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Model-Based Feedback Control of Autonomous
Underwater Gliders

Naomi Ehrich Leonard and Joshua G. Graver

Abstract—We describe the development of feedback control for
autonomous underwater gliders. Feedback is introduced to make
the glider motion robust to disturbances and uncertainty. Our
focus is on buoyancy-propelled, fixed-wing gliders with attitude
controlled by means of active internal mass redistribution. We
derive a nonlinear dynamic model of a nominal glider complete
with hydrodynamic forces and coupling between the vehicle and
the movable internal mass. We use this model to study stability
and controllability of glide paths and to derive feedback control
laws. For our analysis, we restrict to motion in the vertical plane
and consider linear control laws. For illustration, we apply our
methodology to a model of our own laboratory-scale underwater
glider.

Index Terms—Autonomous underwater vehicles, buoyancy con-
trol, glider control, glider dynamics, movable mass, underwater
gliders.

I. INTRODUCTION

I N RELATION to existing methods of ocean sampling,
autonomous underwater gliders offer a host of technical

advantages: superior spatial and temporal measurement density,
longer duration missions, and greater operational flexibility.
These advantages are expected to be greatest when multiple
gliders are operated cooperatively in a network [1]. The under-
water glider concept, initially conceived by Henry Stommel
[2], has motivated the development of several operational
gliders, including the SLOCUM glider [3], the “Spray” glider
[4] and the “Seaglider” [5]. These are all buoyancy-propelled,
fixed-winged gliders which shift internal ballast to control
attitude. Each has many useful features ranging from low
operational and capital costs, and low noise and vibration to
high reliability due to simplicity of design, minimal reliance on
battery power, and low vulnerability of actuator mechanisms
to the harsh effects of seawater.

In order for the advantages in ocean sampling using under-
water gliders to be fully realized, an accurate and reliable glider
control system should be developed. Most importantly, the use
of feedback control provides a measure of robustness to un-
certainty and disturbances. In this paper, we derive a nonlinear
dynamic model and describe the first steps in development of
model-based control for a class of underwater gliders, namely
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those with fixed external surfaces which can control buoyancy
and center of gravity (CG). We emphasize an approach that
is widely applicable rather than exclusively vehicle-specific;
accordingly, this work complements the efforts on SLOCUM,
Spray and Seaglider.

On SLOCUM, the ballast tanks are configured within the ve-
hicle to provide the proper pitching moment during upwards and
downwards glides [6], [3]. A sliding battery mass is used for
fine adjustments in pitch and roll. Sensors measure depth, pitch,
roll, and compass heading. Vehicle position at the surface is de-
termined through GPS fix. The pitch angle, an assumed angle
of attack, and a vertical speed computed from depth measure-
ments are used to estimate the horizontal speed of the glider. The
glider control system periodically checks the glider attitude and
adjusts the position of the sliding battery mass. The timing of
mass position adjustments can be changed depending on glider
performance during the glide. Switching between downwards
and upwards glides is performed open loop, i.e., the ballast is
changed and the sliding mass is moved to a new position.

Sensing and control on other gliders is similar. For example,
Spray performs active control of pitch and roll every 40 s
using measured pitch and heading errors. In the case of pitch,
a low-gain proportional control law is used, and in the case of
heading, proportional plus integral control is used [4].

Our program initiated in this paper to develop a model-based,
feedback control design methodology is intended to improve
upon the currently implemented glider control strategies. A sys-
tematic design methodology that provides control in the full
state-space is expected to make it possible to design glider con-
trollers that require less experimentation and tuning and provide
more robustness to fouling, payload changes and other uncer-
tainties as compared to current techniques. Additionally, with
a model-based approach, a dynamic observer can be designed
to estimate states such as glider velocity. These estimated states
could then be used to determine horizontal glider motion instead
of the current methods which rely on assumptions of constant
angle of attack. A model-based approach may also prove useful
in determining optimal glider motions (see [7] for early work in
this direction).

