
Distributed Multi-agent Multi-armed

Bandits

Peter Chal Landgren

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Professor Naomi Ehrich Leonard

January 2019



c© Copyright by Peter Chal Landgren, 2019.

All rights reserved.



Abstract

Social decision-making is a common feature of both natural and artificial systems.

Humans, animals, and machines routinely communicate and observe each other to

improve their understanding of a complex world. Additionally, many real-world tasks

involve sequential decision-making under uncertainty. Such tasks are inherently sub-

ject to the explore-exploit tradeoff, where one must select between options with the

highest expected payoffs based on current knowledge (exploitation) and options with

less well-known but potentially better outcomes (exploration).

In this thesis, we consider distributed social decision-making under uncertainty.

Specifically, we develop and utilize the multi-agent multi-armed bandit (MAB) prob-

lem to model and study how multiple interacting agents make decisions that balance

the explore-exploit tradeoff. we consider several different communication protocols

for sharing information between agents. We develop and analyze algorithms that

address the multi-agent MAB problem under each protocol. We derive bounds on

performance and use the bounds to analyze the influence of network structure, i.e.,

who is communicating with whom, on decision-making outcomes.

We first consider communication through consensus, and derive novel results con-

cerning the performance of cooperative estimation of expected reward. We then

use these results to develop, analyze, and prove performance bounds for several algo-

rithms that address the multi-agent MAB problem both with and without constraints

on concurrent sampling of arms by multiple agents. Furthermore, we develop a new

graph centrality measure, which we call “explore-exploit” centrality, that can be used

to predict performance of networked agents in an MAB problem with communica-

tion through consensus. We demonstrate the utility of this centrality measure, and

the performance of the algorithms through numerical simulations and robotic exper-

iments.
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Next, we consider the multi-agent MAB problem with strictly local communica-

tion, and develop a novel partition-based algorithm that uses imitation to improve

performance. We analyze this algorithm through performance bounds and simulation

results.

Finally, we consider application to robotic search for radioactive material in a

facility. The search for radioactive material is an inherently noisy process, and can

be modeled as an MAB problem. We develop and test a MAB-based algorithmic

solution and demonstrate that it enables a robot to find multiple radioactive sources

efficiently.
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Chapter 1

Introduction

1.1 The Explore-Exploit Tradeoff

A persistent feature of real-world decision-making processes is the presence of un-

certainty in the outcome of a future decision. Uncertainty in the result of a given

action makes it difficult for a decision-maker to choose the best next action. Further-

more, real-world tasks often involve making many sequential decisions with the goal

of maximizing cumulative outcomes.

Successful completion of such a task entails a fundamental tension: A decision-

maker must continually choose between exploiting all options already known to be

good, and exploring options not yet fully understood but potentially even better. This

tension is known as the explore-exploit trade-off, and it lies at the heart of optimizing

the decision-making process.

The explore-exploit tradeoff can be seen in many different types of systems, both

natural and artificial. In the natural world, foraging animals seek to consume as

much food as possible, while concurrently finding the most rewarding foraging areas

[49, 51]. A similar paradigm arises in predator search behavior [43], where predators
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must decide where to hunt on the basis of noisy information regarding prey location.

Human search behavior has been shown to face similar challenges [20, 84].

In artificial systems or models the explore-exploit tradeoff arises quite frequently as

well, as does decision-making under uncertainty. Reinforcement learning algorithms

[101] frequently face this challenge, as algorithms must explore potentially rewarding

solutions to problems while focusing computational power on the most promising

options. Various robotic tasks, such as surveillance [96] and transmitter positioning

[19], encounter similar challenges.

1.2 Motivation and Goals

In many practical scenarios decision-making is a social and distributed phenomenon:

decision-makers interact with each other to share information regarding the world

in order to make better choices as individuals. This is readily seen in humans and

animals. In animals, social interaction is often a key component of foraging or mating

behavior, and communicating efficiently is vital for survival. Humans routinely share

or seek out information from a wide variety of sources, both real and virtual, to inform

personal decisions in almost every domain from restaurants to romantic partners [105].

Distributed social decision-making allows decision-makers to leverage the experiences,

data, and opinions of their peers to improve performance while still acting as an

individual. Understanding, predicting, or engineering the behavior of such a group

thereby requires one to understand the behavior of an individual and what drives

individual decisions in light of external information.

Distributed social decision-making has been studied in a variety of contexts. The

field of collective animal behavior is of particular importance to our work here, and

has included studies of honeybees [89], monkeys [70], and many others [21, 24, 62].

The field of network science studies the role of network structure and communication
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in distributed decision-making [39, 60, 68, 76]. Additional areas of research include

social choice theory [4, 86, 90], which considers group ethics within voting theory, and

social neuroeconomics [29, 61, 87], which considers psychology and neurosience in a

game theoretic framework.

Recently, the study of the explore-exploit tradeoff has been extended to distributed

social decision-making in various contexts. This work has included experiments based

on simple multi-player games [68] and simulations [60]. The findings of several

researchers, including preliminary versions of our work, have addressed this topic

through model-based analysis [13, 45, 50].

This thesis investigates the explore-exploit tradeoff within distributed social

decision-making from a model-based perspective. We rigorously examine how knowl-

edge gleaned through communication affects performance outcomes for both the

individual and the group, and also how individuals should behave in light of this

additional information. We also investigate how the underlying communication

structure and decision-making protocols affect performance in different settings.

1.3 Background and Related Work

1.3.1 The Multi-armed Bandit Problem

A canonical mathematical formulation of the explore-exploit tradeoff is the Multi-

armed Bandit (MAB) problem [85]. In the MAB problem, a decision-maker faces

a sequential series of decisions. In each decision, the decision-maker must choose

between two or more options, also called “arms,” each of which has an associated

probability distribution that models its reward. After selecting an option the decision-

maker then receives a noisy reward drawn from this option’s associated probability

distribution. The decision-maker’s goal is to maximize their expected cumulative

reward, which is equivalent to choosing the option with the highest mean as often as

3



possible. This goal is challenging because agents do not know the underlying mean

associated with a given option; they can only estimate it through receiving a noisy

reward. To perform well a decision-maker must deftly balance learning about these

means through sampling (exploration), and maximizing their current expected reward

(exploitation).

The MAB problem was first investigated by allied scientists during World War II,

one of whom remarked that the problem “so sapped the energies and minds of Allied

analysts that the suggestion was made that the problem be dropped over Germany,

as the ultimate instrument of intellectual sabotage” [34]. The MAB problem was

put into its modern form in 1952 by Robbins [85] and, in a seminal work, Lai and

Robbins [54] established a lower bound on the expected number of times a sub-optimal

option needs to be selected by an optimal policy. In another seminal work, Auer et

al. [5] developed the upper confidence bound (UCB) algorithm for the stochastic MAB

problem, which achieves this lower bound uniformly in time. We heavily utilize the

UCB algorithm in this work and describe it in greater detail in Section 2.3.

MAB problems are pervasive across a variety of scientific communities, and have

been used to model many systems that are characterized by the explore-exploit trade-

off. The first major area of application was the design of clinical trials [6, 33], where

a designer’s goal is attempts to assign patients to experiments in order to both learn

about the efficacy of a given treatment while maximizing the benefit to patients.

Since then, the MAB problem has been applied to diverse areas such as control and

robotics [19, 96], ecology [51, 95], human behavior and psychology [84], and commu-

nications [2, 53].

1.3.2 The Multi-agent Multi-armed Bandit Problem

Classically, the MAB problem involves only one decision-maker, or agent. This for-

mulation has proven to be very useful in modeling in a wide variety of fields [11]. This
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thesis principally considers the multi-agent MAB problem, in which multiple agents

all choose sequentially from the same set of options.

Researchers have considered the multi-agent MAB problem in either a centralized

or a distributed setting. In the centralized setting, agents’ actions are controlled by

a centralized decision-maker. In the distributed setting, each agent independently

makes decisions regarding their own actions. As a modeling tool distributed decision-

making is more reflective of many natural and large-scale artificial systems. Dis-

tributed algorithms also offer additional benefits in terms of robustness and flexibility

as the failure of any component does not doom the whole. In this work we focus on

distributed decision-making, but draw comparisons with the performance possible in

a centralized setting.

In the multi-agent MAB problem researchers generally assume that agents can

communicate in some fashion, and prior work can be roughly sorted according to two

different models of communication between agents. The first is indirect communi-

cation, in which agents can detect when another user has selected the same option,

or arm, as them but do not communicate any other information. The second is di-

rect communication, where agents explicitly share information regarding the arms

selected, rewards received, or estimates of arm means. These two models of com-

munication, each with their associated features and constraints, allow researchers to

model a wide variety of systems.

Foundational work on the multi-agent MAB problem was completed by Anan-

tharam et al. [3], who studied single decision-makers with multiple plays, which is

equivalent to multiple decision-makers acting under centralized control. Work in

[3] established a lower bound on sub-optimal selections for this case (see Equation

(2.8)). In related work, Shahrampour et al. [91] considered direct communication

where rewards are player dependent and at each time all agents select the same arm

as determined by majority vote.
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The largest body of research utilizing the multi-agent MAB framework is focused

on solving the cognitive radio network spectrum access problem. This problem con-

siders a radio network, such as a wireless router, with multiple channels. A user

can select a single channel and transmit data over it if the channel is unused, either

by another user or some other higher-level task. The goal for a user is to choose a

channel at each time such that they maximize the time spent in unused channels,

thereby transmitting as much data as possible. Channel availability can be modeled

by a probability distribution with a given mean, so users can learn which channels

enable maximum data throughput by learning this mean.

Multiple researchers [2, 30, 45] have framed this problem mathematically as a

multi-agent MAB problem, where an arm represents a channel, the probability dis-

tribution of the arm represents the channel availability, and a decision-making agent

represents a network user. The constraint that only one user can use a channel at a

time is modeled by collisions, where if two or more agents select the same arm at the

same time they receive no reward. The presence of collisions implies that the optimal

solution for the collective is for the M agents to select the M arms with the highest

mean reward without any agents choosing the same arm.

Historically, researchers in the cognitive radio network problem have not consid-

ered the role of direct communication between network users. Specifically, users only

interact indirectly through their experience of collisions with other users when access-

ing channels, and they use this information to sort themselves to achieve the optimal

solution.

Another body of MAB literature that is closely related to the multi-agent MAB

problem considers the case of side-observations. In this setting, when an agent chooses

an arm they observe not only a noisy reward from the selected arm, but also from

some set of other arms. These additional observations are the side-observations, and
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which “side” arm(s) are observed is typically dependent on the selected arm. The

agent will only receive reward from the arm selected, and not from side-observations.

This setting is similar to the multi-agent MAB problem because the additional

information gained from side-observations is similar to that gained by directly commu-

nicating with others in the case when agents can communicate their rewards. Several

authors have investigated the MAB problem with side observations [17, 66, 107], and

Buccapatnam et al. [14] considered the case where the set of side arms observed is

determined by a network. Inspired by social networks such as Facebook, Buccapat-

nam et al. [13] considered the case of an external agent selecting actions for multiple

users in a network, where each action selection produces side-observations from the

user’s neighbors in the same network.

In a related vein, Kolla et al. [50] considered the case where agents can directly

communicate by observing a neighbor’s actions and also mimic the actions of a local

decision-maker. Additionally, Kar et al. [46] considered the case of multiple agents,

but where only one “major” agent can observe the reward values, and all other agents

can only observe the actions of the major agent.

The prior work on the multi-agent MAB problem listed above that utilizes direct

communication can be broadly categorized according to two different models of direct

communication between agents. The first is strictly local communication, in which

agents share the results of arm selections with their neighbors as determined by a

given network graph that encodes who can communicate with whom. Depending

on the problem formulation, side observations are a specific example or close analog

of strictly local communication, and the work of Kolla et al. [50] falls neatly within

this category. As the name implies, the spread of information when using strictly

local communication between agents is limited because agents only share information

regarding received rewards with neighbors, and this information generally cannot

propagate through the entire network. The second model is direct communication
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through consensus, in which an agent averages its own estimate of the means of the

arms with the communicated estimates of its neighbors. Shahrampour et al. [91]

used direct communication through consensus, and it has been used extensively in

other fields. In terms of performance, consensus is a powerful and useful information

sharing protocol because it allows information to propagate throughout the entire

network of decision-makers. Also, as a model for how information is communicated

and processed, information sharing through consensus can be applied to a wide variety

of systems. We give a mathematical definition of both consensus and strictly local

communication in Chapter 2.

1.4 Contributions and Research Overview

In this thesis we develop distributed algorithms for the multi-agent MAB problem

in a variety of settings. We consider the distributed, cooperative multi-agent MAB

problem, in which agents cooperate by communicating information regarding arm pa-

rameters, but make independent decisions regarding arm choice in order to maximize

their own reward.

We principally consider the case of communication through consensus. Specifi-

cally, we use running consensus, in which agents average their opinions with those of

their neighbors but also add in new observations as they become available. To our

knowledge this is the first work to consider the distributed cooperative MAB problem

using communication through consensus. We expect that this new formulation of

the multi-agent MAB problem can be used in the future to answer important ques-

tions about the role of the communication network structure in social decision-making

under the explore-exploit tradeoff.

We first develop several results regarding the performance of running consensus

and bound the deviation of the estimates produced from those of a centralized esti-
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mator. We expect that these results can be broadly useful in the study of multi-agent

MAB problems in the future.

We then utilize these results to develop several novel distributed algorithms for

the multi-agent MAB problem where agents can communicate over a network using

running consensus. We prove an upper bound on the regret obtained using these

algorithms, and relate it to the theoretical lower bound on regret from Anantharam

et al. [3].

Additionally, we consider the case of multi-agent MAB with collisions, and in-

vestigate the case where agents can communicate through running consensus. We

demonstrate that communication between agents improves performance over current

algorithms that only utilize indirect communication in this setting.

We also study the multi-agent MAB problem with strictly local communication

and develop a distributed algorithm that selects decision-makers and allows others to

mimic those decision-makers. We show that this method enables significant perfor-

mance improvements over methods that only allow restricted or no imitation.

Finally, we apply our results to the application area of nuclear facility inspection.

We model the search for hazardous nuclear material in a facility using the MAB

problem, and develop modified algorithms that enable robots to efficiently explore

areas of interest. We show preliminary experimental results from this work.

1.5 Outline

This thesis is structured as follows. In Chapter 2 we define the MAB problem mathe-

matically, along with several graph theory terms and running consensus. In Chapter

3 we give results on cooperative estimation of arm parameters using running consen-

sus. We also develop and prove bounds for several novel heuristics that address the

multi-agent MAB problem, including the coop-UCB, coop-UCB2, and coop-UCL al-
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gorithms. In Chapter 3 we also discuss a proposed graph centrality measure, “explore-

exploit centrality,” and motivate its connections to networked processes facing the

explore-exploit tradeoff. In Chapter 4 we expand on the heuristics of Chapter 3 and

examine the case of the distributed multi-agent MAB problem with collisions. In

Chapter 5, we study the multi-agent MAB problem with strictly local communica-

tion and derive and prove partition-based strategies. In Chapter 6 we utilize the

lessons from our previous analyses to develop and apply MAB-based algorithms for

multi-robot search tasks for radioactive material. Finally, we conclude in Chapter 7.
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Chapter 2

The Single and Multi-agent

Multi-armed Bandit Problems

In this chapter we review the multi-armed bandit (MAB) problem int he classical

setting of a single decision0making agent and we introduce the new multi-agent MAB

formulations. First, we specify relevant notation and then define both the single and

multi-agent cases mathematically. Next, we review theoretical bounds on performance

and discuss the classical Upper Confidence Bound policy for the single-agent MAB

problem. We then discuss two different models for multi-agent communication and

introduce relevant notation. Finally, we review the existing literature on multi-agent

MAB policies.

2.1 The Multi-armed Bandit Problem

2.1.1 The Single-agent Multi-armed Bandit Problem

The single-agent MAB problem, first investigated in its modern form by Herbert

Robbins [85], is a canonical formulation of the explore-exploit tradeoff. In the single-

agent MAB problem, a single decision-making agent must choose an option, or arm,
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from a finite set of alternatives at each timestep. At each time step, after choosing

an arm, the agent receives a reward, which is drawn from a random distribution with

a given mean that is unknown to the agent. The agent’s goal is to maximize their

cumulative reward over time. Doing this well requires choosing arms in such a way

as to learn about unknown but potentially highly rewarding arms (exploration) while

also accumulating reward from arms that are known to be good (exploitation).

We denote an arm in the set of alternative arms by i ∈ {1, . . . , N} with N > 1,

and a timestep in the problem by t ∈ {1, . . . , T} with T > 1. Let i(t) be the index

of the arm selected at time t, ri(t) be the realized reward from arm i at time t,

and r(t) = ri(t)1{i(t) = i} be the corresponding received reward received from this

selection where 1{·} is the indicator function. Let each arm i have mean mi.

With this notation, the goal of the agent in the MAB problem to maximize the

cumulative received reward up to time T becomes

maxE

[
T∑
t=1

r(t)

]
(2.1)

where E[·] denotes expectation. We can also express this goal in terms of arm selec-

tions as

max
N∑
i=1

miE [ni(T )] , (2.2)

where ni(T ) is the total number of times arm i has been selected up to and including

time T .

In the above we have formulated the agent’s goal as a maximization problem,

but we can also conceive of it as a minimization problem. First, let us define the

instantaneous expected regret at time t as R(t) = mi∗ − mi(t) = ∆i(t), where i∗ =

arg maxi∈{1,...,N}mi is the arm with the highest mean. The instantaneous expected

regret is therefore the expected difference in reward between the best arm and the

arm chosen. Therefore, the goal of maximizing cumulative expected reward can be
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equivalently expressed as minimizing the cumulative expected regret. Mathematically,

the goal of the decision-making agent in the MAB problem is then

min
T∑
t=1

E [R(t)] = min
N∑
i=1

∆iE [ni(T )] . (2.3)

In this thesis we use this second, regret-based formulation to investigate the effi-

ciency of our algorithms. Using regret permits a cleaner interpretation of results and

conforms to existing literature. Additionally, note that regret is purely an evaluative

metric from the standpoint of an outside, all-knowing observer. The agent itself does

not know their regret since they do not know the actual arm means mi.

2.1.2 The Multi-agent Multi-armed Bandit Problem

The cooperative multi-agent MAB problem that we introduce in this thesis considers

multiple decision-making agents acting over the same arm set. At each time each

agent selects an arm and receives an independent and identically distributed reward

associated withe the selected arm. Between rounds agents share information with each

other in some fashion. In this work we focus on the impact, value, and consequences

of this information exchange on decision-making strategy and performance.

