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Abstract— We study the explore-exploit tradeoff in dis-
tributed cooperative decision-making using the context of the
multiarmed bandit (MAB) problem. For the distributed cooper-
ative MAB problem, we design the cooperative UCB algorithm
that comprises two interleaved distributed processes: (i) run-
ning consensus algorithms for estimation of rewards, and (ii)
upper-confidence-bound-based heuristics for selection of arms.
We rigorously analyze the performance of the cooperative UCB
algorithm and characterize the influence of communication
graph structure on the decision-making performance of the
group.

I. INTRODUCTION

Cooperative decision-making under uncertainty is ubiqui-
tous in natural systems as well as in engineering networks.
Typically in a distributed cooperative decision-making sce-
nario, there is assimilation of information across a network
followed by decision-making based on the collective infor-
mation. The result is a kind of collective intelligence, which
is of fundamental interest both in terms of understanding
natural systems and designing efficient engineered systems.

A fundamental feature of decision-making under uncer-
tainty is the explore-exploit tradeoff. The explore-exploit
tradeoff refers to the tension between learning and opti-
mizing: the decision-making agent needs to learn the un-
known system parameters (exploration), while maximizing
its decision-making objective, which depends on the un-
known parameters (exploitation).

MAB problems are canonical formulations of the
exploration-exploitation tradeoff. In a stochastic MAB prob-
lem a set of options (arms) are given. A stochastic reward
with an unknown mean is associated with each option.
A player can pick only one option at a time, and the
player’s objective is to maximize the cumulative expected
reward. In an MAB problem, the player needs to balance
the tradeoff between learning the mean reward at each arm
(exploration), and picking the arm with maximum mean
reward (exploitation).

MAB problems are pervasive across a variety of scientific
communities and have found application in diverse areas
including controls and robotics [25], ecology [15], [24],
psychology [22], and communications [16], [2]. Despite the
prevalence of the MAB problem, the research on MAB
problems has primarily focused on policies for a single agent.
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The increasing importance of networked systems warrants
the development of distributed algorithms for multiple com-
municating agents faced with MAB problems. In this paper,
we extend a popular single-agent algorithm for the stochastic
MAB problem to the distributed multiple agent setting and
analyze decision-making performance as a function of the
network structure.

The MAB problem has been extensively studied (see [7]
for a survey). In their seminal work, Lai and Robbins [17]
established a logarithmic lower bound on the expected num-
ber of times a sub-optimal arm needs to be selected by an
optimal policy. In another seminal work, Auer et al. [4]
developed the upper confidence bound (UCB) algorithm for
the stochastic MAB problem that achieves the lower bound
in [17] uniformly in time. Anantharam et al. [3] extended the
results of [17] to the setting of multiple centralized players.

Recently, many researchers [13], [2] have studied the
MAB problem with multiple players in the decentralized
setting. Primarily motivated by communication networks,
these researchers assume no communication among agents
and design efficient decentralized policies. Kar et al. [14] in-
vestigated the multiagent MAB problem in a leader-follower
setting. They designed efficient policies for systems in which
there is one major player that can access the rewards and
the remaining minor players can only observe the sampling
patterns of the major player. The MAB problem has also been
used to perform empirical study of collaborative learning in
social networks and the influence of network structure on
decision-making performance of human agents [19].

Here, we use a running consensus algorithm [6] for assim-
ilation of information, which is an extension of the classical
DeGroot model [9] in the social networks literature. Running
consensus and related models have been used to study
learning [12] and decision-making [23] in social networks.

In the present paper we study the distributed cooperative
MAB problem in which a set of agents are faced with a
stochastic MAB problem and communicate their information
with their neighbors in an undirected, connected communica-
tion graph. We use a set of running consensus algorithms for
cooperative estimation of the mean reward at each arm, and
we design an arm selection heuristic that leads to an order-
optimal performance for the group. The major contributions
of this paper are as follows.

First, we employ and rigorously analyze running consen-
sus algorithms for distributed cooperative estimation of mean
reward at each arm, and we derive bounds on the estimates
of mean reward at each arm and the associated variances.

Second, we propose and thoroughly analyze the coopera-
tive UCB algorithm. We derive bounds on decision-making

naomi
Typewritten Text
Proceedings of the European Control Conference, Aalborg, Denmark, 2016

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text

naomi
Typewritten Text



performance for the group and characterize the influence of
the network structure on the performance.