The dynamic glider model we derive here describes a glider
with simple body and wing shape. Control is applied to two point
masses inside the vehicle: the first point mass has variable mass
but fixed position while the second point mass has fixed mass but
variable position relative to the center of buoyancy. One control
input changes the mass of the stationary point and another con-
trol input vector corresponds to the force applied to the movable
mass. The model describes the nonlinear coupling between the
vehicle and the shifting and changing mass. Analysis and control
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Fig. 1. Experimental, laboratory-scale underwater glider ROGUE.

law design is performed for the dynamics specialized to the ver-
tical plane. Continuous feedback laws are developed. However,
when energy is at a premium,weenvision ascenario inwhichone
might occasionally and temporarily turn off the active feedback
control routine (including sensors), e.g., during periods of rela-
tive calm or when tight control is less critical.

The model we derive, although simplified, does capture
the essential dynamic features of underwater gliding. The
simplicity allows for development of general control design
strategies. These strategies along with the insights gained from
the development are expected to be relevant to the design of
control laws for the more complex operational gliders. Feed-
back provides robustness to uncertainty, and this uncertainty
may include unmodeled dynamics.

Specialization of the glider dynamics to the vertical plane
constitutes a first step toward a systematic understanding and
methodology for complete glider control design. In restricting
to the vertical plane, we ignore, for example, challenges associ-
ated with currents traveling transverse to the motion of the ve-
hicle. Analysis of tail volume requirements, heading corrections
and the capabilities of shifting mass in this context will be next
steps in developing methodology to meet these challenges. The
successful SLOCUM glider experiments at LEO-15 during the
summer of 2000 suggest promise for this program. In these ex-
periments, SLOCUM performed excellent tracking in the pres-
ence of strong (transverse) currents [6].

Throughout the paper, we illustrate our results on a model
of a small, laboratory-scale underwater glider called ROGUE
(Remotely Operated Gliding Underwater Experiment) that we
have built and that we operate in a freshwater tank and pool, see
Fig. 1. In the first version of this glider, CG position is controlled
by shifting a lead weight inside the vehicle [8]. In its most re-
cent incarnation, ROGUE controls buoyancy and CG position
by means of a distributed array of independently actuated bal-
last tanks (syringes).

In related and forthcoming work with colleagues, we address
issues in optimal path planning for underwater gliders [7] and in
coordinating control for multiple autonomous underwater vehi-
cles [9], [10].

There is a great deal of literature on dynamics, stability, and
control of airplanes, including [11], [12], [13]–[16], which is
clearly of interest in the study of underwater gliders. We note,
however, that added mass forces, variable buoyancy and con-
trolled mass redistribution, which play a central role in our study

of underwater gliders, are not typically relevant for airplanes and
therefore not included in the airplane literature.

In Section II, we derive the equations of motion for a
buoyancy-driven, fixed-wing underwater glider. Controllability
and observability of steady glide paths in the vertical plane are
studied in Section III. Linear control laws are developed in
Section IV for stabilizing these glide paths in the presence of
disturbances. A simulation of the controlled glider modeled to
resemble ROGUE is also presented. We give final remarks in
Section V.

II. GLIDER DYNAMICS

The variables used in this paper are defined in Table I.

A. Equations of Motion in 3-D

We model the underwater glider as a rigid body with fixed
wings (and tail) immersed in a fluid with buoyancy control and
controlled internal moving mass. We take the hull to be ellip-
soidal with wings and tail attached so that the center of buoy-
ancy (CB) is at the center of the ellipsoid. We assign a coordinate
frame fixed on the vehicle body to have its origin at the CB and
its axes aligned with the principle axes of the ellipsoid. Let body
axis 1 lie along the long axis of the vehicle (positive in the di-
rection of the nose of the glider), let body axis 2 lie in the plane
of the wings and body axis 3 point in the direction orthogonal
to the wings as shown in Fig. 2.

The total stationary mass, , (also referred to as body mass)
is the sum of three terms: is a fixed mass that is uniformly
distributed throughout the ellipsoid, is a fixedpointmass that
may be offset from the CB, and is the variable ballast point
mass which is fixed in location at the CB. The vector from the CB
to the point mass is . The vector from the CB to the center
of mass of the stationary mass is .

