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NONUNIFORM COVERAGE AND CARTOGRAMS∗

FRANCOIS LEKIEN† AND NAOMI EHRICH LEONARD‡

Abstract. In this paper, we investigate nonuniform coverage of a planar region by a network
of autonomous, mobile agents. We derive centralized nonuniform coverage control laws from uni-
form coverage algorithms using cartograms, transformations that map nonuniform metrics to a near
Euclidean metric. We also investigate time-varying coverage metrics and the design of control algo-
rithms to cover regions with slowly varying, nonuniform metrics. Our results are applicable to the
design of mobile sensor networks, notably when the coverage metric varies as data is collected such
as in the case of an information metric. The results apply also to the study of animal groups foraging
for food that is nonuniformly distributed and possibly changing.
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1. Introduction. Sensor networks in space, in the air, on land, and in the ocean
provide the opportunity for unprecedented observational capability. An important
problem in this context is to determine how best to distribute sensors over a given
area in which the observational field is distributed so that the likelihood of detecting
an event of interest is maximized. If the probability distribution of the event is uniform
over the area, then the optimal solution is uniform coverage, i.e., uniform distribution
of sensors. On the other hand, if this probability distribution is nonuniform, then the
sensors should be more (less) densely distributed in subregions with higher (lower)
event probability. Further, if the probability distribution changes with time, then the
nonuniform distribution should likewise change with time.

A related coverage problem derives from the classic objective analysis (OA) map-
ping error in problems of sampling (possibly time-varying) scalar fields, e.g., tem-
perature in the ocean [3]. OA is linear statistical estimation based on specified field
statistics, and the mapping error provides a measure of statistical uncertainty of the
model as a function of where and when the data is taken. Since reduced uncertainty,
equivalent to increased entropic information, implies better measurement coverage,
OA mapping error can be used as a coverage metric [3, 15]. If the a priori error corre-
lation between any two points in the plane is homogeneous and isotropic, then uniform
coverage will be optimal initially. However, the optimal coverage solution will not be
static (unless the scalar field of interest changes very quickly), since, once a particular
location has been sampled, it should not be sampled again until the measurement
value has decayed sufficiently.

Robotic vehicles carrying sensors in space, in the air, on land, and in the ocean
make possible mobile sensor networks that can adapt to changing coverage require-
ments. Given a coverage metric that is independent of time and of the history of
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samples taken, the goal is to design coordinated control dynamics for the vehicles
that yield convergence to the maximum coverage configuration from arbitrary initial
conditions. A second objective is to extend these coordinated control dynamics to the
case in which the coverage metric definition changes in time or, as in the case of the
OA error metric, as a function of past measurement locations and times.

Coverage problems have a compelling analogy in possible models of social forag-
ing by animal groups. Backed by observations of animal behavior across a number of
species, biologists model distribution of animals over patchy resource environments
according to a measure of patch suitability that depends on factors such as resource
richness or conditions for survival [7, 2, 20]. Suitability varies with animal density;
a typical assumption is that suitability decreases with increasing animal population.
For example, suitability declines when more animals converge on a given patch since
resources (e.g., prey) may be limited, and thus average consumption rates go down
with more hungry consumers. Since animals prefer patches with higher suitability,
nonuniformity in the distribution of resources (i.e., the suitability) reflects nonunifor-
mity in the distribution of the animal group. As in the case of the OA mapping error
metric that changes as samples are taken, suitability decreases in time as animals
consume (and animals will abandon patches where suitability has declined). By this
analogy, coverage studies of changing, nonuniform environments may prove useful in
helping to explain how animal groups move and redistribute.

Several contributions have been made to the design of coverage algorithms for
a group of dynamic agents, including [4, 18, 17, 5] and the references therein. In
[4], uniform coverage algorithms are derived using Voronoi cells and gradient laws for
distributed dynamical systems. Uniform constrained coverage control is addressed in
[18], where the constraint is a minimum limit on node degree. Node degree refers to
the number of neighbors for each agent, where a neighbor is any other agent that is
sufficiently close by. Virtual potentials enable repulsion between agents to maximize
coverage and attraction between agents to enforce the constraint. In [17], gradient
control laws are proposed to move sensors to a configuration that maximizes expected
event detection frequency. Local rules are enforced by defining a sensing radius for
each agent, which also makes computations simpler. The approach is demonstrated
for a nonuniform but symmetric density field with and without communication con-
straints. Further results for distributed coverage control are presented in [5] for a
coverage metric defined in terms of the Euclidean metric with a weighting factor that
allows for nonuniformity. As in [4], the methodology makes use of Voronoi cells and
Lloyd descent algorithms.

In this paper we concentrate exclusively on two-dimensional planar regions, and
we propose an approach to coverage control that makes use of existing algorithms
designed for uniform coverage and extends these to nonuniform metrics. We are
particularly interested in metrics defined in terms of non-Euclidean distance functions
that effectively stretch and shrink space in lower and higher density regions of a given
space. This yields optimal configurations where the resource or information is evenly
distributed among the agents. Non-Euclidean distance metrics present challenges
to existing techniques. For example, in the case of [4, 5], computing Voronoi cells
with non-Euclidean metrics is computationally complex. For each point on a dense
grid, one needs to compute the (non-Euclidean) distance to each agent and find the
minimum. Computing Voronoi cells for a non-Euclidean metric is therefore much
more demanding than the corresponding problem with an Euclidean metric where
the polygonal boundaries of the Voronoi cells can be computed directly.

The first step in our method is to compute a nonuniform change of coordinates
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on the original compact set with a non-Euclidean metric that maps to a new compact
set with a near Euclidean metric. Such a map is called a cartogram. Inspired by the
work of Gastner and Newman [9], we compute the cartogram from a diffusion equa-
tion. Gastner and Newman used cartograms in several applications, including the
representation of election results [11] and the optimal design of spatial distribution
networks [10]. For these problems, it is sufficient to compute single cartograms, while
we are interested in computing a series of cartograms for feedback control. Accord-
ingly, we propose a method to compute cartograms that vary smoothly as a function
of the density distribution.

A uniform control law can be used in the cartogram space since the metric in
this space is almost Euclidean. The preimage of the control law yields convergent
dynamics in the original space. We prove under certain conditions that these conver-
gent dynamics optimize the nonuniform coverage metric. We show how to extend the
approach to the case of a time-varying metric.

A limitation of our approach is the centralized computation of the cartogram.
However, we note that the density function does not need to be known a priori; it
can be measured or computed by the agents in real time. For example, the changing
OA metric can be computed only on the fly since it is a function of where and when
samples have been taken.

