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Abstract: Systematic design of decentralized feedback for coordinated control of multi-agent
systems has much to gain from the rigorous examination of the nonlinear dynamics of collective
animal behavior. Animals in groups, from bird flocks to fish schools, employ decentralized
strategies and have limitations on sensing, computation, and actuation. Yet, at the level of
the group, they are known to manage a variety of challenging tasks quickly, accurately, robustly
and adaptively in an uncertain and changing environment. In this paper we review recent work
on models and methods for studying the mechanisms of collective migration and collective
decision-making in high-performing animal groups. Through bifurcation analyses we prove
systematically how behavior depends on parameters that model the system and the environment.
These connections lay the foundations for proving systematic control design methodologies that
endow engineered multi-agent systems with the remarkable features of animal group dynamics.
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1. INTRODUCTION

Multi-agent system dynamics have gained significant at-
tention in the control community in recent years. This
is due to the rich theory associated with decentralized
feedback control and system performance as well as to the
growing number of important and challenging applications
in cooperative control of networked dynamical systems,
from robotic vehicle networks to electric power networks
to synthetic biological networks (Antsaklis and Baillieul
[2004, 2007], Bullo et al. [2009], Mesbahi and Egerstedt
[2010], Zachary et al. [2011]). It is common in multi-agent
system dynamics to limit each individual agent in the
system in terms of what it can decide on its own, what
it can do on its own, and what it can measure on its
own about its local environment. A key objective is then
to prove that through judicious design of feedback and
interaction among the agents, the decentralized networked
multi-agent system can function at a very high level, meet-
ing demanding performance criteria in complex tasks.

The present paper reviews a selection of recent work by the
author, with collaborators from engineering and biology, to
develop abstract models and methods for rigorous exami-
nation of mechanisms of multi-agent dynamics. The focus
is on high-performing dynamics drawn from observations
and understanding of collective behavior in animal groups.
The study of collective animal behavior is particularly
relevant to decentralized feedback control design: animals
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typically apply decentralized strategies and have limita-
tions on their ability as individuals to compute, act, and
sense, and yet as a group they adapt their behavior with
accuracy, speed and seemingly little effort.

A central goal of the work presented is to derive analyt-
ically tractable dynamic models that capture the mecha-
nisms of collective animal behavior and lend themselves
to systematic study of sensitivity of performance to crit-
ical parameters of the system and the environment. This
creates foundations for developing provable and systematic
control design methodologies that enable engineered multi-
agent systems to inherit some of the remarkable features
of animal group dynamics.

The dynamics of collective animal behavior are typically
nonlinear due to nonlinearities in individual dynamics,
nonlinearities in interaction dynamics, nonlinear coupling
between the individual dynamics and the interaction dy-
namics, and nonlinearities in the configuration space.
Models also tend to be high-dimensional especially when
the number of agents in the group is large.

Analytic methods for investigating adaptive behavior in
biology, including evolutionary dynamics and analysis of
evolutionarily stable solutions, can be integrated with
control theoretic methods to advance a theory of multi-
agent system dynamics. Approaches such as time-scale
separation, or mean-field approximation, can be used to
derive reduced-order models. Bifurcation theory can be ap-
plied to isolate the influence of system and environmental
parameters on structural changes in the collective behav-
ior. When bifurcation parameters, such as the feedback
gains of individual agents, are endowed with their own
dynamics, either by hypothesis to model animal groups



or by design to control engineered networks, the resulting
system dynamics describe adaptive collective behavior,
where conditions for high performance can be proved in
a possibly changing environment.

Singularity theory (Golubitsky and Schaeffer [1985]) de-
scribes the “universal unfolding” of canonical bifurcations
as a function of parametrized perturbations to the system.
In the case of multi-agent systems, the theory accounts for
changes in the collective behavior and its sensitivities due
to asymmetries, e.g., asymmetries in the agent interactions
or choices, as examined in the present paper. Because the
theory helps unify our understanding of key mechanisms
of collective behavior, it can provide possible means for
constructive design of these mechanisms in engineered
multi-agent systems.

Animal groups provide enormous inspiration when viewed
as high-performing multi-agent systems implementing de-
centralized feedback control in a changing and uncertain
environment. From bird flocks to fish schools, animal
groups exhibit a superior ability to manage a variety of
challenging tasks, from foraging to migration to preda-
tor evasion, that individual animals would not be able
to manage on their own (Krause and Ruxton [2002]).
Observations of collective behaviors suggest that animal
groups perform exceptionally well in the trade-off between
speed and accuracy and between robustness to disturbance
and responsiveness to environmental change (e.g., Ballerini
et al. [2008]). Biologists attribute the remarkable behavior
of these groups in large part to the social interactions
among individuals. Indeed, interactions among many rela-
tively limited individuals have been shown to yield collec-
tive dynamics that are much more than the sum of their
parts (Parrish and Edelstein-Keshet [1999]).

The work reviewed in the present paper focuses on dynam-
ics of collective migration and collective decision-making.
Many species of birds, fish, invertebrates and mammals
rely on social interactions during migration, especially
when it is costly for individuals to measure stochastic
environmental cues such as nutrient and thermal gradients,
magnetic fields, odor and visual markers (Fryxell and
Sinclair [1988], Holland et al. [2006]). Migration can be
an adaptive response to seasonal variability, competition
for dynamically changing resources, and shifting focus on
habitats for breeding, where animals must learn, agree on
and follow a single migration route. Collective migration
has been shown to be evolutionarily stable for certain
environmental conditions in the case that only a subset of
individuals invest in measuring the costly environmental
cue while the rest rely on cheaper social cues, imitating
the movement of invested neighbors (Guttal and Couzin
[2010], Fagan et al. [2012]). The collective migration prob-
lem can be abstracted to a collective tracking or learn-
ing problem, thus motivating the connection to nonlinear
control design and, in particular, design that seeks to use
minimal resources.

Social interactions in animal groups likewise play a central
role in collective decision-making. The striking capabilities
of animal groups as decision-makers also motivate the
connection to nonlinear control design. Couzin et al. [2005]
have shown that a group of animals moving together can
make a critical collective decision on direction of motion,

even if there is a conflict between directional preferences of
informed individuals and if uninformed individuals have no
preference at all. No explicit signaling nor identification of
informed individuals is assumed; individuals merely adjust
their steering in response to socially acquired estimates on
relative motion of neighbors.

