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Model-Based Feedback Control of Autonomous
Underwater Gliders

Naomi Ehrich Leonard and Joshua G. Graver

Abstract—We describe the development of feedback control for those with fixed external surfaces which can control buoyancy
autonomous underwater gliders. Feedback is introduced to make and center of gravity (CG). We emphasize an approach that
the glider motion robust to disturbances and uncertainty. Our s wigely applicable rather than exclusively vehicle-specific;
focus is on buoyancy-propelled, fixed-wing gliders with attitude - .
controlled by means of active internal mass redistribution. We accordingly, this work complements the efforts on SLOCUM,
derive a nonlinear dynamic model of a nominal glider complete Spray and Seaglider.
with hydrodynamic forces and coupling between the vehicle and ~ On SLOCUM, the ballast tanks are configured within the ve-
the movable internal mass. We use this model to study stability hicle to provide the proper pitching moment during upwards and
and controllability of_glide paths and to c_ieri\_/e feedba(_:k control downwards glides [6], [3]. A sliding battery mass is used for
laws. For our analysis, we restrict to motion in the vertical plane fine adjustments in pitch and roll. Sensors measure depth, pitch
and consider linear control laws. For illustration, we apply our . N n ! !
methodology to a model of our own laboratory-scale underwater roll, and compass heading. Vehicle position at the surface is de-
glider. termined through GPS fix. The pitch angle, an assumed angle

Index Terms—Autonomous underwater vehicles, buoyancy con- of attack, and a verti(.:al speed CO_mpUted from depth measure—
trol, glider control, glider dynamics, movable mass, underwater Ments are used to estimate the horizontal speed of the glider. The
gliders. glider control system periodically checks the glider attitude and
adjusts the position of the sliding battery mass. The timing of
mass position adjustments can be changed depending on glider
performance during the glide. Switching between downwards

N RELATION to existing methods of ocean samplingand upwards glides is performed open loop, i.e., the ballast is

autonomous underwater gliders offer a host of technicahanged and the sliding mass is moved to a new position.
advantages: superior spatial and temporal measurement densitgensing and control on other gliders is similar. For example,
longer duration missions, and greater operational flexibilitgpray performs active control of pitch and roll every 40 s
These advantages are expected to be greatest when muliigiég measured pitch and heading errors. In the case of pitch,
gliders are operated cooperatively in a network [1]. The undet{ow-gain proportional control law is used, and in the case of
water glider concept, initially conceived by Henry Stommeteading, proportional plus integral control is used [4].
[2], has motivated the development of several operationalOur program initiated in this paper to develop a model-based,
gliders, including the SLOCUM glider [3], the “Spray” gliderfeedback control design methodology is intended to improve
[4] and the “Seaglider” [5]. These are all buoyancy-propelledipon the currently implemented glider control strategies. A sys-
fixed-winged gliders which shift internal ballast to controtematic design methodology that provides control in the full
attitude. Each has many useful features ranging from lastate-space is expected to make it possible to design glider con-
operational and capital costs, and low noise and vibration i@llers that require less experimentation and tuning and provide
high reliability due to simplicity of design, minimal reliance ormore robustness to fouling, payload changes and other uncer-
battery power, and low vulnerability of actuator mechanismainties as compared to current techniques. Additionally, with
to the harsh effects of seawater. a model-based approach, a dynamic observer can be designed

In order for the advantages in ocean sampling using undég-estimate states such as glider velocity. These estimated states
water gliders to be fully realized, an accurate and reliable glidesuld then be used to determine horizontal glider motion instead
control system should be developed. Most importantly, the usethe current methods which rely on assumptions of constant
of feedback control provides a measure of robustness to wmgle of attack. A model-based approach may also prove useful
certainty and disturbances. In this paper, we derive a nonlingatetermining optimal glider motions (see [7] for early work in
dynamic model and describe the first steps in developmentthfs direction).
model-based control for a class of underwater gliders, namelyThe dynamic glider model we derive here describes a glider

with simple body and wing shape. Control is applied to two point
masses inside the vehicle: the first point mass has variable mass
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Fig. 1. Experimental, laboratory-scale underwater glider ROGUE.

law design is performed for the dynamics specialized to the vafunderwater gliders, are not typically relevant for airplanes and
tical plane. Continuous feedback laws are developed. Howewberefore not included in the airplane literature.
when energyis atapremium, we envision ascenarioinwhichondn Section Il, we derive the equations of motion for a
might occasionally and temporarily turn off the active feedbadduoyancy-driven, fixed-wing underwater glider. Controllability
control routine (including sensors), e.g., during periods of reland observability of steady glide paths in the vertical plane are
tive calm or when tight control is less critical. studied in Section Ill. Linear control laws are developed in
The model we derive, although simplified, does captur@ection IV for stabilizing these glide paths in the presence of
the essential dynamic features of underwater g||d|ng Tigkésturbances. A simulation of the controlled glider modeled to
simplicity allows for development of general control desigiesemble ROGUE is also presented. We give final remarks in
strategies. These strategies along with the insights gained fr&@€tion V.
the development are expected to be relevant to the design of

control Iavys for the more complex operational g!iders. Fegd— Il. GLIDER DYNAMICS
back provides robustness to uncertainty, and this uncertainty ) o ] )
may include unmodeled dynamics. The variables used in this paper are defined in Table I.

