentially forced to
explore more while better positioned agents exploit, leading
to wide disparities in performance across some networks. We
will develop the coop-UCB2 algorithm that addresses these
issues in the next section.

B. The coop-UCB2 Algorithm

The coop-UCB2 algorithm is initialized by each agent
sampling each arm once and proceeds as follows. At time t
each agent k selects the arm with maximum Qki (t − 1) =
µ̂ki (t− 1) + Cki (t− 1), where

Cki (t− 1) = σs

√
2γ

G(η)
· n̂

k
i (t− 1) + f(t− 1)

Mn̂ki (t− 1)
· ln (t− 1)

n̂ki (t− 1)
,

(11)
f(t) is an increasing sublogarthmic function, γ > 1, η ∈
(0, 4), and G(η) = 1 − η2

/
16 . Then, at each time t, each

agent k updates its cooperative estimate of the mean reward
at each arm using the distributed cooperative estimation
algorithm described in (2–5). Note that the heuristic Qki
requires the agent k to know the total number of agents M ,
but not the global graph structure.

Theorem 2 (Regret of the coop-UCB2 Algorithm): For
the coop-UCB2 algorithm and the cooperative Gaussian
MAB problem, the number of times a suboptimal arm i is
selected by all agents until time T satisfies

M∑
k=1

E[nki (T )]≤ 2

M∑
k=1

(t†k−1) + max

{
M,

⌈
Mεn +

4σ2
sγ lnT

∆2
iG(η)

(
1 +

√
1 +

∆2
iMG(η)

2γσ2
s

f(T )

lnT

)⌉}
+

2M

ln (1+η)

(
1

(γ − 1)2
+
γ ln (1+εn)(1+η))

γ − 1
+ 1

)
,

where t†k = f−1(εkc ).
Proof: We proceed similarly to [8]. The number of selections
of a suboptimal arm i by all agents until time T is
M∑
k=1

nki (T ) ≤
M∑
k=1

T∑
t=N+1

1(Qki (t− 1) ≥ Qki∗(t− 1))+M

≤max{M,A}+

M∑
k=1

T−1∑
t=N

1(Qki (t) ≥ Qki∗(t),Mncent
i (t) ≥ A),

(12)

where A > 0 is a constant that will be chosen later.
At a given time t+ 1 an individual agent k will choose a

suboptimal arm only if Qki (t) ≥ Qki∗(t). For this condition



to be true at least one of the following three conditions must
hold:

µ̂ki∗(t) ≤ mi∗ − Cki∗(t) (13)

µ̂ki (t) ≥ mi + Cki (t) (14)

mi∗ < mi + 2Cki (t). (15)

We now bound the probability that (14) holds using
Theorem 1:

P
(

(14) holds | t ≥ t†k
)

= P

 ŝki (t)−min̂
k
i (t)√

1
M

(
n̂ki (t) + f(t)

)≥σs
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤ P

 ŝki (t)−min̂
k
i (t)√

1
M

(
n̂ki (t) + εkc

)≥σs
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

It also follows analogously that

P
(

(13) holds |t ≥ t†k
)
≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

We now examine the event (15).

mi∗ < mi + 2Cki (t)

=⇒ n̂ki (t)2 ∆2
iMG(η)

8σ2
s

− γn̂ki (t) ln(t)− γf(t) ln(t) < 0.

(16)

The quadratic equation (16) can be solved to find the roots,
and if n̂ki (t) is greater than the larger root the inequality will
never hold. Solving the quadratic equation (16), we obtain
that event (15) does not hold if

n̂ki (t) ≥ 4σ2
sγ ln(t)

∆2
iMG(η)

+

√( 4γσ2
s ln(t)

∆2
iMG(η)

)2

+
8σ2

sf(t)γ ln(t)

∆2
iMG(η)

=
4σ2

sγ ln t

∆2
iMG(η)

(
1 +

√
1 +

∆2
iMG(η)

2σ2
sγ

f(t)

ln t

)
.

Now, we set A =
⌈
Mεn +

4σ2
sγ lnT

∆2
iG(η)

(1 +√
1 +

∆2
iMG(η)

2γσ2
s

f(T )
lnT )

⌉
. It follows from monotonicity

of f(t) and ln(t) and statement (i) of Proposition 1 that
event (15) does not hold if Mncent

i (t) > A.