Third, we introduce a novel graph centrality measure
and numerically demonstrate that this measure captures the
ordering of explore-exploit performance of each agent.

The remainder of the paper is organized as follows. In
Section II we recall some preliminaries about the stochastic
MAB problem and consensus algorithms. In Section III we
present and analyze the cooperative estimation algorithm.
We propose and analyze the cooperative UCB algorithm in
Section IV. We illustrate our analytic results with numerical
examples in Section V. We conclude in Section VI.

II. BACKGROUND

In this section we recall the standard MAB problem, the
UCB algorithm, and some preliminaries on discrete-time
consensus.

A. The Single Agent MAB Problem

Consider an N -armed bandit problem, i.e., an MAB
problem with N arms. The reward associated with arm
i ∈ {1, . . . , N} is a random variable with an unknown mean
mi. Let the agent choose arm i(t) at time t ∈ {1, . . . , T} and
receive a reward r(t). The decision-maker’s objective is to
choose a sequence of arms {i(t)}t∈{1,...,T} that maximizes
the expected cumulative reward

∑T
t=1mi(t), where T is the

horizon length of the sequential allocation process.
For an MAB problem, the expected regret at time t is

defined by R(t) = mi∗ −mi(t), where mi∗ = max{mi | i ∈
{1, . . . , N}}. The objective of the decision-maker can be
equivalently defined as minimizing the expected cumulative
regret defined by

∑T
t=1R(t) =

∑N
i=1 ∆iE[ni(T )], where

ni(T ) is the cumulative number of times arm i has been
chosen until time T and ∆i = mi∗ − mi is the expected
regret due to picking arm i instead of arm i∗. It is known
that the regret of any algorithm for an MAB problem is
asymptotically lower bounded by a logarithmic function of
the horizon length T [17], i.e., no algorithm can achieve
an expected cumulative regret smaller than a logarithmic
function of horizon length as T →∞.

In this paper, we focus on Gaussian rewards, i.e., the
reward at arm i is sampled from a Gaussian distribution with
mean mi and variance σ2

s . We assume that the variance σ2
s

is known and is the same at each arm.

B. The UCB Algorithm

A popular solution to the stochastic MAB problem is
the UCB algorithm proposed in [4]. The UCB algorithm
initializes by sampling each arm once, and then selects an
arm with maximum

Qi(t) = µ̂i(t) + Ci(t),

where ni(t) is the number of times arm i has been chosen
until time t, and µ̂i(t) and Ci(t) =

√
2 ln(t)
ni(t)

are the empirical
mean reward of arm i and the associated measure of the
uncertainty associated with that mean at time t, respectively.

The function Qi(t) is judiciously designed to balance
the tradeoff between explore and exploit: the terms µ̂i(t)
and Ci(t) facilitate exploitation and exploration, respectively.
The UCB algorithm as described above assumes that rewards
have a bounded support [0, 1] but this algorithm can be easily
extended to distributions with unbounded support [18].

C. The Cooperative MAB Problem

The cooperative MAB problem is an extension of the
single-agent MAB problem where M agents act over the
same N arms. Agents maintain bidirectional communication,
and the communication network can be modeled as an
undirected graph G in which each node represents an agent
and edges represent the communication between agents [8].
Let A ∈ RM×M be the adjacency matrix associated with G
and let L ∈ RM×M be the corresponding Laplacian matrix.
We assume that the graph G is connected, i.e., there exists a
path between each pair of nodes.

In the cooperative setting, the objective of the group is
defined as minimizing the expected cumulative group regret,
defined by

∑M
k=1

∑T
t=1R

k(t) =
∑M
k=1

∑N
i=1 ∆iE[nki (T )],

where Rk(t) is the regret of agent k at time t and nki (T )
is the total cumulative number of times arm i has been
chosen by agent k until time T . In the cooperative setting
using Gaussian rewards the lower bound [3] on the expected
number of times a suboptimal arm i is selected by a fusion
center that has access to reward for each agent is

M∑
k=1

E[nki (T )] ≥
(2σ2

s

∆2
i

+ o(1)
)

lnT. (1)

In the following, we will design a distributed algorithm that
samples a suboptimal arm i within a constant factor of the
above bound.