Another example is the collective decision-making of
house-hunting honeybee swarms. Seeley and Buhrman
[2001] showed how a unanimous best-of-N nest-site selec-
tion results from the dynamics of the “waggle dance,” an
activity that honeybee scouts perform on the surface of
the swarm to advertise the quality of potential nest sites.
More recently, a cross-inhibitory signal among scouts that
tempers the dancing has been shown to enable breaking
deadlock among near-equal quality nest sites (Seeley et al.
[2012]).

The present paper continues in Section 2 with some back-
ground and a very limited survey of relevant previous and
current work. Models, mechanisms, bifurcation analyses,
and prospects for nonlinear control design of multi-agent
systems are presented in Sections 3 and 4. In particular,
Section 3 examines the evolution of leadership in collective
migration (tracking) using an adaptive dynamic model,
motivated by the work of Guttal and Couzin [2010] and
Torney et al. [2010]. Each agent has a scalar real-valued
investment strategy that slowly adapts and changes the
interaction network upon which the collective migration
dynamics depend. Analytic results are presented in the
case of very large populations using a mean-field approxi-
mation and in the case of relatively small populations using
a time-scale separation. This section highlights the PhD
research of Darren Pais (Pais [2012]).

Section 4 examines three models of collective decision-
making. The first model, motivated by Couzin et al.
[2005] and described in Section 4.1, uses a continuous-
time model to derive rigorous conditions for decision versus
poor compromise in the case of subsets of individuals in
the group with conflicting preferences. This section builds
on the PhD research of Benjamin Nabet (Nabet [2009]).
The second model, motivated by the honeybee nest site
selection dynamics of (Seeley et al. [2012]) and described
in Section 4.2, is used to determine bifurcations in decision-
making behavior, including deadlock breaking, as a func-
tion of the strength of the cross-inhibitory signal and the
quality of the nest sites. The third model, described in
Section 4.3 uses the replicator-mutator equations (Nowak
et al. [2001]) to represent imitation and error in decision-
making among finite alternatives. Conditions are proved
on the network structure and error rate that yield stable
limit cycles, which represent cycling among a subset of
alternatives. The dynamics of the second and third models
describe the distribution of very large populations and
evolve on simplices. These two subsections highlight the
PhD research of Darren Pais (Pais [2012]). Final remarks
are provided in Section 5.

2. BACKGROUND

There is a wide range of high performing collective dynam-
ics of animal groups, and we do not try to survey them all
here. Indeed, collective dynamics can vary dramatically
across species since different aggregations form as a result



of very different selective pressures on self-interested indi-
viduals (Parrish and Hamner [1997]). In the field of col-
lective animal behavior the mechanistic approach, which
examines how group level behavior is produced, is tightly
coupled to the functional approach, which seeks to explain
why group level behaviors evolved in terms of natural
selection (Sumpter [2010]). Couzin and Krause [2003] re-
viewed early progress on using mathematical modeling
and self-organization theory to identify underlying prin-
ciples of collective animal behavior. Vincent and Vincent
[2000] examined the connections between the evolutionary
process and stability and optimization in control design.
Wei et al. [2009] evaluated feedback controlled steering
strategies for pursuit in planar pursuit-evasion dynamics
using an evolutionary game theoretic setting.

Social interactions in groups such as birds and fish are
often modeled as repulsion, attraction, and/or alignment
movements by individuals in response to nearby con-
specifics that are, respectively, a little too close, a little
too far, or heading off in a somewhat different direc-
tion. The numerical investigation of Couzin et al. [2002]
showed how slow changes in the social interaction model
parameters lead to transitions between parallel motion,
circular motion and disordered swarming of the group.
They showed further that for variation in the range of
neighbors used in the alignment response, there is hys-
teresis in the transitions. Conditions for bi-stability and
hysteresis of these motions were proved for a continuous-
time dynamical model in Paley et al. [2007b].

It has been shown that animal groups perform well at
tasks such as foraging and search, even in the presence
of disturbances and noisy measurements. For example,
individual aquatic animals during foraging may be limited
to sampling their environment at scales much smaller than
the scales at which resources are distributed. Furthermore,
small-scale stochastic fluctuations may corrupt local gra-
dients of resource. Grünbaum [1998] showed that schooling
behavior enhances the group’s ability to navigate and
climb gradients. When individuals respond to social cues
by staying close to one another and aligning their direction
of motion, the corrupting effect of noise in individual
measurements is dampened.

Motivated by these kinds of insights, Bachmayer and
Leonard [2002] designed bio-inspired decentralized feed-
back strategies for a small formation of mobile sensor-
equipped vehicles to climb the gradient in a sampled field.
This approach was further developed into a more general
methodology for gradient climbing (Ögren et al. [2004])
and level-set tracking (Zhang and Leonard [2010]) with
adaptive formation shape changes for optimized filtering.
The methodology was successfully demonstrated on an
autonomous underwater vehicle network in an ocean sam-
pling field experiment in Monterey Bay, California in 2003
(Fiorelli et al. [2006]). Torney et al. [2009] showed further
that when individual fish continuously adjust how much
they use social cues according to the confidence they have
in their own strategy, the school can successfully track an
advected chemical filament. Wu and Zhang [2012] have
capitalized on this mechanism to prove a highly efficient
source-seeking control strategy.

The model of social interactions in flocks and schools
motivated development of a methodology for systematic
stabilization of a family of parallel and circular motion
patterns (Sepulchre et al. [2007, 2008]). The dynamics,
which exploit a spatial extension of coupled oscillator
dynamics, provide decentralized control strategies. This
methodology was used both for studying the dynamics
of schooling fish from experimental data (Paley et al.
[2007a]) and for controlling the dynamics of mobile sensor
networks into patterns that maximize information in data
collected (Leonard et al. [2007]). The coordinated motion
pattern design methodology was used successfully on six
autonomous underwater gliders for 24 days straight in
an adaptive ocean sampling field experiment in Monterey
Bay, California in 2006 (Leonard et al. [2010]). Motivated
by experimental data of schooling in which the fish ex-
hibited coordinated oscillations in their speed, Swain and
Leonard [2009] expanded the family of stabilizable coordi-
nated motion patterns to include richer circular patterns
that yield high spatial density in measurements, periodic
exchange of roles among agents, and possibilities for lever-
aging redundancy of sensor platforms.