We denote each agent k ∈ {1, . . . ,M}, with M > 1 and the arm selected by

agent k at time t as ik(t). Analogously to the single-agent case, let rki (t) be realized

reward for agent k selecting arm i at time t, and let rk(t) = rki (t)1{ik(t) = i} be the

corresponding received reward. We also define the expected instantaneous regret for

agent k at time t as Rk(t) = mi∗ −mik(t) = ∆ik(t).

The goal of each agent is to maximize their own expected cumulative reward.

However, since they cooperate by exchanging information, we evaluate performance

of the group of agents in the cooperative multi-agent MAB problem in terms of how
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they maximize the group cumulative reward, expressed as

maxE

[
M∑
k=1

T∑
t=1

rk(t)

]
= max

M∑
k=1

N∑
i=1

miE
[
nki (T )

]
. (2.4)

As in the single-agent case, this can also be equivalently expressed in terms of how

they minimize the group cumulative regret, given as

min
M∑
k=1

T∑
t=1

E
[
Rk(t)

]
= min

M∑
k=1

N∑
i=1

∆iE
[
nki (T )

]
. (2.5)

2.2 Lower Bound on Performance

Pioneering work by Lai and Robbins [54] established that there exists a lower bound

on the regret of a decision-maker in the single-agent MAB problem in the frequentist

setting. This lower bound effectively establishes the maximum expected achievable

level of performance. For a general probability distribution pi defining reward for

each option i, the lower bound on the number of times a suboptimal arm is selected

up to and including time T is

E[ni(T )] ≥
(

1

D(pi||pi∗)
+ o(1)

)
lnT, (2.6)

where D(pi||pi∗) is the Kullback-Leibler divergence between distributions pi and pi∗ .

This simplifies to

E[ni(T )] ≥
(

2σ2
s

∆2
i

+ o(1)

)
lnT (2.7)

for Gaussian rewards with known variance. Note that as the difference between the

mean of the best arm and a suboptimal arm i becomes small the bound on ni(T )

becomes large. This encodes the intuitive result that a decision-maker will need
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many samples to accurately distinguish between arms with highly similar probability

distributions.

The results of Lai and Robbins [54] were extended by Anantharam et al.[3] to

a cooperative setting with a centralized decision-maker with access to the realized

rewards for every agent. In this setting the lower bound on the expected number of

times a suboptimal arm i is selected by is

M∑
k=1

E[nki (T )] ≥
(

1

D(pi||pi∗)
+ o(1)

)
lnT, (2.8)

and for Gaussian rewards with known variance this simplifies to

M∑
k=1

E[nki (T )] ≥
(

2σ2
s

∆2
i

+ o(1)

)
lnT. (2.9)

In this thesis, we design several distributed algorithms whose expected cumulative

regret is upper bounded by a logarithmic function. This implies that the performance

of such algorithms is within a constant factor of the above bounds, and therefore is

within a constant factor of the optimal performance possible.

Additionally, we show that, under the problem formulation using the consensus

protocol for communication, the leading order of the upper bound on regret is inde-

pendent of the number of agents in the network as T →∞. This result demonstrates

the power and utility of cooperation and communication in the multi-agent MAB

problem.

2.2.1 Probability Distribution of Rewards

Researchers have used a variety of assumptions regarding the probability distributions

used to represent the noisy reward r(t), or equivalently rk(t) in the multi-agent case.

The particular distribution used is a function of modeling needs, as well as analytical

tractability. The most common assumption is that rewards are bounded, without
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loss of generality, in [0, 1]. The UCB algorithm [5] was originally developed under

this assumption, and bounded rewards are applicable to a wide range of situations.

Another common assumption is that rewards are normally distributed, with either

known or unknown sample variance [47, 84, 95]. Gaussian, i.e. normally distributed,

rewards are also applicable to a wide range of problems. In addition, some researchers

have also considered rewards from heavy-tailed distributions [12, 64].

In this thesis, as in [63], we consider rewards drawn from some sub-Gaussian dis-

tribution, defined below for generalized variance σg. Sub-Gaussian random variables

are a general class of distributions and include common distributions such as Gaus-

sian, Bernoulli, and uniform, among others. We use the general sub-Gaussian class

for tractability in the analysis of our algorithms, but we connect these results to

the case of bounded rewards and Gaussian rewards with known variance to facilitate

comparisons with the existing literature.

Definition 1 (Sub-Gaussian random variables). A random variable X ∈ R is

sub-Gaussian [97] if E[X] = 0 and

φX(β) ≤
σ2
gβ

2

2

where σg > 0, β ∈ (−∞,∞) and φX(β) = ln (E[exp(βX)]) denotes the cumulant

generating function of X.

For the case of Gaussian rewards the reward at arm i is drawn from a normal dis-

tribution with mean mi and sample variance σ2
s , denoted as N (mi, σ

2
s) . For bounded

rewards we assume the reward at arm i is drawn from some bounded distribution with

mean mi, and the realized reward is assumed to be in [0, 1] without loss of generality.

With Gaussian rewards agents have access to σ2
s , and with bounded rewards agents

know rewards will fall in [0, 1]. Agents cannot access mi in either case, so agents must

estimate though sampling.
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2.3 Single-agent Upper Confidence Bound Policy

Many different algorithms have been developed that address the single-agent MAB

problem. MAB algorithms are typically analyzed along two dimensions. The first

dimension is the expected cumulative regret. As seen in (2.6), the expected cumulative

regret is lower bounded by a logarithmic function with a constant factor that is

a function of the probability distribution of the arms. Therefore, an algorithm’s

theoretical performance can be judged by how close the upper bound on expected

cumulative regret is to the lower bound.

The second dimension is the complexity of a given algorithm. It is desirable for

an algorithm to require minimal computation for each decision-making step, and for

the complexity of each calculation to be constant in T . This consideration is critical

for practical implementation in robotic systems or for descriptive models of human

or animal decision-making.

In this work we principally utilize the popular Upper Confidence Bound (UCB)

algorithm, first developed by Auer et al. [5] for rewards bounded in [0, 1]. The UCB

algorithm operates as follows:

After an initialization phase where the agent selects each arm once, the agent at

time t computes

Qi(t) = µi(t− 1) + Ci(t− 1) (2.10)

for each arm i ∈ {1, . . . , N}, where

Ci(t− 1) =

√
2 ln (t− 1)

ni(t− 1)
(2.11)

and

µi(t) =
si(t)

ni(t)
. (2.12)
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The agent then selects the arm with the highest value of Qi(t). In the above si(t) is

the total sum of rewards from arm i and ni(t) is the total number of times arm i has

been selected up to and including time t.

Auer et al. proved in [5] that the expected cumulative regret of UCB is upper

bounded by a logarithmic function that is a constant factor of the lower bound (2.6).

They also proved that UCB requires also requires minimal computation that is con-

stant in T and linear in N , which is easily tractable for robotic systems and applicable

to natural systems.

Furthermore, the structure of the UCB algorithm lends itself to simple qualitative

analysis in terms of the explore-exploit tradeoff. As seen above, the Q term of UCB

is composed of two quantities. The first, the estimated mean of the arm in question,

can be understood as driving exploitation. This term pushes agents to select arms

with a high estimated mean. The second term, the C value, can be seen as promoting

exploration. This term pushes an agent to explore arms that have not been sampled

much relative to t.

C can be interpreted as a bound on the uncertainty of the estimates of the mean

of an arm. In this light one can consider Q to be an optimistic estimate of the value

of an arm, and the UCB algorithm to being optimistic in the face of uncertainty.

2.4 Multi-agent Communication

In this thesis we consider two different communication protocols for inter-agent com-

munication: consensus and strictly local communication. Here we define these two

protocols mathematically as well some relevant graph theoretic terms.
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2.4.1 Graph Terminology

We define a graph G = (V , E), where V is a set of nodes and E is a set of edges

between nodes. We model the communication network connecting agents as a graph,

where each node corresponds to an agent and each edge between a pair of nodes

as a communication path between those nodes. In this work we assume unweighted,

bidirectional communication between agents, so if agent i can communicate with agent

j, j can communicate with i. In graph notation, this means that G is an undirected

graph, which requires that if (i, j) ∈ E then (j, i) ∈ E where i, j ∈ V .

A graph can be encoded in matrix form easily using the Laplacian matrix L ∈

RM×M associated with G, where lij = −1 if there is a edge between node i and node

j 6= i and lij = 0 otherwise. Additionally, diagonal element lii = deg(i), where deg(i)

is the degree of node i and node i’s degree is defined as the number neighbors of node

i. We assume that the graph G is connected, i.e., there exists a path formed by edges

for every pair of nodes. Additionally, since G is undirected L will be symmetric.

2.4.2 Consensus

In the discrete-time consensus algorithm [44, 104], agents average their opinion with

their neighbors’ opinions at each timestep. The objective of the consensus algorithm

is to ensure agreement among agents on a common value. In this work we utilize

consensus to model and enable communication between agents regarding estimates

of arm means.

The discrete-time consensus algorithm can be expressed as

x(t+ 1) = Px(t), (2.13)
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where x(t) = (x1(t), . . . , xM(t))T is the vector of agent opinions at time t, and P is a

row stochastic matrix given by

P = IM −
κ

dmax

L. (2.14)

Here IM is the identity matrix of order M , κ ∈ (0, 1] is a step size parameter [75],

dmax = max{deg(i) | i ∈ {1, . . . ,M}}.

In the context of social networks, the consensus algorithm (2.13) is referred to

as the DeGroot model [27] and has been successfully used to describe evolution of

opinions [36].

One drawback of the consensus algorithm (2.13) is that it does not allow for the

incorporation of new external information. This drawback can be mitigated by adding

a forcing term and the resulting algorithm is called running consensus [9] or dynamic

consensus [93]. Similar to (2.13), running consensus updates the opinion at time t as

x(t) = Px(t− 1) + Pυ(t− 1), (2.15)

where υ(t)(υ1(t), . . . , υk(t))T is the vector of information received by the agents at

time t. In the running consensus update (2.15), each agent k collects information

υk(t) at time t, adds it to its current opinion, and then averages its updated opinion

with the updated opinion of its neighbors.

2.4.3 Strictly Local Communication

In the strictly local communication protocol agents can access the choices and realized

rewards of their neighbors in G, but they do not share estimates.
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Using a consensus formulation, strictly local communication is equivalent to set-

ting

P = IM −DiL (2.16)

where Di is an M × M matrix with deg(i) on the i’th diagonal entry and zeros

elsewhere. Note that P is now not necessarily row stochastic and all agent’s opinions

will not necessarily converge to the centralized average.
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Chapter 3

The Distributed Cooperative

Upper-Confidence Bound

Algorithm 1

In this chapter we first define and then analyze a running consensus algorithm that

is used for direct communication between agents for the purpose of cooperative esti-

mation of arm means. We then prove an important theorem on the performance of

this cooperative estimation algorithm.

Next, we describe the coop-UCB1, coop-UCB2, and coop-UCL algorithms for the

multi-agent MAB problem with direct communication through consensus. For each

of these algorithms we show that they achieve logarithmic regret. We also describe

and motivate “explore-exploit” centrality, a new centrality measure that is predictive

of performance in networked explore-exploit problems.

1This chapter is adapted from [57], [56], and [55]. Sections 3.1 and 3.2.2 are mostly taken
verbatim from [55], with a preliminary version of Section 3.1 applying only to Gaussian rewards
appearing in [57]. Section 3.2.1 is adapted from [57] and generalized to sub-Gaussian rewards.
Section 3.3 is mostly taken verbatim from [56]. The numerical illustrations in Section 3.4 are
partially adapted from [55], with some text taken verbatim.
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We then analyze the performance of these three algorithms and demonstrate the

utility of explore-exploit centrality through several numerical simulations. Finally, we

utilize the coop-UCB2 algorithm to conduct a robotic search task.

3.1 Cooperative Estimation of Mean Rewards

In this section we investigate the cooperative estimation of mean rewards at each

arm. To this end, we propose two running consensus algorithms for each arm and

analyze their performance.

3.1.1 Cooperative Estimation Algorithm

For distributed cooperative estimation of the mean reward at each arm i, we employ

two running consensus algorithms: (i) for estimation of total reward provided at the

arm, and (ii) for estimation of the total number of times the arm has been sampled.

Let ŝki (t) and n̂ki (t) be agent k’s estimate of the total reward provided at arm i

per unit agent and the total number of times arm i has been selected until time t

per unit agent, respectively. Using ŝki (t) and n̂ki (t) agent k can calculate µ̂ki (t), the

estimated empirical mean of arm i at time t defined by

µ̂ki (t) =
ŝki (t)

n̂ki (t)
. (3.1)

Let ik(t) be the arm sampled by agent k at time t and let ξki (t) = 1(ik(t) = i). 1(·)

is the indicator function, here equal to 1 if ik(t) = i and 0 otherwise. For simplicity

of notation we define rki (t) as the realized reward at arm i for agent k, which is a

random variable sampled from a sub-Gaussian distribution, and the corresponding

accumulated reward is rk(t) = rki (t) · 1(ik(t) = i).
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The estimates ŝki (t) and n̂ki (t) are updated using running consensus as follows

n̂i(t+ 1) = P n̂i(t) + Pξi(t), (3.2)

and ŝi(t+ 1) = P ŝi(t) + Pri(t), (3.3)

where n̂i(t), ŝi(t), ξi(t), and ri(t) are vectors of n̂ki (t), ŝ
k
i (t), ξ

k
i (t), and rki (t) ·1(ik(t) =

i), k ∈ {1, . . . ,M}, respectively.

3.1.2 Analysis of the Cooperative Estimation Algorithm

We now analyze the performance of the estimation algorithm defined by (3.1), (3.2)

and (3.3). Let ncent
i (t) ≡ 1

M

∑t
τ=1 1>Mξi(τ) be the total number of times arm i

has been selected per unit agent up to and including time τ , and let scent
i (t) ≡

1
M

∑t
τ=1 ξ

>
i (t)ri(t) be the total reward provided at arm i per unit agent up to and in-

cluding time t. Also, let λi denote the i-th largest eigenvalue of P , ui the eigenvector

corresponding to λi, u
d
i the d-th entry of ui, and

εn =
√
M

M∑
p=2

|λp|
1− |λp|

. (3.4)

Note that λ1 = 1 and u1 = 1M/
√
M . Let us define

ν+sum
pj =

M∑
d=1

udpu
d
j1(ukpu

k
j ≥ 0)

and ν-sum
pj =

M∑
d=1

udpu
d
j1(ukpu

k
j ≤ 0).
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We also define

apj(k) =


ν+sum
pj ukpu

k
j , if λpλj ≥ 0 & ukpu

k
j ≥ 0,

ν-sum
pj ukpu

k
j , if λpλj ≥ 0 & ukpu

k
j ≤ 0,

νmax
pj |ukpukj |, if λpλj < 0,

(3.5)

where νmax
pj = max {|ν-sum

pj |, ν+sum
pj }. Furthermore, let

εkc = M

M∑
p=1

M∑
j=2

|λpλj|
1− |λpλj|

apj(k). (3.6)

We note that both εn and εkc depend only on the structure of the communication

graph. These are measures of distributed cooperative estimation performance.

Proposition 1 (Performance of cooperative estimation). For the distributed

estimation algorithm defined in (3.1), (3.2) and (3.3), and a doubly stochastic matrix

P defined in (2.14), the following statements hold

(i) the estimate n̂ki (t) satisfies

ncent
i (t)− εn ≤ n̂ki (t) ≤ ncent

i (t) + εn;

(ii) the following inequality holds for the estimate n̂ki (t) and the sequence

{ξji (τ)}τ∈{1,...,t},j ∈ {1, . . . ,M}

t∑
τ=1

M∑
j=1

(
M∑
p=1

λt−τ+1
p ukpu

j
p

)2

ξji (τ) ≤ n̂ki (t) + εkc
M

.
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Proof. We begin with the first statement. From (3.2) it follows that

n̂i(t) = P tn̂i(0) +
t∑

τ=1

P t−τ+1ξi(τ)

=
t∑

τ=0

[ 1

M
1M1>Mξi(τ) +

M∑
p=2

λt−τ+1
p upup

>ξi(τ)
]

= ncent
i (t)1M +

t∑
τ=1

M∑
p=2

λt−τ+1
p upup

>ξi(τ). (3.7)

We now bound the k-th entry of the second term on the right hand side of (3.7):

t∑
τ=1

M∑
p=2

λt−τ+1
p

(
upup

>ξi(τ)
)
k
≤

t∑
τ=1

M∑
p=2

|λt−τ+1
p |‖up‖2

2‖ξi(τ)‖2

≤
√
M

t∑
τ=1

M∑
p=2

|λt−τ+1
p | ≤ εn.

This establishes the first statement.

To prove the second statement, we note that

t∑
τ=1

M∑
j=1

(
M∑
p=1

λt−τ+1
p ukpu

j
p

)2

ξji (τ)

=
t∑

τ=1

M∑
p=1

M∑
w=1

(λpλw)t−τ+1ukpu
k
w

M∑
j=1

ujpu
j
wξ

j
i (τ)

=
t∑

τ=1

M∑
p=1

M∑
w=2

(λpλw)t−τ+1ukpu
k
wνpwi(τ) +

1

M

t∑
τ=1

M∑
p=1

M∑
j=1

λt−τ+1
p ukpu

j
pξ
j
i (τ)

=
t∑

τ=1

M∑
p=1

M∑
w=2

(λpλw)t−τ+1ukpu
k
wνpwi(τ) +

1

M
n̂ki (t), (3.8)

where νpwi(τ)=
∑M

j=1 u
j
pu

j
wξ

j
i (τ).
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We now analyze the first term of (3.8):

t∑
τ=1

M∑
p=1

M∑
w=2

(λpλw)t−τ+1ukpu
k
wνpwi(τ)

≤
t∑

τ=1

M∑
p=1

M∑
w=2

|(λpλw)t−τ+1||ukpukwνpwi(τ)|

≤
t−1∑
τ=0

M∑
p=1

M∑
w=2

|λpλw|t−τ+1apw(k)

≤
M∑
p=1

M∑
w=2

|λpλw|
1− |λpλw|

apw(k). (3.9)

Bounds in (3.9) establish the second statement.

We now derive bounds on the deviation of the estimated mean when using the

cooperative estimation algorithm using techniques from [31]. Recall that for i ∈

{1, . . . , N} and k ∈ {1, . . . ,M} let {rki (t)}t∈N be the sequence of i.i.d. sub-Gaussian

with mean mi ∈ R. Let Ft be the filtration defined by the sigma-algebra of all the

measurements until time t. Let {ξki (t)}t∈N be a sequence of Bernoulli variables such

that ξki (t) is deterministically known given Ft−1, i.e., ξki (t) is pre-visible w.r.t. Ft−1.