In section 2 we review, as an example, the uniform coverage control of [4]. We
describe the nonuniform coverage problem in section 3. Cartograms are defined in
section 4. Gastner and Newman’s method for computing cartograms using the dif-
fusion equation is reviewed, and our new approach to computing smooth cartograms
is presented. In section 5 we describe and prove our approach to nonuniform cov-
erage control that makes use of cartograms. Section 6 provides error estimates for
the examples studied, and the case of time-varying metrics is addressed in section 7.
Conclusions and future directions are given in section 8.

2. Uniform coverage. A number of different metrics and different coordinated
control strategies have been developed for uniform coverage, as described above. In
this section, as a motivating and useful example, we review the uniform coverage
approach and result of Cortés and Bullo, who devised a robust and efficient control
scheme to optimize the configuration of a group of robotic vehicles carrying sensors [4].
They consider a group of n vehicles moving in a region D, with a polygonal boundary
∂D. The vehicles obey first-order dynamics:

(2.1) ẋi = ui(x1, . . . ,xn),

where xi is the position of the ith vehicle and ui is the control input to the ith vehicle.
The goal is to bring the robots, from their initial positions, to a (static) configu-

ration that maximizes coverage of the domain. To define maximum coverage, Cortés
and Bullo consider multicenter metric functions such as

(2.2) Φ(x1,x2, . . . ,xn) = max
x∈D

{
min

i=1···n
d(x,xi)

}
,

where d(x,xi) = ‖x− xi‖ is the Euclidean distance. Given the position of the n
vehicles, computing the metric requires computing the distance from any point x ∈ D
to the closest vehicle. The metric Φ is equal to the largest of these distances. As
a result, the maximum distance between any point of the domain and the closest
vehicle is always smaller than or equal to Φ. Intuitively, a smaller Φ implies that the
corresponding array of vehicles xi achieves a better coverage of the domain D.



354 FRANCOIS LEKIEN AND NAOMI EHRICH LEONARD

Assuming that all of the vehicles have the same constant speed, Φ is proportional
to the maximum time it takes for a vehicle to reach an arbitrary point of the domain.
For this reason, Cortés and Bullo define optimal coverage as the minimum of the cost
function Φ.

One of the main results of [4] is the development of a stable procedure to bring the
vehicles into a configuration that minimizes the metric Φ. To this end, the Voronoi
cell of each vehicle is computed repeatedly. The Voronoi cell for the ith vehicle is a
polygonal subset of the domain D that contains all of the points that are closer to
the ith vehicle than any other vehicle. Each vehicle is then directed to move toward
the circumcenter of its Voronoi cell (see Figure 1). Once all the vehicles reach the
circumcenter of their Voronoi cell, the coverage metric Φ is minimum (see the last
panel of Figure 1). Cortés and Bullo show that, from any initial position where the
vehicles are not exactly on top of each other, their algorithm converges toward the
optimal configuration.

Fig. 1. Convergence to static uniform coverage. Thick dots: Position of the four agents.
Shaded polygons: Voronoi cell for each agent. Large circles: Circumcircle of each Voronoi cell.
Diamonds: Centers of each circumcircle (i.e., circumcenters). Arrows: Velocity of the vehicles
(oriented along the segment joining the agents to the circumcenter of their Voronoi cell).

3. Nonuniform coverage. In the present paper we develop an approach that
extends optimal coverage strategies to more general metrics, notably to nonuniform
and time-varying metrics. Nonuniform metrics are motivated by coverage problems in
environments with nonuniformly distributed information or resources. The objective
is to produce distributions of agents that match the inhomogeneities in the information
or resource field. We are particularly interested in metrics defined in terms of a
(possibly time-varying) distance function that is non-Euclidean. A non-Euclidean
distance function stretches high density areas and shrinks low density areas. With a
coverage metric that depends on such a distance function, individual agents can be
organized so that information or resources are equally distributed among them. In
other words, each agent has a “dominance region” (e.g., Voronoi cell) and, irrespective
of the size of these regions, we want the amount of information or the resource to be
equal in each agent’s cell.

Notice that this objective is slightly different from the approach of Cortés and
Bullo. In [4], the region of dominance of an agent is flexible and might include points
that can be reached more easily by other agents. In this paper, we consider the
dominance region of an agent xi as a defined region containing all of the points that
are closer to xi than any other agent in the sense of the non-Euclidean metric, i.e.,
that can be reached more easily by agent xi than by any other agent, where ease in
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reaching a point depends on density. In other words, the dominance region is still a
Voronoi cell, and the nonuniform density is introduced through the distance function
used to compute the Voronoi cells. The nonuniform distance shrinks along paths
where resources are sparse and increases along paths where resources are plentiful.

Recall that the Euclidean distance between two points is also the length of the
shortest path between the two points, or

‖x− xi‖ = min
Cxi
x

{∫

Cxi
x

dl
}

,

where Cxi
x is an arbitrary path from x to xi. If the density of information ρ : D → R+

0

is not uniform, then we can define a non-Euclidean distance:

dρ(x,xi) = min
Cxi
x

{∫

Cxi
x

√
ρ dl

}
.

The distance between two points in a low-density area is less than the Euclidean
distance. The shortest path between two points might be curved in order to avoid
peaks of ρ. High density implies that the distances are stretched; hence more vehicles
are needed in the area. The region of dominance of each agent is still its Voronoi cell,
but the nonuniform distance changes the shape of the cell. As an example see the
bottom right panel of Figure 6, which shows four vehicles distributed optimally with
respect to a non-Euclidean metric; in this example, the peak density is in the lower
right corner of the region.

Note that we use the square root of the function ρ and not the function ρ itself
to weight the distance integral. The reason for this choice is the fact that, in two
dimensions, multiplying the distances in each direction by

√
ρ implies a net volume

(or density) change of ρ. It is also worth noting that weighting the distance integral
by a negative function is not acceptable, as some distances would become negative.

In this paper we assume that the coverage metric Φ is a functional of a distance
function dρ, which depends on the positions of the agents xi and the domain D,
denoted

(3.1) Φ = (Φ[dρ]) (xi, . . . ,xn;D).

Clearly, one can use any metric Φ that involves only the Euclidean distance, such as
the multicenter function (2.2), and make it inhomogeneous by replacing the Euclidean
distance d with the weighted distance dρ. If ρ represents the density distribution
for information or resources, then optimal coverage solutions correspond to evenly
distributed information or resources to each agent’s “dominance region.”