Specialization of the glider dynamics to the vertical plane ) o
constitutes a first step toward a systematic understanding ghdEduations of Motion in 3-D
methodology for complete glider control design. In restricting We model the underwater glider as a rigid body with fixed
to the vertical plane, we ignore, for example, challenges assogings (and tail) immersed in a fluid with buoyancy control and
ated with currents traveling transverse to the motion of the veentrolled internal moving mass. We take the hull to be ellip-
hicle. Analysis of tail volume requirements, heading correctior®idal with wings and tail attached so that the center of buoy-
and the capabilities of shifting mass in this context will be nexincy (CB) is at the center of the ellipsoid. We assign a coordinate
steps in developing methodology to meet these challenges. Tizgne fixed on the vehicle body to have its origin at the CB and
successful SLOCUM glider experiments at LEO-15 during thg axes aligned with the principle axes of the ellipsoid. Let body
summer of 2000 suggest promise for this program. In these exis 1 lie along the long axis of the vehicle (positive in the di-
periments, SLOCUM performed excellent tracking in the pregection of the nose of the glider), let body axis 2 lie in the plane
ence of strong (transverse) currents [6]. of the wings and body axis 3 point in the direction orthogonal

Throughout the paper, we illustrate our results on a model the wings as shown in Fig. 2.
of a small, laboratory-scale underwater glider called ROGUE The total stationary mass., (also referred to as body mass)
(Remotely Operated Gliding Underwater Experiment) that we the sum of three termsz,, is a fixed mass that is uniformly
have built and that we operate in a freshwater tank and pool, ségfributed throughout the ellipsoiat,, is a fixed point mass that
Fig. 1. Inthe first version of this glider, CG position is controllednay be offset from the CB, and, is the variable ballast point
by shifting a lead weight inside the vehicle [8]. In its most remass which is fixed in location at the CB. The vector fromthe CB
cent incarnation, ROGUE controls buoyancy and CG positiéathe point massz,, isr,,. The vector from the CB to the center
by means of a distributed array of independently actuated baf-nass of the stationary mass, = m;, + m., + my iS7s.
last tanks (syringes). The moving internal point mass 8. The vectorr,(t) de-

In related and forthcoming work with colleagues, we addre§§'ibes the position of this mass with respect to the CB at time
issues in optimal path planning for underwater gliders [7] and fn The total mass of the vehicle is then
coordinating control for multiple autonomous underwater vehi-
cles [9], [10]. My = My, + Mey + My + T = My + .

There is a great deal of literature on dynamics, stability, and
control of airplanes, including [11], [12], [13]-[16], which isThe mass of the displaced fluid is denotedand we define
clearly of interest in the study of underwater gliders. We noteyg = m, — m so that the vehicle is negatively (positively)
however, that added mass forces, variable buoyancy and cbneyant if—m, is negative (positive). The different masses and
trolled mass redistribution, which play a central role in our studyosition vectors are illustrated in Fig. 3.
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TABLE |
DEFINITION OF VARIABLES
Name || Description
a angle of attack, coso = vl/\/vf + v2
b vehicle position vector from inertial frame
CB center of buoyancy and origin of body frame
CcG center of gravity
D drag force
Dy added mass cross term
Feat external force on vehicle in body coordinates
Sext external force on vehicle in inertial coordinates
T identity matrix
I total mass/inertia matrix of vehicle/fluid system
Jy added inertia matrix
Jn inertia of hull (excludes inertia due to m, me,)
Js inertia of stationary mass, Js = Jp — My Pwfw
J Js +Jg
Ji ith diagonal element of J
L lift force
M sum of body and added mass, M = msZ + My
My added mass matrix
Mpy viscous moment
m mass of displaced fluid
m movable point mass
mp variable ballast mass located at CB
my; ith diagonal element of My
m; ith diagonal element of M
mp uniformly distributed hull mass
ms stationary body mass, ms = mp, + mqy + my
My total vehicle mass, m, = ms +m
My point mass for nonuniform hull mass distribution
mo €XCess Mmass, mo = My — M
Q angular velocity in body coordinates
Q; ith component of 2
P total linear momentum in body coordinates
P, linear momentum of m in body coordinates
P total linear momentum in inertial coordinates
PP linear momentum of 7 in inertial coordinates
n total angular momentum (body frame)
s total angular momentum (inertial frame)
R rotation matrix for vehicle orientation
rp position of movable mass / in body coordinates
TPp; ith component of rp
s position vector from CB to center of mass m;
T position vector from CB to may
[ pitch angle
Teat total external torque in body coordinates
Tewxt pure external torque in inertial coordinates
T total kinetic energy, T =Ts + Tp + Ty
Ty kinetic energy of fluid
T kinetic energy of movable point mass
Ts kinetic energy of stationary body mass m,
(73 (u1 uz us)T, force on sliding point mass
u (u1 u2 us u4)T, vector of control inputs
uq controlled variable mass rate, us = 7
%4 speed in vertical plane, V = /(v? + v2)
Vi desired speed in vertical plane
v velocity in body coordinates
v; ith component of v
T,Y,2 components of vehicle position vector b
13 glide path angle, { =6 —
& desired glide path angle

perpendicular distance to desired glide path
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Fig. 2. Frame assignment on underwater glider.

1y, , uniformly
\distributed mass

- movable mass

variable mass

fixed mass

Fig. 3. Glider mass definitions.