D. Discrete-Time Consensus

Consider a set of agents {1, . . . ,M}, each of which main-
tains bi-directional communication with a set of neighboring
agents. The objective of the consensus algorithms is to
ensure agreement among agents on a common value. In the
discrete-time consensus algorithm [11], [26], agents average
their opinion with their neighbors’ opinions at each time. A
discrete-time consensus algorithm can be expressed as

x(t+ 1) = Px(t), (2)

where x(t) is the vector of each agent’s opinion, and P is a
row stochastic matrix given by

P = IM −
κ

dmax
L. (3)

IM is the identity matrix of order M , κ ∈ (0, 1] is a step
size parameter [21], dmax = max{deg(i) | i ∈ {1, . . . ,M}},
and deg(i) is the degree of node i. In the following, we
assume without loss of generality that the eigenvalues of P
are ordered such that λ1 = 1 > λ2 ≥ ... ≥ λM > −1.

In the context of social networks, the consensus algo-
rithm (2) is referred to as the Degroot model [9] and has been
successfully used to describe evolution of opinions [10].



One drawback of the consensus algorithm (2) is that it
does not allow for incorporating new external information.
This drawback can be mitigated by adding a forcing term and
the resulting algorithm is called the running consensus [6].
Similar to (2), the running consensus updates the opinion at
time t as

x(t+ 1) = Px(t) + Pυ(t), (4)

where υ(t) is the information received at time t. In the
running consensus update (4), each agent k collects infor-
mation υk(t) at time t, adds it to its current opinion, and
then averages its updated opinion with the updated opinion
of its neighbors.

III. COOPERATIVE ESTIMATION OF MEAN REWARDS

In this section we investigate the cooperative estimation
of mean rewards at each arm. To this end, we propose two
running consensus algorithms for each arm and analyze their
performance.

A. Cooperative Estimation Algorithm

For distributed cooperative estimation of the mean reward
at each arm i, we employ two running consensus algorithms:
(i) for estimation of total reward provided at the arm, and
(ii) for estimation of the total number of times the arm has
been sampled.

Let ŝki (t) and n̂ki (t) be agent k’s estimate of the total
reward provided at arm i per unit agent and the total number
of times arm i has been selected until time t per unit agent,
respectively. Using ŝki (t) and n̂ki (t) agent k can calculate
µ̂ki (t), the estimated empirical mean of arm i at time t defined
by

µ̂ki (t) =
ŝki (t)

n̂ki (t)
. (5)

Let ik(t) be the arm sampled by agent k at time t and
let ξki (t) = 1(ik(t) = i). 1(·) is the indicator function, here
equal to 1 if ik(t) = i and 0 otherwise. Define rki (t) =
rk(t) · 1(ik(t) = i), where rk(t) is the reward of the k’th
agent at time t, which is a random variable sampled from
N (mi, σ

2
s).

The estimates ŝki (t) and n̂ki (t) are updated using running
consensus as follows

n̂i(t+ 1) = P n̂i(t) + Pξi(t), (6)
and ŝi(t+ 1) = P ŝi(t) + Pri(t), (7)

where n̂i(t), ŝi(t), ξi(t), and ri(t) are vectors of n̂ki (t),
ŝki (t), ξki (t), and rki (t), k ∈ {1, . . . ,M}, respectively.

B. Analysis of the Cooperative Estimation Algorithm

We now analyze the performance of the estimation
algorithm defined by (5), (6) and (7). Let ncent

i (t) ≡
1
M

∑t
τ=0 1

>
Mξi(τ) be the total number of times arm i has

been selected per unit agent until time τ , and let scent
i (t) ≡

1
M

∑t
τ=0 1

>
Mri(τ) be the total reward provided at arm i per

unit agent until time t. Also, let λi denote the i-th largest

eigenvalue of P , ui the eigenvector corresponding to λi, udi
the d-th entry of ui, and

εn =
√
M

M∑
p=2

|λp|
1− |λp|

. (8)

Note that λ1 = 1 and u1 = 1M/
√
M . Let us define

ν+sum
pj = σ2

s

M∑
d=1

udpu
d
j1((upu

>
j )kk ≥ 0)

and ν-sum
pj = σ2

s

M∑
d=1

udpu
d
j1((upu

>
j )kk ≤ 0).