In [5], Cortés et al. design coverage control algorithms for a density-dependent
metric defined, as a function of a given array of agents x1,x2, . . . ,xn, by

Φ(x1,x2, . . . ,xn) =
∫

D
min

i

{
f(d(x,xi)) ρ(x)

}
dx,

where f is a nondecreasing function and ρ is the distribution density function. Because
the metric depends on the Euclidean distance function, the cost function can be
rewritten as

Φ(x1,x2, . . . ,xn) =
n∑

i=1

∫

Vi

f(d(x,xi)) ρ(x) dx,
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where the Voronoi cells Vi are defined also by the Euclidean distance function as

Vi =
{
x ∈ D

∣∣∣ d(x,xi) ≤ d(x,xj) ∀j 6= i
}

.

As shown in [5], this means that the cost function can be seen as the contribution of
n dominance regions Vi, each of which is the Voronoi cell of an agent. Although this
metric yields coverage solutions that are nonuniform, the information or resource will
nonetheless not be equally distributed among corresponding dominance regions.

In this paper, we are interested in cost functions of the form (3.1). Indeed, a metric
based on a nonuniform distance dρ is more closely related to information gathering
and sensing array optimization.

One such problem is the detection of acoustic signals. In this case,
√

ρ represents
the nonuniform refractive index of the environment. The objective is to place the
sensors in such a way that they can detect sources anywhere. In other words, one
needs to minimize the weighted distance dρ between any point in the domain and the
agents.

Another typical problem consists in increasing the ability of the array on an
uneven terrain. This situation is typical for mine hunting arrays in a standby mode;
the optimal configuration minimizes the time that it would take to send one of the
agents to a newly detected mine. In this case, the square root of ρ(x) represents
the roughness of the terrain, the infinitesimal time it takes to cross an infinitesimal
path located in x. The goal is to position the agents in such a way that any point
of the domain can be reached by one of the agents in minimum time. The optimal
solution corresponds to the minimum of the cost function in (3.1), where dρ(x,y) is
the minimum travel time between points x and y.

A variant of the algorithm of [4, 5] could be used to optimize the coverage with a
nonuniform metric defined in terms of a non-Euclidean distance function. Indeed, one
can define Voronoi cells based on the non-Euclidean distance function. The boundaries
of such Voronoi cells are, however, not polygonal, and their computation is complex
and time-consuming. To compute the distance between two points a and b, one needs
to consider any path between a and b and to find the minimum of

∫
Cb
a

√
ρ dl. Our

approach, which involves computing cartograms, is, as will be illustrated below, a
much simpler and faster operation.

In this paper, we assume that a particular cost function of the form (3.1) has been
selected and that there exists a stable algorithm that brings a group of vehicles to
the minimum of Φ for the Euclidean distance. We provide a methodology to modify
this algorithm when the non-Euclidean distance (e.g., terrain roughness, acoustic
refraction) is used.

4. Cartograms. Our approach to deriving coverage control strategies for nonuni-
form and time-varying metrics is to find a standard method to modify a control law
defined for the Euclidean metric in such a way that it remains stable and converges
to the minimum of the nonuniform metric.

The method that we develop is based on a nonuniform change of coordinates
that transforms the domain D with the non-Euclidean distance into another compact
set D′ where the distance is Euclidean or near Euclidean. Such transformations are
commonly referred to as “cartograms” in computer graphics.

To motivate the notion of cartogram, consider how poorly census and election
results are represented using standard geographical projections; such data are better
plotted on maps in which the sizes of geographic regions such as countries or provinces
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appear in proportion to their population (as opposed to the geographical area). Such
maps, which are cartograms, transform the physical space D into a fictitious space D′
where the area element A is proportional to a nonuniform density ρ : D → R+

0 .
Definition 4.1 (cartogram). Given a compact domain D ⊂ R2 and a density

function ρ : D → R+
0 , a cartogram is a C1 (continuous everywhere and with continuous

derivatives almost everywhere) mapping φ : D → D′ : x → φ(x) such that

det
(

∂φ

∂x

)
= ρ.

It is standard in the literature to define a cartogram as a change of coordinates
as above but such that det

(
∂φ
∂x (x)

)
= kρ(x) > 0; i.e., the transformation multiplies

the area element by the density function ρ and an arbitrary constant k > 0. Without
loss of generality, we assume that k = 1. If that is not the case, then one can multiply
φ by k−1.

As an example, Figure 2 shows the linguistic distribution in Belgium. The left
panel of Figure 2 shows the five Flemish-speaking provinces and the five French-
speaking provinces on an equal-area projection (Belgian conic conformal Lambert
projection). The center panel gives the level sets of the population density and re-
veals that, while geographically smaller than its French counterpart, the Flemish
region is much more densely populated and accounts for the majority of the country’s
population.

The right panel of Figure 2 is the cartogram of the country based on population
density. In this projection, areas are proportional to the density of population. Such a
cartogram is more adequate for plotting census and election results since the national
outcome of the election or referendum is based on the principle of “one vote per
citizen” and not “one vote per unit of area.” Our method for computing cartograms,
inspired by the approach of Gastner and Newman [9], is presented in this section.

Fig. 2. Linguistic distribution and population density in Belgium. Left panel: Equal-area (Bel-
gian Lambert) projection. Light gray represents Flemish provinces. Dark gray stands for French-
speaking provinces and the Brussels-Capital area. Center panel: Density of population binned on
5km × 5km cells (source: Columbia University’s Center for International Earth Science Informa-
tion Network). Right panel: Cartogram of the country based on population density. Areas in this
projection are proportional to population density and correctly depict the linguistic distribution.

Given a domain D and a density function ρ, there are infinitely many possible
cartograms. As stated in [9], the objective is to minimize the distortion of the original
figure. A perfect cartogram would not introduce any deformation and would satisfy

∂φ

∂x
=
√

ρ I,
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where I is the identity matrix. Clearly, such a cartogram does not exist for most
density functions ρ. Nevertheless, we seek to reduce the distortion and to minimize∥∥∂φ

∂x −
√

ρ I
∥∥, where ‖ · ‖ is any norm on the space of 2× 2 matrices. Accordingly, we

make the following definitions.
Definition 4.2 (perfect cartogram). For a given density function ρ, a perfect

cartogram, if it exists, is a cartogram such that
∥∥∂φ

∂x −
√

ρ I
∥∥ = 0.

Definition 4.3 (ideal cartogram). For a given density function ρ, an ideal
cartogram is given by

Argmin
φ

∥∥∥∥
∂φ

∂x
−√ρ I

∥∥∥∥ .