Therefore, from (12) we see that

M∑
k=1

E
[
nki (T )

]
≤ max{M,A}+ 2

M∑
k=1

t†k−1∑
t=1

1

+
2

ln (1+η)

M∑
k=1

T∑
t=t†k

(
ln (t)

tγ
+

ln ((1+εn)(1+η))

tγ

)

≤ max{M,A}+ 2

M∑
k=1

(t†k − 1)

+
2M

ln (1+η)

T∑
t=1

(
ln (t)

tγ
+

ln ((1+εn)(1+η))

tγ

)

≤ max{M,A}+2

M∑
k=1

(t†k−1) +
2M

ln (1+η)

( 1

(γ − 1)2

+
γ ln (1+εn)(1+η))

γ − 1
+ 1
)
,

completing the theorem. �
Remark 1 (Asymptotic Regret for coop-UCB2): In the

limit t→ +∞, f(t)
ln(t) → 0+, η → 0, and

M∑
k=1

E[nki (T )] ≤
(8σ2

sγ

∆2
i

+ o(1)
)

lnT,

and we recover the upper bound on regret for a centralized
agent as given in (1) within a constant factor. �

Remark 2 (Performance of Individual Agents):
Theorem 2 provides bounds on the performance of
the group as a function of the graph structure, and the
logarithmic portion of the bound is independent of agent
location. However, the constant factor is dependent on
the agent’s position in the network since it depends on
εkc . In this sense, εkc can be thought of as a measure of
“explore-exploit centrality,” which indicates that agents with
a higher εkc will contribute more to the group’s regret. �

V. BAYESIAN COOPERATIVE DECISION-MAKING

In this section, we extend the coop-UCB2 algorithm to a
Bayesian setting and develop the coop-UCL algorithm. The
Bayesian setting allows us to model correlated bandits and
incorporate a priori knowledge about reward and correlation
structure in the Bayesian prior. We first recall the UCL algo-
rithm proposed in [10], [9] and extend it to the cooperative
setting. We then analyze the performance of this algorithm
for an uninformative prior.

A. The UCL Algorithm
The UCL algorithm developed in [10] applies the approach

of Bayes-UCB [9] to correlated Gaussian bandits. The UCL
algorithm at each time computes the posterior distribution
of mean rewards at each option and then computes the
(1−1/Kta) upper-credible-limit for each arm, i.e., an upper
bound that holds with probability (1− 1/Kta) where K =√

2πe, γ > 1, and a = 4/3γ. The algorithm chooses the arm
with highest upper credible limit. For Gaussian rewards, the
(1− 1/Kta) upper-credible-limit can be written as

Qi(t) = νi(t) + σi(t)Φ
−1(1− 1/Kta), (17)



where νi(t) is the posterior mean and σi(t) the posterior
standard deviation of mean reward at time t. Φ−1(·) is the
standard Gaussian inverse cumulative distribution function.

Let the prior on rewards from each arm be multivariate
Gaussian with mean vector ν0 ∈ RN and covariance matrix
Σ0 ∈ RN×N . Then, the posterior mean and covariance of
mean reward at time t can be computed using the following
recursive update rule [19]:

q(t) =
r(t)φ(t)

σ2
s

+ Λ(t− 1)ν(t− 1)

Λ(t) =
φ(t)>φ(t)

σ2
s

+ Λ(t− 1), Σ(t) = Λ(t)−1

ν(t) = Σ(t)q(t),

(18)

where φ(t) and ν(t) are column vectors of φi(t) and νi(t),
respectively, and φi(t) is the indicator function of selecting
arm i at time t. The update equation (18) can be reduced to

ν(t) = (Λ0 + Γ(t)−1)−1(Γ(t)−1µ(t) + Λ0ν0)

Λ(t) = Λ0 + Γ(t)−1, Σ(t) = (Λ(t))−1,
(19)

where Λ0 = Σ−1
0 , Γ(t) is a diagonal matrix with entries

σ2
s

ni(t)
, and µ(t) is the vector of µi(t), which is the empirical

mean of rewards from arm i ∈ {1, . . . , N} until time t. Note
that diagonal entries of Σ(t) are (σi(t))

2, i ∈ {1, . . . , N}.

B. The coop-UCL Algorithm

We now extend the UCL algorithm to the distributed
cooperative setting and propose the coop-UCL algorithm. In
the coop-UCL algorithm, each agent first computes an ap-
proximate posterior distribution of mean rewards conditioned
on rewards obtained by all the agents. To this end, each
agent uses the approximate frequentist estimator µ̂ki from
Section III in update equation (19).