The moving internal point mass is. The vector de-
scribes the position of this mass with respect to the CB at time
. The total mass of the vehicle is then

The mass of the displaced fluid is denotedand we define
so that the vehicle is negatively (positively)

buoyant if is negative (positive). The different masses and
position vectors are illustrated in Fig. 3.
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TABLE I
DEFINITION OF VARIABLES

Let denote the inertia matrix, with respect to the body
frame, for the uniformly distributed mass . Define the op-
erator so that for a vector ,

Fig. 2. Frame assignment on underwater glider.

Fig. 3. Glider mass definitions.

Equivalently, for vector ,

i.e., the operatormaps a vector to the (skew-symmetric) ma-
trix representation of the vector cross product operator. The in-
ertia matrix for the stationary (body) mass expressed with re-
spect to body frame coordinates is

Since the variable ballast mass is a point mass located at
the CB, it does not contribute to , and in particular is a
constant.

The orientation of the glider is given by the rotation matrix
. maps vectors expressed with respect to the body frame

into inertial frame coordinates. The position of the glider
is the vector from the origin of the inertial frame to

the origin of the body frame (vehicle CB) as shown in Fig. 4.
The vehicle moves through the fluid with translational velocity

and angular velocity ,
expressed with respect to the body frame. [Note that we have
diverged from the notation typical of the submarine literature
where and . The notation that



636 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 26, NO. 4, OCTOBER 2001

Fig. 4. Glider position and orientation variables.

we use here is taken from texts in classical mechanics such as
[17] and is more convenient for the derivation and analysis.] In
this notation, the kinematics of the glider are given by

(1)

(2)

Let represent the total translational momentum of the
vehicle-fluid system and the total angular momentum of
the system about the inertial coordinate origin, all expressed
with respect to the inertial frame. Let represent the total
momentum of the movable point mass with respect to the
inertial frame. Then Newton’s laws state that

(3)

where is a unit vector pointing in the direction of gravity,
is an external force applied to the system, and is a pure
external torque. These external forces and torques include those
due to gravity and buoyancy; however, gravity is included ex-
plicitly in the third set of equations as it is the only external
force acting on the movable point mass. The force is a
force applied from the vehicle body onto the point mass (a con-
trol force). All vectors are expressed with respect to the inertial
frame. The vector locates the point of application of the force

with respect to the inertial coordinate frame.
Let be the momentum of the vehicle-fluid system ex-

pressed with respect to the body frame. Letbe the total
angular momentum about the origin of the body frame. Let
represent the point mass momentum with respect to the body
frame. Then

(4)

(5)

(6)

Differentiating (4)–(6) and using the kinematic expressions (2)
and (1) gives

(7)

Substituting (3) into (7) for the rate of change of inertial mo-
menta gives the following dynamic equations in body coordi-
nates:

(8)

(9)

(10)

where is the internal force acting on the
point mass in body coordinates. Let

(11)

so that

To derive expressions for , , and , we determine the
total kinetic energy of the glider-fluid system. The kinetic en-
ergy of the rigid body with mass and inertia matrix is

Let be the absolute velocity of the movable point mass
expressed in body coordinates. Given that the velocity of

relative to the body frame is , we compute

(12)

The kinetic energy of the movable point mass is then com-
puted to be

Kirchhoff [18] showed that the kinetic energy of an un-
bounded volume of ideal fluid due to the motion of an immersed
rigid body takes the form
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where is the added mass matrix, is the added inertia
matrix, and is the added cross term. These matrices depend
upon the external shape of the body and the density of the fluid.
This form of kinetic energy comes from a potential flow solution
in which the fluid is assumed to be inviscid, incompressible,
irrotational and motionless at infinity. We incorporate viscous
effects into the model as external forces and torques (lift and
drag) below.

We assume that at low angle of attack, the contribution of the
wings is dominated by lift and drag forces. Thus, we make the
simplifying assumption that the added mass and inertia terms
can be computed solely from the vehicle hull. These assump-
tions are not so critical for the analysis in this paper, especially
since it is expected that feedback control will provide robustness
to unmodeled dynamics. Nonetheless, it may be of interest in
future work to consider more detailed modeling of added mass
associated with the hull plus wings using methods such as from
computational fluid dynamics.