Equivalently, for vectow = (y1, y2, y3)*,

0 —x3 T2 Y1
Ty = T3 0 - Yy | =x Xy
-r2  x1 0 Y3

i.e., the operatdmaps a vecto#: to the (skew-symmetric) ma-
trix representation of the vector cross product operator. The in-
ertia matrix for the stationary (body) mass expressed with re-
spect to body frame coordinates is

JS = Jh — mw'f‘w'f'w.

Since the variable ballast mass, is a point mass located at
the CB, it does not contribute té,, and in particular/, is a
constant.

The orientation of the glider is given by the rotation matrix
R. R maps vectors expressed with respect to the body frame

Let J;, denote the inertia matrix, with respect to the bodinto inertial frame coordinates. The position of the glider

frame, for the uniformly distributed mass;,

erator so that for a vectot = (xy, =2, z3)7,

0 —I3 X2
= 3 0 —T1
—T2 X1 0

. Define the op- (7, ¥, z)T is the vector from the origin of the inertial frame to

the origin of the body frame (vehicle CB) as shown in Fig. 4.
The vehicle moves through the fluid with translational velocity
v = (v, va, v3)T and angular velocitf2 = (2, Qa, 23)7,
expressed with respect to the body frame. [Note that we have
diverged from the notation typical of the submarine literature
wherev = (u, v, w)T and€? = (p, ¢, 7)*. The notation that
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Differentiating (4)—(6) and using the kinematic expressions (2)
and (1) gives

p:R(P+§zP)
ir:R(ﬂ+sz)+RvXp+bxp
pP:R(PP+QPP)' (7)

Substituting (3) into (7) for the rate of change of inertial mo-
menta gives the following dynamic equations in body coordi-
nates:

I
P=PxQ+RB"> fen, 8)

=1

Fig. 4. Glider position and orientation variables.

I
- - o
we use here is taken from texts in classical mechanics such as 11 =1 X Q@+ P xv+ R <Z (#: — b) x fe:cti)
[17] and is more convenient for the derivation and analysis.] In =1

this notation, the kinematics of the glider are given by L RT z“’:ij )
R=RO 1) . =
b— Ro. @ P,=P,xQ+mg(R k)+u (20)

_ wherew = RY 31, fine, is the internal force acting on the
Let p represent the total translational momentum of “]S’oint mass in body coordinates. Let

vehicle-fluid system andr the total angular momentum of

the system about the inertial coordinate origin, all expressed U1
with respect to the inertial frame. Lei, represent the total = |u | =PpxQ +mg(RYE) +u (11)
momentum of the movable point mass with respect to the u
inertial frame. Then Newton'’s laws state that 8
so that
I
pzzfea;ti Pp:ﬁ
=1
I J To derive expressions faP, 11, and P,, we determine the
=Y (% X fopt,) + D Teat, total kinetic energy of the glider-fluid system. The kinetic en-
i=1 j=1 ergyZ; of the rigid body with masg:; and inertia matrix/; is
K
. = SI - SAS
pp:mgk—i-z_f,-ntk (3) TSI%<U><m m"'><1]>'
k=1 Q M T J, Q
wherek is a unit vector pointing in the direction of gravitf, . Let v, be the absolute velocity of the movable point mass

is an external force applied to the system, angt, is a pure m expressed in body coordinates. Given that the velocity: of
external torque. These external forces and torques include thidative to the body frame is,, we compute

due to gravity and buoyancy; however, gravity is included ex-
plicitly in the third set of equations as it is the only external
force acting on the movable point mass. The fofgg, is a The kinetic energyi;, of the movable point mass is then com-
force applied from the vehicle body onto the point mass (a copated to be

trol force). All vectors are expressed with respect to the inertial

frame. The vectag; locates the point of application of the force T, = ~7||vp||?

Up =v+ T, + X1y (12)
P P P

f ez, With respect to the inertial coordinate frame. 2 T . —T
Let P be the momentum of the vehicle-fluid system ex- v m e T v
pressed with respect to the body frame. I&tbe the total =1l Q|- | mrp —mrptp Mip Q
angular momentum about the origin of the body frame. Ppt p mLI —mi, mL Tp
represent the point mass momentum with respect to the body o
frame. Then Kirchhoff [18] showed that the kinetic energy of an un-
bounded volume of ideal fluid due to the motion of animmersed
p=RP (4) rigid body takes the form

#=RII4+bxp (5) . 1<v> <Mf D’;’Z)(v)
pp:RPP' (6) e 2\Q Df Jf Q
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where M is the added mass matrid; is the added inertia Inverting the relationships (13) then gives the body velocities in
matrix, andDy is the added cross term. These matrices depetaitms of the body momenta:
upon the external shape of the body and the density of the fluid,

This form of kinetic energy comes from a potential flow solution/ ¥ . P
in which the fluid is assumed to be inviscid, incompressible| ¢ | =1 b, (14)
irrotational and motionless at infinity. We incorporate viscous\ 7p Py
effects into the model as external forces and torques (lift and M1 0 M1
drag) below. 0 g1 J1;

We assume that at low angle of attack, the contribution of the = T
wings is dominated by lift and drag forces. Thus, we make the Mt f'pJ_l Ml_ ;‘pJ—17ﬁp + éI

m

simplifying assumption that the added mass and inertia terms

can be computed solely from the vehicle hull. These assump-tq get the equations of motion in terms of body velocities, we
tions are not so critical for the analysis in this paper, especialiyferentiate (14) with respect to time. We assume that buoyancy
since it is expected that feedback control will provide robustnegschanged in a symmetric way (e.g., ballast is pumped on and
to unmodeled dynamics. Nonetheless, it may be of interestdf poard in streams with the appropriate symmetry) so that there
future work to consider more detailed modeling of added magsnegligible associated thrust or moment on the glider. Let the
associated with the hull plus wings using methods such as fre|ast control input., be defined as
computational fluid dynamics.