Collective animal behavior was an early inspiration for
collective robotics (Beckers et al. [1994]) and influenced
the behavioral-based approach of the 1990’s (Mataric
[1992]). In recent years there has been renewed interest
in enabling a collective capability in robotic groups using
mechanisms attributed to social insect swarms (Berman
et al. [2011], Trianni et al. [2011], Pratt and Sasaki [2012]).
Butail et al. [2013] described the reconstruction of 3D
trajectories from data of wild mosquito swarms and its
use in informing a mechanistic model of male coordinated
behavior. Chicoli et al. [2014] described reconstruction of
3D interactions of schooling fish and its use in a rigorous
examination of the role of the flow field on the information
transmission dynamics among the interacting fish. This
work has potential implications for coordinated control of
multi-agent systems in the air or water where there may
be a steady flow.

3. COLLECTIVE MIGRATION

In the collective migration problem, a group of animals
must learn and travel along a route that takes it from its
current location to its new habitat or feeding ground. Mi-
gration is possible because animals can detect directional
cues from the environment; however, acquiring this infor-
mation may be costly in terms of time and energy, which
could be spent on other demands such as reproduction,
growth, or predator vigilance (Dall et al. [2005], Guttal
and Couzin [2010]). Animals that migrate in groups can
also use social cues such as observations of the relative
movement of nearby animals, which may require relatively
little investment in time and energy. Collective migration
will thus depend on there being a set of individuals in the
group that invests in the costly environmental cue and can
“lead” the rest of the group successfully.

Guttal and Couzin [2010] used simulation to study the
evolutionary dynamics of a socially interacting migratory
population where individuals adjust how much they invest
in the costly environmental cue and how much they
leverage social cues to optimize the trade-off between their



migration benefit and their investment cost. They showed
that for a sufficiently high cost associated with investing
in the environmental cue, the population splits (branches)
into invested “leaders” and uninvested “followers”. They
also predicted a strong hysteretic effect in which migration
is lost at very high cost after which recovery of migration
requires a significant reduction in cost.

The collective migration problem can be abstracted as a
decentralized collective tracking (or learning) problem in
which a multi-agent system as a whole should track (learn)
an unknown signal. It is assumed that each agent has the
capacity to measure the relative state of other agents (its
neighbors), and to measure the unknown signal at a cost.
In the case of an engineered system such as a network
of mobile robotic sensors, measuring the unknown signal
might involve turning on sensors that are power intensive
such as a camera, as compared to less costly operation
of proximity sensors for measuring the relative position of
nearby robots. All measurements are assumed to be noisy,
and thus performance can be defined both for an agent
and for the whole system in terms of the trade-off between
tracking accuracy and investment cost. Other performance
criteria might include tracking speed and adaptability to
changes in the investment cost, the unknown signal, or the
structure of the interconnections.

The problem of selecting a finite set of leaders that mini-
mizes total system error in a multi-agent linear, stochastic,
decentralized coordinated control dynamic has received
recent attention in the literature (Patterson and Bamieh
[2010], Clark et al. [2012], Lin et al. [2013], Fitch and
Leonard [2013]). In these works a fixed set of leaders is
selected using a centralized (top-down) algorithm given
a fixed interconnection graph. In contrast the evolution
of collective migration describes dynamics in which the
leadership and the interconnection graph emerges through
a decentralized (bottom-up) and adaptive process. These
adaptive dynamics are nonlinear even if the dynamics with
fixed leadership are linear because the leadership invest-
ments and weights on social information are changing.

In collaboration with Darren Pais, we analyzed the non-
linear dynamics and bifurcations of an adaptive model of
collective migration/tracking in a multi-agent system to
provide a means to systematically predict the influence
of model parameters on the emergence of leadership and
on collective tracking performance. This in turn suggests
systematic constructive approaches to high performance
and efficient design of multi-agent system dynamics.

In Pais and Leonard [2014] the multi-agent system dynam-
ics were modeled to approximate the detailed evolutionary
simulation model used by Guttal and Couzin [2010]. The
model is presented here using the terminology of collec-
tive migration; the abstraction to the collective tracking
or learning problem is implied. There are N agents and
the migration route is defined by a scalar direction µ,
unknown to the agents. The state of agent i is defined by its
migration direction 1 xi ∈ R and its investment ki ∈ [0, 1]
in acquiring measurements of the migration route µ. The

1 For moderate deviations of xi from µ (e.g., due east), we can let
xi ∈ R. This is not the case in Section 4.1 where there are two
desirable directions (e.g., due east and due west) and directional
dynamics on the circle are relevant.

dynamics have two time-scales: the migration dynamics of
xi are fast and the evolutionary dynamics of ki are slow.

Our model of migration dynamics builds on the model used
by Torney et al. [2010] in which individuals respond to the
noisy measurement of the environmental cue with a gain
that depends on ki and to the noisy measurement of the
social cues with a gain that depends on (1 − ki). The re-
sponse to the environmental cue is modeled as an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein [1930]). The
response to social cues is modeled as noisy linear consensus
dynamics using a directed graph (digraph) representation
of the interaction topology (Xiao et al. [2007]); this gen-
eralizes the model of Torney et al. [2010] which uses a
mean-field approximation to reduce the social graph to an
all-to-all interconnection.

For each agent i we denote the standard deviation of the
additive white noise associated with the environmental
measurement as σD and with the social cues as σSi. Con-
sider a digraph G that encodes the available social inter-
connections. A digraph G consists of the triple (V, E , A),
where V = {1, 2, . . . , N} is the set of nodes corresponding
to agents, E ⊆ V × V is the set of edges corresponding to
interconnections and A ∈ RN×N is a weighted adjacency
matrix with non-negative entries aij . Each aij > 0 if and
only if (i, j) ∈ E , otherwise aij = 0. G can contain at most
one edge between any ordered pair of nodes and does not
contain any self-cycles. Our definition corresponds to a
“sensing” convention for edges, i.e., aij > 0 indicates that
node i can “sense” or receive information from node j. We
refer to the set of agents that agent i can sense as the
neighbors of agent i. The Laplacian matrix L associated
with the social digraph is defined as L = D−A, where D is
a diagonal matrix with diagonal elements dk =

∑N
j=1 akj .

For convenience we define the change of coordinates x̃i =
(xi − µ)/σD. Then, for each agent i the fast time-scale
migration dynamics are

dx̃i = −k2
i x̃idt−(1−ki)2Lix̃dt+

√
k2
i + (1− ki)2σ

2
Si

σ2
D

dWi,

(1)
where Li is the ith row of L and dWi is the standard
Wiener increment. The first term on the right of (1) drives
xi to µ at a rate k2

i . The second term on the right drives
xi to a weighted average of the states of its neighbors at a
rate proportional to (1− ki)2.