Additionally, let φi(β) = ln
(
E[exp

(
βrki (t)

)
]
)

denote the cumulant generating function

of rki (t).

Theorem 1 (Estimator Deviation Bounds). For the estimates ŝki (t) and n̂ki (t)

obtained using equations (3.2) and (3.3) given rewards drawn from a sub-Gaussian

distribution as defined in Definition 1, the following concentration inequality holds

P

(
ŝki (t)−min̂

k
i (t)

( 1
M

(
n̂ki (t)+εkc

)
)1/2

>δ

)
<

⌈
ln (t+εn)

ln (1+η)

⌉
exp

(
−δ2

2σ2
g

G(η)

)
, (3.10)

where δ > 0, η > 0, G(η) = (1 − η2

16
), and εkc and εn are defined in (3.6) and (3.4),

respectively.
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Proof. We begin by noting that ŝki (t) can be decomposed as

ŝki (t) =
t∑

τ=1

M∑
p=1

λt−τ+1
p

M∑
j=1

ukpu
j
pr
j
i (τ)ξji (τ). (3.11)

Let ŝkpi (t) =
∑t

τ=1 λ
t−τ+1
p

∑M
j=1 u

k
pu

j
pr
j
i (τ)ξji (τ). Then,

M∑
p=1

ŝkpi (t) =
M∑
p=1

M∑
j=1

λpu
k
pu

j
pr
j
i (t)ξ

j
i (t) +

M∑
p=1

λpŝ
kp
i (t− 1). (3.12)

It follows from (3.11) and (3.12) that for any Θ > 0

E
[
exp
(
Θŝki (t)

)∣∣Ft−1

]
= E

[
exp

(
Θ

M∑
p=1

ŝkpi (t)

)∣∣∣∣∣Ft−1

]

= E

[
exp

(
Θ

M∑
p=1

λp

M∑
j=1

ukpu
j
pr
j
i (t)ξ

j
i (t)

)∣∣∣∣∣Ft−1

]
× exp

(
Θ

M∑
p=1

λpŝ
kp
i (t− 1)

)

= exp

(
M∑
j=1

φi

(
Θ

M∑
p=1

λpu
k
pu

j
pr
j
i (t)

)
ξji (t)

)
× exp

(
Θ

M∑
p=1

λpŝ
kp
i (t− 1)

)
,

where both rji (t) and ξji (t) are known deterministically and rji (t) are i.i.d. for each

j ∈ {1, . . . ,M}. Therefore, it follows that

E

[
exp

(
Θ

M∑
p=1

ŝkpi (t)−
M∑
j=1

φi

(
Θ

M∑
p=1

λpu
k
pu

j
pr
j
i (t)

)
× ξji (t)

) ∣∣∣∣Ft−1

]

= exp

(
Θ

M∑
p=1

λpŝ
kp
i (t− 1)

)
.

Using the above argument recursively with the fact that ski (0) = 0, we obtain

E

[
exp

(
Θŝki (t)−

t∑
τ=1

M∑
j=1

φi

(
Θ

M∑
p=1

λt−τ+1
p ukpu

j
pr
j
i (τ)

)
ξji (τ)

)]
= 1.
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Since for sub-Gaussian random variables φi(β) ≤ βmi + 1
2
σ2
gβ

2, we have

1 = E

[
exp

(
Θ
(
ŝki(t)−min̂

k
i(t)
)
−
σ2
g

2

t∑
τ=1

M∑
j=1

(
Θ

M∑
p=1

λt−τ+1
p ukpu

j
p

)2

ξji (τ)

)]
(3.13)

≥ E

[
exp

(
Θ
(
ŝki(t)−min̂

k
i(t)
)
−
σ2
gΘ

2

2M

(
n̂ki (t) + εkc

))]
,

where the last inequality follows from the second statement of Proposition 1. Now

using the Markov Inequality, we obtain

e−a≥ P
(

exp

(
Θ
(
ŝki(t)−min̂

k
i(t)
)
−
σ2
gΘ

2

2M

(
n̂ki (t) + εkc

))
≥ea

)
= P

(
ŝki (t)−min̂

k
i (t)(

1
M

(
n̂ki (t) + εkc

)) 1
2

≥ a

Θ

(
1

M

(
n̂ki (t) + εkc

))− 1
2

+
σ2
gΘ

2

(
1

M

(
n̂ki (t) + εkc

)) 1
2

)
.

The right hand side of the above equation contains a random variable n̂ki (t) which

is dependent on the random variable on the left hand side. Therefore, we use union

bounds on n̂ki (t) to obtain the desired concentration inequality. Towards this end,

we consider an exponentially increasing sequence to time indices {(1 + η)h−1 | h ∈

{1, . . . , D}}, where D =
⌈

ln(t+εn)
ln(1+η)

⌉
and η > 0. For every h ∈ {1, . . . , D}, define

Θh =
1

σg

√
2aM

(1 + η)h−
1
2 + εkc

. (3.14)
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Thus, if (1 + η)h−1 ≤ n̂ki (t) ≤ (1 + η)h, then

a

Θh

(
1

M

(
n̂ki (t) + εkc

))− 1
2

+
σ2
gΘh

2

(
1

M

(
n̂ki (t) + εkc

)) 1
2

= σg

√
a

2

((1 + η)h−
1
2 + εkc

n̂ki (t) + εkc

) 1
2

+

(
n̂ki (t) + εkc

(1 + η)h−
1
2 + εkc

) 1
2


≤ σg

√
a

2

((1 + η)h−
1
2

n̂ki (t)

) 1
2

+

(
n̂ki (t)

(1 + η)h−
1
2

) 1
2


≤ σg

√
a

2

(
(1 + η)

1
4 + (1 + η)−

1
4

)
,

where the second-last inequality follows from the fact that for a, b > 0, the function

ε 7→
√

a+ε
b+ε

+
√

b+ε
a+ε

with domain R≥0 is monotonically non-increasing, and the last

inequality follows from the fact that for η > 0, the function x 7→
√

(1+η)h−
1
2

x
+√

x

(1+η)h−
1
2

with domain [(1 + η)h−1, (1 + η)h] achieves its maximum at either of the

boundaries. Therefore,

P

 ŝki (t)−min̂
k
i (t)(

1
M

(
n̂ki (t) + εkc

)) 1
2

> σg

√
a

2

(
(1 + η)

1
4 + (1 + η)−

1
4

)
≤

D∑
h=1

P

(
ŝki (t)−min̂

k
i (t)(

1
M

(
n̂ki (t) + εkc

)) 1
2

>
a

Θh

(
1

M

(
n̂ki (t) + εkc

))− 1
2

+
σ2
gΘh

2

(
1

M

(
n̂ki (t) + εkc

)) 1
2

& (1 + η)h−1 ≤ n̂ki (t) + εkc < (1 + η)h

)
≤ De−a.

Setting σg
√

a
2

(
(1 + η)

1
4 + (1 + η)−

1
4

)
= δ, this yields

P

 ŝki (t)−min̂
k
i (t)(

1
M

(
n̂ki (t) + εkc

)) 1
2

> δ

 ≤ D exp

 −2δ2

σ2
g

(
(1 + η)

1
4 + (1 + η)−

1
4

)2


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It can be verified that the first three terms in the Taylor series for 4(
(1+η)

1
4 +(1+η)−

1
4

)2

provide a lower bound, i.e.,

4(
(1 + η)

1
4 + (1 + η)−

1
4

)2 ≥ 1− η2

16
.

Therefore, it holds that

P

 ŝki (t)−min̂
k
i (t)(

1
M

(
n̂ki (t) + εkc

)) 1
2

> δ

 ≤ D exp

(
−δ2

2σ2
g

(
1− η2

16

))

=

⌈
ln (t+ εn)

ln (1 + η)

⌉
exp

(
−δ2

2σ2
g

(
1− η2

16

))
.

3.2 Cooperative Decision-Making

In this section, we extend the UCB algorithm [5] to the distributed cooperative setting

in which multiple agents can communicate with each other according to a given

graph topology. We develop the coop-UCB1 and coop-UCB2 algorithms for the case

of sub-Gaussian rewards and prove upper-bounds on the regret of both algorithms.

Intuitively, compared to the single agent setting, in the cooperative setting each agent

will be able to perform better due to communication with neighbors. However, the

extent of an agent’s performance advantage depends on the network structure. We

compute bounds on the performance of the group in terms of the expected group

cumulative regret.

3.2.1 The coop-UCB1 Algorithm

The cooperative UCB1 (coop-UCB1) algorithm is analogous to the UCB algorithm,

and uses a modified decision-making heuristic that captures the effect of the additional
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information an agent receives through communication with other agents as well as

the rate of information propagation through the network.

The coop-UCB1 algorithm is initialized by each agent sampling each arm once

and proceeds as follows. At each time t each agent k selects the arm with maximum

Qk
i (t− 1) = µ̂ki (t− 1) + Ck

i (t− 1), where

Ck
i (t− 1) = σg

√
2γ

G(η)
· n̂

k
i (t− 1) + εkc
Mn̂ki (t− 1)

· ln (t− 1)

n̂ki (t− 1)
, (3.15)

and receives realized reward rki (t) from a sub-Gaussian distribution, where γ > 1,

G(η) = (1− η2/16), and η ∈ (0, 4). Each agent k updates its cooperative estimate of

the mean reward at each arm using the distributed cooperative estimation algorithm

described in (3.1), (3.2), and (3.3). Note that the heuristic Qk
i requires the agent k

to know εkc , which depends on the global graph structure. This requirement can be

relaxed by replacing εkc with an increasing sub-logarithmic function of time, as seen

in Section 3.2.2

Regret Analysis of the coop-UCB1 Algorithm

We now derive a bound on the expected cumulative group regret using the distributed

coop-UCB1 algorithm. This bound recovers the upper bound given in (2.8) within a

constant factor. The contribution of each agent to the group regret is a function of

its location in the network as determined by εkc (see Remark 4).

Theorem 2 (Regret of the coop-UCB1 Algorithm). For the coop-UCB1 al-

gorithm and the MAB problem with sub-Gaussian rewards the number of times a
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suboptimal arm i is selected by all agents until time T satisfies

M∑
k=1

E[nki (T )] ≤
⌈
Mεn +

M∑
k=1

8σ2
gγ(1 + εkc )

∆2
iM

ln(T )

⌉
+

2M

ln (1 + η)

(
1

(γ − 1)2
+

ln ((1 + εn)(1 + η))

γ − 1
+ 2

)

where η > 0 and γ > 1.

Proof. We proceed similarly to [5]. The number of times a suboptimal arm i is

selected by all agents until time T is

M∑
k=1

nki (T ) =
M∑
k=1

T∑
t=1

1(ik(t) = ik)

≤
M∑
k=1

T∑
t=1

1(Qk
i (t− 1) ≥ Qk

i∗(t− 1))

≤ A+
M∑
k=1

T∑
t=1

1(Qk
i (t− 1) ≥ Qk

i∗(t− 1),Mncent
i (t− 1) ≥ A), (3.16)

where A > 0 is a constant that will be chosen later.

At a given time t an individual agent k will choose a suboptimal arm only if

Qk
i (t − 1) ≥ Qk

i∗(t − 1). For this condition to be true at least one of the following

three conditions must hold:

µ̂i∗(t− 1) ≤ mi∗ − Ck
i∗(t− 1) (3.17)

µ̂i(t− 1) ≥ mi + Ck
i (t− 1) (3.18)

mi∗ < mi + 2Ck
i (t− 1). (3.19)

We now bound the probability that (3.23) holds. Applying Theorem 1 and noting

that t ≥ 1 it follows that
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P
(
µ̂ki ≥ mi+C

k
i (t)

)
=P

 ŝki −min̂
k
i√

1
M

(
n̂ki (t) + εkc

)≥σg
√

2γ ln (t)

G(η)


≤

⌈
ln (t+ εn)

ln (1 + η)

⌉
exp(−γ ln (t))

≤
(

ln (t+ εn)

ln (1 + η)
+ 1

)
exp(−γ ln (t))

=

(
ln
(
t t+εn

t

)
ln (1 + η)

+ 1

)
1

tγ

≤
(

ln (t(1 + εn))

ln (1 + η)
+ 1

)
1

tγ

=

(
ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

It follows analogously with a slight modification to Theorem 1 that

P((3.23) holds) ≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

Finally, we examine the probability that (3.24) holds. It follows that

mi∗ < mi + 2Ck
i (t)

=⇒ ncent
i (t) <

⌈
εn +

8σ2
gγ(n̂ki (t) + εkc ) ln(t)

M∆2
i (n̂

k
i (t))

2

⌉

≤

⌈
εn +

8σ2
gγ(1 + εkc ) ln(t)

M∆2
i

⌉
.

From monotonicity of ln(t), it follows that (3.24) does not hold if ncent
i (t) ≥

⌈
εn +

8σ2
gγ(1+εkc ) ln(T )

M∆2
i

⌉
.
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Now, setting A = dMεn +
∑M

k=1

8σ2
gγ(1+εkc ) ln(T )

M∆2
i

e we get from (3.21) that

M∑
k=1

E[nki (T )]≤
⌈
Mεn+

M∑
k=1

8σ2
gγ(1 + εkc ) ln(T )

M∆2
i

⌉

+2
M∑
k=1

T∑
t=1

(
ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ

≤
⌈
Mεn +

M∑
k=1

8σ2
gγ(1 + εkc )

M∆2
i

ln(T )

⌉

+
2M

ln (1 + η)

(
T∑
t=1

ln ((1 + εn)(1 + η))

tγ
+

T∑
t=4

ln (t)

tγ
+1

)

≤
⌈
Mεn +

M∑
k=1

8σ2
gγ(1 + εkc )

M∆2
i

ln(T )

⌉
+

2M

ln (1 + η)

(
1

(γ − 1)2
+

ln ((1 + εn)(1 + η))

γ − 1
+ 2

)
.

This establishes the proof.

3.2.2 The coop-UCB2 Algorithm

The coop-UCB2 algorithm is initialized by each agent sampling each arm once and

proceeds as follows. At time t each agent k selects the arm with maximum Qk
i (t−1) =

µ̂ki (t− 1) + Ck
i (t− 1), where

Ck
i (t− 1) = σg

√
2γ

G(η)
· n̂

k
i (t− 1) + f(t− 1)

Mn̂ki (t− 1)
· ln (t− 1)

n̂ki (t− 1)
(3.20)

for sub-Gaussian rewards. In the above f(t) is an increasing sublogarthmic function,

γ > 1, η ∈ (0, 4), and G(η) = 1− η2/16.

Then, at each time t, each agent k updates its cooperative estimate of the mean

reward at each arm using the distributed cooperative estimation algorithm described

in (3.1–3.3). Note that the heuristic Qk
i requires the agent k to know the total number
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of agents M , but not the global graph structure. That is, unlike coop-UCB1, agent

k doesn’t not need to know εkc .

Theorem 3 (Regret of the coop-UCB2 Algorithm). For the coop-UCB2 algo-

rithm and the cooperative MAB problem with sub-Gaussian rewards, the number of

times a suboptimal arm i is selected by all agents until time T satisfies

M∑
k=1

E[nki (T )]≤
(

4σ2
gγ

∆2
iG(η)

(
1+

√
1+

∆2
iMG(η)

2σ2
gγ

f(T )

lnT

))
lnT

+Mεn + 2
M∑
k=1

(t†k−1) +
2M

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
,

where t†k = f−1(εkc ).

Proof: We proceed similarly to [5]. The number of selections of a suboptimal arm i

by all agents until time T is

M∑
k=1

nki (T ) ≤
M∑
k=1

T∑
t=1

1(Qk
i (t− 1) ≥ Qk

i∗(t− 1))

≤ A+
M∑
k=1

T∑
t=1

1(Qk
i (t− 1) ≥ Qk

i∗(t− 1),Mncent
i ≥ η), (3.21)

where A > 0 is a constant that will be chosen later.

At a given time t an individual agent k will choose a suboptimal arm only if

Qk
i (t − 1) ≥ Qk

i∗(t − 1). For this condition to be true at least one of the following

three conditions must hold:

µ̂i∗(t− 1) ≤ mi∗ − Ck
i∗(t− 1) (3.22)

µ̂i(t− 1) ≥ mi + Ck
i (t− 1) (3.23)

mi∗ < mi + 2Ck
i (t− 1). (3.24)
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We now bound the probability that (3.22) holds using Theorem 1:

P
(

(3.22) holds | t ≥ t†k

)
= P

 ŝki −min̂
k
i√

1
M

(
n̂ki (t) + f(t)

)≥σg
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤ P

 ŝki −min̂
k
i√

1
M

(
n̂ki (t) + εkc

)≥σg
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

It also follows analogously that

P
(

(3.22) holds |t ≥ t†k

)
≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ
.

We now examine the event (3.24).

mi∗ < mi + 2Ck
i (t)

=⇒ n̂ki (t)
2 ∆2

iMG(η)

8σ2
g

− γn̂ki (t) ln(t)− γf(t) ln(t) < 0. (3.25)

The quadratic equation (3.25) can be solved to find the roots, and if n̂i(t) is greater

than the larger root the inequality will never hold. Solving the quadratic equa-

tion (3.25), we obtain that event (3.24) does not hold if

n̂ki (t) ≥
4σ2

gγ ln(t)

∆2
iMG(η)

+

√(
4γσ2

g ln(t)

∆2
iMG(η)

)2

+
8σ2

gf(t)γ ln(t)

∆2
iMG(η)

=
4σ2

gγ ln t

∆2
iMG(η)

(
1 +

√
1 +

∆2
iMG(η)

2σ2
gγ

f(t)

ln t

)
.
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Now, we set A =
⌈
Mεn +

4σ2
gγ lnT

∆2
iG(η)

(
1 +
√

1 +
∆2

iMG(η)

2γσ2
g

f(T )
lnT

)⌉
. It follows from mono-

tonicity of f(t) and ln(t) and statement (i) of Proposition 1 that event (3.24) does

not hold if Mncent
i (t) > A.