The total vehicle fluid kinetic energ¥’ = 7', + 1}, + 1% is Uy = Ty (15)
computed to be

Differentiating (14) then gives

r=ial.1(e v P P
) . Q|=11|1m|+ i(rl) II (16)
7 Tp . dt
P . P p,
Tp P
(ms + )L+ My —Tip — msis + Dy L
. N . . where
I= | mip+m,+ Dy J,—mrptp+Jy Wy
mL —TRp mL p 0 0 0
—(r'hy=10 o ~J . (17)
We can then compute momenta as dt s s 4. . a1
0 7pJ —Tp Ty —Tpd Ty
P = T =(m,I+Mjsw+ D}"Q + M X 7y, With the substitution into (16) of (8)—(11) for the derivativi2s
v Q . I andP,, (17) ford/dt(I ') and (13) for the relationship be-
+ v+ QX 7p+7p), tween momenta and velocity, the complete equations of motion
II= g_g =D+ (T + I+ mar, x v for the underwater glider moving in three-dimensional space are
+mrp(v+ QX Tp+Tp), R R
ar . .
szﬁzm(v—i—QX'r‘p—i-’rp). b RT]_
P Q JT
Since the vehicle hull is ellipsoidal (we neglect the wings in this v | = M 'F ’ (18)
instance), M y andJ; are diagonal and)y = 0. Let My = . 1
diag(mfl, mMy2, mfg) ande = diag(Jfl, Jfg, Jfg). Define I(.p %PP —v - QX Tp
P, u
M:?’TLSI—i—M‘f7 JIJ3+Jf mb Ug

: - , T =(JQU+7pPp) x 2+ M mgrpR k
where Z is the 3 x 3 identity matrix. Let M = (JS2+7pPp) X S+ My x v +TmgTy

diag(my, me, mg) and J = diag(Jy, J2, J3). Further- - + Text — Tpu
more, assume that,, = 0 so thatr, = 0. Then, F=(Mv+Pp)x Q+mogR k4 Fepy — @

P v Here,

II |=1|%9Q], _pT

P, Tp Feat =R Z feat,

_ pT L T
S oY ) S
I= J—mipt, mip | . (13) refer to external forces and moments, in this case lift and drag,

iy
L — T mL with respect to the body frame.
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B. Equations of Motion in the Vertical Plane

We now specialize the model to the vertical plane, #e
plane in inertial coordinates and thg-e4 plane in body coor-
dinates. Accordingly,

cos@ 0O siné T
R= 0 1 0 b=10
—sinf 0 cos# z
U1 0
v = 0 Q= QQ
U3 0
Tp1 Ppl U1
Tp = 0 P, = 0 u=1\] 0
Tp3 Py U3

whered is pitch angle.
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A\

Fig. 5. Lift and drag on glider.

The equations of motion (18) for the gliding vehicle restricted

to the vertical plane become

& =wycosf + vgsind (29)
2 =—wvsinf + vscos b (20)
6 =0, (21)
. 1
Oy = J—((mg —my)vvs — Mg(rprcosf + rpzsinf)
2
+ Mpr — rp3us + Tp1us) (22)
1
i]l = — (—mgngg — PP3Q2 — mog sin @
my
+ Lsina — Dcosa — ) (23)
. 1
V3 = m—(mlvlﬁg + Pplgg + mog Cos 0
3
—Lcosa — Dsino — ug) (24)
7p1 =— Pp1 — v —rp3fl (25)
™m
. 1
Py = — Ppz — vz +7p1822 (26)
Ppl =1UuU1 (27)
Pp3 =us (28)
mb = U4g. (29)

Here,« is the angle of attackl) is drag,L is liftand M, is the

viscous moment as shown in Fig. 5. These forces and moment

are modeled as

(Kp, + Kpa?)(vf + v3)
(KLO +KL04)(U% +U?2))
Mpr = (K, + Kya)(v] +v3)

D
L

-

»

Fig. 6. Planar gliding controlled to a line.

We also denote the glider speed Bywhere

V =/ (v] +v3).

We will typically specify a glide path by desired glide path angle
¢4 and desired spedd;. We define inertial coordinatés’, »')
such that’ coincides with the desired path:

'\ _ [cos&y —sinéy T
<z’>_<sin§d COS§d><z>'
Then, 2’ measures the vehicle's perpendicular distance to the
desired path. We define two gliding objectives:

GO1 The objective is to control only the direction and speed
of the vehicle’s glide path. In this case we need not
considerz and~ at all.

GO2 The obijective is to control gliding along a prescribed
line (see Fig. 6). In this case we will includé (but
excluder’) in our analysis and we aim to maké= 0.