The third term of (1) is the sum of the two sources of noise.
Inspired by the model of Torney et al. [2010] we let

σ2
Si

σ2
D

= β2(1− knbhd,i), (2)

where β > 0 is a constant and knbhd,i is the average
investment of the neighbors of agent i. That is, the relative
value of the variance of the noise associated with social
cues is low for individuals that have strongly invested
neighbors.

In the fast migration time-scale, we can take ki, i =
1, . . . , N to be constant and the migration model (1)-(2)
is then a linear stochastic differential equation. Rewriting
as a matrix equation we get

dx̃ = −(K1 +K2L)x̃ dt+ SdW , (3)



where K1 = diag(k2
i ), K2 = diag

(
(1− ki)2

)
and S =

diag
(√

k2
i + β2(1− ki)2(1− knbhd,i)

)
.

In Pais and Leonard [2014] it is proved that for digraph
G, the deterministic dynamics of (3) are stable if and
only if kj > 0 for each j in a minimal root set 2 R(G).
These conditions imply for the stochastic dynamics (3)
that lim

t→∞E [x̃(t)] = 0, i.e., the steady-state expected value

of xi is µ for all i. In other words, if the set of leaders (in-
vested agents) contains a minimal root set R(G), then the
group will migrate. Further, the steady-state covariance
matrix Σ = lim

t→∞E
[
x̃(t)T x̃(t)

]
will satisfy the Lyapunov

equation:
(K1 +K2L)Σ + Σ(K1 +K2L)T = SST . (4)

The migration accuracy of agent i is defined by the
diagonal element σ2

ss,i = Σi,i, which is the steady state
variance of xi about µ. Variance about consensus was used
in Young et al. [2013] to evaluate robustness to uncertainty
in the collective behavior of starling flocks from data taken
in the wild.

The fitness of agent i is defined following Guttal and
Couzin [2010], Torney et al. [2010] as

Fi = exp

(
−σ2

ss,i

2

)
exp

(−ck2
i

)
, (5)

where the first exponential models the migration speed of
agent i and thus the benefit to agent i, and the second
exponential models the cost to agent i associated with
its investment in tracking. Here, c > 0 is a scaling
cost parameter. This model of fitness, which can also be
interpreted as a utility or payoff function, has features that
are more generally representative of cooperative games. Do
et al. [2010] argue for a general form that is the difference
between a benefit that is sigmoidal (saturating) in the
strategic parameter and a cost that is super linear in the
strategic parameter. The fitness (5) has this general form
since for β > 1 the migration speed is sigmoidal in ki and
the cost is quadratic in ki.

The slow time-scale evolutionary dynamics of the invest-
ment strategies ki can be computed using the roulette-
wheel selection algorithm of Mitchell [1998] plus a small
mutation on each “generation” of a large population:
agents “reproduce” with a probability proportional to
their fitness relative to the average fitness, and their “off-
spring” inherit their traits modulo a small mutation with
a zero-mean Gaussian distribution. In the engineering con-
text, this can be translated as a dynamic on the distribu-
tion across the group of control strategies over time driven
by performance associated with these strategies (encoded
by fitnesses).

Increasing investment strategy ki increases migration
speed and decreasing investment strategy decreases cost.
Without any social interactions, a balance will be struck
between high migration speed and low cost by evolving
ki to maximize fitness. For such an agent in isolation,
σ2
ss,i = σ2

D/(2ki). Substituting this into the expression (5)

2 We define a minimal root set R(G) of a digraph G to be a set of
nodes of minimal cardinality such that there is a directed path from
every node in G to at least one node in R(G).

for fitness Fi, the strategy that maximizes Fi over all ki
can be computed to be ki = (σ2

D/8c)
1/3.

In the social context, however, the fitness landscape is
frequency and network dependent, i.e., each agent’s fitness
depends on how frequent within the group and where in
the network are the different values of the different agents’
fitnesses; this implies an evolutionary game. For example,
agents with strongly invested neighbors can develop high
fitness without having to invest. As shown in the simula-
tion studies of Guttal and Couzin [2010], the investment
cost parameter c is critical to the evolutionary outcome.
We have made this rigorous for our migration plus evolu-
tionary dynamic model by computing bifurcations in the
behavior of the group with c the bifurcation parameter
(Pais and Leonard [2014]).

Let us first consider the case of a large population in which
every agent can in principle sense every other agent 3 , i.e.,
the underlying graph is all-to-all but the weights on edges
depend on the changing values of strategies ki and can
go to zero. The evolved behaviors of the two time-scale
system are represented by the equilibrium solutions k∗i
of the slow evolutionary dynamics of the strategies ki.
A monomorphic solution corresponds to ki = k∗ for all
i = 1, . . . , N . Bistability of equilibrium values k∗f ≈ 0 and
k∗l ≈ 1 represents the possibility of co-existence of two
subpopulations, one of leaders with ki = k∗l and one of
followers with ki = k∗f .

In Pais and Leonard [2014] the existence and stability of
the equilibrium strategies as a function of c were computed
using an analytic solution of (4)-(5) for fitness and the
analysis tools of evolutionary adaptive dynamics (Geritz
et al. [1997a,b], Diekmann [2004]). Consider that most
of the population, called the resident population, has
common strategy kR and let there be a very small mutant
population with common strategy kM . The relative fitness
S of the small mutant population with respect to the larger
resident population can be computed explicitly as

S(kR, kM ) = FM (kR, kM )− FR(kR),

where resident fitness FR and mutant fitness FM are
computed from (4)-(5) as

FR = exp
(
−k

2
R + β2(1− kR)3

4(2k2
R − 2kR + 1)

− ck2
R

)
,

FM = exp
(
−k

2
M + β2(1− kR)(1− kM )2

4(2k2
M − 2kM + 1)

− ck2
M

)
.

Following Geritz et al. [1997a,b], Diekmann [2004], the
evolutionary dynamics of the resident strategy kR are

dkR
dt

= γ
∂S

∂kM

∣∣∣∣
kM=kR

=: γ g(kR),

where γ > 0. An equilibrium k∗ such that g(k∗) = 0
satisfies

k∗
[
β2(1− k∗)− 1

]
(k∗−1)+4ck∗(2k∗2−2k∗+1)2 = 0. (6)

3 If agent i is fully invested, i.e., ki = 1, then it does not pay
attention to any other agents even if the social cues are available.
More generally, ki can take a value in the set [0, 1]. Thus, even if the
underlying social structure can be represented by an undirected all-
to-all graph, nonidentical strategies ki will lead to a directed graph.