We also define

apj(k) =


ν+sum
pj (upu

>
j )kk, if λpλj ≥ 0 & (upu

>
j )kk ≥ 0,

ν-sum
pj (upu

>
j )kk, if λpλj ≥ 0 & (upu

>
j )kk ≤ 0,

νmax
pj |(upu>j )kk|, if λpλj < 0,

(9)
where νmax

pj = max {|ν-sum
pj |, ν+sum

pj } and kk indicates the k’th
diagonal entry. Furthermore, let

εkc =
M

σ2
s

M∑
p=1

M∑
j=2

|λpλj |
1− |λpλj |

apj(k).

We note that both εn and εkc depend only on the topol-
ogy of the communication graph. These are measures of
distributed cooperative estimation performance.

Proposition 1 (Performance of cooperative estimation):
For the distributed estimation algorithm defined
in (5), (6) and (7), and a doubly stochastic matrix P
defined in (3), the following statements hold

(i) the estimate n̂ki (t) satisfies

ncent
i (t)− εn ≤ n̂ki (t) ≤ ncent

i (t) + εn;

(ii) the estimator µ̂ki (t) is unbiased, i.e., E[µ̂ki (t)] = mi;
(iii) the variance of the estimate µ̂ki (t) satisfies

Var[µ̂ki (t)] ≤ σ2
s

M

n̂ki (t) + εkc
(n̂ki (t))2

.

Proof: We begin with the first statement. From (6) it
follows that

n̂i(t) = P tn̂i(0) +

t−1∑
τ=0

P t−τξi(τ)

=

t−1∑
τ=0

[ 1

M
1M1>Mξi(τ) +

M∑
p=2

λt−τp upup
>ξi(τ)

]
= ncent

i (t)1M +

t−1∑
τ=0

M∑
p=2

λt−τp upup
>ξi(τ). (10)

We now bound the k-th entry of the second term on the right
hand side of (10):
t−1∑
τ=0

M∑
p=2

λt−τp

(
upup

>ξi(τ)
)
k
≤

t−1∑
τ=0

M∑
p=2

|λt−τp |‖up‖22‖ξi(τ)‖2

≤
√
M

t−1∑
τ=0

M∑
p=2

|λt−τp | ≤ εn.



This establishes the first statement.
Using a similar approach, from (7) we can write

ŝi(t) = P tŝi(0) +

t−1∑
τ=0

P t−τri(τ) =

t−1∑
τ=0

P t−τri(τ).

It follows that E[̂si(t)] = mi

∑t−1
τ=0 P

t−τξi(τ) = min̂i(t).
This along with the definition (5) establishes the second
statement.

To prove the third statement, we note that

Cov[̂si(t)] =

t−1∑
τ=0

P t−τΣ(τ)Σ>(τ)(P t−τ )>

=

t−1∑
τ=0

M∑
p=1

M∑
j=1

λt−τp λt−τj upu
>
p Σ(τ)Σ(τ)uju

>
j

=

t−1∑
τ=0

M∑
p=1

M∑
j=2

(λpλj)
t−τνpj(τ)(upu

>
j )

+
1

M

t−1∑
τ=0

M∑
p=1

λt−τp upu
>
p Σ(τ)Σ(τ)1M1>M ,

(11)

where Σ(τ) = σsdiag(ξi(τ)) and νpj(τ) = u>p Σ(τ)Σ(τ)uj .
We now examine the kk-th entry of each term in (11). We

begin with the second term:

1

M

[ t−1∑
τ=0

M∑
p=1

λt−τp upu
>
p Σ(τ)Σ(τ)1M1>M

]
kk

=
σ2
s

M

[( t−1∑
τ=0

M∑
p=1

λt−τp upu
>
p ξi(τ)

)
1>M

]
kk

=
σ2
s

M
n̂ki (t).

(12)

We now analyze the the first term of (11):
t−1∑
τ=0

M∑
p=1

M∑
j=2

(λpλj)
t−τνpj(τ)(upu

>
j )kk

≤
t−1∑
τ=0

M∑
p=1

M∑
j=2

|λpλj |t−τ |νpj(τ)(upu
>
j )kk|

≤
t−1∑
τ=0

M∑
p=1

M∑
j=2

|λpλj |t−τapj(k) ≤
M∑
p=1

M∑
j=2

|λpλj |
1− |λpλj |

apj(k).

(13)

Bounds in (12) and (13) along with definition (5) establish
the third statement.