Therefore, from (3.21) we see that

M∑
k=1

nki (T ) ≤ A+ 2
M∑
k=1

t†k−1∑
t=1

1 +
2

ln (1+η)

M∑
k=1

T∑
t=t†k

(
ln (t)

tγ
+

ln ((1+εn)(1+η))

tγ

)

≤ A+ 2
M∑
k=1

(t†k − 1) +
2M

ln (1+η)

T∑
t=1

(
ln (t)

tγ
+

ln ((1+εn)(1+η))

tγ
+ 4

)

≤ A+2
M∑
k=1

(t†k−1) +
2M

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
,

completing the theorem. �

Remark 1 (Coop-UCB2 for Gaussian Rewards). For the case of Gaussian

rewards with known variance σ2 the Ck
i (t) term of coop-UCB2 reduces to

Ck
i (t) = σ

√
2γ

G(η)
· n̂

k
i (t) + f(t)

Mn̂ki (t)
· ln (t)

n̂ki (t)

as the cumulant generating function for a Gaussian random variable X ∼ N (0, σ)

can be bounded as φX(β) ≤ σ2β2

2
. In this case, the result of Theorem 3 gives

M∑
k=1

E[nki (T )]≤
(

4σ2γ

∆2
iG(η)

(
1+

√
1+

∆2
iMG(η)

2σ2γ

f(T )

lnT

))
lnT

+Mεn + 2
M∑
k=1

(t†k−1) +
2M

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
.

Remark 2 (Coop-UCB2 for Bounded Rewards). For the case of bounded re-

wards assumed without loss of generality to be in [0, 1] the Ck
i (t) term of coop-UCB2
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reduces to

Ck
i (t) =

√
γ

2G(η)
· n̂

k
i (t) + f(t)

Mn̂ki (t)
· ln (t)

n̂ki (t)

as the cumulant generating function for a random variable X with range [0, 1] can be

bounded as φX(β) ≤ mi + β2

8
. In this case, the result of Theorem 3 gives

M∑
k=1

E[nki (T )]≤
(

γ

∆2
iG(η)

(
1+

√
1+

2∆2
iMG(η)

γ

f(T )

lnT

))
lnT

+Mεn + 2
M∑
k=1

(t†k−1) +
2M

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
.

Remark 3 (Asymptotic Regret for coop-UCB2 ). In the limit t→ +∞, f(t)
ln(t)
→

0+, η → 0, and
M∑
k=1

E[nki (T )] ≤
(

8σ2
gγ

∆2
i

+ o(1)

)
lnT

for sub-Gaussian rewards and

M∑
k=1

E[nki (T )] ≤
(

8σ2γ

∆2
i

+ o(1)

)
lnT

for Gaussian rewards.

We thus recover the upper bound on regret for a centralized agent as given in

(2.8) within a constant factor.

�

Remark 4 (Performance of Individual Agents). Theorem 3 provides bounds

on the performance of the group when using coop-UCB2 as a function of the graph

structure, and the logarithmic portion of the bound is independent of agent location.

However, the constant factor is dependent on the agent’s position in the network since

it depends on εkc . In this sense, εkc can be thought of as a measure of “explore-exploit”
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centrality, which indicates that agents with a higher εkc will contribute more to the

group’s regret.

The observation that agents with higher εkc contribute more to the group’s regret

when using coop-UCB2 can also be seen when agents employ coop-UCB1 as demon-

strated in the performance bounds provided in Theorem 2. However, agents using the

coop-UCB1 algorithm know their own value of εkc and use it as part of the decision-

making process. As εkc is part of the coop-UCB1 algorithm, it is expected that the

performance bounds are dependent upon εkc . However, it is noteworthy that the same

ordering of agent performance is predicted by εkc in coop-UCB2, where each agent k

does not know εkc .

�

3.3 Bayesian Cooperative Decision-Making

In this section, we extend the coop-UCB2 algorithm to a Bayesian setting and de-

velop the coop-UCL algorithm. The Bayesian setting allows us to model arms with

correlated rewards and incorporate a priori knowledge about reward and correlation

structure in the Bayesian prior. We first recall the UCL algorithm proposed in [47, 84]

and extend it to the cooperative setting. We then analyze the performance of this

algorithm for an uninformative prior.

3.3.1 The UCL Algorithm

The UCL algorithm developed in [84] applies the approach of Bayes-UCB [47] to

MAB problems with correlated Gaussian rewards. The UCL algorithm at each time

computes the posterior distribution of mean rewards at each option and then com-

putes the (1 − 1/Kta) upper-credible-limit for each arm, i.e., an upper bound that

holds with probability (1 − 1/Kta) where K =
√

2πe, γ > 1, and a = 4/3γ. The
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algorithm chooses the arm with highest upper credible limit. For Gaussian rewards,

the (1− 1/Kta) upper-credible-limit can be written as

Qi(t) = νi(t) + σi(t)Φ
−1(1− 1/Kta), (3.26)

where νi(t) is the posterior mean and σi(t) the posterior standard deviation of mean

reward at time t. Φ−1(·) is the standard Gaussian inverse cumulative distribution

function.

Let the prior on rewards from each arm be multivariate Gaussian with mean

vector ν0 ∈ RN and covariance matrix Σ0 ∈ RN×N . Then, the posterior mean and

covariance of mean reward at time t can be computed using the following recursive

update rule [48]:

q(t) =
r(t)φ(t)

σ2
s

+ Λ(t− 1)ν(t− 1)

Λ(t) =
φ(t)>φ(t)

σ2
s

+ Λ(t− 1), Σ(t) = Λ(t)−1

ν(t) = Σ(t)q(t),

(3.27)

where φ(t) and ν(t) are column vectors of φi(t) and νi(t), respectively, and φi(t) is

the indicator function of selecting arm i at time t. The update equation (3.27) can

be reduced to

ν(t) = (Λ0 + Γ(t)−1)−1(Γ(t)−1µ(t) + Λ0ν0)

Λ(t) = Λ0 + Γ(t)−1, Σ(t) = (Λ(t))−1,

(3.28)

where Λ0 = Σ−1
0 , Γ(t) is a diagonal matrix with entries σ2

s

ni(t)
, and µ(t) is the vector

of µi(t), which is the empirical mean of rewards from arm i ∈ {1, . . . , N} until time

t. Note that diagonal entries of Σ(t) are (σi(t))
2, i ∈ {1, . . . , N}.
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3.3.2 The coop-UCL Algorithm

We now extend the coop-UCB2 algorithm to the Bayesian setting with Gaussian

rewards and propose the coop-UCL algorithm. In the coop-UCL algorithm, each agent

first computes an approximate posterior distribution of mean rewards conditioned on

rewards obtained by all the agents. To this end, each agent uses the approximate

frequentist estimator µ̂ki from Section 3.1 in update equation (3.28).

Let the prior of agent k be a multivariate Gaussian distribution with mean νk0 and

covariance Σk
0. Let Σ̂k(t) and ν̂k(t) be the estimated covariance matrix and posterior

mean at time t, respectively. Then, the coop-UCL algorithm performs cooperative

approximate Bayesian estimation:

ν̂k(t) = (Λk
0 + Γk(t)−1)−1(Γk(t)−1µ̂k(t) + Λk

0ν
k
0 )

Λ̂k(t) = Λk
0 + Γk(t)−1, Σ̂k(t) = (Λ̂k(t))−1,

(3.29)

where Γk(t) is a diagonal matrix with diagonal entries σ2
s/Mn̂ki (t), i ∈ {1, . . . , N},

and Λk
0 = (Σk

0)−1.

After computing ν̂k(t−1) and Σ̂k(t−1), the coop-UCL algorithm at time t requires

each agent k to choose the option with maximum (1−α(t))-upper-credible-limit given

by

Qk
i (t− 1) = ν̂ki (t− 1) + σ̂ki (t− 1)Φ−1(1− α(t− 1)), (3.30)

where α(t) is defined such that

Φ−1(1− α(t)) =

√
n̂ki (t) + f(t)

G(η)n̂ki (t)
Φ−1

(
1− 1

Kta

)
,

where ν̂ki (t) is the i-th entry of ν̂k(t), (σ̂ki (t))2 is the i-th diagonal entry of Σ̂k(t),

K =
√

2πe, γ > 1, and a = 4/3γ.
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Regret Analysis of the coop-UCL Algorithm

We now derive bounds on the expected cumulative regret for each agent using the

coop-UCL algorithm with uninformative priors for each agent. For an uninformative

prior, Λk
0 = 0, for each k ∈ {1, . . . ,M}, and consequently, ν̂k(t) = µ̂k(t) and Σ̂k(t) =

Γk(t). In addition, we first present a bound on Φ−1(·).

Lemma 1 (Inverse Gaussian CDF Bounds). For the standard normal random

variable z and the associated inverse cumulative distribution function Φ−1(·), the

following holds for any α ∈ [0, 0.5], t ∈ N and a > 1:

Φ−1(1− α) ≤
√
−2 log(α)

Φ−1(1− α) >
√
− log(2πα2(1− log(2πα2)))

Φ−1
(

1− 1√
2πeta

)
>
√
ν log ta,

for 0 < ν ≤ 1.59.

Proof: The first inequality can be found in [1]. The second inequality was established

in [84]. To establish the last inequality, it suffices to show that

− log

(
1

et2

(
1− log

(
1

et2

)))
− ν log t ≥ 0,

for 0 < ν ≤ 1.59. The left hand side of the above inequality is

g(t) := 1− log 2 + (2− ν) log t− log(1 + log t).

It can be verified that g admits a unique minimum at t = e(ν−1)/(2−ν) and the minimum

value is ν − log 2 + log(2− ν), which is positive for 0 < ν ≤ 1.59. �
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Theorem 4 (Regret of the coop-UCL Algorithm). For the Gaussian MAB

problem and the coop-UCL algorithm with uninformative priors for each agent, the

number of times a suboptimal arm i is selected by all agents until time T satisfies

M∑
k=1

E[nki (T )] ≤
(

4aσ2
s

∆2
iG(η)

(
1+

√
1+

∆2
iMG(η)

2aσ2
s

f(T )

lnKT

))
lnKT

+2
M∑
k=1

(t†k−1) +
2M

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
+Mεn

where t†k = f−1(εkc ) and sigmas is the sample standard deviation.

Proof: For uninformative priors, coop-UCL is analogous to coop-UCB2 with Ck
i (t) =

σ̂ki (t)Φ−1(1 − α(t)). Similar to the proof of Theorem 3, we first note that for (3.22)

simple manipulations lead to

ŝki∗(t)−mi∗n̂
k
i∗(t)√

n̂ki∗(t)
≥ σs√

G(η)
Φ−1

(
1− 1

Kta

)
>

σs√
G(η)

√
3a

2
ln t (3.31)

=
σs√
G(η)

√
2 ln tγ

where (3.31) follows from Lemma 1 for K =
√

2πe.

We now use Theorem 1 adapted to Gaussian rewards, giving

P
(

(3.22) holds | t ≥ t†k

)
≤ P

 ŝki∗(t)−min̂
k
i∗(t)√

1
M

(
n̂ki∗(t) + f(t)

)≥σs
√

2γ ln (t)

G(η)

∣∣∣∣∣ t ≥ t†k


≤
(

ln (t)

ln (1 + η)
+

ln (1 + εn)

ln (1 + η)
+ 1

)
1

tγ

resulting in sub-logarithmic regret as in Theorem 3.
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We now examine the event (3.24). Following the argument in the proof of The-

orem 3 and using the upper bound on Φ−1(·) from Lemma 1, we obtain that the

event (3.24) does not hold if

n̂ki (t) ≥
4σ2

sa lnKt

∆2
iMG(η)

(
1 +

√
1 +

∆2
iMG(η)

2σ2
sa

f(t)

lnKt

)
.

We set A=
⌈
Mεn+4σ2

sa lnKT

∆2
iMG(η)

(
1 +
√

1 +
∆2

iMG(η)

2σ2
sa

f(T )
lnKT

)⌉
and the theorem follows by

proceeding similarly to the proof of Theorem 3. �

3.4 Numerical Illustrations

In this section, we elucidate our theoretical analyses from the previous sections with

numerical examples. We first compare the performance of the coop-UCB1, coop-

UCB2, and coop-UCL algorithms. We then provide examples in which the ordering

of the performance of nodes obtained through numerical simulations is equal to the

ordering predicted by the explore-exploit centrality measure: the larger the εkc the

lower the performance. Finally, we provide examples in which the performance of a

network of agents as a whole is equal to the network’s value of εn.

Unless otherwise noted in the simulations we consider a 10-arm bandit problem

with mean rewards drawn from a normal random distribution for each Monte-Carlo

run with mean 0 and standard deviation 10. The sampling standard deviation is

σs = 30 and the results displayed are the average of 106 Monte-Carlo runs. These

parameters were selected to give illustrative results within the displayed time hori-

zon, but the relevant conclusions hold across a wide variation of parameters. The

simulations used f(t) =
√

ln t, and consensus matrix P as in (2.14) with κ = dmax

dmax−1
.
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3.4.1 Comparing Multi-agent MAB Algorithms

1

2

3

4 Agent Degree εkc
1 3 0
2 2 2.31
3 2 2.31
4 1 5.41

Table 3.1: Fixed network used in Examples 1 and 2.

Figure 3.2: Simulation results of expected cumulative regret for several different MAB algorithms
using the fixed network shown in Table 3.1.

Example 1. Figure 3.2 demonstrates the relative performance between coop-UCB1,

coop-UCB2, and coop-UCL with the same run parameters and the communication

graph depicted in Table 3.1, as well as coop-UCB2 with all-to-all communication and

single-agent-UCB. For the multi-agent algorithms the regret shown is the average

per agent. Here the coop-UCL algorithm is shown with an informative prior and

no correlation structure. Each agent in the coop-UCL simulation shown here has

Σ0 = 625 · IM and ν0 = 0 · 1M .

Note that coop-UCB2 outperforms coop-UCB1, as is predicted by our analyti-

cal results, and the cooperative algorithms significantly outperform the single-agent
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case. Furthermore, the use of informative priors markedly improves performance for

coop-UCL, implying that prior information, when available, is highly beneficial in

cooperative explore-exploit tasks, just as it was shown to be in single-agent explore-

exploit tasks [84].

3.4.2 Comparing Performance between Agents using εkc

(Explore-Exploit Centrality)

Figure 3.3: Simulation results comparing expected cumulative regret for different agents in the fixed
network shown in Table 3.1. Note that agents 1 and 2 have nearly identical expected regret.

Example 2. Figure 3.3 demonstrates the relative performance between agents using

coop-UCB2 with the underlying graph structure in Table 3.1. The values of εkc for

each node are also given in Table 3.1. As predicted by Theorem 3 (Remark 4), agent

1 should have the lowest regret, agents 2 and 3 should have equal and intermediate

regret, and agent 4 should have the highest regret as this is their ordering with respect

to εkc . These predictions are validated in our simulations shown here.

Example 3. Figure 3.5 demonstrates the relative performance between agents using

coop-UCB2 with the underlying graph structure in Table 3.2 and where rewards are
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1

2

5

3

4

Agent Degree Info. Cent. εkc
1 3 .35 1.4
2 3 .35 1.4
3 2 .28 3.4
4 2 .28 3.4
5 2 .27 2.9

Table 3.2: Fixed network used in Example 3 and several centrality indices.

Figure 3.5: Simulation results of expected cumulative regret for each agent using coop-UCB2 in the
house graph [78] shown in Table 3.3.

drawn from a normal distribution with mean 0 and standard deviation 5. The values

of εkc for each node are also given in Table 3.2, along with the values of degree and

information centrality for each node [78], for comparison. Here degree centrality is

defined as the number of neighbors. Information centrality is defined in Stephenson

and Zelen [98] but in broad terms it is a measure of the “effective resistance” between

nodes.

Note that, unlike in Figure 3.3, degree does not distinguish agent 5 from agents 3

and 4, whereas εkc (and information centrality) does. Further, according to information

centrality, which is larger the more central the node, node 5 is less information central

than nodes 3 and 4. In contrast, according to εkc , which is smaller the more central

the node, node 5 is more explore-exploit central than nodes 3 and 4.
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As in the prior example and predicted by Theorem 3 (Remark 4), relative agent

performance is consistent with the relative values of εkc , with lower values of εkc corre-

sponding to lower regret. That is, the ordering of nodes by performance is predicted

by the ordering of nodes by our new notion of explore-exploit centrality, εkc , and not

by the ordering of nodes by degree or information centrality.

We note that we have found some parameter regimes, specifically for rewards

that are far apart in mean value, where information centrality does give the correct

ordering of performance, rather than εkc . It is possible that this is due to sensitivity

of performance to the ∆i. However, we have observed that εkc is broadly predictive of

performance for a variety of regimes and graphs, as further demonstrated in Example

4.

ǫ
k

c

0 1 2 3

E
x
p
ec
te
d
C
u
m
u
la
ti
v
e
R
eg
re
t

400

600

800

1000

1200

Figure 3.6: Simulation results of expected cumulative regret as a function of normalized εkc for nodes
in ER graphs at T = 500. Also shown in red is the best linear fit.

Example 4. We now explore the effect of εkc on the performance of an agent in

an Erdös-Réyni (ER) random graph. ER graphs are a widely used class of random

graphs where any two agents are connected with a given probability ρ [7]. Consider a

set of 10 agents communicating according to an ER graph and using the coop-UCB2

algorithm. In our simulations, we consider 100 connected ER graphs, and for each ER
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graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo

simulations with ρ = ln(10)/10. We show the behavior of the expected cumulative

regret of each agent as a function of the normalized εkc in Fig. 3.6. It is evident

that increased εkc results in a sharp decrease in performance. Conversely, low εkc is

indicative of better performance.

3.4.3 Comparing Performance between Graphs using εn

?

?

?

? ?

All-to-All
εn ≈ 439

?

?

?

? ?

Ring
εn ≈ 663

? ?

House
εn ≈ 724

?

Line
εn ≈ 1334

?

Star
εn ≈ 1781

Table 3.3: Fixed networks used in Examples 5 and 6 arranged in order of increasing value of εn.
Values of εn are calculated using P as in (2.14) and κ = 0.02. A ? indicates that this is the best
performing agent(s) in the graph as determined in the simulations described in Example 5, and the
regret for this agent(s) is discussed in Example 6. Note that each agent uses the sample algorithm.

Figure 3.8: Simulation results of expected cumulative regret for the group using coop-UCB2 using
each of the fixed graphs shown in Table 3.3.
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Example 5. Figure 3.8 compares the expected cumulative regret averaged over all

agents in each of the five graphs in Table 3.3, where agents use coop-UCB2. The

value of εn is shown in Table 3.3 for each graph. Theorem 3 predicts that graphs

with lower εn will have lower average expected cumulative regret. Here we use two

arms and κ = 0.02. Figure 3.8 verifies this prediction, showing ordering of graphs by

performance is equal to the order by εn.