A solution k∗ is a convergent stable strategy (CSS) if
dg
dkR

∣∣∣
kR=k∗

< 0, and either a local evolutionary stable

strategy (ESS) or if ∂2S
∂k2

M

∣∣∣
kM=kR=k∗

> 0 a branching point.

0

k∗

1
β2 − 1

4

c

0.3923

1− 1
β2

Monomorphic Branch Collapse

c1 c2

(A) (B) (C) (D)

Fig. 1. From Pais and Leonard [2014]. Equilibrium strate-
gies k∗ as a function of cost parameter c for a large
population with migration dynamics (3) and evolution
of strategies ki determined by fitness (5). The two sets
of equilibrium strategies defined by (6) are plotted in
blue. One set corresponds to k∗ = 0 and the other
corresponds to the curve given by the equation c =
(1−k∗)[β2(1−k∗)−1]

4(2k2
∗−2k∗+1)2 . Solid curves are CSS strategies,

and dashed curves are unstable strategies. The regions
marked (A)-(D) correspond to the descriptions in the
text. Analytical derivations for the cost parameters
β2−1

4 , c1 and c2 that divide the regions are given in
Pais and Leonard [2014].

The bifurcation diagram of Figure 1 illustrates the equi-
librium strategies and their stability as a function of the
cost parameter c in the case that β > 1. The follower
solution k∗f = 0 is an equilibrium for all values of c: it is
unstable for 0 < c < c0 = (β2 − 1)/4 (range (A)) and
stable for c > c0 (ranges (B), (C) and (D)). In range
(A) when 0 < c < c0 there is only one other solution
k∗l (c) > 0, which decreases with increasing c, and it is
ESS. Thus for relatively low cost 0 < c < c0, all agents
will invest equally in the environmental signal, ki = k∗l .
In the range (B) when c0 < c < c1 there is bi-stability of
the leader solution k∗l and the follower solution k∗f with
a third unstable solution; the bi-stability allows for the
coexistence of leaders and followers. This is also true for
range (C) when c1 < c < c2; however, in this range k∗l is a
branching point which leads to an initially monomorphic
population splitting into leaders and followers. For range
(D) when c > c2 the only solution is k∗f and thus migration
is lost. After migration is lost at c > c2, migration can only
be recovered if c is reduced below c0 when the follower

solution becomes unstable again (see Pais and Leonard
[2014] for expressions for c1 and c2 and further discussion).

This bifurcation analysis describes, for large populations
with dense interconnection, the changing behavior with
increasing investment cost, from a single stable investment
strategy to bi-stable leader-follower strategies to loss of
leadership and thus loss of migration at very high cost
with the associated hysteresis as observed in the original
simulations of Guttal and Couzin [2010].

How the behavior changes with the density of edges and
the topology of the social graph is also critical to un-
derstanding the mechanisms of leadership and collective
migration. Analyzing the differential fitness landscape for
large populations with limited underlying social graphs
can be challenging; however, parametric studies of the
evolutionary dynamics can be pursued relatively easily
because fitness is easily computed from (4)-(5) even for N
large. In Pais and Leonard [2014] evolutionary branching
was studied as a function of probability of a pairwise
edge (number of neighbors) in random graphs and cyclic
lattices; it was shown that branching occurs above a mini-
mum threshold in edge probability (number of neighbors)
and this minimum can be quite low. That is, it only takes
a small amount of connectivity, when investment cost is
high, for a population to split into leaders that invest and
followers that rely on social cues.

The influence of the graph topology on emergence of lead-
ership and collective migration can be further studied for
small populations by replacing the evolutionary dynamics
with a slow time-scale greedy adaptive dynamic such as

k̇i =
∂Fi
∂ki

. (7)

This can be interpreted as a decentralized adaptive control
law for agent i, also known as gradient play (Shamma and
Arslan [2005]). Assuming that agent i can measure its own
fitness Fi it does not need to know the strategies of its
neighbors. Alternatively, if it knows the strategies of its
neighbors it could estimate its fitness Fi. The nonlinear
dynamics of the adaptive dynamic network can be studied
by substituting the expression for Fi from (4)-(5) into (7).

In the case of N = 2 a complete bifurcation analysis
was computed analytically with bifurcation parameter c,
analogous to the large population case. The bifurcation
diagram and three phase portraits in the space of invest-
ment strategies for the two nodes are shown in Figure 2
in the case β = 3. For low values of c, there is one stable
equilibrium k∗(c) that decreases with increasing cost c,
i.e., both agents invest the same amount. With further
increase in c there is first two saddle node bifurcations in
which a symmetric pair of stable solutions appear; these
correspond to one of the agents investing a lot and one
investing very little. At a slightly higher c, there is a
pitchfork bifurcation and the common solution k∗ becomes
unstable and thus the only stable solutions correspond to
one leader and one follower.

In similar analysis with larger N , there is multi-stability
of solutions in which a subset of agents lead and the rest
follow; as c increases the number of leaders decreases. In
the case of an underlying star graph, it emerges that at low
cost the fringe agents lead, at intermediate cost all agents
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Fig. 2. From Pais and Leonard [2014]. Bifurcations for
the adaptive node dynamics (3) and (7) with N =
2 nodes, an underlying all-to-all social graph, and
noise parameter β = 3. The top plot shows the two
components keq,1 and keq,2 (equilibria of the dynamics
(3) and (7)) as a function of the cost parameter c.
Stable sinks are marked blue and unstable saddles are
marked red. The inset shows a zoomed in view of the
region with 15 ≤ c ≤ 20 marked in the dotted square.
The dashed lines in the inset c1 ≈ 16.7 and c2 ≈
18.2 denote the saddle-node and pitchfork bifurcation
points respectively. The row of bottom plots are
phase portraits for the slow timescale dynamics with
parameter c as indicated; the blue circles are stable
sinks and the red squares are saddles. These plots
remain qualitatively the same for different values of
β > 2; the bifurcation points c1 and c2 move further
to the right for higher β.

invest but at a lower level, and at high cost only the center
agent invests and the fringe agents follow. These and other
results are described in Pais and Leonard [2014].