Let the prior of agent k be a multivariate Gaussian
distribution with mean νk0 and covariance Σk0 . Let Σ̂k(t)
and ν̂k(t) be the estimated covariance matrix and posterior
mean at time t, respectively. Then, the coop-UCL algorithm
performs cooperative approximate Bayesian estimation:

ν̂k(t) = (Λk0 + Γk(t)−1)−1(Γk(t)−1µ̂k(t) + Λk0ν
k
0 )

Λ̂k(t) = Λk0 + Γk(t)−1, Σ̂k(t) = (Λ̂k(t))−1,
(20)

where Γk(t) is a diagonal matrix with diagonal entries
σ2
s/Mn̂ki (t), i ∈ {1, . . . , N}, and Λk0 = (Σk0)−1.
After computing ν̂k(t− 1) and Σ̂k(t− 1), the coop-UCL

algorithm at time t requires each agent k to choose the option
with maximum (1− α(t))-upper-credible-limit given by

Qki (t− 1) = ν̂ki (t− 1) + σ̂ki (t− 1)Φ−1(1−α(t− 1)), (21)

where α(t) is defined such that

Φ−1(1− α(t)) =

√
n̂ki (t) + f(t)

G(η)n̂ki (t)
Φ−1

(
1− 1

Kta

)
,

where ν̂ki (t) is the i-th entry of ν̂k(t), (σ̂ki (t))2 is the i-th
diagonal entry of Σ̂k(t), K =

√
2πe, γ > 1, and a = 4/3γ.

C. Regret of the coop-UCL Algorithm

We now derive bounds on the expected cumulative re-
gret for each agent using the coop-UCL algorithm with
uninformative priors for each agent. For an uninformative
prior, Λk0 = 0, for each k ∈ {1, . . . ,M}, and consequently,
ν̂k(t) = µ̂k(t) and Σ̂k(t) = Γk(t). In addition, we first
present a bound on Φ−1(·).

Lemma 1 (Inverse Gaussian CDF Bounds): For the
standard normal random variable z and the associated
inverse cumulative distribution function Φ−1(·), the
following hold for any α ∈ [0, 0.5], t ∈ N and a > 1:

Φ−1(1− α) ≤
√
−2 log(α)

Φ−1(1− α) >
√
− log(2πα2(1− log(2πα2)))

Φ−1
(

1− 1√
2πeta

)
>
√
ν log ta,

for 0 < ν ≤ 1.59.

Proof: The first inequality can be found in [20]. The second
inequality was established in [10]. To establish the last
inequality, it suffices to show that

− log

(
1

et2

(
1− log

(
1

et2

)))
− ν log t ≥ 0,

for 0 < ν ≤ 1.59. The left hand side of the above inequality
is

g(t) := 1− log 2 + (2− ν) log t− log(1 + log t).

It can be verified that g admits a unique minimum at t =
e(ν−1)/(2−ν) and the minimum value is ν−log 2+log(2−ν),
which is positive for 0 < ν ≤ 1.59. �

In the following, we select ν = 3/2.

Theorem 3 (Regret of the coop-UCL Algorithm): For
the Gaussian MAB problem and the coop-UCL algorithm
with uninformative priors for each agent, the number of
times a suboptimal arm i is selected by all agents until time
T satisfies

M∑
k=1

E[nki (T )]≤ 2

M∑
k=1

(t†k−1)+max

{
M,

⌈
Mεn

+

(
4σ2

s lnKT a

∆2
iMG(η)

(
1+

√
1+

∆2
iMG(η)

2σ2
s

f(T )

lnKT a

))⌉}
+

2M

ln (1+η)

(
1

(γ − 1)2
+
γ ln (1+εn)(1+η))

γ − 1
+ 1

)

where t†k = f−1(εkc ).

Proof: For uninformative priors, coop-UCL is analogous
to coop-UCB2 with Cki (t) = σ̂ki (t)Φ−1(1 − α(t)), where
σ̂ki (t) = σs/

√
Mn̂ki (t). Similar to the proof of Theorem 2,



we first note that for (14) simple manipulations lead to

ŝki (t)−min̂
k
i (t)√

n̂ki (t) + f(t)
≥ σs√

MG(η)
Φ−1

(
1− 1

Kta

)
>

σs√
MG(η)

√
3a

2
ln t (22)

=
σs√
MG(η)

√
2 ln tγ

where (22) follows from Lemma 1 for K =
√

2πe.
Using Theorem 1 we get that

P
(

(14) holds | t ≥ t†k
)

≤ P

 ŝki (t)−min̂
k
i (t)√

1
M

(
n̂ki (t) + f(t)

)≥σs
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ

resulting in sub-logarithmic regret as in Theorem 2.
We now examine the event (15). Following the argument

in the proof of Theorem 2 and using the upper bound on
Φ−1(·) from Lemma 1, we obtain that the event (15) does
not hold if

n̂ki (t) ≥ 4σ2
s lnKta

∆2
iMG(η)

(
1 +

√
1 +

∆2
iMG(η)

2σ2
s

f(t)

lnKta

)
.