4.1. Cartograms with fixed boundaries. Recently, Gastner and Newman [9]
showed how to construct a cartogram using a diffusion equation. Although perfect
cartograms usually do not exist and there is no guarantee that a cartogram obtained
using diffusion is an ideal cartogram, the work of Gastner and Newman has shown
that, among all known methods to compute cartograms, the diffusion method in-
troduces very little distortion and produces maps that are the closest to the perfect
diagonal form

√
ρ I.

To describe the method of [9], we first address the case in which, for a given ρ, the
normal component of ∇ρ along the boundary ∂D vanishes. In this case, there exists
a cartogram φ : D → D′, where D′ = D. To show the existence of the cartogram and
to determine a method to compute it, we imagine that the domain D is filled with a
fluid whose initial density is given by ρ. As time evolves, the gradient of the density
creates motion and the density of the fluid tends to homogenize. Let us consider the
density c(x, t) at point x and time t. It satisfies the diffusion equation

∂c

∂t
= ν∆c ,

where the initial condition is c(x, 0) = ρ(x), the boundary condition is ∂c
∂n = 0, and

ν > 0 is arbitrary. For t → +∞, the density c tends to a constant distribution c∞
and, at any time t and at any position x, we have c(x, t) > 0. As a result, we can
define a velocity field:

v(x, t) = −ν
∇c

c
(x, t).

Given the initial position x0 at which a particle is released at time t = 0, the velocity
field above determines the position at any later time t. The flow (i.e., the trajectories)
of the velocity field is a function of time and of the initial position. We denote by
x(t;x0) the unique trajectory that satisfies

{
ẋ = v (x(t;x0), t) ,

x(0;x0) = x0.

The domain D is compact; hence the trajectories x are at least C1 on any finite
interval of time [0, t] (see, e.g., [12]). In this case, however, c is the solution of the
diffusion equation and the magnitude of its gradient decays exponentially with time
while c approaches its average, c∞. As a result, the velocity field v also decays
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exponentially in time. This is a sufficient condition for the trajectories x(t,x) to be
C1 on the infinite interval t ∈ [0, +∞[. We define

φ(x0) = lim
t→+∞

x(t,x0).

The limit exists, is unique, and is a C1 function of its argument x0. To check that
this transformation is indeed a cartogram, recall that Liouville’s theorem determines
how area elements A change along trajectories:

(4.1)
d
dt

ln A

∣∣∣∣
x(t;x0),t

= div (v(x, t)) .

Direct computation shows that

div (v) = −ν

c
∆c +

1
ν
v2.

Note that

d
dt

ln c =
1
c

∂c

∂t
+

v · ∇c

c
= −div (v) .

As a result, Liouville’s equation (4.1) simplifies to

A(t) = A(0) e−
R t
0

d
dt ln c dt = A(0)

c(x0, 0)
c(x, t)

= A(0)
ρ(x0)
c(x, t)

.

For t → +∞, the density c becomes constant in space and we have

det
(

∂φ

∂x0
(x0)

)
= lim

t→+∞
A(t)
A(0)

=
ρ(x0)
c∞

.

Hence, the transformation φ(x0) is a cartogram since it changes area elements propor-
tionally to ρ(x0). Starting from an equal-area map (i.e., A(0) = 1), we can multiply
φ(x0) by the constant c∞ and the equality becomes

det
(

∂φ

∂x0
(x0)

)
= ρ(x0).

By changing the name of the variable from x0 to x, we obtain the desired form

det
(

∂φ

∂x
(x)

)
= ρ(x).

4.2. Cartograms with moving boundaries. The conclusions reached for car-
tograms with constant boundaries do not translate immediately to cases where ∂ρ

∂n 6= 0
on the boundary of the domain. In this case, we cannot apply the method described
in the previous section, and theorems about existence and smoothness of the diffusion
problem, as well as about the advection of the velocity field, are not applicable either.
Gastner and Newman [9] suggest extending the density to a larger domain where
Neumann boundary conditions are enforced. Given a function ρ : D → R+

0 , one can
select a larger domain D0 ⊃ D and pick an arbitrary function ρ̂ : D0 → R+

0 such that
ρ̂ is identical to ρ in D. Typically, D0 has an area of 4 or 9 times the initial domain D.
The goal is to design ρ̂ in such a way that ∂ρ̂

∂n = 0 at the edges of the larger domain D0
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D

D0\D ∂D

∂D0

∂ρ̂
∂n

=0

ρ̂ = ρ

Fig. 3. Proposed approach: when computing a cartogram for a domain D that has an arbitrary
shape or for which the normal derivative of the density function ρ does not vanish at the boundary,
a large rectangle D0 ⊃ D is selected. The density ρ is extended outside D by enforcing Neumann
boundary conditions at the boundary of the large rectangle, requiring continuity of ρ̂ at the edge with
D, and setting the Laplacian of ρ̂ to a constant value outside D. This defines a unique extension ρ̂
which is continuous and has continuous derivatives almost everywhere.

(see Figure 3). This permits the computation of the diffusion cartogram for the large
domain D0 with fixed boundaries, followed by a restriction of the transformation to
D to obtain the cartogram for the initial domain. This procedure is dependent on the
choice of the embedding domain D0. Given D0, it also depends on how the extended
density function ρ̂ is constructed in D0 \ D.

Gastner and Newman showed the importance of applying a “neutral buoyancy”
condition, which keeps the total area under consideration constant. To construct ρ̂,
they first computed the average density in D. In D0 \D, they filled ρ̂ with a constant
equal to the mean density in D. They experimented with other choices of parameters,
e.g., setting ρ̂ = 0 in D0 \ D, but this resulted in inappropriate diffusion of density
out of D. The authors also experimented with different sizes for the domain D0 and
observed only little visual difference, provided that D0 was sufficiently large.

From the point of view of our control design problem, the method above has an
important flaw: ρ̂, the initial condition for the diffusion problem, is not continuous at
the boundary of D. As a result, existence, uniqueness, and smoothness of the solution
of the diffusion problem are not guaranteed. This is not necessarily a problem when
producing only one cartogram. Our objective, however, is to produce continuous
sequences of maps. Indeed, we will need the cartogram to vary smoothly when the
density function is changed. For example, transferring Lyapunov functions from the
cartogram space to the physical plane requires the existence of continuous derivatives.