These bifurcation analyses can inform development of de-
centralized control strategies for multi-agent systems. For
example, for adaptation of strategies ki in collective track-
ing that derives as above, parameters such as c could be
designed to target a desired number of leaders. An impor-
tant step is deriving the relationship between the strategic
outcomes and the group-level performance. For example,
in Fitch and Leonard [2013] optimal leaders are defined in
terms of a joint centrality measure of the network graph.
These kinds of results may prove useful in designing fitness
functions such that the emergent locations of the lead-
ership in the network yield optimal group performance.
Alternatively, the fitness functions could be designed so
that agents add or subtract communication links and the
network changes structure to best leverage a prescribed set
of leaders, for example, vehicles that carry extra sensors
(such as cameras) to measure external signals. Approaches
from distributed optimization (e.g., Nedic and Ozdaglar
[2009]) may prove useful in this context.

4. COLLECTIVE DECISION-MAKING

In the collective decision-making problem a group of
animals must make a choice among a finite number of
alternatives, e.g., a set of possible resource-rich locations
or a set of candidate nest sites. A unanimous decision
will typically be advantageous since individuals that get
separated from the group will lose the benefits of group
living. Sometimes there will be a best alternative, but a
lesser alternative may often be better than a deadlock or a
poor compromise. This collective decision-making problem
translates to engineered multi-agent systems that must
choose as a group among uncertain alternatives in tasks
such as search, monitoring, and allocation.

In this section three different models and mechanisms for
collective decision-making are presented with an emphasis
on understanding behavior through bifurcation. The first
model with agent-based dynamics similar to Section 3
is used to explore the role of neighborhood size and in-
formed versus uninformed populations on decision-making
between two alternative desirable directions. The second
and third models both assume very large populations and
formulate the dynamics of the distribution of the popu-
lation over the set of choices. The second model is used
to examine the role of recruitment (of uninformed agents
by informed agents) in making the best collective decision
and the role of cross-inhibition (between informed agents
with different opinions) in breaking deadlock. The third
model is an evolutionary model that includes replication
and mutation and allows for the possibility of limit cycle
behavior. This model resembles decision-making models
in which replication represents imitation by agents of the
opinions of others and mutation represents error in imita-
tion; it is used to explore the role of network topology
and mutation (error) rate on stability and existence of
equilibria and limit cycles.

4.1 Leadership

(Couzin et al. [2005]) used numerical simulation to study
how a group of agents moving together in the plane can
make a collective decision for one of two equal value alter-
native directions of motion given conflict in the directional
preferences of two small subgroups of informed agents
and no preference for the rest of the agents. Inter-agent
communication was limited to agents sensing the relative
position and heading of nearby agents without being able
to distinguish between the informed (those with a prefer-
ence) and the uninformed (those without a preference). It
was shown that a collective decision to move in one of the
two alternative directions is made with high probability for
sufficiently large magnitude preference conflict, i.e., large
enough difference in preferred directions. Otherwise, the
group makes a poor compromise and moves together in
the direction that splits the difference between the two
alternatives.

In collaboration with Tian Shen, Benjamin Nabet, Luca
Scardovi, Iain Couzin and Simon Levin (Leonard et al.
[2012]), we used a system of ordinary differential equa-
tions to approximate the high degree-of-freedom model of
Couzin et al. [2005] and to rigorously explain the collective
decision-making result and explore the parameter space



for sensitivity of the decision-making outcomes. For ex-
ample, we showed for our model how an increase in the
uninformed population can improve decision-making. Our
model includes an approximation to the dynamics of the
agent responses to its neighbors and to the dynamics of the
neighborhoods, i.e., the networks connections. Our analy-
sis relies on conditions that yield a time-scale separation
in the model; this time-scale separation was also observed
in empirical data with fish (Couzin et al. [2011]).

In the model of Leonard et al. [2012] there are N agents
and each agent is a member of one of three subgroups:
there are N1 informed agents in subgroup 1 with a prefer-
ence for moving in the direction θ̄1, there are N2 informed
agents in subgroup 2 with a preference for moving in
the direction θ̄2, and there are N3 uninformed agents in
subgroup 3 with no preference on direction. Each agent j
moves like a self-propelled particle in the plane at constant
speed vc in the direction θj(t) at time t such that its
velocity in the plane is vj(t) = (vc cos θj(t), vc sin θj(t)).
Each agent j puts an interconnection weight 0 ≤ ajl(t) ≤ 1
at time t on its response to its measurement of the relative
direction of motion of agent l; if agent j cannot sense agent
l then ajl = 0. The neighbors of agent j at time t are the
agents l such that ajl(t) > 0.

The steering rate for each agent in subgroup 1 is

dθj
dt

= sin(θ̄1−θj(t))+
K1

N

N∑
l=1

ajl(t) sin(θl(t)−θj(t)), (8)

in subgroup 2 it is

dθj
dt

= sin(θ̄2−θj(t))+
K1

N

N∑
l=1

ajl(t) sin(θl(t)−θj(t)), (9)

and in subgroup 3 it is

dθj
dt

=
K1

N

N∑
l=1

ajl(t) sin(θl(t)− θj(t)) . (10)

The first term on the right of (8) and (9) steers the
agent towards its preferred direction. The second term
on the right of (8) and (9) and the only term on the
right of (10) steers the agent towards a function of its
neighbors’ directions with strengths determined by the
interconnection weights ajl. The constant parameter K1 >
0 weights the attention paid to social cues relative to
preference.

The interconnection weights are assumed to be symmetric,
i.e., ajl(t) = alj(t), for all t. The dynamics of the intercon-
nection weight between a pair of agents is a function of
the synchrony of the pair’s directions of motion. We let

dajl
dt

= K2(1− ajl(t))ajl(t)(ρjl(t)− r), (11)

where K2 > 0 is a constant, ρjl = | cos( 1
2 (θj − θl))|

measures synchrony of direction of motion of l and j, and
0 ≤ r ≤ 1 is a chosen fixed threshold representing an
agent’s sensing range. It holds that ρjl = 1 if l and j move
in the same direction and ρjl = 0 if they move in opposite
directions. If ρjl > r, then j and l are considered close
enough to sense each other so ajl eventually converges to
the maximum interaction strength of 1. If ρjl < r, then j
and l are not considered close enough to sense each other
so ajl eventually converges to 0.

The model exhibits fast and slow dynamics even for
moderate values ofK1 andK2; Leonard et al. [2012] proved
a time-scale separation for large K1 and K2. In the fast
dynamics all agents within a subgroup quickly converge to
a single direction with the ajl for pairs within the same
subgroup converging to 1. For pairs of agents, each in one
of a pair of subgroups, the ajl converge quickly either to 1,
connecting the pair of subgroups, or to 0, disconnecting the
pair of subgroups. For example, after the fast dynamics,
ajl = A12 ∈ {0, 1} for all j in subgroup 1 and all l in
subgroup 2: subgroup 1 and subgroup 2 are connected if
A12 = 1 and disconnected if A12 = 0. The slow variables
are Ψ1, Ψ2, and Ψ3, where Ψk is the direction of motion
of subgroup k.