We set A =
⌈
Mεn +

4σ2
s lnKTa

∆2
iMG(η)

(
1 +√

1 +
∆2

iMG(η)

2σ2
s

f(T )
lnKTa

)⌉
and the theorem follows by

proceeding similarly to the proof of Theorem 2. �

VI. NUMERICAL ILLUSTRATIONS

In this section, we elucidate our theoretical analyses from
the previous sections with numerical examples. We first
demonstrate that the ordering of the performance of nodes
obtained through numerical simulations is identical to the
ordering predicted by the nodal explore-exploit centrality
measure: the larger the εkc the lower the performance. We
then investigate the effect of the graph connectivity on the
performance of agents in random graphs.

For all simulations we consider a 10-armed bandit problem
with mean rewards drawn from a normal random distribution
with mean 75 and standard deviation 25. The sampling
standard deviation is σs = 30. These parameters were
selected to give illustrative results within the displayed time
horizon, but the relevant conclusions hold across a wide
variation of parameters. The simulations used f(t) =

√
ln t.

Example 1 (Regret on Fixed Graphs): Consider the set
of agents communicating according to the graph in Fig. 1(a)
and using the coop-UCB2 algorithm to handle the explore-
exploit tradeoff in the distributed cooperative MAB problem.
The values of εkc for nodes 1, 2, 3, and 4 are 2.31, 2.31, 0,
and 5.43, respectively. As noted in Remark 2, agent 3 should
have the lowest regret, agents 1 and 2 should have equal
and intermediate regret, and agent 4 should have the highest
regret. These predictions are validated in our simulations
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Fig. 1: (a) Simulation results comparing expected cumulative regret for
different agents in the fixed network shown, using P as in (3) and κ =
dmax

dmax−1
. Note that agents 1 and 2 have nearly identical expected regret. (b)

Simulation results of expected cumulative regret for several different MAB
algorithms using the fixed network shown in Fig. 1(a). (c) Simulation results
of expected cumulative regret as a function of normalized εkc for nodes in
ER graphs at T = 500. Also shown in red is the best linear fit.



shown in Fig. 1(a). The expected cumulative regret in our
simulations is computed using 5000 Monte-Carlo runs.

Fig. 1(b) demonstrates the relative performance differences
between coop-UCB, coop-UCB2, coop-UCL, and single
agent UCB with the same run parameters. Here the coop-
UCL algorithm is shown with an informative prior and no
correlation structure. Each agent in the coop-UCL simulation
shown here has Σ0 = 625 · IM and ν0 = 75 · 1M . The use
of priors markedly improves performance.

We now explore the effect of εkc on the performance of an
agent in an Erdös-Réyni (ER) random graph. ER graphs are
a widely used class of random graphs where any two agents
are connected with a given probability ρ [21].

Example 2 (Regret on Random Graphs): Consider a set
of 10 agents communicating according to an ER graph
and using the coop-UCB2 algorithm to handle the explore-
exploit tradeoff in the aforementioned MAB problem. In
our simulations, we consider 100 connected ER graphs, and
for each ER graph we compute the expected cumulative
regret of agents using 1000 Monte-Carlo simulations with
ρ = ln(10)/10, P as in (3), and κ = dmax/(dmax − 1).
We show the behavior of the expected cumulative regret of
each agent as a function of the normalized εkc in Fig. 1(c).
It is evident that increased εkc results in a sharp decrease
in performance. Conversely, low εkc is indicative of better
performance. This disparity is due to the relative scarcity of
information at nodes that are in general less “central.”

VII. FINAL REMARKS

In this paper we used the distributed multi-agent MAB
problem to explore cooperative decision-making in networks.
We designed the coop-UCB2 and coop-UCL algorithms,
which are frequentist and Bayesian distributed algorithms,
respectively, in which agents do not need to know the
graph structure. We proved bounds on performance, showing
order-optimal performance for the group. Additionally, we
investigated the performance of individual agents in the
network as a function of the graph topology, using a proposed
measure of nodal explore-exploit centrality.

Future research directions include rigorously exploring
other communications schemes, which may offer better per-
formance or be more suitable for modeling certain networked
systems. It will be important to consider the tradeoff between
communication frequency and performance as well as the
presence of noisy communications.
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