IV. COOPERATIVE DECISION-MAKING

In this section, we extend the UCB algorithm [4] to the
distributed cooperative setting in which multiple agents can
communicate with each other according to a given graph
topology. Intuitively, compared to the single agent setting, in
the cooperative setting each agent will be able to perform
better due to communication with neighbors. However, the
extent of an agent’s performance advantage depends on the
network structure. We compute bounds on the performance

of the group in terms of the expected group cumulative
regret. We also propose a metric that orders the contribution
of agents to the cumulative group regret in terms of their
location in the graph.

A. Cooperative UCB Algorithm

The cooperative UCB algorithm is analogous to the UCB
algorithm, and uses a modified decision-making heuristic that
captures the effect of the additional information an agent
receives through communication with other agents as well
as the rate of information propagation through the network.

The cooperative UCB algorithm is initialized by each
agent sampling each arm once and proceeds as follows. At
each time t, each agent k updates its cooperative estimate
of the mean reward at each arm using the distributed coop-
erative estimation algorithm described in (5), (6), and (7).
Then, at time t each agent k selects the arm with maximum
Qki (t) = µ̂ki (t) + Cki (t), where

Cki (t) = σs

√
2γ
n̂ki (t) + εkc
Mn̂ki (t)

· ln t

n̂ki (t)
, (14)

where γ > 1. Note that the heuristic Qki requires the
agent k to know εkc , which depends on the global graph
structure. This requirement can be relaxed by replacing εkc
with an increasing sub-logarithmic function of time. We
leave rigorous analysis of the alternative policy for future
investigation.

B. Regret Analysis of the Cooperative UCB Algorithm

We now derive upper bounds on the expected cumulative
regret for each agent using the cooperative UCB algorithm as
a function of its location in the network. This bound recovers
the upper bound given in (1) within a constant factor.

Theorem 1 (Regret of the Cooperative UCB Algorithm):
For the cooperative UCB algorithm and the Gaussian
multiarmed bandit problem the number of times a
suboptimal arm i is selected by all agents until time T
satisfies
M∑
k=1

E[nki (T )] ≤
⌈
Mεn+

M∑
k=1

8σ2
sγ(1 + εkc )

M∆2
i

ln(T )

⌉
+

Mγ

γ − 1
.

Proof: We proceed similarly to [4]. The number of
times a suboptimal arm i is selected by all agents until time
T is

M∑
k=1

nki (T ) =

M∑
k=1

T∑
t=1

1(ik(t) = ik)

≤
M∑
k=1

T∑
t=1

1(Qki (t) ≥ Qki∗(t))

≤ η +

T∑
t=1

1(Qki (t) ≥ Qki∗(t),Mncent
i ≥ η), (15)

where η > 0 is a constant that will be chosen later.
At a given time t an individual agent k will choose a

suboptimal arm only if Qki (t) ≥ Qki∗(t). For this condition



to be true at least one of the following three conditions must
hold:

µ̂i∗ ≤ mi∗ − Cki∗(t) (16)

µ̂i ≥ mi + Cki (t) (17)

mi∗ < mi + 2Cki (t). (18)

We now bound the probability that (16) holds. It follows
that

P((16) holds) = P
(
z ≥ E[µ̂i∗ ] + Cki∗(t)−mi∗√

Var(µ̂ki∗)

)
= P

(
z ≥ Cki∗(t)√

Var(µ̂ki∗)

)
≤ 1

2
exp

(
−
(
Cki∗(t)

)2
2Var(µ̂ki∗)

)
≤ 1

2tγ
, (19)

where z is the standard Gaussian random variable and the
last inequality follows from the tail bounds for the error
function [1] and the second statement of Proposition 1.

It follows analogously that

P((17) holds) ≤ 1

2tγ
.

Finally, we examine the probability that (18) holds. It
follows that

mi∗ < mi + 2Cki (t)

=⇒ ncent
i (t) <

⌈
εn +

8σ2
sγ(n̂ki (t) + εkc ) ln(t)

M∆2
i (n̂

k
i (t))2

⌉
≤
⌈
εn +

8σ2
s(1 + εkc ) ln(t)

M∆2
i

⌉
.

From monotonicity of ln(t), it follows that (18) does not
hold if ncent

i (t) ≥
⌈
εn +

8σ2
s(1+εkc ) ln(T )

M∆2
i

⌉
.