The fast dynamics have a number of isolated solutions
including eight that can be classified by A12, A13 and A23

each taking value 0 or 1. The slow dynamics derived on
each of these eight manifolds are parametrized by A12,
A13 and A23 as follows:

dΨ1

dt
= sin(θ̄1 −Ψ1(t)) +

K1

N
(A12N2 sin(Ψ2(t)−Ψ1(t))

+ A13N3 sin(Ψ3(t)−Ψ1(t)))
dΨ2

dt
= sin(θ̄2 −Ψ2(t)) +

K1

N
(A12N1 sin(Ψ1(t)−Ψ2(t))

+ A23N3 sin(Ψ3(t)−Ψ2(t)))
dΨ3

dt
= 0 +

K1

N
(A13N1 sin(Ψ1(t)−Ψ3(t))

+ A23N2 sin(Ψ2(t)−Ψ3(t))). (12)

Three of the eight manifolds, which have attracting so-
lutions of interest, are 1) M010, which corresponds to
A12 = 0, A13 = 1, A23 = 0 and an (almost) collective
decision for direction θ̄1, 2) M001, which corresponds to
A12 = 0, A13 = 0, A23 = 1 and an (almost) collective
decision for direction θ̄2, and 3) M111, which corresponds
to A12 = 1, A13 = 1, A23 = 1 and a collective solution
“between” the directional choices, i.e., a poor compromise
is made. The decisions are “almost” collective because
almost all of the agents make the decision collectively. The
compromise is a poor compromise because neither of the
two equally valuable preferred directions is selected.

In Leonard et al. [2012], it was shown that the collective
decision onM010 and the collective decision onM001, i.e.,
the collective decision for preferred direction θ̄1 and the
collective decision for preferred direction θ̄2, respectively,
are both stable if and only if the difference in preferred
direction is greater than the critical angle θ̄c = cos−1(2r2−
1); otherwise, the poor compromise solution on M111 is
stable. This bifurcation in behavior as a function of the
difference in preferred directions is illustrated in Figure 3.
In this plot θ̄1 = 0 so that θ̄2 is the difference in preferred
directions.

This bifurcation in behavior as a function of the magnitude
of the conflict qualitatively matches the original results
of Couzin et al. [2005]. Further, it provides a sharp
condition on the bifurcation point and the dependence of
the bifurcation point on the sensing region parameter r.
As r increases, the sensing region decreases and the critical
value θ̄c decreases, meaning that it becomes easier for the
group to make a decision. When r is small, the sensing
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Fig. 3. From Leonard et al. [2012]. Stability of collective
decisions (on M010 and M001) versus poor compro-
mise (on M111) illustrated on plot of direction of
uninformed subgroup Ψ3 as a function of preference
difference θ̄2 (without loss of generality we let θ̄1 = 0).
Here r = .707 and so θ̄2c = π/2. A solid line denotes a
stable solution and a dashed line denotes an unstable
solution.

region is large and the agents cannot distinguish between
the alternatives; they function more as a filter and move
according to a compromise between the two alternatives.

The model was also used to examine rigorously the role of
the uninformed population size N3 on the group decision-
making dynamics. Indeed, the reduced-order model (12)
reveals dependence of the dynamics on the parameter N3.
Leonard et al. [2012] showed how the model predicts an
increasing likelihood of a collective decision for one or the
other alternative with increasing N3. In a related study
Couzin et al. [2011] examined the beneficial role of the
uninformed population in preserving democratic consensus
in the case of conflict where the smaller informed subgroup
has a stronger preference than the larger informed sub-
group. An adaptive network model was used to analyze
the dynamics in this asymmetric case. The bifurcation
diagram shown in Couzin et al. [2011] of the collective
decision with the density of uninformed individuals as the
bifurcation parameter corresponds to the universal unfold-
ing of the pitchfork. This same unfolding appears in the
collective decision-making dynamics of Sections 4.2 and 4.3
in the case of two alternatives when there is asymmetry
(see Figure 5(b)).

The rigorously derived relationship between decision-
making performance and parameters such as sensing range
and relative size of informed and uninformed populations
suggests opportunities for design of decentralized control
strategies for high performance collective decision-making
in engineered networks.

4.2 Recruitment and Cross-Inhibition

In the honeybee house-hunting problem, an entire swarm
must unanimously choose a good nest site where it will live
as a new colony with its queen. The value of a candidate
nest site is determined by features such as volume, size
of entrance, and height above the ground. The collective

decision for a new nest site must be made quickly because
the bees cannot survive for more than a few days on
the honey they gorge before leaving their old colony. The
process starts with a subset of scout bees that each search
out a possible nest site and ends with the swarm choosing
the best of the scouted out alternatives.

In contrast to the limitations on signaling in groups de-
scribed in Sections 3 and 4.1, each informed honeybee
scout uses explicit signaling in the form of a “waggle
dance” on the vertical surface of the swarm to recruit
uninformed bees to commit to its discovered nest site.
Using data from an experiment in which there were two al-
ternative sites made available to a honeybee swarm, Seeley
et al. [2012] showed that, in addition to dancing to promote
their discovered site, the scouts use a cross-inhibitory stop-
signal to stop the dancing of the scouts recruiting for the
competing site. This stop-signal contributes positively to
the collective decision-making; of particular note, it was
shown to facilitate breaking deadlock in the case of two
near-equal value alternative sites. Because of the time
pressure on the site selection process, efficient deadlock
breaking can be critical for a new colony, particularly if
the nearly equal sites have high value.

The decision-making process carried out by a honeybee
swarm can be generalized to a collective decision-making
process for a multi-agent system in the case that the agents
use feedback responses that resemble those used by the
bees. Accordingly, rigorous investigation of the stop-signal
and the mechanisms of best-of-n decision-making and
efficient deadlock breaking by honeybee swarms can inform
distributed design and decision-making performance in the
more general setting, where agents map to bees and the
decision-making collective maps to the swarm.