The total vehicle fluid kinetic energy is
computed to be

We can then compute momenta as

Since the vehicle hull is ellipsoidal (we neglect the wings in this
instance), and are diagonal and . Let

and . Define

where is the 3 3 identity matrix. Let
and . Further-

more, assume that so that . Then,

(13)

Inverting the relationships (13) then gives the body velocities in
terms of the body momenta:

(14)

To get the equations of motion in terms of body velocities, we
differentiate (14) with respect to time. We assume that buoyancy
is changed in a symmetric way (e.g., ballast is pumped on and
off board in streams with the appropriate symmetry) so that there
is negligible associated thrust or moment on the glider. Let the
ballast control input be defined as

(15)

Differentiating (14) then gives

(16)

where

(17)

With the substitution into (16) of (8)–(11) for the derivatives,
and , (17) for and (13) for the relationship be-

tween momenta and velocity, the complete equations of motion
for the underwater glider moving in three-dimensional space are

(18)

Here,

refer to external forces and moments, in this case lift and drag,
with respect to the body frame.
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B. Equations of Motion in the Vertical Plane

We now specialize the model to the vertical plane, the–
plane in inertial coordinates and the– plane in body coor-
dinates. Accordingly,

where is pitch angle.
The equations of motion (18) for the gliding vehicle restricted

to the vertical plane become

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Here, is the angle of attack, is drag, is lift and is the
viscous moment as shown in Fig. 5. These forces and moment
are modeled as

where the s are constant coefficients. This model is a standard
one, derived using airfoil theory and potential flow calculations
and then verified using experimental observations, see for ex-
ample [12], [13]. The method for determination of the coeffi-
cients is described in Section III-C.

As shown in Fig. 5, we denote the glide path angle bywhere

Fig. 5. Lift and drag on glider.

Fig. 6. Planar gliding controlled to a line.

We also denote the glider speed bywhere

We will typically specify a glide path by desired glide path angle
and desired speed . We define inertial coordinates

such that coincides with the desired path:

(30)

Then, measures the vehicle’s perpendicular distance to the
desired path. We define two gliding objectives:

GO1 The objective is to control only the direction and speed
of the vehicle’s glide path. In this case we need not
consider and at all.

GO2 The objective is to control gliding along a prescribed
line (see Fig. 6). In this case we will include (but
exclude ) in our analysis and we aim to make .

The dynamics of the state are

(31)

In the above model, the movable point mass can be controlled
in all directions (2 degrees of freedom in the planar case). How-
ever, it may sometimes be the case that control over the CG lo-
cation is restricted, for example, a battery may be shifted in a
limited way. For the planar case, this might translate into a mov-
able point mass with only one degree of freedom. To model this
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we consider the case in which is fixed ( ), i.e., we
can only move the point mass in the direction. Then

(32)

The new equations of motion are (19)–(29) excluding (26) and
(28). Further, is replaced by (32) and is replaced by
which is computed by differentiating (32) with respect to time.
In particular, (22) and (24) are replaced with

where

III. CONTROLLABILITY OF STEADY GLIDE PATHS

In this section, we compute steady glide paths. We then study
controllability and observability of these glide paths.

A. Gliding Equilibria

We prescribe a desired glide path by specifying the desired
glide path angle and the desired speed . We denote with
subscript “ ” the value of all dynamic variables at the glide equi-
libria. To get the conditions for such planar gliding equilibria,
we set the left hand side of (31) and (21)–(29) to zero. This gives

(33)

(34)

(35)

(36)

(37)

(38)

and . Note that

which are all dependent on the equilibrium value of the variable
mass .

Given , (35) and (36) may be solved for . We can then
compute

can then be solved again using (35) and (36). Finally, (34)
gives a one-parameter family of solutions for .