Figure 3.9: Simulation results of expected cumulative regret using coop-UCB2 for the agent with
lowest regret in each of of the fixed graphs shown in Table 3.3.

Example 6. Figure 3.9 compares the expected cumulative regret for the best per-

forming agent(s) in each of the five node graphs in Table 3.3. Here we use two arms

and κ = 0.02. Note that the central agent in the star graph outperforms the best

agent in the all-to-all graph despite the star graph’s poor group performance. This

indicates that the four peripheral agents are doing most of the exploration. The stark

different in the propensity to explore or exploit between the central and peripheral

agents in the star graph demonstrates that regret accumulation for certain agents

could be controlled by designing the appropriate communication graph structure.

51



3.5 Robotic Implementation

In this section we build on our previous analytical results and numerical examples to

conduct three experiments that demonstrate the utility of our new multi-agent MAB

algorithms in robotic search tasks. We consider two wheeled robots that can traverse

a space and sample from a virtual reward field that is represented by a visual light

field.

3.5.1 Experimental Setup

Three experiments were conducted in the Council of Science and Technology’s Stu-

dioLab located in the basement of Fine Hall at Princeton University. We utilized

the VICON motion capture area in the StudioLab, which covers an open floor space

measuring approximately 5 × 8 meters. The VICON camera system uses multiple

cameras mounted on the ceiling to detect, in real time, the position of objects in the

room. We use the positional information from this system to control two wheeled

robots through feedback.

We used two iRobot Create robots, which are essentially Roomba robotic vacuum

cleaners without the vacuum. We controlled the forward and turning velocity of each

robot from a central computer through bluetooth and calculated control commands

with MATLAB. Control commands were calculated using a proportional controller

that turned the robot to face the target location and then drive forwards towards it.

The controller also utilized a local collision avoidance algorithm to avoid collisions

within short distances. This collision avoidance algorithm dictated that a robot would

turn away and travel a short distance if the other robot entered a certain short zone

in front of it.

In the VICON motion capture area we installed an array of lights on the ceiling

which produced 20 colored spots on the floor in a 4×5 grid. Each light spot represents
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an arm in the MAB problem, and the light color represents the arm mean. A frame

from a video of one experiment is shown in Figure 3.10 which shows the light field

and the light color key which matches light colors to arm means. Note that arm mean

values range from 20 to 85. When a robot selects and visits a light spot, it receives

a reward drawn from a Gaussian distribution with the associated mean and sample

standard deviation 25.

Each robot’s goal is to maximize the cumulative reward received, which corre-

sponds to selecting arms with the greatest intensity of red light. The robots utilize

the coop-UCB2 algorithm to accomplish this task. Specifically, after an initialization

phase where each root visits each arm once, at each timestep t each robot selects

an arm using the coop-UCB2 algorithm and traverses to that arm. Upon arriving

at the selected arm, the robot receives a virtual reward corresponding to the arm

mean and some noise. Depending on the experiment in question the robot may then

share information with the other robot using consensus. In our three experiments we

individually consider the three cases where the robots cannot communicate with each

other, they both can communicate, and only one can communicate, respectively. Ad-

ditionally, note that the reward received is virtual and is merely represented visually

by the light color. We extend on our work here in Section 4.4.1 where we conduct an

experiment where the robot actually measures the light intensity.

3.5.2 Robotic Experiments

Example 7. In this example two robots use the coop-UCB2 algorithm without any

communication between agents, which is equivalent to the UCB algorithm from [5]

for Gaussian rewards. This is demonstrated in Video 1, also available online at

youtu.be/INzy1zeGlis. Figure 3.10 shows a frame from the end of the video where

one can see the cumulative regret for each robot in the top panel in blue as the “No
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Figure 3.10: A frame from near the end of Video 1. The panel on the left shows a camera view of
the experiment space with the 20 light spots, each representing an arm, arranged in a grid as well as
the two robots. The robot’s locations are also shown in the panel on the bottom right, along with
a color key that shows how light colors correspond to reward values. The panel in the upper right
shows the cumulative regret of each of the two robots in the video (“No Communication”) as well
as two robots from another run that could communicate their estimates.

Communication” case. Note that the case with “Full Communication,” discussed

next, significantly outperforms the “No Communication” case.

Example 8. In this example two robots use the coop-UCB2 algorithm with com-

munication between both agents. As there are only two agents this results in both

robots having the exact same estimates of the arm means at each time, and therefore

they make the exact same decisions and go to the same arms at each time. This

example is not fully depicted in a video, but the cumulative regret for each agent is

shown in the top right panel of Video 1 and depicted in Figure 3.10 in red as the “Full

Communication” case. As would be expected, communication significantly improves

the performance of the robots.

Example 9. In this example two robots use the coop-UCB2 algorithm with a di-

rected, i.e. uni-directional, communication graph. The green robot labeled “Commu-
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Figure 3.11: A frame from near the end of Video 2. The information corresponding to each panel is
the same as in Figure 3.11.

nication In” can access the opinions of the pink robot labeled “Communication Out,”

but the pink robot can only access its own rewards to updates its estimates. The

directed communication case goes beyond the undirected setting considered in this

chapter where we proved bounds on performance for coop-UCB2. The directed com-

munication setting is quite applicable to robotic applications where robot capabilities

vary. For example, robots may carry different communication equipment that may

only be able to broadcast or receive signals. This would establish a directed commu-

nication channel and this example shows that the benefits of cooperation extend to

this scenario.

The results of this experiment are shown in Video 2, also available online at

youtu.be/ZZNn-ud8900. Figure 3.11 also shows a frame from the end of the video

that shows the cumulative regret for each robot in the panel at the top right. This

panel also shows the cumulative regret from the robotic experiments described in

Examples 7 and 8 in the background for reference.
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The green robot with access to the estimates of both robots performs significantly

better, and spends much more time visiting the options with the highest rewards. The

pink robot with access to only its own information naturally performs much worse,

and also expends much more effort moving around the space. In the end both robots

settle on the best option, but the pink robot visits many more suboptimal arms. One

such visit is shown in Figure 3.11.

3.6 Discussion

In this chapter we described two parallel running consensus algorithms that agents,

who share estimates with neighbors defined by a communication graph, can use to

estimate the mean reward at each arm. We analyzed these running consensus algo-

rithms and gave bounds on the performance of the estimation algorithm. We also

defined an “explore-exploit” centrality measure, εkc , that is shown to be useful for

predicting the performance of individuals in networked explore-exploit tasks.

We then described three algorithms for the multi-agent MAB problem with sub-

Gaussian or Gaussian rewards that use the aforementioned two running consensus

algorithms for estimation of mean rewards. The coop-UCB1 algorithm requires that

each agent know the graph structure. In the coop-UCB2 algorithm, we relaxed this

assumption and demonstrate that the coop-UCB2 algorithm improves upon coop-

UCB1 also in terms of performance. The coop-UCL algorithm is a Bayesian algorithm

that can utilize correlation structure in rewards or prior knowledge of reward means

to improve performance. For each algorithm we proved upper bounds on the expected

cumulative regret for the group and demonstrated that it is within a constant order

of optimal.

Next, we elucidated our theoretical analyses with several numerical simulations.

We considered fixed graphs of both four and five nodes and examined both the group
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performance and performance of individual agents as predicted by their respective

values of εn and εkc . We also considered larger random graphs and examined relative

performance among agents through εkc . Finally, we demonstrated the utility of the

coop-UCB2 algorithm in a multi-robot search task.

In the next chapter we adapt the coop-UCB2 algorithm to the case of multi-agent

MAB with collisions.
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Chapter 4

The Distributed Cooperative

Upper-Confidence Bound

Algorithm for MAB with

Collisions 1

In this chapter we consider the multi-agent MAB problem with collisions, where

multiple agents sampling the same arm at the same time collide, meaning that neither

agent receives a reward. The work in this chapter extends the analyses from Chapter

3. As described in Chapter 1, the MAB problem with collisions has been used by

researchers to model the cognitive radio spectrum access problem and it can also

be applied to many other real-world systems where agents interfere with each other

through their actions. In contrast with previous work, we consider the case where

agents can employ direct communication through consensus. Specifically, we assume

agents can utilize the running consensus protocol given in Section 3.1. We also assume

1This chapter is adapted from Section V. of [55]. Sections 4.1 and 4.3 are mostly taken verbatim.
Additionally, the experiment in Section 4.4 was originally presented in [58].
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that agents make use of indirect communication, defined as the ability to sense when

a collision has occurred.

We first define the coop-UCB2 collisions algorithm, and prove upper bounds on

the expected cumulative regret. Using the bounds we demonstrate that the ability to

communicate directly through consensus greatly improves performance in the MAB

problem with collisions as compared to the state-of-the-art algorithms for MAB with

collisions without direct communication.

We then implement a modified version of the coop-UCB2 collisions algorithm to

guide decision-making for three robots in a multi-robot search task.

4.1 Problem Definition

The problem definition is identical to that in Chapter 3 except that if multiple agents

sample the same arm at the same time none of the colliding agents receive a reward.

Therefore, the expected cumulative regret of agent k at time T is

Rk(T ) =
T∑
t=1

[
mbk − E

[
N∑
i=1

rki (t)1{ik(t) = i}Iki (t)

]]
(4.1)

where Iki (t) = 1 if agent k is the only agent to sample arm i at time t, and 0 otherwise.

In this setting the optimal solution is for the M agents to each sample a different

arm from among the M -best arms at each timestep. In the following we assume that

each agent k has a preassigned unique rank ωk ∈ [0,M ] and will attempt to find

the arm with the ωk’th best reward. We also assume that no two arms have the

same mean. We define agent ki as the agent attempting to find arm i, and arm bk

as the arm with the ωk’th best mean, which agent k is by definition trying to find.

Additionally, we define O∗
ωk as the set of ωk arms with the ωk highest means and

∆min = mini 6=j |mi −mj|.
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Some authors [2, 45] have considered the case where agents that sample the same

arm at the same time receive a split reward. The algorithm presented here is still

appropriate for that scenario, and the regret as defined above will upper bound the

regret in the case of split rewards.

Here we consider the case of sub-Gaussian rewards. We show how the coop-

UCB2 can be extended to the MAB problem with collisions and we demonstrate

that the performance of the group in the MAB problem with collisions is greatly

enhanced through information sharing. Furthermore, we show that as in Chapter 3

εkc is indicative of individual performance.

4.2 The coop-UCB2 Collisions Algorithm

Here we describe the coop-UCB2 collisions algorithm. This algorithm adapts SL(K)

algorithm in [30] to the case where agents can directly communicate through consen-

sus.

Let each agent k have an associated rank ωk ∈ {1, . . . ,M}, and let no two agents

have the same rank. The coop-UCB2 collisions algorithm for sub-Gaussian rewards

is initialized by each agent sampling each arm once and proceeds as follows. At time

t each agent k constructs the set Oωk(t) such that Oωk(t) contains the ωk arms with

maximum Qk
i (t− 1) = µ̂ki (t− 1) + Ck

i (t− 1), where

Ck
i (t− 1) = σg

√
2γ

G(η)
· n̂

k
i (t− 1) + f(t− 1)

Mn̂ki (t− 1)
· ln (t− 1)

n̂ki (t− 1)
. (4.2)

Each agent k then selects the arm in Oωk(t) with minimum W k
i (t − 1) = µ̂ki (t −

1)−Ck
i (t−1), where in the above f(t) is an increasing sublogarthmic function, γ > 1,

η ∈ (0, 4), and G(η) = 1− η2/16.
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Then, at each time t, each agent k updates its cooperative estimate of the mean

reward at each arm using the distributed cooperative estimation algorithm described

in (3.1–3.3).

4.3 Regret of the coop-UCB2 Collisions Algorithm

In this section we prove upper bounds on the expected cumulative group regret of the

coop-UCB2 collisions algorithm. To accomplish this we first prove an upper bound on

the number of times an agent i chooses an arm that is not ki in Theorem 5. We then

use this result in Theorem 6 to prove an upper bound on the regret of the coop-UCB2

collisions algorithm. Our two theorems here take inspiration from [30].

Theorem 5 (Upper Bound on Incorrect Selections). For any arm i the fol-

lowing holds:

∑
k 6=ki

E
[
nki (T )

]
≤

⌈
Mεn+

4σ2
gγ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)

2σ2
gγ

f(T )

lnT

)
lnT

⌉

+ 4
M∑
k=1

(t†k−1) +2
MN+M(M + 1)

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+5

)
.

Proof. We begin by noting that

∑
k 6=ki

nki (T ) =
∑
k 6=ki

T∑
t=1

1
{
ik(t) = i

}
=
∑
k 6=ki

T∑
t=1

1
{
ik(t) = i,mi < mbk

}
+

T∑
t=1

1
{
ik(t) = i,mi ≥ mbk

}
≤ A+

∑
k 6=ki

T∑
t=1

1
{
ik(t) = i,mi < mbk ,Mncent

i (t) ≥ A
}

+
T∑
t=1

1
{
ik(t) = i,mi ≥ mbk ,Mncent

i (t) ≥ A
}

(4.3)
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where A is a constant that will be chosen later. In the case where mi < mbk , agent

k picking arm i implies that there exists an arm j ∈ O∗
ωk such that j /∈ Oωk(t).

Therefore, the following holds:

∑
k 6=ki

T−1∑
t=1

1
{
ik(t) = i,mi < mbk ,Mncent

i (t) ≥ A
}

≤
∑
k 6=ki

T−1∑
t=1

1
{
Qk
i (t− 1) ≥ Qk

j (t− 1),mi < mbk ,Mncent
i (t) ≥ A

}
≤
∑
k 6=ki

T−1∑
t=1

∑
j∈O∗

ωk

1
{
Qk
i (t− 1) ≥ Qk

j (t− 1),mi < mbk ,Mncent
i (t) ≥ A

}
≤
∑
k 6=ki

∑
j∈O∗

ωk

T−1∑
t=1

1
{
Qk
i (t− 1) ≥ Qk

j (t− 1),mi < mbk ,Mncent
i (t) ≥ A

}
.

As in Theorem 3, Qk
i (t) ≥ Qk

j (t) implies that at least one of the following three

conditions must hold:

µ̂j(t− 1) ≤ mj − Ck
j (t− 1) (4.4)

µ̂i(t− 1) ≥ mi + Ck
i (t− 1) (4.5)

mj < mi + 2Ck
i (t− 1). (4.6)

The first two equations are bounded using Theorem 1 as in 3. The third equation is

equivalent to

2Ck
i (t) > ∆j,i > ∆min

which, similarly to Theorem 3, does not hold if

nki (t) >
4σ2

gγ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)

2σ2
gγ

f(T )

lnT

)
ln t.
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Therefore, for

A=

⌈
Mεn+

4σ2
gγ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)

2σ2
gγ

f(T )

lnT

)
ln t

⌉

(4.6) does not hold.

This results in

∑
k 6=ki

∑
j∈O∗

ωk

T−1∑
t=1

1
{
Qk
i (t− 1) ≥ Qk

j (t− 1),mi < mbk ,Mncent
i (t) ≥ A

}
≤ 2

M∑
k=1

(t†k−1) +
∑
k 6=ki

∑
j∈O∗

ωk

2

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+5

)

= 2
M∑
k=1

(t†k−1) +
M(M + 1)

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+5

)
. (4.7)

We now examine the second part of (4.3) when mi ≥ mbk and split the conditional

as

1
{
ik(t)= i,mi≥mbk ,Mncent

i (t) ≥ A
}

= 1
{
ik(t)= i,mi≥mbk ,Mncent

i (t)≥A,Oωk(t) = O∗ωk

}
+ 1

{
ik(t)= i,mi≥mbk ,Mncent

i (t)≥A,Oωk(t) 6= O∗ωk

}
≤ 1

{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

bk(t−1)
}

+ 1
{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

h (t−1)
}

(4.8)

for any arm h /∈ O∗
ωk . We also define j /∈ {O∗

ωk \ bk} and note that

(4.8) = 1
{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

j (t−1)
}
.
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This results in

∑
k 6=ki

T∑
t=1

1
{
ik(t) = i,mi ≥ mbk ,Mncent

i (t) ≥ A
}

≤
∑
k 6=ki

∑
j /∈{O∗

ωk\bk}

T∑
t=1

1
{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

j (t−1)
}
. (4.9)

For W k
i (t−1) ≤ W k

j (t−1) to be true at least one of the following must hold:

µ̂i(t− 1) ≤ mi − Ck
i (t− 1) (4.10)

µ̂j(t− 1) ≥ mj + Ck
j (t− 1) (4.11)

mi < mj + 2Ck
j (t− 1). (4.12)

(4.10) and (4.11) can be bounded using Theorem 1. (4.12) never holds due to our

previous choice of A. Similarly to (4.7) this gives

(4.9) ≤ 2
M∑
k=1

(t†k−1) +
∑
k 6=ki

∑
j /∈{O∗

ωk\bk}

2

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+5

)
.

≤ 2
M∑
k=1

(t†k−1) +
2NM+M(M + 1)

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+5

)

which completes the proof.

Theorem 6 (Regret of the Coop-UCB2 Collisions Algorithm). For the coop-

UCB2 collisions algorithm with sub-Gaussian rewards, the expected cumulative regret

of the group satisfies
M∑
k=1

Rk(T ) ≤ mi∗NB +
M∑
k=1

mbkB
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where

B=

⌈
Mεn+

4σ2
gγ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)

2σ2
gγ

f(T )

lnT

)
lnT

⌉

+4
M∑
k=1

(t†k−1)+ 2
MN+M(M + 1)

ln (1+η)

(
1

(γ − 1)2
+

1

γ − 1
+ 5

)
. (4.13)

Proof. As in [30], an agent k can incur regret either by selecting an arm i 6= bk or

when another user j 6= k selects arm bk at the same time. Therefore,

M∑
k=1

Rk(T ) ≤
M∑
k=1

∑
i 6=bk

E
[
nki (T )

]
mbk +

M∑
k=1

∑
j 6=k

E
[
nj
bk

(T )
]
mbk

≤mi∗

N∑
i=1

∑
k 6=ki

E
[
nki (T )

]
+

M∑
k=1

∑
j 6=k

E
[
nj
bk

(T )
]
mbk

≤mi∗

N∑
i=1

B +
M∑
k=1

mbkB

completing the proof.

Remark 5 (Concise Upper Bound on Regret and the Benefits of Com-

munication). The upper bound on expected cumulative group regret in Theorem 6

can be expressed more concisely at the expense of some tightness as

M∑
k=1

Rk(T ) ≤ mi∗B(M +N).