The dynamics of the’ state are

(30)

# = sin&y(v1 cos @ + vs sin f)

where theX's are constant coefficients. This model is a standard
one, derived using airfoil theory and potential flow calculations
and then verified using experimental observations, see for ex{n the above model, the movable point mass can be controlled
ample [12], [13]. The method for determination of the coeffin all directions (2 degrees of freedom in the planar case). How-
cients is described in Section IlI-C. ever, it may sometimes be the case that control over the CG lo-

As shownin Fig. 5, we denote the glide path angl€ mhere  cation is restricted, for example, a battery may be shifted in a
limited way. For the planar case, this might translate into a mov-
able point mass with only one degree of freedom. To model this

+ cos &y(—wvy sin € + vz cos ). (31)

E=0—-a.
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we consider the case in whietps is fixed (Fp3 = 0), i.e., we Given &y, (35) and (36) may be solved fer;. We can then

can only move the point masg in thee, direction. Then compute
Ppz =m(vz — rp1§d2). (32) 0s =&4+ ay, vy, = V{4 COos ay, vs, = Vgsin ayg,
The new equations of motion are (19)—(29) excluding (26) andrie =ML, Pps, =mus,.

(28). Further Pps is replaced by (32) ands is replaced byPps

which is computed by differentiating (32) with respect to time*#« ¢an then be solved again using (35) and (36). Finglly, (34)
In particular, (22) and (24) are replaced with gives a one-parameter family of solutions fop;,, 7ps,)* .
First, we computex, from (35) and (36). Note that these

equations reduce to

1 -
<Q2> . 7 (f1 +rpimQ7p1)
(%] — .
m_g(fQ—mQQ7Pl) <m049>
where < cosf,; sind, ) <COS ag  —sinay ) <Dd>
f1 =(m3 — my)vivs — mg(rprcos + rpzsin ) —sinfy C.OS O St g CO: d La
+ Mpr — rpsuy _ < coséy Sln£d> <KD0+KDad>V2 (39)
= . 2
f2 =miv1s + Pp1Qs +mogcosd — Lecosa — Dsina —sinéy coséa K, + Kpog
14 mrh, _mrpy The first equation of (39) is a quadratic equatiomin Provided
7 _ Jo Jo Vy # 0 andé; # £(n/2), we have
mrp m
- 1+ — Kr 1
ms ms ol + 2L an aag+ — (Kp, + K, tané,;) = 0. (40)
Kp Kp
[Il. CONTROLLABILITY OF STEADY GLIDE PATHS Equation (40) may be solved for a realizablg provided

(Kp, + Kr,tany) > 0. (41)

In this section, we compute steady glide paths. We then study K; 2
controllability and observability of these glide paths. < tan &z)

D D

A. Gliding Equilibria Evaluating (41) for permissible values @f; in the range
We prescribe a desired glide path by specifying the desirédn /2, 7 /2), we see that we must choose

glide path angl€, and the desired spedd,. We denote with

subscript ¢” the value of all dynamic variables at the glide equi- [ .Ep[KpL K \? Kp .

libria. To get the conditions for such planar gliding equilibria,é« € | tan 2K_ K : < K 0) K 2 'y

we set the left hand side of (31) and (21)—(29) to zero. This gives g g g P

0 = sinéy(vy, cos by + vz, sinby) or
JerOS €a(—v1, sin by + va, cos bg) (33) O 2@ Kr, <KLO )2 Kp,
0= 7 ((mga —myp1)v1,0s, ¢ 2’ Kp | K Ky, Kp

—mg(rpr, cosby + rps, sinfy) + M 34
1 9(rr. a7, sinfa) pra)  (34) Since the drag model is valid only at small angles of attack, we

0= - (=mo,gsinfy + Lasinag — Dgcosaq)  (35)  takeay as the solution of (41) with smaller magnitude,
o

0= (mg,gcosby — Lycosay — Dysinay) (36) g = 1 Kr tan &y

M3, 2 Kp

1
0=—Pp1, — 37 K

T Ply — Vig (37) X <—1+\/1—4K—€cot§d(KD0c0t§d+KL0)>.

L

0= % Ppgd — U3, (38) (42)

andz’, = Q,, = = = = 0. Note that .
Fa = M2a T e = sy = U If ¢4 = +x/2, then we simply have
my, =My, +Mp + My, Ky

g =——=" (43)

ms, =My, +Mp + My3, K; -~

mo, =my, +m; +m—m, ] o ]
For a vehicle which is symmetric about the bagdy-es plane,
which are all dependent on the equilibrium value of the variablé;, = 0. In this case, for equilibria corresponding to vertical
massm,, . flight (¢4 = £7/2), the desired angle of attack is zero.
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whereA andB are defined as shown in (49) and (50), shown at
the bottom of the next page. Here,

Fig. 7. Family of possible movable mass locations for a steady glide.

We may determinen;, from the latter equation in (39) as
1 .
My, = (m — Mp — m) + ; (_Slngd(KDo + KDa(Qi)

+cos&y(Kr, + KLad))VdQ.
(44)

Finally, we may solve for a one-parameter family of sliding
mass locationgrpy,, 7p3, ) which satisfy (34). The family of

solutions is
—sin @
TpPd — ’I'J‘ _|- v < d )

cos 4 (45)

where

1
= m_g((mfi% —my1)vi,vs, + (Ku, + Kyaa)Vy)

» <COS 0,4 )
sin 9(1

and wherey is a real number. The vectet- is a particular so-
lution of (34). Since — sin §, cos8)7 = (RTk) is the direction
of gravity in body coordinates;- is orthogonal to the direction
of gravity andy measures the vehicle’s “bottom-heaviness” as
shown in Fig. 7.