As an alternative to Gastner and Newman’s method, we propose the following
variant. Given ρ in the domain of interest D, we compute ∂ρ

∂n at the boundary of D
and the total flux across ∂D. We define the extended density ρ̂ as follows:

• Inside D, ρ̂(x) = ρ(x).
• Outside D, ρ̂ is the solution of





∆ρ̂ =
−1

Area(D0 \ D)

∫

D
∆ρ(x) dx =

−1
Area(D0 \ D)

∮

∂D

∂ρ

∂n
dl,

∂ρ̂

∂n

∣∣∣∣
∂D0

= 0,

ρ̂|∂D = ρ|∂D.
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The equations above define ρ̂ inside D0 \ D as the solution of a linear problem with
inhomogeneous Neumann boundary conditions. The Laplacian of ρ̂ is constant in
D0 \D, and its value is set so it compensates exactly the flux through the inside hole
D. Indeed, Green’s equality requires

∫

D0

∆ρ̂ dx =
∮

∂D0

∂ρ̂

∂n
dl = 0.

Since this problem is compatible, standard results in functional analysis [1, 6] guaran-
tee that the solution is unique and belongs to the Sobolev space H1, which contains
the functions on D0 that are continuous everywhere and for which the derivatives
are continuous almost everywhere.1 This guarantees also that the resulting extended
density, ρ̂, can be used as the initial condition of the diffusion problem and provides a
C1 solution c. The resulting transformation φ(x) is unique and varies smoothly (i.e.,
in a C1 fashion) when the input density ρ is changed.

The only possible inconvenience is the fact that the solution ρ̂ may become nega-
tive in the embedding rectangle. In this case the solution φ(x) might not be continuous
due to the factor ∇c/c in the equation giving the velocity field. Nevertheless, the dif-
fusion equation shows that if the initial density c(x, 0) = ρ̂(x) is positive, then the
density at later times remains positive. In other words, the density remain positive for
all of the points that initially had a positive density. While the cartogram might not
be well defined for points which were initially located in regions where ρ̂ was negative,
it is always well defined for points of D where the initial density is the input function
ρ > 0.

4.3. Numerical methods. Gastner and Newman showed how the diffusion
problem on a rectangle can be efficiently solved using the Fourier transform of c(x, t).
This transforms the problem into an ordinary differential equation where the variables
are the Fourier coefficients [9]. The only difference between our procedure and that of
Gastner and Newman is how the density ρ is extended from the domain of interest D
to the larger square D0. The problem giving ρ̂ is linear; hence we can mesh D0\D and
use a Galerkin approximation of ρ̂ (see [1, 6]). Figure 4 illustrates the computation of
ρ̂ in D0 \D for the domain in Figure 2. To compute the cartogram in the right panel
of Figure 2, the extended density ρ̂ in Figure 4 was used to first derive a map of the
large rectangle. This is a necessary step, as we do not expect the normal derivative
of the population density (input) to vanish at the border of a country.

Note that the partial differential equation that we suggest to solve for determin-
ing the extended density ρ̂ is linear. The time needed to solve the linear problem
is therefore negligible with respect to the time that it would take to compute the
nonlinear boundaries of the Voronoi cells for the non-Euclidean metric. Another ad-
vantage of the procedure used here is that there already exist many optimized linear
algebra packages that can be used to compute directly the solution of the discretized
differential equation.

5. Nonuniform coverage control.

5.1. Method. Cartograms can be used to extend any algorithm that minimizes
the uniform coverage metric, based on the Euclidean distance, to an algorithm that
minimizes a nonuniform coverage metric dependent on an arbitrary “weighted” dis-
tance dρ. Indeed, starting from a non-Euclidean distance dρ, a perfect cartogram

1By “almost everywhere” we mean that the derivatives are continuous everywhere, except, pos-
sibly, on sets of measure zero.
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Fig. 4. Continuous extension of the Belgian population density to a large rectangle with homo-
geneous Neumann boundary conditions. The extended density in the large rectangle is diffused to
obtain the cartogram in the right panel of Figure 2.

gives a transformation y = φ(x) such that the distance function is Euclidean for y.
As a result, one can apply the uniform coverage algorithm to the y coordinates and
prove convergence in the transformed space. In Theorem 5.1 (see section 5.3), we
prove conditions under which convergence to the minimum of the uniform metric in
the transformed space implies convergence to the minimum of the nonuniform metric
in the original domain D. The control law in the physical space for a system of agents
with dynamics given by (2.1) can then be recovered from the chain rule as

u = ẋ =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏ.

5.2. Example. As an example, we let D be the unit square that was uniformly
covered in Figure 1 using Cortés and Bullo’s algorithm [4]. This time, however,
we consider the multicenter coverage metric (2.2), where we replace the Euclidean
distance d with a non-Euclidean distance dρ:

(5.1) Φ[dρ](x1,x2, . . . ,xn) = max
x∈D

{
min

i=1···n
dρ(x,xi)

}
.

For this example, we set the density function ρ : D → R+
0 to

ρ(x, y) =
3
40

+ e
− (x− 3

4 )
2
+(y− 1

4 )
2

( 1
10 )

2

,

which represents our nonuniform interest in the features contained inside the unit
square, or the nonuniform roughness of the terrain. The density ρ is plotted in the
left panel of Figure 5. In this example, the lower right quadrant of the unit square has
a much higher density and must be covered more densely than the rest of the square.
In the analogy with a group of animals, the peak at

(
3
4 , 1

4

)
represents a region with

larger food supply and the population concentrates more in the lower right quadrant.
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Fig. 5. Cartogram of the unit square in preparation for nonuniform sampling. Left panel: Phys-

ical domain D with level sets of the density function ρ(x, y) = 0.075 + exp
`− (x−0.75)2+(y−0.25)2

0.12

´
.

Right panel: Cartogram D′ and image of a Cartesian mesh.

In the analogy with a mine hunting array, the peak is a region where the robots move
more slowly. To be able to respond anywhere in a minimum time, the vehicles must
be closer to each other in the lower right quadrant.

To derive coverage control laws for n = 4 vehicles with dynamics given by (2.1),
we first perform a cartogram of the area (see the right panel of Figure 5). The area
near the peak of the Gaussian source is stretched by the transformation and represents
about 30% of the mapped domain D′, while it does not account for more than 10%
of the physical domain D.

To continue the example we apply the uniform coverage control law of [4] in the
transformed plane D′ which guarantees convergence to the optimal configuration in
D′. Figure 6 shows several snapshots of the motion of the particles in both D and
D′. Notice that the optimal configuration segments D′ into four Voronoi cells of equal
area, but, in the physical space, this corresponds to four (nonpolygonal) regions of
unequal area; i.e., coverage is increased in the lower right quadrant.

Remark 1. Since the control is applied in a fictitious space, the norm of ẏ does
not represent the actual speed of the vehicle. If unit speed control is desired (as in
the simulation shown in Figure 6), then the velocity vector ẏ must be mapped back
into the physical plane and normalized there.