This bound is a factor of 4M times tighter than the bounds for the state-of-the-art

algorithm presented in [30] when considering bounded rewards, demonstrating the

benefits of communication between agents.
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4.4 Robotic Implementation

In this section we build on our previous analytical results and numerical examples to

conduct an experiment that demonstrates the utility of multi-agent MAB algorithms

with collisions in robotic search tasks. We consider three wheeled robots that can

traverse a space and carry sensors to sample from a real light field, with the goal of

finding the location where light of a certain color has its maximum intensity.

4.4.1 Experimental Setup

This experiment was conducted in the Leonard Lab in room H121 in Princeton’s

Engineering Quadrangle. This room is equipped with a VICON system similar to

that described in Section 3.5. The room is also equipped with an array of lights on

the ceiling, but unlike in Section 3.5 we installed filters over each light to spread the

light and create a diffuse light field.

The diffuse light field produced is used as the reward field for the MAB experiment.

In this experiment we consider as arms 100 discrete points on the lab floor arranged

in a 10×10 grid. Furthermore, due to the small grid size of 0.5 meters, only one robot

can occupy a grid point, or arm, at each time. This small grid spacing, combined

with the diffuse light field, creates a reward surface that has correlation structure,

which we utilize.

We used three Turtlebot2 robots made by Robotis. Each robot has a Raspberry Pi

3 for communications and motor control, and is controlled using Robotics Operating

System (ROS). Each robot also has a Adafruit TCS34725 color sensor, which has

three sensors that measure the red, green, and blue components of the impinging

light. In this experiment we use the green sensor, and it is notable that the green

sensor is still somewhat sensitive to red and particularly blue light.
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4.4.2 Robotic Experiments

Example 10. In this experiment we consider three robots searching the space de-

scribed above for areas of high intensity green light. This search task is difficult for

the robot because the green color sensor is somewhat sensitive to blue light and will

register blue light as low intensity green light. Therefore, while we as observers can

easily see the differences between green and blue light in the video, the robot can-

not. Furthermore, the actual intensity of the light field is controlled by a computer

and changes randomly between timesteps, with the intensity sampled from a normal

distribution.

Each robot uses a modified version of the coop-UCB2 collisions algorithm to make

a choice of arm as described below. Only one robot is allowed to occupy a grid space

at a given time. If a “collision” occurs, defined as when multiple robots attempt to

sample the same arm, the one that arrives first is given precedence and the others must

sample adjacent arms. Additionally, robots communicate using consensus with P as

in (2.14), κ = dmax

dmax−1
, and an all-to-all communication graph. Each robot uses the

estimation update procedure from coop-UCL given in Section 3.3.2 to update their

estimates at each timestep. This allows agents to take advantage of the inherent

correlation structure present in the light field.

When conducting MAB-inspired search tasks with robots it is desirable to both

maximize the reward received and to reduce the number of transitions between op-

tions. Each transition requires the robot to move and use energy, and we wish to

limit energy usage over time. To this end we take inspiration from Reverdy et al. [84]

and employ a block allocation strategy, which limits each robot to selecting a new

target arm only at the start of a block of time. We assign all times t ∈ {1, . . . , T}

into blocks of time, with each block of time increasing in length from the previous,

which ensures that the robot will make fewer transitions over time.
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At the start of each block of time each robot selects a target arm using the coop-

UCB2 collisions algorithm. The robot then travels to this target arm by traveling

from their current arm to the nearest arm in the direction of the target arm. The

robot takes a sample from this arm before moving on to the next, until reaching the

target arm. This transit procedure effectively uses the transit time to take additional

samples by stopping to take samples from arms that are along the path to the target

arm. The robots use the same motion planning controller as in Section 3.5.

The experiment is shown in Video 3, also available online at youtu.be/

c3ev-wKAEZA. In the video the three robots explore the space, and eventually

settle on the three locations with the highest intensity of green light. The experiment

demonstrates that the robots are able to successfully distribute themselves to avoid

collisions while finding and settling on the three best grid points.

Figure 4.1: A screenshot from near the end of Video 3. The panel on the left shows a camera view
of the experiment space as well as the three robots. The robot’s locations are also shown in the
panel on the bottom right, along with a color key that shows how light colors correspond to reward
values. The panel in the upper right shows the cumulative regret of each of the three robots in the
video.
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4.5 Discussion

In this chapter we defined and analyzed the coop-UCB2 collisions algorithm. This

algorithm addresses the multi-agent MAB problem with collisions and considers the

case of direct communication through consensus. We demonstrated, through the

derivation of an upper bound on regret, that the coop-UCB2 algorithm can be ex-

tended to the MAB problem with collisions where agents that pick the same arm at

the same time get no reward. We also demonstrated that the use of direct communica-

tion and the coop-UCB2 collisions algorithm greatly improves the performance of the

group compared to state-of-the-art algorithms for the MAB problem with collisions

that only utilize indirect communication.

Additionally, we used the coop-UCB2 collisions algorithm in an multi-robot search

experiment.

In the next chapter we consider direct communication through strictly local com-

munication rather than consensus.
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Chapter 5

Social Imitation in Multi-armed

Bandits with Strictly Local

Communication 1

In this chapter we study the distributed cooperative MAB problem with strictly

local communication. We consider the case where agents have the ability to imitate

their neighbors in a communication graph. Our problem setup is motivated by the

phenomenon of social imitation, which is often encountered in natural systems [82,

88, 103].

In this context strictly local communication means that agents can access the

rewards and choices of their neighbors in a communication graph. This stands in

contrast to communication through consensus, where agents share their estimates

of these values. The strictly local communication model therefore does not require

agents to broadcast their estimates, but only access the rewards and choices of neigh-

bors. This setting is applicable to multi-agent scenarios where agents can only observe

others.

1This chapter is adapted from [59]. Sections 5.1 to 5.4 are mostly taken verbatim.
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We first define the cooperative MAB problem with strictly local communication

mathematically and review prior work on imitation in this setting. We then introduce

and analyze the UCB-Partition algorithm, a partition-based distributed decision-

making algorithm, where only one agent in each partition, a so-called leader, makes

independent decisions based on its local information. The other agents in the parti-

tion, the so-called followers, imitate the decisions of the leader in the partition, either

directly if the leader is a neighbor, or, otherwise, indirectly by imitating a neighbor

along a path to the leader. Finally, we study the UCB-Partition algorithm using

Monte-Carlo simulations.

5.1 The Cooperative MAB Problem with Local

Communication

Consider an MAB problem with N arms and M agents. The reward associated with

arm i ∈ {1, . . . , N} is a bounded random variable in [0, 1] with unknown mean mi.

The communication among agents is modeled by a connected, unweighted, undirected

network graph G = (V , E), |V| = M . Let N (k) denote the set of neighbors of each

agent k ∈ V .

We assume that the agents can be classified into leaders and followers. We assume

that every follower is connected to at least one leader through a path in G, and it

imitates one such leader, either directly or indirectly through a chain of followers. The

set of leaders induces a partitioning of the graph in which every agent in a leader’s

partition ultimately imitates it. We assume that at each time t each leader has access

to the arms chosen and rewards received by its neighbors, while each follower only

has access to the arms chosen by its neighbors. We also assume that each agent k

knows the degree of its neighbors: |N (j)| for each j ∈ N (k).
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Let each agent k choose arm ik(t) at time t ∈ {1, . . . , T} and receive i.i.d reward

rk(t). The total number of times up to time t that agent k has selected arm i is

nki (t) and that agent k and its neighbors have selected arm i is n̄ki (t) = nki (t) +∑
j∈N (k) n

j
i (t). The sequence of rewards received by agent k and its neighbors from

arm i is {rki,s}s∈{1,...,n̄k
i (t)}. The estimated mean of arm i at time t by agent k given

its own and its neighbors’ realized rewards is µ̄k
i,n̄k

i (t)
= 1

n̄k
i (t)

∑n̄k
i (t)
s=1 rki,s. Each leader `

can compute n̄`i(t) and µ̄`i(t).

The objective of this chapter is to design a distributed algorithm for partition-

ing the graph G, assigning a leader to each partition such that every other agent in

the partition imitates it, and determining a sequential decision-making policy for the

leaders and the followers such that efficient group performance is achieved. Alterna-

tively, a set of leaders may be assigned and the distributed algorithm should select

the set of followers and, consequently, the graph partitioning.

The regret of agent k at each time t conditioned on the choice ik(t) is defined

by Rk(t) = mi∗ − mik(t) ≡ ∆ik(t), where mi∗ = maxi∈{1,...,N}mi. We character-

ize group performance in terms of the total expected cumulative regret defined by∑M
k=1

∑T
t=1 E[Rk(t)] =

∑M
k=1

∑N
i=1 ∆iE[nki (T )], where T is the horizon length.

In this chapter, we restrict our attention to policies in which the leaders follow

the UCB algorithm with the estimates of the mean rewards that are computed using

the rewards received by the leader and its neighbors and the followers imitate one of

their neighbors.

5.2 Partition Based Multi-player MAB

In this section we describe and prove upper bounds on the performance of partition-

based multi-player MAB. We introduce several definitions, describe the problem and
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the UCB-Partition algorithm.We then establish bounds on performance of the UCB-

Partition algorithm.

5.2.1 Definitions and Notation

We now introduce several definitions that formalize the leader/follower relationships

inherent in the UCB-Partition algorithm. We will use these formal definitions to

prove an upper bound on the cumulative expected regret of the algorithm. Fig. 5.1

illustrates these definitions with an example.

Let Gldr = (Vldr, Eldr) be a directed graph such that Vldr = V and

Eldr = {(k, j) ∈ E | k can imitate j}.

Gldr encodes all possible variations of followers in the UCB-Partition algorithm: a

directed edge in Gldr indicates that the agent at the tail may follow the agent at the

head. Gldr can therefore be used to enforce operation constraints on who can or cannot

follow others.

We now define the set of all leaders by L and, in the following, we will denote the

i-th element of L by `i. We also define Grlz
ldr = (Vrlz

ldr, E rlz
ldr) such that V rlz

ldr = V and

E rlz
ldr = {(k, j) ⊂ Eldr | @ m 6= j ∈ Vldr, (k,m) ∈ E rlz

ldr, k /∈ L}.

Note that E rlz
ldr is defined recursively and restricts follower agent k to imitate at most

one leader or follower. Grlz
ldr thus encodes a possible realization of follower and leader

combinations when using the UCB-Partition algorithm: a directed edge in Grlz
ldr indi-

cates that the agent at the tail will follow the agent at the head, and agents with no

outgoing edges are leaders.
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For a given realization Grlz
ldr, we define the set of followers of leader `j as

F rlz
j = {`j}∪ {k ∈ Vrlz

ldr | ∃ directed path from k to `j in Grlz
ldr}.

and the set of direct followers of leader `j as

F rlz
j-direct = {`j}∪ {k ∈ Vrlz

ldr | (k, `j) ∈ E rlz
ldr}.

The sets F rlz
j , j ∈ {1, . . . , |L|}, define a partitioning of G, where each partition

contains one leader that every follower in the partition ultimately imitates, and

F rlz
j-direct ⊆ F rlz

j . Fig. 5.1 illustrates these subgraphs for a given G and three example

realizations Grlz
ldr. We denote the length of the longest path present in Grlz

ldr within the

partition defined by F rlz
j as diamrlz

j .

Every realization of Grlz
ldr induces a partitioning of the graph G. Equivalently, for

any partitioning of the graph G, we can choose a leader in each partition and construct

Grlz
ldr. The following analysis holds for any realization Grlz

ldr and is oblivious to how Grlz
ldr

is constructed, i.e., whether it is induced by a given set of leaders or if it is induced

by a given partitioning.

The set F rlz
j-direct is used later in this chapter to bound the expected cumulative re-

gret of the UCB-Partition algorithm for both a single partition and multiple partitions

of G.

5.2.2 UCB-Network and Follow Your Leader Algorithms

In this chapter we draw inspiration from Kolla et al. [50], which also considers the

multi-agent MAB problem with strictly local communication and the ability to im-

itate. The Follow Your Leader (FYL) algorithm of [50] partitions the network into

“leaders,” which use the UCB1 algorithm, and “copiers,” which imitate the actions

of an adjacent leader. The FYL algorithm selects how many and which agents will
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be leaders using a dominating set2 of the graph; these must be computed prior to

runtime.

The ability to imitate a neighbor who is itself imitating another neighbor is the

key difference in the problem formulation between our work and [50]. In [50] agents

can only imitate a neighbor that is a leader, and our relaxation of this constraint

leads to a richer set of possible strategies and analysis.

The UCB-Network and Follow Your Leader (FYL) algorithms are defined in [50].

The UCB-network algorithm is equivalent to setting L = V , making every agent a

leader that can access rewards of its neighbors. The UCB-Network algorithm is thus

easily distributed, but it does not allow for any agent to imitate.

In the FYL algorithm the leaders L are defined as a dominating set of G, and the

followers of `j are composed of a subset of the neighbors of `j. In the FYL algorithm

the best performance is achieved when L is defined as the minimal dominating set.

An example of leader selection corresponding to the minimal dominating set is shown

in Panel C in Fig. 5.1.

5.2.3 UCB-Partition Algorithm

First, we define

Qk
i (t, n̄

k
i (t)) = µ̄ki,n̄k

i (t) +

√
2 ln (t)

n̄ki (t)
. (5.1)

The UCB-Partition algorithm is as follows:

(i) Initialization phase: Every leader j ∈ L chooses each arm once, and each follower

k ∈ F rlz
j chooses randomly for the first timestep.

2A subset of nodes of a graph is called a dominating set if for every node not in the dominating
set, there exists an adjacent node that belongs to the dominating set. The smallest dominating set
is called the minimal dominating set.
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G

Gldr

A. Grlz
ldr

B. Grlz
ldr

C. Grlz
ldr

`i F rlz
j-direct\`jF rlz

j \F rlz
j-direct

Figure 5.1: Example of a communication graph G and a Gldr that allows for any agent to imitate any
neighbor in G. Panels A and B show two possible realizations of Grlzldr for the case of one leader. Panel
C demonstrates a realization for three leaders. The selection of each agent’s role, which defines Grlzldr,
can be driven by design constraints or optimized to minimize the upper bounds on performance.
Note that even if two agents are not connected in Grlzldr they can still share sample information if
connected in G.
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(ii) Each leader j ∈ L selects the arm with the highest Qj
i (t, n̄

j
i (t)), and each follower

k selects the arm selected by agent {m ∈ Vrlz
ldr | (k,m) ∈ E rlz

ldr} at the previous

timestep.

5.2.4 Expected Cumulative Regret of UCB-Partition

Here we establish an upper bound on the cumulative expected regret of the UCB-

Partition algorithm.

Theorem 7. For the UCB-Partition algorithm with definitions given in Section 5.2.1

the following bounds hold for i 6= i∗ and given a Grlz
ldr with |L| = 1:

M∑
k=1

E
[
nki (T )

]
≤ 8 ln (T )

∆i

· |F
rlz
1 |

|F rlz
1-direct|

+M3(1 +
π2

3
) + (|F rlz

1 | − 1)diamrlz
1 ,

where |F rlz
1 | = M and |F rlz

1-direct| = |N (`1)|+ 1.

Proof. We start by noticing that

M∑
k=1

nki (T ) ≤ |F rlz
1 |n

`1
i (T ) + (|F rlz

1 | − 1)diamrlz
1 (5.2)

= |F rlz
1 |

T∑
t=1

1
{
i`1(t) = i

}
+ (|F rlz

1 | − 1)diamrlz
1

≤ (|F rlz
1 | − 1)diamrlz

1 + |F rlz
1 |
[

A

|F rlz
1-direct|

+
T∑
t=1

1

{
i`1(t) = i, n`1i (t) >

A

|F rlz
1-direct|

}]
, (5.3)

where A is a constant that will be chosen later and the (|F rlz
1 | − 1)diamrlz

1 term in

(5.2) follows because every follower will not necessarily be copying their leader until

the leader’s choices propagate through the network. We now bound the second part
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of (5.3) using techniques from [5].

T∑
t=1

1

{
i`1(t) = i, n`1i (t) >

A

|F rlz
1-direct|

}

≤
T∑
t=1

1

{
Q`1
i∗ (t, n̄

`1
i∗ (t))<Q

`1
i (t, n̄`1i (t)), n`1i (t) >

A

|F rlz
1-direct|

}

≤
T∑
t=1

1

{
Q`1
i∗ (t, n̄

`1
i∗ (t))<Q

`1
i (t, n̄`1i (t)), n̄`1i (t) > A−M

}
(5.4)

≤
T∑
t=1

1

{
min Q`1

i∗ (t, a)
1<a<(|N (`1)|+1)t

< max Q`1
i (t, b)

A−M<b<(|N (`1)|+1)t

}

≤
T∑
t=1

(|N (`1)|+1)t∑
a=1

(|N (`1)|+1)t∑
b=A−M

1
{
Q`1
i∗ (t, a) < Q`1

i (t, b)
}

where (5.4) follows because the direct followers of the leader choose i`1(t) at time

t + 1. In the spirit of [5], if 1
{
Q`1
i∗ (t, a) < Q`1

i (t, b)
}

holds then at least one of the

following must hold:

µ̄i∗,a ≤ mi∗ −
√

2 ln (t)

a
(5.5)

µ̄i,b ≥ mi +

√
2 ln (t)

b
(5.6)

mi∗ < mi +

√
8 ln (t)

b
(5.7)

As in [5], we bound (5.5) and (5.6) using Chernoff-Hoeffding bounds as

P

(
µ̄i∗,a ≤ mi∗ −

√
2 ln (t)

a

)
≤ t−4, and

P

(
µ̄i,b ≥ mi +

√
2 ln (t)

b

)
≤ t−4.

Setting A = M + 8 ln(t)

∆2
i

, we see that (5.7) never holds. Thus,
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|F rlz
1 |

T∑
t=1

1

{
i`1(t) = i, n`1i (t)>

A

|F rlz
1-direct|

}

≤ |F rlz
1 |

T∑
t=1

(|N (`1)|+1)t∑
a=0

(|N (`1)|+1)t∑
b=A−M

2

t4

≤ |F rlz
1 |

T∑
t=1

2

t2
(|N (`1)|+ 1)2

≤ |F rlz
1 |(|N (`1)|+ 1)2(1 +

π2

3
) ≤M3(1 +

π2

3
),

which completes the proof.