For an experimental vehicle>3 may be a more physically
relevant choice of parameter thanin this case,

1

g cos By

x((mps—myi)v1,vs, + (Kn, + Knyaa)Vy) (46)

for a given value of the parameteps,, providedé, # +7/2.
If 8, = £x /2, there is an equilibrium of the desired form if and
only if the parameter ps, satisfies

o
g sin 8,4
H K, + Kyag) V). (47)

If (47) is satisfied; 1, is a free parameter. In fact, we should
not choose p3, to satisfy condition (47) in general because this
will require thatrp3, be small. Since 3, contributes to the ve-
hicle’s “bottom-heaviness” at shallower glide path angles, sat-
isfying condition (47) will affect stability of these other equi-
libria. [For a vehicle symmetric about the body—es plane,

04 = /2 implies thatKy;, = 0 anday = 0. In this case,
condition (47) requires thatps, = 0.]

rp1, = —7p3,tanfy +

TP3, = ((mf3 - mfl)vldv?m

i B. Linearization

We determine the linearization for the planar glider about a
steady glide path.
Letz = (¢, 0, Qa, v1, v3, Ty, Tpss Prys Pry, mp)t and
letw = (uy, us, uq)?. Define

oxr =x — x4

ou =u — uy.

Then the linearized system is

6x = Adx + Béu

— Us

CY,UI ——W
v1

Oérl;3 = W
D, = (KDO + KDOéQ)(Qvl) —2Kpawvs
D,, =(Kp, + KDCYQ)(ZU;),) + 2K pav;
LU1 = (KLO + KLa)(2vl) — Krus
L,U3 = (KLO + KLOé)(2U3) + Kru
My, = (K, + Kya)(2v1) — Kyvs
M., =(Kn, + Kno)(2u3) + Kpyog

where we have abbreviatédr/9v; as«,,, etc., and

mg . mg
azz = J—(Tpld sin 9(1 — 73, COS 9(1) = T(—’}/)
2 2
1
azs = - ((mys = my1)vs, + Mo leq)
2
1
azs = - ((mys = my1)v1, + Mugleq)
2
mo
iz == < gcos by
1y
mg, +m
43 = — P V3,
la
aqq = (L., sine + L cos vy,
miy,
— Dy, cosa+ Dsin aavy, Jeq
ay5 = (L, sina + L cos ccy,
mi,
— Dy, cosa + Dsin cuvy, Jeq
gsinfy
410 = — —m
la
mo .
a2 =~ < gsinfy
34
mi, +m
53 = — Vi
34
1 .
azq = (=Ly, cosa + Lsin e,
ms,
— D, sine — D cos vy, Jeq
1 .
azs = (=L, cosa + Lsin ceen,,,
msa,
— D, sina — D cos cuvy, Jeq
__gcosfy
as10 =
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The notation-)|., indicates that the quantity is to be evaluate@he glider body, wings and tail are all machined from UHMW
at the desired equilibrium. (ultra-high molecular weight) plastic. Mass and inertia proper-
This linearization can be used to check features of a giveies were measured directly. Added mass and inertia properties
vehicle design, e.g., to check stability or controllability of a dezan be found, for example, in [20]. Lift and drag for the body
sired glide path given a choice of vehicle design parametevgere found experimentally as described in [8]. Lift and drag for
One can also use this linearization to help automate the desija wings were taken from the data in [19]. Lift for the body
procedure. For example, consider a vehicle that has been fydlys wings was then computed using Schrenk’s method [21],
designed but for a choice of the position of the movable maasd drag was computed as the sum of the drag on the wing and
for a given glide path. Application of the Routh criterion to théhe body. The lift moment was approximated by taking into ac-
characteristic polynomial of the matriA gives conditions for count the tail. The vehicle model parameters are given as fol-
stability of the glide path. These conditions can be written lows:
terms of the free variableps. 7 p3 would then be chosen for be-

havior with desired stability and»; would then be computed m =11.22 kg
according to (46). my, = 8.22 kg
C. Controllability and Observability m =2.0kg

In this section we describe controllability and observability ms =2kg
of steady glide paths for a model of our experimental vehicle mys =14 kg
ROGUE. ROGUE has an ellipsoidal body with axes of length Jy =0.1 Nm?
18, 12, and 6 in. The wings are symmetric airfoils from [21] for Kp, =18 N(s/my