Remark 2. The velocity in the cartogram is oriented along the segment between
the vehicle and the circumcenter of its Voronoi cell. The preimage of this segment
by the transformation is no longer a straight path. As a result, when the velocity
vector is mapped back into physical coordinates by φ−1, it is not necessarily oriented
from the vehicle to the preimage of the circumcenter. Nevertheless, when the vehicle
is infinitesimally close to the circumcenter, the two directions are aligned. At the
equilibrium, the vehicles in the physical space are located exactly on the preimage of
the circumcenter in the cartogram.

5.3. Proof of convergence. In this section, we prove that, given a feedback
control law converging to a unique minimum of a cost function for the Euclidean
metric, a perfect (or near perfect) cartogram provides a feedback control law that
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Fig. 6. Convergence to static nonuniform coverage. Thick dots: Position of the four vehicles.
Shaded polygons: Voronoi cell for each vehicle (computed in the cartogram space). Large circles:
Circumcircle for each Voronoi cell of the cartogram. Diamonds: Centers of each circumcircle (i.e.,
circumcenters). Arrows: Instantaneous velocity of the vehicles (oriented along the segment joining
the vehicle to the circumcenter of its Voronoi cell). The first row depicts the computation in the
cartogram space. The second row gives the resulting positions of the vehicles in the physical space.

converges to the unique minimum of the cost function for a non-Euclidean distance
dρ defined by a density function ρ > 0.

Assume that a feedback control law has been designed and converges to the unique
minimum of a cost function based on the Euclidean distance. We consider a nonuni-
form distance dρ and investigate how the control law for the Euclidean distance be-
haves in a near perfect cartogram of ρ. We show that, for C1, strictly positive ρ,
the non-Euclidean cost function has a unique minimum. Furthermore, the cartogram
inverse-mapped feedback control converges toward this minimum.

Theorem 5.1 (nonuniform coverage by cartograms). Consider a C1 cost func-
tion (Φ[dρ]) (xi, . . . ,xn;D) that depends only on the distance dρ(a,b) = minCba

∫
Cb
a

√
ρ dl

between n agent positions and points in the domain D. We assume that Φ has a
unique, nondegenerate minimum for the Euclidean distance d1(a,b) = ‖a− b‖. We
also assume that there exists a feedback control law ẋi = vi(x1, . . . ,xn) that brings
the vehicles to the minimum for the Euclidean distance d1.

Given a density function ρ : D → R+
0 , consider a cartogram φ : D → φ(D). We

consider applying the control law for the Euclidean distance in the cartogram space;
hence

ẏi = vi(y1, . . . ,yn),
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where yi = φ(xi). The corresponding dynamics in the physical space D

ẋi = ui =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏi

yield a convergent sequence. In the neighborhood of a perfect cartogram, we have the
following:

1. There is a unique minimum of (Φ[dρ]) (xi, . . . ,xn,D) on D.
2. The agents converge to an equilibrium that tends continuously to the unique

minimum as ε =
∥∥∂φ

∂x −
√

ρ I
∥∥ → 0.

Proof. By definition, a cartogram is a C1 mapping

φ : D → φ(D) : x 7→ y = φ(x),

such that

det
(

∂φ

∂x

)
= ρ.

This does not guarantee that the distance dρ between two points in the physical
plane is equivalent to the Euclidean distance between the image of the two points in
the cartogram. Nevertheless, the objective in computing the cartogram is to avoid
unnecessary deformations, and, in the limit of a perfect cartogram, the equality of
the distances is satisfied.

Consider a cartogram φ. The perfect cartogram is such that ∂φ
∂x =

√
ρ I, where I

is the identity matrix. In section 6, we will show that the diffusion method described
in this paper and in that of Gastner and Newman [9] provides a cartogram close to
the ideal case for the examples that we studied. Developing the transformation about
the perfect case, we get

∂φ

∂x
(x) =

√
ρ I+ εM(x),

where ‖M‖ = 1 and ε =
∥∥∂φ

∂x −
√

ρ I
∥∥ is kept as small as possible to avoid distortions.

For a perfect cartogram, we have ε → 0.
To investigate the relationship between distances in the physical space and in the

cartogram, let us consider two points x1, x2 ∈ D and their images yi = φ(xi). We
have

d1(y1,y2) = min
Cy2
y1

∫

Cy2
y1

dl,

where Cy2
y1

is an arbitrary path between points y1 and y2. Indeed, the Euclidean
distance between two points y1 and y2 is the minimum length of the paths between the
two points. Let us now apply the change of coordinates y = φ(x). The infinitesimal
arclength dl in the cartogram space becomes, in the physical space,

√
1>l

∂φ

∂x

> ∂φ

∂x
1l dl′,
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where 1l is the unit vector tangent to the path followed. As a result, we have

d1(y1,y2) = min
Cy2
y1

∫

Cy2
y1

dl = min
Cx2
x1

∫

Cx2
x1

√
1>l

∂φ

∂x

> ∂φ

∂x
1l dl′(5.2)

= min
Cx2
x1

∫

Cx2
x1

√
ρ + ε

√
ρ1>l (M> + M)1l +O(ε2) dl′(5.3)

= min
Cx2
x1

∫

Cx2
x1

[√
ρ +

ε

2
√

ρ
1>l (M> + M)1l +O(ε2)

]
dl′(5.4)

= dρ(x1,x2) + ε g(x1,x2) +O(ε2),(5.5)

where
√

ρ1>l (M>+M)1l is continuous almost everywhere since φ is C1 almost every-
where by definition. Notice that this also implies that g(x1,x2) = ε

2
√

ρ

∫
Cx2
x1

1>l (M>+

M)1l dl is C1 almost everywhere in its two arguments x1 and x2. As a result, the
equation above states that the distance dρ between two points x1 and x2 in the phys-
ical space is equal to the Euclidean distance between the image of these two points
in the cartogram φ(x1) and φ(x2), plus a correction ε g that vanishes continuously as
ε → 0.

Since the cost function depends only on the distance between pairs of agents,
between pairs of points in the domain D, and between an agent and points of D, we
also have

(Φ[dρ]) (x1, . . . ,xn;D) = (Φ[d1]) (φ(x1), . . . , φ(xn), φ(D))

+ ε h(x1, . . . ,xn) +O(ε2).(5.6)

Since g is a C1 function of its arguments, h is also C1 almost everywhere. In other
words, when ε → 0, the cost function for a configuration in physical space with a
nonuniform metric tends in a C1 fashion to the cost function for the mapped config-
uration in the cartogram but with the Euclidean distance.