First, we compute from (35) and (36). Note that these
equations reduce to

(39)

The first equation of (39) is a quadratic equation in. Provided
and , we have

(40)

Equation (40) may be solved for a realizableprovided

(41)

Evaluating (41) for permissible values of in the range
, we see that we must choose

or

Since the drag model is valid only at small angles of attack, we
take as the solution of (41) with smaller magnitude,

(42)

If , then we simply have

(43)

For a vehicle which is symmetric about the body– plane,
. In this case, for equilibria corresponding to vertical

flight ( ), the desired angle of attack is zero.
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Fig. 7. Family of possible movable mass locations for a steady glide.

We may determine from the latter equation in (39) as

(44)

Finally, we may solve for a one-parameter family of sliding
mass locations which satisfy (34). The family of
solutions is

(45)

where

and where is a real number. The vector is a particular so-
lution of (34). Since is the direction
of gravity in body coordinates, is orthogonal to the direction
of gravity and measures the vehicle’s “bottom-heaviness” as
shown in Fig. 7.

For an experimental vehicle, may be a more physically
relevant choice of parameter than. In this case,

(46)

for a given value of the parameter , provided .
If , there is an equilibrium of the desired form if and
only if the parameter satisfies

(47)

If (47) is satisfied, is a free parameter. In fact, we should
not choose to satisfy condition (47) in general because this
will require that be small. Since contributes to the ve-
hicle’s “bottom-heaviness” at shallower glide path angles, sat-
isfying condition (47) will affect stability of these other equi-
libria. [For a vehicle symmetric about the body– plane,

implies that and . In this case,
condition (47) requires that .]

B. Linearization

We determine the linearization for the planar glider about a
steady glide path.

Let and
let . Define

Then the linearized system is

(48)

where and are defined as shown in (49) and (50), shown at
the bottom of the next page. Here,

where we have abbreviated as , etc., and
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The notation indicates that the quantity is to be evaluated
at the desired equilibrium.

This linearization can be used to check features of a given
vehicle design, e.g., to check stability or controllability of a de-
sired glide path given a choice of vehicle design parameters.
One can also use this linearization to help automate the design
procedure. For example, consider a vehicle that has been fully
designed but for a choice of the position of the movable mass
for a given glide path. Application of the Routh criterion to the
characteristic polynomial of the matrix gives conditions for
stability of the glide path. These conditions can be written in
terms of the free variable . would then be chosen for be-
havior with desired stability and would then be computed
according to (46).

C. Controllability and Observability

In this section we describe controllability and observability
of steady glide paths for a model of our experimental vehicle
ROGUE. ROGUE has an ellipsoidal body with axes of length
18, 12, and 6 in. The wings are symmetric airfoils from [21] for
low Reynolds number. We note that the body and wings have not
been designed for optimal gliding performance but rather in con-
sideration of available facilities and other manufacturing con-
straints. Each wing has span of 28 inches with aspect ratio 9.3.

The glider body, wings and tail are all machined from UHMW
(ultra-high molecular weight) plastic. Mass and inertia proper-
ties were measured directly. Added mass and inertia properties
can be found, for example, in [20]. Lift and drag for the body
were found experimentally as described in [8]. Lift and drag for
the wings were taken from the data in [19]. Lift for the body
plus wings was then computed using Schrenk’s method [21],
and drag was computed as the sum of the drag on the wing and
the body. The lift moment was approximated by taking into ac-
count the tail. The vehicle model parameters are given as fol-
lows:

kg

kg

kg

kg

kg

Nm

N(s/m)

N(s/m)

N(s/m)

Nm(s/m)

(49)

(50)
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The first three masses,, , and were measured with a high
degree of accuracy. The other terms have less precision because
they are based on look up tables and approximation methods.

Four steady glide paths are calculated using the method of
Section III-A. The glide paths are at glide angles30 , 45 ,
30 and 45 . We compute the glide path at30 by choosing
a desired glide speed m/s and a desired vertical lo-
cation of the movable mass given by cm. This results
in an equilibrium variable mass given by kg. The
glide path at 45 is computed for these same values of
and . The corresponding equilibrium speed for this glide is
computed as m/s. Similarly, we computed the two
steady upward glide paths, for the same value of and the
same buoyant force magnitude, i.e., the value of is held
constant. Recall that is the mass of the vehicle less the
mass of the displaced fluid . The full description of each of
the four glide paths is given in Table II.