low Reynolds number. We note that the body and wings have not

been designed for optimal gliding performance but rather in con- K =109 N(s/m}

sideration of available facilities and other manufacturing con- K, =306 N(s/my
straints. Each wing has span of 28 inches with aspect ratio 9.3. Ky =—36.5 Nm(s/mY.
o —-Vy 0 —sinag  cosay 0 0 0 O T
0 0 1 0 0 0 0 0 0
_ 9 T sin 0
0 as 0 a5 a3 _Tgcosby  mgsinby 0 0 0
Jo Jo
0 a2 a4 (g 45 0 0 a0
0 as as as ass 0 0 as
A= 2 3 4 X 10 (49)
0 0 —rps -1 0 0 0 — 0 0
m
1
0 0 7p1 0 -1 0 0 0 = 0
m
0 0 0 0 0 0 0 0 o0 0
0 0 0 0 0 0 0 0 o0 0
|10 0 0 0 0 0 0 0 o0 0 |
i 0 0 07
0 0
i TPy
JQ J2
1
— 0
mp, +mp +mp
1
B= 0 — 0 (50)
my, +my, +mys
0 0 0
0 0 0
1 0 0
0 1 0
i 0 0 1]
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The first three masses, m;,, andm were measured with a high TABLE I
degree of accuracy. The other terms have less precision because FOUR STEADY GLIDE PATHS FORROGUE
they are based on look up tables and approximation methods. Variable ]| Down 30° | Down 45° | Up 30° | Up 45°
Four steady glide paths are calculated using the method of = ¢, (deg) 30 45 30 15
Section lllI-A. The glide paths are at glide angle30°, —45°, 4 (deg) -23.7 -41.5 23.7 41.5
30° and 45. We compute the glide path at30° by choosing g (deg) 6.3 3.5 -6.3 -3.5
a desired glide speeld; = 0.30 m/s and a desired vertical lo- Va (m/s) 0.30 0.37 030 | 037
cation of the movable mass given bys, = 4 cm. This results v, (m/s) 0.29 0.36 0.29 0.36
. e ; . vy, (m/s) 0.03 0.02 -0.03 | -0.02
in an equilibrium v_arlable mass given by,, = 1.36 kg. The T [om) 0l 590 040 530
glide path at-45° is computed for these same values-gf, rPa, (cm) 70 20 2.0 10
andmy,. The corresponding equilibrium speed for this glide is Pz, (kg-m/s) 0.60 0.73 0.60 0.73
computed ad’; = .37 m/s. Similarly, we computed the two Pps, (kg-m/s) 0.07 0.04 -0.07 -0.04
steady upward glide paths, for the same valueef, and the me, (kg) 1.36 1.36 0.64 0.64
same buoyant force magnitude, i.e., the valugnaf, | is held Mo, (kg) 0.36 0.36 -0.36 | -0.36

constant. Recall thah, is the mass of the vehicle,, less the

mass of the displaced fluick. The full description of each of vehicle volume. Variation in mass and location will also affect
the four glide paths is given in Table II. the range of feasible glide paths and the nature of the switching
Local properties of these steady glide paths can be studigstween them. The variable mass, in ROGUE at the equilib-
using the linearization of Section 11I-B. By plugging in the equirium described above is larger relative to vehicle displacement
librium values, we can examine the linearization for stabilithys compared to these other gliders. This mass controls glide
controllability and observability. The four glide paths listed igpeed:; thus, for example, if significant vehicle load required de-
Table Il all have a relatively slow unstable mode. They are afligning for a smaller variable mass then maximum glide speed
however, locally controllable. That igd and B as given by (49) would be reduced.
and (50), when evaluated at any of the four equilibria, satisfy Observability of the linearized model about the four glide
the controllability rank condition. Note that the linearization inpaths listed in Table 1l was also investigatedGID1 is our ob-
cludes the state’ meaning that controllability extends to thgective, i.e., if we are interested in controlling only the direction
variable z’. Accordingly, we can successfully design a lineasind speed of the vehicle’s glide path, then we need not mea-
controller that will locally accomplish not only glide objectivesurez’. The nine-dimensional dynamic model (which excludes
GOl but alsoGO2. #') is completely observable with measurements limited to mov-
It is of interest to check the controllability rank condition inable mass position,, 7,3 and variable massy,. In this case,
the case that the movable masgan only move in one direction pitch angled, pitch rates,, linear velocity components;, and
(i.e.,rp3 isfixed). To do this we have linearized the equations af; and the momentum of the movable m#%s, P,; need not be
motion for the single degree-of-freedom moving mass describsehsed. Observability means that with the measurements,of
at the very end of Section Il. Again the netvand B matrices 1,3 andm,, a dynamic observer could be designed to give an es-
for this case, when evaluated at any of the above four glide pattiate of the unmeasured states2s, vy, vs, Pp1 and Ppz. Of
satisfy the controllability rank condition. Thus, it seems that &burse is typically already measured af is not so hard to
least for linear type control action, not much is lost in restrictingeasure, so the real advantage is in the estimation, ef,, P,
the degrees of freedom of the movable mass from two to oneand P, which are more difficult to measure. The nine-dimen-
On the other hand, for large motions, such as switching frosional dynamic model is also completely observable with mea-
an upward to a downward glide path, care needs to be tal®mements limited t@, r,; (or r,3) andm,. Again this means
if restricting the degrees of freedom of the movable mass. Rbiat using these three measurement signals, an observer could
instance, while motion of the movable mass restricted te the be designed to estimate the rest of the states.
direction would be sufficient for sawtooth maneuvers, motion If GO2is our objective, i.e., if we want to control the glider to
restricted to the p3 direction would not allow for both upward a prescribed line in the plane, then we need a measurement of
and downward glide motions. Because of the glider shape, mé&sstall from (30) that’ depends on both depthwhich is easily
motion restricted to thepsz direction will also typically have measured, and horizontal positioypwhich is not so easily mea-
more limited travel as compared to motion in the direction. sured. The measurements, 7,3 andm,, together with a mea-
The movable mass for ROGUE is approximately 1/6 of the surement o (or alternativelyd, 1, m, andz), do not render
vehicle displacement. This is of the same relative order as the: observable. This means that without an initial condition mea-
movable mass in the gliders SLOCUM, Spray and Seaglidesurement:(0), the trajectoryz(¢) can not be computed. How-
Variations in this mass or its location will not in principle affecever, with an initial measurement efgiven say from a GPS fix
local controllability of a feasible glide path. In practice, howtaken when the glider is at the surface, the horizontal motion of
ever, there are clear tradeoffs associated with moving a lathe glider can be calculated, for example, by making use of the
mass a short distance versus moving a small mass a large diimate of linear velocity from the observer. We note that this
tance. For example, alarge mass may be energetically expenspproach has the potential to improve the accuracy of horizontal
to move and the necessary motion control resolution requiregbtion determination over current methods which are based on
may be difficult to achieve. On the other hand, since only shassumptions of constant angle of attack, etc. For example, on
travel would be required, there would be a smaller demand 8LOCUM, the horizontal motion of the glider during the glide
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Glider Flight Path Glider Simuiation: States 1-5
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Fig. 8. Simulation of glide path from 45downward to 30 downward. Fig. 9. Simulation of position and velocity variables.