Now, setting η = dMεn +
∑M
k=1

8σ2
sγ(1+εkc ) ln(T )

M∆2
i

e we get
from (15) that

M∑
k=1

E[nki (T )]≤
⌈
Mεn+

M∑
k=1

8σ2
sγ(1 + εkc ) ln(T )

M∆2
i

⌉
+

M∑
k=1

T∑
t=1

1

tγ

≤
⌈
Mεn +

M∑
k=1

8σ2
sγ(1 + εkc )

M∆2
i

ln(T )

⌉
+

Mγ

γ − 1
.

This establishes the proof.

Remark 1 (Towards Explore-Exploit Centrality):
Theorem 1 provides bounds on the performance of the
group as a function of the graph structure. However, the
bound is dependent on the values of εkc for each individual
agent. In this sense, ςk ≡ 1/εkc can be thought of as a
measure of node certainty in the context of explore-exploit
problems. For εkc = 0, the agent behaves like a centralized
agent. Higher values of εkc reflect behavior of an agent with
sparser connectivity. Rigorous connections between εkc and
standard notions of network centralities [20] is an interesting
open problem that we leave for future investigation. �

Fig. 1: Simulation results comparing expected cumulative regret for different
agents in the fixed network shown, using P as in (3) and κ = dmax

dmax−1
. Note

that agents 1 and 2 have nearly identical expected regret.

V. NUMERICAL ILLUSTRATIONS

In this section, we elucidate our theoretical analyses from
the previous sections with numerical examples. We first
demonstrate that the ordering on the performance of nodes
obtained through numerical simulations is identical to the
ordering by our upper bounds. We then investigate the effect
of connectivity on the performance of agents in random
graphs.

For all simulations below we consider a 10-armed bandit
problem with mean rewards as in Table I and σs = 30.

TABLE I: Rewards at each arm i for simulations

i 1 2 3 4 5 6 7 8 9 10
mi 40 50 50 60 70 70 80 90 92 95

Example 1 (Regret on Fixed Graphs): Consider the set
of agents communicating according to the graph in Fig. 1 and
using the cooperative UCB algorithm to handle the explore-
exploit tradeoff in the distributed cooperative MAB problem.
The values of εkc for nodes 1, 2, 3, and 4 are 2.31, 2.31, 0,
and 5.43, respectively. As predicted by Remark 1, agent
3 should have the smallest regret, agents 1 and 2 should
have equal and intermediate regret, and agent 4 should have
the highest regret. These predictions are validated in our
simulations shown in Fig. 1. The expected cumulative regret
in our simulations is computed using 500 Monte-Carlo runs.

We now explore the effect of εkc on the performance of an
agent in an Erdös-Réyni random (ER) graph. ER graphs are
a widely used class of random graphs where any two agents
are connected with a given probability ρ [5].

Example 2 (Regret on Random Graphs): Consider a set
of 10 agents communicating according to an ER graph and
using the cooperative UCB algorithm to handle the explore-
exploit tradeoff in the aforementioned MAB problem. In our
simulations, we consider 100 connected ER graphs, and for
each ER graph we compute the expected cumulative regret
of agents using 30 Monte-Carlo simulations. We show the
behavior of the expected cumulative regret of each agent as
a function of ςk in Fig. 2.

It is evident that increased ςk results in a sharp increase
in performance. Conversely, low ςk is indicative of very



poor performance. This strong disparity is due to agents
with lower ςk doing a disproportionately high amount of
exploration over the network, allowing other agents to ex-
ploit. The disparity is also seen in Fig. 1, as agent 4 does
considerably worse than the others. However, as shown in
Fig. 1 the expected cumulative regret averaged over all agents
is still higher than the centralized (all-to-all) case.
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Fig. 2: Simulation results of expected cumulative regret as a function of ςk

for nodes in ER graphs with ρ =
ln(10)
10

, P as in (3), and κ = dmax
dmax−1

.

VI. FINAL REMARKS

Here we used the distributed multi-agent MAB problem
to explore cooperative decision-making in networks. We
designed the cooperative UCB algorithm that achieves loga-
rithmic regret for the group. Additionally, we investigated the
performance of individual agents in the network as a function
of the graph topology. We derived a node certainty measure
ςk that predicts the relative performance of the agents.

Several directions of future research are of interest. First,
the arm selection heuristic designed in this paper requires
some knowledge of global parameters. Relaxation of this
constraint is an interesting open problem. Another interesting
direction is to study the tradeoff between the communi-
cation and the performance. Specifically, if agents do not
communicate at each time but only intermittently, then it is
of interest to characterize performance as a function of the
communication frequency.
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