Corollary 1. For the UCB-Partition algorithm with definitions given in Section 5.2.1

the following bounds hold for i 6= i∗ and any given Grlz
ldr with a generic set of leaders

L:

M∑
k=1

E
[
nki (T )

]
≤ 8 ln (T )

∆i

∑
j∈L

|F rlz
j |

|F rlz
j-direct|

+M3(1 +
π2

3
) +

∑
j∈L

(|F rlz
j | − 1)diamrlz

j .
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Proof. Similar to the proof of Theorem 1, we note that

M∑
k=1

nki (T ) ≤
∑
j∈L

|F rlz
j |n

`j
i (T ) +

∑
j∈L

(|F rlz
j | − 1)diamrlz

j

=
∑
j∈L

|F rlz
j |

T∑
t=1

1
{
i`j(t) = i

}
+
∑
j∈L

(|F rlz
j | − 1)diamrlz

j

≤
∑
j∈L

(|F rlz
j | − 1)diamrlz

j +
∑
j∈L

|F rlz
j |

[
A

|F rlz
j-direct|

+
T∑
t=1

1

{
i`j(t) = i, n

`j
i (t) >

A

|F rlz
j-direct|

}]

≤
∑
j∈L

(|F rlz
j | − 1)diamrlz

j + A
∑
j∈L

|F rlz
j |

|F rlz
j-direct|

+M2(1 +
π2

3
)
∑
j∈L

|F rlz
j | (5.8)

=
∑
j∈L

(|F rlz
j | − 1)diamrlz

j + A
∑
j∈L

|F rlz
j |

|F rlz
j-direct|

+M3(1 +
π2

3
),

where (5.8) follows from Theorem 7, completing the proof.

5.2.5 Distributed Partition-Based Multi-agent MAB using

Token Passing

The UCB-Partition algorithm and the associated bounds provide performance guar-

antees for a given Grlz
ldr, which by definition defines |L| partitions of G and the leader-

follower assignments. In this section we present a distributed method for choosing

|L| leaders and partitions, which in turn, with follower assignments, gives Grlz
ldr.

This method is comprised of two parts: leader identification and partition gener-

ation. The goal of the leader identification step is for each agent to construct, in a

distributed fashion, a list of tuples of size |L|, where each tuple contains the identify

and degree of agents with top |L| degree. Let each agent k have a unique identity

number v, and let each agent know their own degree, |N (k)|, in G, and identity of

their neighbors. Each agent initially constructs a list of size |L| with only one entry:
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the agent’s identity and degree, and the other entries are empty. Then, each agent

exchanges this list with each of their neighbors and combines their own list with those

received to create a new list of agents with the top |L| degrees in the lists (in case of

ties, the agent with lower identity is selected). Each agent then repeats this process

with their new list, and the procedure converges in number of timesteps equal to at

most two times the diameter of graph G plus one.

To accomplish partition generation each agent represented in the final list identifies

itself as a leader. Followers then recursively choose an agent to imitate. First, the

agents that are adjacent to leader(s) commit to imitating a leader, and transmit a

committed signal to their neighbors. Subsequently the uncommitted neighbors may

choose to imitate one of the committed agents, until all agents are committed.

This procedure defines Grlz
ldr, and the performance bounds established in Sec-

tion 5.2.4 hold. In future work will we rigorously show that this strategy converges

to a valid partition for a connected communication graph G.

Fig. 5.2 demonstrates three examples of leader selection and follower assignment

using this method for one, three, and five leaders. Note that Grlz
ldr is not unique for

the three and five leader cases as some followers must choose arbitrarily between two

or more options. The identity number v is omitted for clarity, but it is used to break

ties when choosing five leaders.

5.3 Numerical Illustrations

In this section we compare the behavior and performance of the UCB-Partition al-

gorithm with the algorithms in [50]. We show that the UCB-Partition algorithm

performs well over a variety of graph structures and offers performance advantages

over related algorithms.
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G

Gldr, |L| = 1

Grlz
ldr, |L| = 3

Grlz
ldr, |L| = 5

`i F rlz
j-direct\`jF rlz

j \F rlz
j-direct

Figure 5.2: Example of a large communication graph G and a Gldr (not shown) that allows for any
agent to follow any neighbor in G. Three panels show three possible realizations of Grlzldr with one,
three, and five leaders, respectively, where the leaders and followers are selected using the token
passing method described in 5.2.5.

All simulations are conducted with a 2-armed bandit using rewards drawn from a

Bernoulli distribution with m = [0.5, 0.7] and T = 103 or T = 104. In Figs. 5.3 and

5.4 we show cumulative regret of the group over time for different graph structures

as given in Figs. 5.1 and 5.2, respectively. The cumulative regret in our simulations

are computed by averaging over 8000 Monte-Carlo runs using the UCB-Partition and

UCB-Network algorithms, as well as for the case with no communication between

agents.

Example 11 (Regret for Small Graphs). Fig. 5.3 shows group cumulative ex-

pected regret for G and the three versions of Grlz
ldr as given in Fig. 5.1. The UCB-

Partition greatly improves performance over the UCB-Network algorithm, demon-
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strating the benefits of imitation. Additionally, version C of Grlz
ldr is a minimal dominat-

ing set partition for the FYL algorithm, so the better performance of UCB-Partition

A over C here shows the advantage of the UCB-Partition algorithm over the FYL

algorithm when used with suitable leaders. Finally, the the better performance of

UCB-Partition A over B demonstrates the benefit of selecting agents with higher

degree to be leaders.

Figure 5.3: Simulation results of expected cumulative regret for the UCB-Network and UCB-
Partition algorithms using G and Grlzldr as given in Fig. 5.1.

Example 12 (Regret for Large Graphs using Token Passing). Fig. 5.4 shows

group cumulative expected regret for G and the three versions of Grlz
ldr corresponding

to one, three, and five leaders as given in Fig. 5.2. Here, increasing the number

of leaders results in a small increase in group cumulative regret for large T , which

is also reflected in the performance bounds, a phenomenon we discuss in Example

13. As in Example 1, the UCB-Partition significantly improves performance over the

UCB-Network algorithm.

Example 13 (Time Dependency of Optimal Leader Selection). Fig. 5.5

compares the relative performance of the UCB-Partition algorithm using the one,
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Figure 5.4: Simulation results of expected cumulative regret for the UCB-Network and UCB-
Partition algorithms using G and Grlzldr as given in Fig. 5.2.

three, and five leader realizations Grlz
ldr in Fig. 5.2 at each timestep t for T = 103.

Early on, the three leader network outperforms the one leader network, but as t

grows the one leader network begins to perform the best, a trend which can be seen

continuing in Fig. 5.4.

Figure 5.5: Simulation results of the expected cumulative group regret of the one, three, and five
leader Grlzldr’s in Fig. 5.2 as a percentage of the algorithm with highest regret at each time t. Lower
percentage values indicate lower regret.
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This is expected as bounds expressed in Theorem 7 and Corollary 1 indicate that

as T →∞ the lowest regret will be obtained when the agent or agents with the highest

overall degree in G are the only leaders. This result is indicated by the domination

of the logarithmic term in the bound and is intuitive, as over large timescales it is

beneficial to wait and imitate, through one’s neighbors, a leader with the highest

possible number of available samples.

However, for T <∞ the Grlz
ldr-dependent constant terms in Theorem 7 and Corol-

lary 1 can be significant relative to the logarithmic term, and having more leaders

may be advantageous as this tends to reduce |F rlz
j | and diamrlz

j . Additionally, this

factor would be particularly important for non-stationary MAB problems in social

settings, where the mean rewards from the arms can change in time.

These results suggest that selecting the optimal leaders or optimal number of

leaders is a function not only of G but also of the time horizon T . We intend to

explore this trade-off in future work.

5.4 Discussion

In this chapter we investigated cooperative decision-making in networks using the co-

operative multi-agent MAB problem with strictly local communication. We developed

the UCB-Partition algorithm and proved bounds on its performance. Additionally,

we developed a distributed policy that utilizes token-passing, does not require knowl-

edge of the full communication graph, and can select an arbitrary number of leaders

for use with the UCB-Partition algorithm. We demonstrated the utility of the UCB-

Partition algorithm using several different examples of communication graphs and

explored the time dependency of selecting the optimal number of leaders.

Future research directions include tightening the performance bounds of the UCB-

Partition algorithm and constructing algorithms for leader selection as a function of
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time. Additionally, alternative metrics for choosing when to imitate or lead may offer

performance benefits, and a tight lower bound on expected regret as a function of the

local communication graph remains an open problem. It would also be interesting to

compare our results to studies of human or animal networks facing problems described

by the MAB problem.
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Chapter 6

Multi-armed Bandit based

Algorithms for Localization of

Radioactive Material 1

In this chapter we utilize the MAB framework to develop algorithms for the localiza-

tion of radiation sources in various environments. We build upon our earlier theoret-

ical work on the MAB problem to inform the design of a modified UCB heuristic for

radioactive material localization. Additionally, we describe a wheeled robotic plat-

form that we designed and built for testing this algorithm in a real-world setting and

present the results of several experiments.

6.1 Motivation and Background

6.1.1 Application Scenarios

Robots are well-suited to tasks that are dull, dirty, and dangerous. This description

applies to many search tasks involving radioactive material, for which robots offer

1This chapter is partially adapted from [35]
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distinct benefits. Robots can be deployed and left to investigate areas for long periods

of time and using robots to investigate a space instead of humans reduces radiation

exposure of personnel. Robots are also capable of making computationally heavily

Bayesian inference calculations, which lend precise estimates of phenomena of interest,

thereby enabling better decision-making capabilities.

We envision the role of the robot in nuclear search tasks as that of an assistant

to a human operator. Our goal is to offload the laborious, dangerous tasks to the

machine, while leaving the human operator to make more refined judgments about

the objectives under consideration.

Our work is motivated by several application scenarios. The first is as a monitoring

aid in facilities that enrich Uranium to produce fuel for reactors, or more nefariously,

nuclear weapons. Uranium enrichment plants are employed world-wide to enrich the

U-235 content in naturally mined Uranium for use in civilian nuclear power plants.

Such facilities are often governed by treaties that permit human inspectors a limited

amount of time to inspect the facility. We envision that inspector robots could ac-

complish this inspection task at more regular intervals and with fewer confidentiality

concerns. Robots could be used to ensure that the facility is producing fuel within

the guidelines of a governing treaty and detect if a portion of the facility is being used

to produce fuel that is above a set enrichment level.

The second application area is locating undeclared radioactive material in a ware-

house setting. A robot enabled with our algorithm could be used to efficiently find

containers or items emitting radiation and provide feedback to security personnel re-

garding what items to target for further inspection. Such a robot could also be used

to confirm the absence of such items. The algorithm developed here is particularly

well-suited to such tasks as it makes no assumptions regarding facility layout.

The third application area is the mapping of contaminated areas such as the

regions surrounding the Fukushima power plant in Japan. We envision that ground
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robots equipped with radiation sensors and our algorithm could be used to map

areas that were affected during the Fukushima disaster, thereby providing valuable

information regarding contamination levels. The Safecast project [10] has effectively

addressed this challenge for large areas, and we hope the solutions presented here

can be used for detailed mapping of smaller areas such as houses. Our algorithm

fits this task well because it allows for detection of distributed, non-point radiation

sources, such as contaminated soil, and does not require a prior map of the space.

Furthermore, it balances exploring the whole area with focusing on highly radioactive

areas of potential interest.

6.1.2 Related Work and Goals

Multiple researchers have investigated the problem of radioactive material localiza-

tion. In general, the applicability of a given solution or method is highly dependent

on the assumptions made in the formation of the problem. Assumptions regarding

the number of radioactive sources, source strength, the presence of shielding, and

background radiation levels have a profound effect on the efficacy of a given solution.

Researchers have also focused on several different application areas. One major

area is that of radiation monitoring at ports of entry, and several publications have

considered the challenge of determining if a moving target is radioactive. Sun et

al. [99, 100] considered the case of a moving target with known source strength and

location, and developed evaluation strategies for a network of sensors. Others have

developed strategies for the same situation but with unknown target location or source

strength [65, 74, 80].

Another active area of research is the search for stationary sources of radiation

using mobile robots, which is the problem we address in this chapter. Cortez et

al. [22] formulated control laws for wheeled robots where robot velocity is based upon

radiation sensor measurements from single point sources and compared this method
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to simple coverage-based algorithms. Kumar et al. [52] followed a similar approach to

localize multiple small sources, and Yadav et al. [108] expanded upon this to consider

robot positioning error. Others have focused purely on building an accurate radiation

map of a known space [23, 40, 69]. Recent work has also focused on fast localization

of strong point sources using aerial robots [67].

In contrast to the above work, the algorithm developed here is designed to effi-

ciently identify areas that experience radiation levels above a set threshold, rather

than localizing a specific source. This output will give a human operator a map cor-

responding to interesting or dangerous locations to inspect or avoid, which is highly

useful in the applications described in Section 6.1.1.

The solution developed in this chapter makes very few assumptions regarding the

localization task at hand. We assume that there may be any number of sources of any

strength, and that there may be shielding or reflective surfaces in the environment.

Additionally, we do not assume that sources are point sources, but may be distributed,

such as in contaminated soil. We have avoided making restrictive assumptions on

the search environment in order to maximize the algorithm’s efficacy in real-world

scenarios and increase robustness.

6.1.3 Search as an MAB Problem

The MAB problem has previously been used as a model for search in several contexts.

Srivastava et al. [96] used the MAB problem to model surveillance, and focused on

scenarios where the rewards can change over time. Reverdy et al. [84] used the

MAB problem to model human search tasks in a simplified computer game where

users explored a smooth stationary reward surface, and Srivastava et al. [95] used the

MAB problem to model search and foraging. The authors demonstrated that simple

UCB type heuristics can closely approximate the behavior of skilled human operators

in performing search tasks.
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The MAB problem is well-suited as a modeling framework for real-world search

problems for several reasons. The first reason is the ubiquity of noise. Noisy informa-

tion is a persistent feature of real-world search tasks, and a searcher will often have

to make sequential decisions under uncertainty. For example, in a search-and-rescue

mission for a missing hiker, a rescuer will need to decide where to search next on

the basis of noisy inputs such as eye-witness reports, cell phone records, and tracks.

Noise is an fundamental feature of MAB problems, and therefore such problems serve

as useful models for many real search tasks.

The second reason is the clear analog between reward in an MAB task and the goal

of a search task. Returning to the example of the missing hiker, one could formulate

reward as the recent presence of the missing person, with the highest reward obtained

for finding them. In the context of the MAB problem this reward formulation will

push searchers to hone in on where they guess the hiker is located while also making

balanced judgments about exploring potentially rewarding areas.

The third reason is the easy adaptability of MAB tasks to various real-world

conditions. Researchers have considered many variants of the classical MAB problem,

such as time-varying rewards, correlated rewards, and different reward distributions,

that can be used to model different real-world scenarios. Many MAB heuristics,

such as UCB, are also computationally efficient, which is a necessary requirement for

practical application.

In this chapter we consider a variant of the MAB problem that is well-suited to

the radiation localization task. In particular we consider correlated, non-time varying

Gaussian rewards under a satisficing formulation.

6.1.4 The Satisficing Problem

In many practical decision-making scenarios a decision-maker is not interested in

necessarily finding the best option, but only reliably finding a sufficient option. For
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example, a foraging animal may desire to find a reliable food location that can pro-

vide a day’s meal, but not care if it is the most plentiful location available. This

encodes the intuitive result that some decision-makers only care about reliably meet-

ing a need. This decision-making objective has been formally investigated as the

satisficing problem [92], a portmanteau combining satisfying and sufficing. It has

been used to model decision-making in a wide variety of fields, including economics

[8], management science [71], design optimization [73, 109], and control theory [37].

The satisficing objective has also been investigated in MAB problems [83]. In

this context a decision-making agent seeks to obtain a reward value that is satisfying,

defined as being above a user-defined thresholdM. The decision-maker also seeks to

sample arms that are sufficient, defined as reliably yielding satisfying rewards with

probability 1−δ with δ ∈ [0, 1]. The goal of a decision-maker is therefore to maximize

the objective
T∑
t=1

1
{
P
(
mi(t) ≥M

)}
(6.1)

where mi is the mean of arm i and i(t) is the arm sampled at time t.

Reverdy et al. [83] also introduced the concept of expected satisficing regret, given

by

R(t) = max{M−mi(t), 0} · 1
{
P
(
mi(t) ≤M

)}
(6.2)

and defined the Satisficing-In-Mean-Reward MAB Problem, which is to minimize the

cumulative satisficing regret.

This problem can take several different forms depending on the values of the

arm means, M, and δ. In this chapter we are concerned with one particular form,

termed (M, δ)-satisficing in [83], where multiple arms have means above M and

δ > 0, implying that the decision-maker accepts less than complete certainty that

an arm is satisfying. (M, δ)-satisficing corresponds well to the application scenario

where there are multiple locations with high (above M) radiation measurements in
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an environment and the operator aims to discover their location with a given error

rate.

6.2 Search using Satisficing

In this section we describe the Radiation Upper Confidence Limit (rad-UCL) algo-

rithm and Gaussian process regression.

6.2.1 Gaussian Process Regression

A Gaussian process (GP) is defined in [81] as a “collection of random variables, any

finite number of which have a joint Gaussian distribution.” Intuitively, if one envi-

sions a GP with each random variable representing a physical point in space, the

expected values of a set of points would therefore describe a surface that is somewhat

smooth, provided that the covariance function of the joint Gaussian distribution as-

sumes nearby points are highly correlated.

Here we utilize the notation of [81] and define K(X1, X2) as the covariance matrix

between each of the points in the sets X1 and X2. This covariance matrix is produced

by a covariance function, or kernel, which defines a relationship between any two

input points. There are several different covariance functions that are typically used

by researchers, and each one lends itself to different physical interpretations. Here we

utilize the most common covariance function, exponential-squared, defined as

exp

(
− 1

L
|x1 − x2|2

)
, (6.3)

where xi is the location of point i and L is a length scale parameter. We use 6.3 to

calculate each of the values in K(X1, X2) and it encodes the intuitive result that the

correlation between points falls off exponentially with distance.
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In this work we are concerned with Gaussian process regression, which aims to fit

underlying data using a GP to enable predictions of data values at other points. GP

regression has a long history in spatial measurement tasks, such as oil field charac-

terization and measurements of radioactive contamination [28, 106]. GP regression is

widely used in practice for two reasons. The first is the relative ease of incorporating

modeling features such as prior information, assumptions on correlation, and noisy

data. The second is the computational tractability of solving the regression problem.

Both of these features are highly attractive for our current task.