is estimated from GPS fixes taken at the surface, measured pi$fa corresponding control lawis= —Kéx whereK is com-

angled, an assumed angle of attack and vertical speed compufgfled using MATLAB as the solution to the Riccati equation
from depth measurements [6]. Similarly, on Spray, horizontglvenA’ B, Q. R.

flight distance is calculated based on a constant pitch, headingn Figs. 8-10, we show a MATLAB simulation of the glider

and angle of attack to which the vehicle is being controlled [4}qoving first along the 45downward glide and then switching
to the 30 downward glide path. This was accomplished by
turning on the linear controller at= 5 seconds. In Fig. 8 we
In this section we demonstrate, in simulation, controlleghow the glide path, in Fig. 9 we show plots of position, pitch,
gliding in the vertical plane by designing and testing a linedif€ar and angular velocity as a function of time and in Fig. 10
controller for the glide path moving 3@ownward as described We show the position of the movable mass, the net buoyant force
in Table II. Since the controller is linear, we expect that @S Well as the control inputs as a function of time. In these latter
should take initial conditions nearby to the°3fownward glide tWo figures we show the results of the controller as applied to
path. We demonstrate this result by starting the glider at tHe linear dynamic model and the results as applied to the non-
45> downward steady glide and using the linear controller f§1€ar dynamic model.
move it to the 30 downward glide solely by feedback. The figures show that the 4glownward glide path is in the
The controller is designed for the linearization about the 3@¢€gion of attraction of the linear controller designed for the 30
downward glide using the LQR (linear quadratic regulatodownward glide path. Furthermore, the transient is very well
method. This is a standard linear optimal control design methBghaved.
which produces a stabilizing control law that minimizes a cost However, we do not expect that the upward equilibria would
function that is a weighted sum of the squares of the states Aigin the region of attraction of a linear controller designed for
input variables. We assume that all of the states are available@ofownward glide (and vice-versa). This means we would not
feedback. If this were not the case, then, as described abova/aft to use a pure linear feedback solution for switching in a
is possible to design an estimator to determine the unmeasuf@wtooth glide path. Instead, we could consider complementing

IV. CONTROLLED PLANAR GLIDING

states. the feedback law with a feedforward term which drives the mov-
The cost function to be minimized is defined as able mass and the variable mass in a predetermined way from
00 initial to final condition. Alternatively, we can consider a non-
J = / 6x7 Qbx + su” Réu dt linear control design approach that would include feedback and
0

may or may notinclude a feedforward term. A feedforward term
where@ and R are state and control penalty matricésand would make it possible to introduce an optimal path between
R were chosen to ensure well-behaved dynamics and to previgiy different glides.
large motions in the movable mass position and variable mas$ gporatory experiments of controlled gliding with ROGUE
that would exceed physical limitations. Taking into account regjjj| pe described in a future publication.
or desirable maximum state values, the states associated with
vehicle and movable mass velocity and variable mass and pitch
angle were weighted most heavily. No significant tuning was
performed. The weight selections are given by We plan to realize the results described in this paper as well
as future control design developments on experimental gliders
Q =diag(0.05, 0.5, 1, 2,2,0.1,0.1, 1, 1, 0.5), both of our own construction, e.g., ROGUE, and with our col-
R =diag(1, 1, 1). leagues who build sea-worthy gliders, e.g., SLOCUM.

V. FINAL REMARKS
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Glider Simuiation: States 6, 7, 10
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Fig. 10. Simulation of movable mass, variable mass, and control inputs.
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In future work we intend to further develop the gliding control [3] D. C. Webb, P. J. Simonetti, and C. P. Jones, “SLOCUM, an underwater
methodology by investigating nonlinear feedback control laws,
feedforward control and path planning. We are already working;
with colleagues on optimal control theory that is applicable to
underwater gliders [7] and that may be useful for path planning

purposes.

Other future directions include extending our work to gliding
motion in the horizontal plane, e.g., waypoint following, and to
glider network maneuvers. Work is already underway to develop[7

(3]

[6]

decentralized control laws to produce underwater vehicles that

school [9], [10], and these we hope to integrate with control of
glider dynamics. In support of this effort, we are building an

(8]

experimental, underwater test-bed for multiple-vehicle control
[22]. Schooling fish function like an integrated sensing system ]
and by emulating their traffic rules, we can hope to produce a
network of gliders that can similarly serve as a fast and effectivgLo]

adaptive ocean sensing platform.
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