Let us consider the (unique) minimum of the cost function with the Euclidean
distance:

∇y (Φ[d1]) (y∗1, . . . ,y
∗
n; φ(D)) = 0.

Recall that, by hypothesis, this minimum is unique and nondegenerate, i.e.,

det

(
∂2Φ
∂y2

∣∣∣∣
y∗

)
6= 0.

Furthermore, the hypotheses guarantee convergence of the control in the cartogram
for the Euclidean distance; hence the agents converge to the configuration y∗. Since φ
and φ−1 are continuous, the vehicles in the physical plane converge to x∗i = φ−1(y∗i ).

For a perfect cartogram, using the chain rule, we find

∇x (Φ[dρ]) (x1, . . . ,xn;D) =
(

∂φ

∂x

)−1

︸ ︷︷ ︸
det>0

∇y (Φ[d1]) (y1, . . . ,yn;φ(D)) .
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Hence there is also one and only one minimum in the physical plane, and it is given by
x∗i = φ−1(y∗i ). For a perfect cartogram, the vehicles converge exactly to the minimum
of Φ[dρ].

For ε 6= 0, the agents still reach the configuration y∗i in the cartogram space.
In the physical space, this still corresponds to the configuration x∗i = φ−1(y∗i ). In
this case, however, x∗i is not the minimum of Φ[dρ], and our goal is to show that the
minimum of Φ[dρ] is still unique and that x∗i is ε-close to this minimum. Starting
from (5.6), we find

∇x (Φ[dρ]) (x1, . . . ,xn;D) =
(

∂φ

∂x

)−1

∇y (Φ[d1]) (y1, . . . ,yn;φ(D))

+ ε∇xh(x1, . . . ,xn) +O(ε2),

where ∇xh is continuous almost everywhere. Hence, the (possibly multiply defined)
minima of Φ[dρ] satisfy

∇y (Φ[d1]) (y1, . . . ,yn; φ(D)) = −ε
∂φ

∂x
∇xh(x1, . . . ,xn) +O(ε2).

For ε = 0, the unique solution is y∗. For ε sufficiently small, our goal is to show that
the minimum, seen as a function y∗(ε), is single-valued and continuous in ε. This is
precisely the scope of the implicit function theorem (see, e.g., [19]); this classical result
states that, unless the derivative of the relation versus y is singular at (y, ε) = (y∗, 0),
there exists such a C1 curve of unique minima in a neighborhood of ε = 0. Notice that
the derivative of the implicit relationship at y∗ and ε = 0 is given by ∂2Φ

∂y2

∣∣
y∗ , which

is nonsingular by assumption. As a result, the implicit function theorem guarantees
that, for sufficiently small ε, there exists a unique minimum y(ε) and, as ε → 0, this
minimum converges in a C1 fashion to y∗.

Now that we know that the minimum is unique and varies smoothly with ε, we
can find its location. Setting y(ε) = y∗ + ε δ, we find

yε
i = y∗i − ε

(
∂2Φ
∂y2

)−1
∣∣∣∣∣
y∗i

∂φ

∂x

∣∣∣∣
φ−1(y∗i )

∇xh(φ−1(y∗i )) +O(ε2).

This equation gives the coordinates (in the cartogram) of the minimum of Φ[dρ] (in
physical space). The corresponding configuration in physical space is given by

xε
i = φ−1(yi(ε))

= x∗i − ε

(
∂φ

∂x

)−1
∣∣∣∣∣
x∗i

(
∂2Φ
∂y2

)−1
∣∣∣∣∣
φ−1(y∗i )

∂φ

∂x

∣∣∣∣
x∗i

∇xh(x∗i ) +O(ε2).(5.7)

Notice that all of the matrices in the equation above are nonsingular. The minimum
of Φ[dρ] is therefore also unique in the physical space and converges continuously to
x∗ as ε → 0.

Recall that x∗ is the configuration to which the agents converge. xε
i is the actual

minimum of Φ[dρ]. The equation above shows that, for small but nonzero ε, the opti-
mum of the cost function with the nonuniform distance dρ is ε-close to the optimum of
the cost function in the cartogram with the Euclidean metric. Furthermore, as ε → 0,
the configuration of the agents converges continuously to the optimal configuration of
the initial, non-Euclidean problem.
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6. Cartogram error. We have shown in the previous section that, given two
points x1 and x2 in space and their images by the cartogram, φ(x1) and φ(x1), we
have

d1

(
φ(x1), φ(x2)

) ≤ dρ(x1,x2) +
ε

2
√

ρ

∥∥M> + M
∥∥ +O (

ε2
)
.

In the context of controlling vehicles in the cartogram space, convergence is guaran-
teed, provided that we can create a cartogram such that d1

(
φ(x1), φ(x2)

)
is sufficiently

close to dρ(x1,x2). Recall that ε =
∥∥√ρ I− ∂φ

∂x

∥∥ and ‖M‖ = 1; hence,
∣∣∣∣

ε

2
√

ρ

∣∣∣∣
∥∥M> + M

∥∥ ≤
∥∥∥∥ I−

1√
ρ

∂φ

∂x

∥∥∥∥
.= η

is the relevant unitless distortion factor for this problem.
Figure 7 shows the distribution of the deformation factor η for the test cartogram

shown in Figure 5 as well as for the cartogram based on the Belgian population
density. In both cases, the maximum deformation factor η is below 0.4. Figure 7
shows also that the deformation is below 0.1 in a very high fraction of the total area.
The distortion factor η grows above 0.1 only in small bands separating regions of very
different densities. For example, there is a narrow annulus of high distortion around
the density peak in the lower right corner of the left panel of Figure 7.

Fig. 7. Level sets of the distortion factor η =
‚‚I − 1

ρ
∂φ
∂x

‚‚ for the cartograms constructed in

Figure 5 (left panel) and in Figure 2 (right panel).

It is worth noting that (5.7) indicates that we can always multiply the cost func-
tion Φ by an arbitrary large number to reduce the influence of the distortion factor. In
the case of the example of section 5.2, the error can be estimated as follows: we have
ρ < 1.075 and Figure 7 shows that, at the equilibrium positions, we have η < 0.1. As a
result we have ε =

∥∥√ρI− ∂φ
∂x

∥∥ =
√

ρ η < 0.11. The error is given by ε
2
√

ρ = η
2 < 0.05,

which is to be compared to the unit side of the square domain.