Local properties of these steady glide paths can be studied
using the linearization of Section III-B. By plugging in the equi-
librium values, we can examine the linearization for stability,
controllability and observability. The four glide paths listed in
Table II all have a relatively slow unstable mode. They are all,
however, locally controllable. That is, and as given by (49)
and (50), when evaluated at any of the four equilibria, satisfy
the controllability rank condition. Note that the linearization in-
cludes the state meaning that controllability extends to the
variable . Accordingly, we can successfully design a linear
controller that will locally accomplish not only glide objective
GO1 but alsoGO2.

It is of interest to check the controllability rank condition in
the case that the movable masscan only move in one direction
(i.e., is fixed). To do this we have linearized the equations of
motion for the single degree-of-freedom moving mass described
at the very end of Section II. Again the newand matrices
for this case, when evaluated at any of the above four glide paths,
satisfy the controllability rank condition. Thus, it seems that at
least for linear type control action, not much is lost in restricting
the degrees of freedom of the movable mass from two to one.

On the other hand, for large motions, such as switching from
an upward to a downward glide path, care needs to be taken
if restricting the degrees of freedom of the movable mass. For
instance, while motion of the movable mass restricted to the
direction would be sufficient for sawtooth maneuvers, motion
restricted to the direction would not allow for both upward
and downward glide motions. Because of the glider shape, mass
motion restricted to the direction will also typically have
more limited travel as compared to motion in the direction.

The movable mass for ROGUE is approximately 1/6 of the
vehicle displacement . This is of the same relative order as the
movable mass in the gliders SLOCUM, Spray and Seaglider.
Variations in this mass or its location will not in principle affect
local controllability of a feasible glide path. In practice, how-
ever, there are clear tradeoffs associated with moving a large
mass a short distance versus moving a small mass a large dis-
tance. For example, a large mass may be energetically expensive
to move and the necessary motion control resolution required
may be difficult to achieve. On the other hand, since only short
travel would be required, there would be a smaller demand on

TABLE II
FOUR STEADY GLIDE PATHS FORROGUE

vehicle volume. Variation in mass and location will also affect
the range of feasible glide paths and the nature of the switching
between them. The variable mass in ROGUE at the equilib-
rium described above is larger relative to vehicle displacement
as compared to these other gliders. This mass controls glide
speed; thus, for example, if significant vehicle load required de-
signing for a smaller variable mass then maximum glide speed
would be reduced.

Observability of the linearized model about the four glide
paths listed in Table II was also investigated. IfGO1 is our ob-
jective, i.e., if we are interested in controlling only the direction
and speed of the vehicle’s glide path, then we need not mea-
sure . The nine-dimensional dynamic model (which excludes

) is completely observable with measurements limited to mov-
able mass position , and variable mass . In this case,
pitch angle , pitch rate , linear velocity components and

and the momentum of the movable mass, need not be
sensed. Observability means that with the measurements of,

and , a dynamic observer could be designed to give an es-
timate of the unmeasured states, , , , and . Of
course, is typically already measured and is not so hard to
measure, so the real advantage is in the estimation of, ,
and which are more difficult to measure. The nine-dimen-
sional dynamic model is also completely observable with mea-
surements limited to, (or ) and . Again this means
that using these three measurement signals, an observer could
be designed to estimate the rest of the states.

If GO2 is our objective, i.e., if we want to control the glider to
a prescribed line in the plane, then we need a measurement of.
Recall from (30) that depends on both depth, which is easily
measured, and horizontal position, which is not so easily mea-
sured. The measurements, and , together with a mea-
surement of (or alternatively , , and ), do not render

observable. This means that without an initial condition mea-
surement , the trajectory can not be computed. How-
ever, with an initial measurement ofgiven say from a GPS fix
taken when the glider is at the surface, the horizontal motion of
the glider can be calculated, for example, by making use of the
estimate of linear velocity from the observer. We note that this
approach has the potential to improve the accuracy of horizontal
motion determination over current methods which are based on
assumptions of constant angle of attack, etc. For example, on
SLOCUM, the horizontal motion of the glider during the glide
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Fig. 8. Simulation of glide path from 45downward to 30 downward.

is estimated from GPS fixes taken at the surface, measured pitch
angle , an assumed angle of attack and vertical speed computed
from depth measurements [6]. Similarly, on Spray, horizontal
flight distance is calculated based on a constant pitch, heading
and angle of attack to which the vehicle is being controlled [4].