The GP regression process [81] to calculate posterior expected value and variance

is

µ(t) = K(X∗, X)[K(X,X) + V (t)]−1y(t) (6.4)

Σ(t) = K(X∗, X∗)−K(X∗, X)[K(X,X) + V (t)]−1K(X,X∗). (6.5)

In the above Σ(t) is the posterior variance at time t, X is the set of all points in the

space, X∗ is the set of all points for which measurement, or training, data exists, y(t)

is a vector of training data for points in X∗, and µ(t) is the posterior expected value

of all points in X. Furthermore V (t) is a matrix with zeros except for the diagonal

entries, with the i’th diagonal entry equal to the sample variance of the i’th data

point. In practice the posteriors defined in (6.4) and (6.5) are typically computed

using Algorithm 2.1 in [81], which is the method we employ using the numpy package

in python. This method uses a Cholesky decomposition to achieve faster computation

and numerical stability, but accomplishes the same basic steps as (6.4) and (6.5).

Gaussian Process Regression and the MAB Problem

The GP-UCB algorithm, defined and analyzed in [94], considers an MAB problem

where correlations between arm means can be modeled as a GP. This is highly ap-
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plicable to MAB problems where arms represent locations in physical or parameter

space with some correlation between arms.

The GP-UCB algorithm uses GP regression to estimate the arm means and vari-

ances at given points in a space, where each point represents an arm with an under-

lying reward mean and variance. The algorithm then uses a UCB type heuristic that

combines the mean estimates with an exploration term composed of the posterior

variance and a function of time to make a decision about which arm to sample next.

In practice GP-UCB is very similar to the classical UCB algorithm [5] or UCL algo-

rithm [84], but employs GP regression to estimate the posterior mean and variance

of arms.

In the search task presented here we do not use GP-UCB directly, but rather take

inspiration from GP-UCB in our use of GP regression.

6.2.2 The Rad-UCL Algorithm

The rad-UCL algorithm takes inspiration from the GP-UCB algorithm in [94] and

the (M, δ)-satisficing UCL algorithm in [83]. The rad-UCL algorithm executes the

following steps for each time t ∈ {1, . . . , T} in the search problem:

(i) Radiation Field Estimation: All space that is accessible to the robot is gridded

into measurement cells. Each measurement cell is associated with a cumulative

counter of the time in seconds di(t) spent in cell i by any detector at time t,

and the radiation counts ci(t) received by a detector while in that cell. Using

these two values, the robot calculates the count rate in counts per second as

yi(t) = ci(t)
di(t)

, which is the i’th entry of y(t), and variance ci(t)
di(t)2

, which is the

i’th diagonal entry of V (t). The robot calculates K(·, ·) using (6.3). The robot

then uses these values to perform GP regression over all accessible measurement

cells, producing a posterior estimate of count rate and variance.
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(ii) Robot Decision-Making: For each accessible measurement cell the robot calcu-

lates

Qi(t) = µi(t) + Vii(t) Φ−1

(
1− δ1

3

)
(6.6)

and defines cells for which Qi(t) > M as “above threshold.” Each robot also

calculates

Wi(t) = µi(t)− Vii(t) Φ−1

(
1− δ2

3

)
(6.7)

and defines cells for which Wi >M as “alarmed.” Φ−1(·) is the standard Gaus-

sian inverse cumulative distribution function.

The robot then selects the nearest cell that is above threshold and not alarmed,

where distance is defined as the length of the path to reach that cell given robot

constraints. The robot then travels to the selected cell.

The Qi(t) term of the rad-UCL algorithm functions in the same manner as the

Qi(t) terms presented in prior chapters, and is designed to drive the robot to explore

new areas while also biasing motion toward areas with high radiation. Furthermore,

we wish for the robot to move on after determining with high certainty that a cell

has a high count rate. The Wi(t) based alarmed condition accomplishes this goal,

as it effectively excludes from consideration any cell that the robot can confidently

determine has mi >M.

6.2.3 Practical Considerations

Here we list several practical considerations for implementing the rad-UCL algorithm.

(i) The GP regression algorithm in Algorithm 2.1 in [81] involves a Cholesky de-

composition, for which computation time scales with the cube of the size of the

input. This Cholesky decomposition thus becomes intractable as the number of

accessible measurement cells grows and the robot collects more measurements.
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Cubic scaling can be avoided by limiting the regression to a local area sur-

rounding the robot while simply copying the estimates from grid cells outside

this area. This modification results in a significant performance increase and

introduces only very small errors in the overall regression.

(ii) The rad-UCL algorithm involves computation of multiple values at each accessi-

ble measurement cell, with a subsequent comparison. It is important to optimize

these computations within the coding language used. Additionally, the compu-

tation time will scale linearly with the number of accessible measurement cells,

which can become intractable for large maps. In these cases the algorithm can

be restricted to evaluate accessible measurement cells within a local area first,

expanding later if necessary.

6.3 Robot Hardware

In this section we describe the robot hardware purchased or built for the purposes of

algorithm testing and validation.

6.3.1 The Turtlebot3 Burger Platform

We conducted our experiments using a modified Turtlebot3 Burger robot purchased

from Robotis for $550. The Burger, pictured in Figure 6.1, is a small, modular low-

cost robot that is commonly used for robotics classes. It has two drive wheels and

a back caster, with a maximum translational velocity of 0.22m
s

. The Burger comes

with a motor controller board, Raspberry Pi 3, and a small LiDAR unit, which is

discussed in greater detail in Section 6.3.3.

The Burger is designed to be used with Robotics Operating System (ROS). ROS

provides reliable control and message passing protocols for use with various com-

ponents, such as LiDAR and odometers. The message passing protocols in ROS are
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Figure 6.1: Turtlebot3 Burger robot. Photo credit: Robotis

controlled through a ROS “roscore” program which ensures consistent timing between

devices. ROS is also widely used in the robotics research community. In this work

we used ROS Kinetic.

We selected the Turtlebot3 Burger platform for several reasons. Most importantly,

the low cost of the Burger will allow other researchers to utilize our designs to further

test radiation localization or mapping algorithms. There is also a large community

supporting the platform, and it utilizes common architectures in robotics.

6.3.2 Radiation Detection

In order to enable radiation sensing capabilities on-board the Turtlebot 3 Burger we

designed and constructed an additional “layer” for the robot that fits in between the

Raspberry Pi 3 and the LiDAR unit, as seen in Figure 6.3. This layer consists of a

3D-printed ring, on which are three mounting points for Geiger detectors. We also
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3D-printed cases for the Geiger detectors and their associated electronics, shown in

Figure 6.2. We utilize the same LND 7314 2in Pancake Geiger detector that is used

by the Safecast project [10] in their bGeigie Nano detector unit. Inside the mounting

ring we placed an Arduino Nano, which, when connected to the Geiger detectors,

processes the incoming detections and relays the information to the primary ROS

control system.

The entire radiation detection system is designed to be cheap, modular, and simple

to modify. The system can easily accommodate more detectors, and can be mounted

onto other robots with minimal modification. We have published all our designs,

available along with a parts list and assembly instructions at https://hackaday.

io/project/158327-geigerros.

Figure 6.2: The Geiger radiation sensor in custom 3D-printed case used in Section 6.4. Note that
the Geiger tube is under the red cover, and the associated electronics are under the black cover.

6.3.3 LiDAR and SLAM

We use a LiDAR (Light Detection And Ranging) based SLAM (Simultaneous Loca-

tion And Mapping) algorithm to perform mapping for both the purposes of obstacle

avoidance and measurement localization. LiDAR based SLAM is the current de-facto

standard for mapping in robotics. Many different SLAM algorithms exist in the lit-
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Figure 6.3: Turtlebot3 Burger robot with three Geiger radiation detectors used in Section 6.4.

erature, see [15] for a review. In general, a SLAM algorithm will use the range data

from the LiDAR sensor in addition to other sensors such as odometers to map a space

while also determining the robot’s location. In this context, mapping a space means

that the robot produces an accurate map encoding distances and obstacles in an area.

In practice, this map is encoded as an occupancy grid, where the algorithm deter-

mines if a given grid cell corresponding to a small real-world area is free or occupied

by another object such as a wall or other vehicle.

On the Burger robot we used the default Robotis LDS-01 laser scanner with a

360 degree viewing angle, 1 degree angular resolution, and 3.5 m maximum range.

Compared to other LiDAR units this model is fairly weak and inexpensive, and we

aim to demonstrate that our algorithm works well even with such a limited sensor.
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We employ the ROS gmapping SLAM package to perform SLAM with a 5 cm grid

cell resolution, and extend it using the frontier-exploration package for waypoint

navigation. These packages are both commonly used within the ROS community.

6.4 Experiments

We conducted our experiments in Professor Alex Glaser’s lab in room J207 in the

Engineering Quadrangle at Princeton University. The lab covers approximately 30

square meters, split into two rooms separated by a short corridor. The floor plan,

as generated by the SLAM algorithm, is shown in Figure 6.4. The floor is level and

covered in synthetic wood flooring. For our experiments in Section 6.4.1 we placed two

radiation sources in the room. We placed Source A on the rim of the mock warhead

in the first room and it is comprised of Na-22, Cs-137, and Co-60 check sources with

a total activity of 11.6 × 104 Becquerel. We placed Source B in the yellow case in

the second room and it is comprised of Co-60 and Ba-133 check sources along with

201 g of thorated welding rods with a total activity of 5.9 × 104 Becquerel. When

placed directly on the Geiger detector Source A and Source B produce 536 and 278

counts per second, respectively. The low detection rates are reasonable given the low

detection efficiency of Geiger detectors. Detection efficiency also differs for different

check sources because it is related to the energy of the emitted gamma radiation.

Both sources are located at the height of the detectors and the source locations are

indicated in Figures 6.4 and 6.5.

As per the recommendation of Robotis, we are using a 5 cm SLAM occupancy

map resolution, and use this same resolution in all our maps of the space and the

rad-UCL algorithm. Additionally, we used L = 0.2 and M = 1.75, which provide

good mapping and detection performance given our radiation environment.
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Figure 6.4: SLAM generated occupancy map of the room used in Section 6.4. In this map black,
white, and gray cells indicate occupied, unoccupied, and unclassified cells, respectively. Also marked
on the map in yellow are the locations of the two radioactive sources used in the experiments discussed
in Section 6.4.1.

For ease of control, we use a remote ROS master on a laptop connected to the local

network. This laptop runs a roscore, the SLAM algorithm, the frontier exploration

waypoint navigation algorithm, and the principal decision-making control loop. The

decision-making control loop uses rad-UCL at 10 Hz to select target locations to visit

based on the SLAM generated occupancy map. This target location is then passed

to the frontier exploration waypoint navigation algorithm, which computes a path to

the target location and outputs appropriate motor commands.

The Raspberry Pi 3 on the Burger processes the data from the on-board sensors,

including the radiation detectors. The processes running on the laptop could easily

be run on the Raspberry Pi 3 for full on-board control.

6.4.1 Results and Discussion

Videos 4, 5, 6, and 7 show several runs of the Rad-UCL algorithm, also available on-

line at youtu.be/wcB-jaEfyEc, youtu.be/IvjDl6jDCNc, youtu.be/NEO0q6uZC2E,
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Figure 6.5: Composite overhead camera view of the room used in 6.4. Also marked on the map are
the locations of the two radioactive sources used in the experiments discussed in Section 6.4.1.

and youtu.be/hQ48ajOEawc. Each video depicts a ceiling view of the test environ-

ment, along with the occupancy map, posterior mean, robot location, and alarmed

measurement cells. Figure 6.6 depicts a screenshot from the middle of one run for

reference.

The robot successfully finds both radiation sources in all videos, and successfully

traverses and maps the entire space. Given the stochastic nature of the problem the

time required to find the sources varies between runs, and we have included examples

of both long and short detection times in the above videos.

Overall, the robot conducts a fairly efficient search for the sources, and moves

on once a source has been identified with satisfactory certainty. The method is also

adaptive, and lingers in areas with relatively high radiation count rates in order to

gain confidence in its estimate. In all the videos one can see points where the robot

detects a spurious higher than average count rate, depicted in the posterior mean
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Figure 6.6: Screenshot from a video of an experiment in Section 6.4.1 demonstrating the video
layout. The panel on the right shows an overhead camera view of the room. The panel on the left
shows the SLAM generated occupancy map, posterior mean count rate, robot location (the red dot),
and alarmed measurement cells (green cells).

map, which are then corrected once the robot lingers or reevaluates the space. The

radiation environment for these experiments is relatively simple as it consists of two

point sources. However, we believe that the rad-UCL algorithm will extend seamlessly

to more complex environments, such as those with distributed radiation sources. For

safety reasons we were not able to utilize such sources in our testing, but hope to in

the future.

One significant drawback of the method used here is that it lends itself to trajec-

tory paths that are not optimal in terms of coverage time or energy expenditure. One

possible extension to this work is therefore to employ hybrid methods which would

utilize another method, such as an optimal coverage algorithm or gradient descent, in

conjunction with a satisficing control law. The satisficing component could be used

for control in certain parameter regimes, or for selecting the parameters of some other

algorithm (such as the distance between paths). These algorithms would need to be

compatible to diverse radiation environments and map sizes.
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Chapter 7

Final Remarks

In this chapter we summarize the work presented in this thesis and propose several

future directions of study.

7.1 Summary

In this thesis we have considered the multi-agent MAB problem in several different

permutations. In Chapter 3 we first considered the multi-agent MAB problem with

communication through consensus, and developed the coop-UCB1, coop-UCB2, and

coop-UCL algorithms. We proved upper bounds on expected cumulative regret for

each algorithm. Furthermore, we considered numerical simulations and robotic exper-

iments that demonstrated the utility of these algorithms and the new explore-exploit

centrality measure.

In Chapter 4 analyzed the case of multi-agent MAB with collisions with appli-

cations to the cognitive radio spectrum access problem. We developed and proved

bounds on expected cumulative regret for the coop-UCB2 collisions algorithm, and

performed a robotic search experiment.

Next, in Chapter 5 we considered the multi-agent MAB problem with strictly

local communication and developed a partition-based algorithm that allows agents to
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imitate leaders in the network. This algorithm can markedly improve performance

over algorithms that cannot imitate or can only imitate in a limited manner, and we

also developed a distributed algorithm for leader selection.

Finally, we considered the problem of robotic search for nuclear material in a

facility. We leveraged our previous analyses of the multi-agent MAB problem to

develop and apply the rad-UCL algorithm. We built and tested a small radiation

detecting robot using the rad-UCL algorithm and demonstrated its performance in a

real-world setting.

7.2 Future Directions

The most promising avenues of future study are those that will enable the algorithmic

solutions presented here to move from the pages of a thesis to use in practical, real-

world applications. While networked sequential decision-making under uncertainty is

a common feature of real-world challenges, several other features of practical problems

are crucial as well. Here we present several research avenues that would be impactful

and for which there is hope of gaining analytical tractability.

7.2.1 Multi-agent MAB

The principal avenue of improvement regarding the multi-agent MAB problem is to

more throughly consider time-varying problem parameters. In practical scenarios

virtually every aspect of a sequential decision-making problem can change on some

time-scale. Capturing the changing and dynamic nature of practical problems will

lead to a much richer set of solutions that are more broadly applicable. Here we give

two examples of how a deeper consideration of time-varying parameters could lend

new insights.
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The first example is time-varying rewards. There is a significant volume of work

on this problem in the single-agent case [26, 32, 38, 77, 96, 102], but the extension to

multiple agents presents unique challenges and potential solutions. A detailed study

of time-varying rewards will allow an investigation of how new knowledge propagates

through networks and how networked decision-makers respond.

The second example is time-varying communication graphs. The communication

graphs that connect decision-makers in real networks are often time-varying or even

dynamic [18, 76]. Social-networks and mobile robot communications in particular

face this challenge. One could consider deterministically [72] or randomly changing

graphs [41, 42, 79], or link the graph to the arm choice of individual agents.

Beyond incorporating time-varying parameters, there are several other poten-

tial areas of future research. Obtaining asymptotically optimal upper bounds for

a decision-making algorithm could give deeper insight into how the graph affects

decision-making performance and also create new opportunities to design algorithms

that improve performance. There is some work on asymptotically optimal bounds

for single-agent algorithms [16, 25], but those methods are not currently amenable to

the probabilistic methods used here. Additionally, obtaining tight lower bounds on

performance that depend on graph structure would yield similar benefits.

We hope that future researchers will take up these challenges.

7.2.2 Search Algorithms

There are many potential avenues for improvement when using MAB algorithms for

locating nuclear material and for other similar research problems. One principle area

is to employ hybrid methods, which would use rad-UCL to make decisions in concert

with another algorithm that could promote alternate goals like optimal coverage.

One could also incorporate gradient information, as well as a noisy gradient ascent

algorithm that would be useful for locating stronger sources.

107



UCB type solutions to multi-agent MAB problems have the potential to be widely

applicable in robotic search problems. They are analytically tractable, easy to un-

derstand, and elegantly avoid the curse of dimensionality. We hope that others will

utilize the methods presented here and any future extensions to enable real-world

robotic search tasks.
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Appendix A

Supplementary Material

Here we provide a list of the supplementary files associated with this thesis. All files

are videos that show robot implementations of the relevant examples.

A.1 Supplemental Videos

Video 1.

Creator: Peter Landgren

Description: See Example 7 in Section 3.5.2.

Filename: CoopUCB2 Undirected.mp4

Link to online copy: https://youtu.be/INzy1zeGlis

Video 2.

Creator: Peter Landgren

Description: See Example 9 in Section 3.5.2.

Filename: CoopUCB2 Directed.mp4

Link to online copy: https://youtu.be/ZZNn-ud8900

Video 3.
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Creator: Peter Landgren, Paul Reverdy, Vaibahv Srivastava, and Naomi E.

Leonard.

Description: See Example 9 in Section 3.5.2.

Filename: CoopUCB2 Collisions.mp4

Link to online copy: https://youtu.be/c3ev-wKAEZA

Video 4.

Creator: Peter Landgren and Moritz Kuett

Description: See Section 6.4.1.

Filename: radUCL Run1.mp4

Link to online copy: https://youtu.be/wcB-jaEfyEc

Video 5.

Creator: Peter Landgren and Moritz Kuett

Description: See Section 6.4.1.

Filename: radUCL Run2.mp4

Link to online copy: https://youtu.be/IvjDl6jDCNc

Video 6.

Creator: Peter Landgren and Moritz Kuett

Description: See Section 6.4.1.

Filename: radUCL Run3.mp4

Link to online copy: https://youtu.be/NEO0q6uZC2E

Video 7.

Creator: Peter Landgren and Moritz Kuett

Description: See Section 6.4.1.

Filename: radUCL Run4.mp4

Link to online copy: https://youtu.be/hQ48ajOEawc
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