7. Space-time optimal coverage. In most problems, the metric does not re-
main constant in time. Indeed, when the density ρ is a physical quantity, such as
the refractive index, it changes according to the fluctuations in the environment (e.g.,



NONUNIFORM COVERAGE AND CARTOGRAMS 369

Fig. 8. Convergence to nonuniform coverage with time-varying density. Thick dots: Position
of the four vehicles. Shaded polygons: Voronoi cell for each vehicle (computed in the cartogram
space). Large circles: Circumcircles for each Voronoi cell of the cartogram. Diamonds: Centers
of each circumcircle (i.e., circumcenters). Arrows: Instantaneous velocity of the vehicles (oriented
along the segment joining the vehicle to the circumcenter of its Voronoi cell). The first row depicts
the computation in the cartogram space. The second row gives the resulting positions of the vehicles
in the physical space. From left to right, the snapshots are taken when the peak of density is in the
upper right corner, at y = 1

2
, and in the lower right corner.

sources, sinks, diffusion, advection). When the nonuniform density represents infor-
mation or food, its variations over time are even more subtle: the agents cover the
domain and concentrate in regions of high density, but, at the same time, they de-
plete food or gather information and, in doing so, erode the very density peaks that
attracted them. One such example is the objective analysis (OA) information map
in [15].

The method developed in this paper is well suited for such time-varying metrics.
Indeed, the numerical method presented in section 4 is aimed at producing cartograms
that depend smoothly on the density function ρ. In other words, for a density function
ρ(x, t) that is C1 in time, we find a family of cartograms φt : D → D′t where both the
transformation φt and the transformed space D′t change with time in a C1 fashion.

As an example, we modify the density function ρ from section 5.1 as follows:

ρ(x, y) =
3
40

+ e
− (x− 3

4 )
2
+(y− 1

2 + 1
4 cos( t

2π
))2

1
10

2
.

In other words, the peak of the distribution ρ now moves periodically along the vertical
axis x = 3

4 . Figure 8 shows the result of this simulation for four agents. For the
snapshots on the left, the peak of density is at its maximum position in the upper
right quadrant. For the snapshots on the right, the peak is at the minimum in the
lower right quadrant. The middle panels correspond to an intermediate position.
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Fig. 9. Array of 10 agents covering the square with nonuniform, time-varying density. On the
left, the peak of density is in the upper right quadrant; on the right, the peak is in the lower right
quadrant. The middle panel is an intermediate snapshot.

Notice that, despite the fact that the optimal configuration changes a lot in phys-
ical space, the cartograms are similar to each other. This highlights one of the advan-
tages of the method: the complexity of the nonuniform and time-varying density is
absorbed in the cartogram transformation. In the cartogram plane, a simpler, uniform
coverage algorithm is applied.

In Figure 9, the same simulation is performed for 10 vehicles, and it shows how
the agents organize and move to follow the peak in the density ρ.

For autonomous, nonuniform metrics, we proved uniqueness of the optimal con-
figuration and convergence to this position. The algorithm applies well to the case of
time-varying metrics. If the density function changes slowly enough (in comparison to
agent speed) and, at any time t, the distortion η(t) =

∥∥ I− 1√
ρ(t)

∂φ
∂x (t)

∥∥ is sufficiently

small, then convergence can be inferred by our theorem. The requirement that ρ(t)
does not change too fast guarantees that the cartogram does not change too fast, and,
hence, the boundary φ(D) does not change too fast with respect to vehicle speed. As
a result, the motion of the cartogram boundary (slow dynamics) and the motion of
the vehicles (fast dynamics) are almost decoupled, and we infer convergence from the
fact that vehicles are converging to the equilibrium on timescales much shorter than
the timescale at which φ(D) changes.

For a fast changing metric, there are two possible obstacles that can limit the
use of the method that we proposed. First, a fast changing metric might make the
cartogram boundary move too fast for the vehicle to converge to any configuration.
Second, if the vehicles converge, then the configuration reached might differ signifi-
cantly from the minimum of the metric.
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8. Conclusions. In this paper, we investigated the use of cartograms to achieve
time-varying, nonuniform coverage of a spatial domain by a group of agents. The
method proposed relies on the existence of a stable algorithm that achieves uniform
coverage (e.g., for the Euclidean metric). The control law is extended to nonuniform
coverage (based on a non-Euclidean distance induced by a density function) by the
use of density-equalizing maps.

The advantage of the method presented is its universality: it permits generalizing
many existing uniform coverage algorithms to nonuniform metrics. It also provides a
simple and fast control law. For example, computing Voronoi cells with a nonuniform
metric is, in comparison, a very time-consuming operation.

The control law presented in this paper is not distributed. In particular, the
diffusion equation uses information from all agents and is computed on a central
computer. However, a distributed version of the proposed approach may be possible,
provided that each agent computes its own local diffusion equation. In this case
information passed from neighbors would be used to determine boundary conditions.

Another limitation of the method presented in this paper is the fact that it applies
only to simple vehicle dynamics (first-order control). Although it is possible to find
heuristic adaptations to nonholonomic constraints, uniqueness of the optimal configu-
ration and convergence are not guaranteed by the results presented in this paper. The
major difficulty is that nonholonomic constraints, unlike distances and cost functions,
are not preserved by the cartogram mapping.

An inspiration for this work comes from a desire to understand how animal groups
organize themselves to exploit a time-varying nonuniform food supply. Other appli-
cations are numerous, as teams of unmanned robots are often destined to tasks for
which they need to mimic foraging animals. In [15], underwater vehicles patrol the
ocean to collect scientific data. Information for these agents is analogous to food:
the vehicles “consume” information by going to unsampled areas and lowering the
uncertainty. After a region has been visited, uncertainty grows in time, analogous to
the growing “food source.”

OA provides a framework to study quantitatively these systems by estimating
the residual error (or negative information) for an array of agents. It has been used
successfully to optimize the design of static and moving arrays [3, 15]. The method
presented in this paper is designed to match the OA model. Indeed, the residual error
corresponds to the input density ρ. Adequate data sampling is a key ingredient in
providing accurate ocean models. Recent developments in ocean modeling provide
detailed error maps [16] that can be equally used as the input density of our method.
Our objective is to optimize the motion of sampling agents in such a way that the
residual error in the models assimilating these data is minimum. From this point
of view, the cartograms represent an abstraction layer between a complex objective
(minimize error in large scale ocean models) and the control algorithm itself.
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problems defining the extended density function between the domain of interest and
a larger embedding rectangle were obtained using libsparse, a C++ wrapper to the
University of Florida’s UMFPack (see documentation of the OMA package or [13, 14]).
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