IV. CONTROLLED PLANAR GLIDING

In this section we demonstrate, in simulation, controlled
gliding in the vertical plane by designing and testing a linear
controller for the glide path moving 30downward as described
in Table II. Since the controller is linear, we expect that it
should take initial conditions nearby to the 30downward glide
path. We demonstrate this result by starting the glider at the
45 downward steady glide and using the linear controller to
move it to the 30 downward glide solely by feedback.

The controller is designed for the linearization about the 30
downward glide using the LQR (linear quadratic regulator)
method. This is a standard linear optimal control design method
which produces a stabilizing control law that minimizes a cost
function that is a weighted sum of the squares of the states and
input variables. We assume that all of the states are available for
feedback. If this were not the case, then, as described above, it
is possible to design an estimator to determine the unmeasured
states.

The cost function to be minimized is defined as

where and are state and control penalty matrices.and
were chosen to ensure well-behaved dynamics and to prevent

large motions in the movable mass position and variable mass
that would exceed physical limitations. Taking into account real
or desirable maximum state values, the states associated with
vehicle and movable mass velocity and variable mass and pitch
angle were weighted most heavily. No significant tuning was
performed. The weight selections are given by

Fig. 9. Simulation of position and velocity variables.

The corresponding control law is where is com-
puted using MATLAB as the solution to the Riccati equation
given .

In Figs. 8–10, we show a MATLAB simulation of the glider
moving first along the 45downward glide and then switching
to the 30 downward glide path. This was accomplished by
turning on the linear controller at seconds. In Fig. 8 we
show the glide path, in Fig. 9 we show plots of position, pitch,
linear and angular velocity as a function of time and in Fig. 10
we show the position of the movable mass, the net buoyant force
as well as the control inputs as a function of time. In these latter
two figures we show the results of the controller as applied to
the linear dynamic model and the results as applied to the non-
linear dynamic model.

The figures show that the 45downward glide path is in the
region of attraction of the linear controller designed for the 30
downward glide path. Furthermore, the transient is very well
behaved.

However, we do not expect that the upward equilibria would
be in the region of attraction of a linear controller designed for
a downward glide (and vice-versa). This means we would not
want to use a pure linear feedback solution for switching in a
sawtooth glide path. Instead, we could consider complementing
the feedback law with a feedforward term which drives the mov-
able mass and the variable mass in a predetermined way from
initial to final condition. Alternatively, we can consider a non-
linear control design approach that would include feedback and
may or may not include a feedforward term. A feedforward term
would make it possible to introduce an optimal path between
two different glides.

Laboratory experiments of controlled gliding with ROGUE
will be described in a future publication.

V. FINAL REMARKS

We plan to realize the results described in this paper as well
as future control design developments on experimental gliders
both of our own construction, e.g., ROGUE, and with our col-
leagues who build sea-worthy gliders, e.g., SLOCUM.
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Fig. 10. Simulation of movable mass, variable mass, and control inputs.

In future work we intend to further develop the gliding control
methodology by investigating nonlinear feedback control laws,
feedforward control and path planning. We are already working
with colleagues on optimal control theory that is applicable to
underwater gliders [7] and that may be useful for path planning
purposes.

Other future directions include extending our work to gliding
motion in the horizontal plane, e.g., waypoint following, and to
glider network maneuvers. Work is already underway to develop
decentralized control laws to produce underwater vehicles that
school [9], [10], and these we hope to integrate with control of
glider dynamics. In support of this effort, we are building an
experimental, underwater test-bed for multiple-vehicle control
[22]. Schooling fish function like an integrated sensing system
and by emulating their traffic rules, we can hope to produce a
network of gliders that can similarly serve as a fast and effective
adaptive ocean sensing platform.
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