Seeley et al. [2012] derived a model of the mean-field
population-level dynamics of the swarm under the as-
sumption that the total bee population size N is very
large. The model describes the dynamics of yA = NA/N
and yB = NB/N , the changing fraction of bees in the
population committed to nest site A and B, respectively,
and yU = NU/N , the fraction of uncommitted bees in
the population. Since N = NA + NB + NU is constant,
yA + yB + yU = 1. Thus, the dynamics evolve on the two-
dimensional unit simplex and are given by

ẏA = γAyU − yA(αA − ρAyU + σByB)

ẏB = γByU − yB(αB − ρByU + σAyA), (13)

where γi is the rate of scouting discovery and commitment,
αi is the rate of abandonment of commitment, ρi is the
rate of recruitment, and σi is the rate of stop-signaling.
It is assumed that all but the stop-signal rate depend
on the value vi (quality) of the nest site; in particular,
γi = ρi = vi and αi = 1/vi. The two stop-signal rates
are assumed to be the same, i.e., σi = σ. When yA or yB
crosses above a quorum threshold ω ∈ (0.5, 1], a collective
decision is reached.

Together with Darren Pais, Patrick Hogan and James
Marshall, we have studied these nonlinear dynamics and
identified bifurcations in the collective decision-making
behavior in terms of the stop-signal rate σ, the mean value
of the alternatives v̄ = (vA + vB)/2 and the difference in



value of the alternatives ∆v = vA−vB (Pais et al. [2013]).
As is often done in models of binary decision-making, we
reduce the system of equations to dynamics on a one-
dimensional manifold. This we do by proving a time-scale
separation for large v̄ and small ∆v/v̄ and using singular
perturbation to show that the fast dynamics converge to
a stable one-dimensional decision manifold.

The slow manifold, defined by

yAyB =
2v̄
σ

yU (1 + yA)(1 + yB)
3− yU , (14)

depends on v̄ and σ but not on ∆v, whereas the dynamics
along the slow manifold depend explicitly on v̄, σ, and
∆v. In the case of variability in the rates γi, αi, and ρi,
the stochastic dynamics on the one-dimensional manifold
resemble classical models of binary decision-making in-
cluding the Ornstein-Uhlenbeck processes and the drift-
diffusion model. The one-dimensional manifold can be
observed in the representative examples of dynamics on
the unit simplex shown in Figure 4.
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Fig. 4. From Pais et al. [2013]. Value-dependent decision-
making over equal alternatives: ∆v = 0, v̄ = v. Points
in the gray area correspond to values of v and σ
such that there is a single stable attractor for which
yA = yB ; this is deadlock since neither yA nor yB
can cross a threshold ω > 0.5. Points in the white
area correspond to values of v and σ such that the
deadlock solution is unstable and there are two stable
attractors, one for each alternative. The solid curve
describes the critical level of cross-inhibition σ∗ for
a given value v. This result describes a pitchfork
bifurcation; for bifurcation parameter σ and fixed
value v, σ∗ is the bifurcation point (see Figure 5(a)).
Two representative phase portraits illustrating the
decision-making dynamics on the unit simplex are
shown. Vertex U corresponds to a fully uncommitted
group (yU = 1), vertex A to a group fully committed
to alternative A (yA = 1), and vertex B to a group
fully committed to alternative B (yB = 1). The
dynamics can be observed to quickly converge to a
one-dimensional manifold after which the dynamics
evolve more slowly. The one-dimensional manifold is
well approximated by (14).

Figure 4 plots the curve σ∗ = 4v3/(v2 − 1)2, which
describes a critical value of stop-signaling σ as a function
of v in the case of equal value nests sites, i.e., ∆v = 0 and
v̄ = vA = vB := v. For a fixed value v, if σ < σ∗ then there
is one stable equilibrium corresponding to deadlock, i.e., in
which yA = yB (gray region). If σ > σ∗ then the deadlock
solution is unstable and there are two stable solutions, one
corresponding to each alternative (white region). So, for
sufficiently high stop-signaling, dependent on v, deadlock
is broken, i.e., the collective arbitrarily chooses one of the
two alternatives.

Figure 4 also illustrates for a given rate of stop-signaling
σ that there is a threshold value v∗ given by the curve
σ = 4v∗3(v∗2 − 1)2. For good quality nest sites, i.e.,
v > v∗. there are two stable solutions corresponding
to the two alternatives. For poor quality nest sites, i.e.,
v < v∗, deadlock is maintained. As noted above, deadlock
in the case of poor quality sites could be useful if a better
alternative is later discovered. Indeed the signal σ could
be slowly increased to ultimately break deadlock in case
no better alternative is found.

The change from the single solution at deadlock to instabil-
ity of deadlock and the emergence of two stable solutions
corresponds to a pitchfork bifurcation; the pitchfork bi-
furcation with σ as the bifurcation parameter is shown in
Figure 5(a). A projected equilibrium plotted on the verti-
cal axis corresponds to 0 when the group is fully committed
to B (yB = 1) and 1 when the group is fully committed to
A (yA = 1). The pitchfork bifurcation occurs at σ = σ∗.
The nearly horizontal black, dashed lines correspond to
the projected thresholds yA = ω and yB = ω for ω = 0.7,
and so a decision is made for A or B when σ > σ′.

When the symmetry in the value of the alternatives is
broken, i.e., ∆v 6= 0. the resulting bifurcation diagrams
correspond to the universal unfolding of the pitchfork.
Figure 5(b) shows the bifurcation diagram in the case
vA = vB + 0.1 and v̄ = 4. For small values of σ there
is a single stable attractor that moves towards a decision
for A as σ increases and leads to a decision for A when
σ > σ

′′
. Thus, for an intermediate value of σ the collective

will distinguish the slightly better alternative A from B.
However, as σ increase further there is a saddle node
bifurcation which moves to the deadlock breaking solution
for σ > σ† in which the collective will arbitrarily choose
either A or B.

Figure 5(c) shows a bifurcation diagram in the case ∆v
is the bifurcation parameter. This diagram illustrates
hysteresis in the decision that results from changes in
∆v. When ∆v < 0, the stable solution corresponds to a
decision for B. This persists as ∆v increases and even as it
becomes positive, after which the decision switches to A.
Subsequently, as ∆v decreases, it must become sufficiently
negative for the decision to switch back to B.

The three bifurcation diagrams shown in Figures 5 are
well described by singularity theory which links bifurcation
theory to catastrophe theory. These three bifurcation dia-
grams illustrate three paths through the two-dimensional
unfolding of the pitchfork bifurcation known as the cusp
catastrophe (Golubitsky and Schaeffer [1985]).
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Fig. 5. Adapted from Pais et al. [2013]. Bifurcation plots
for the dynamics (13). Blue dots are stable attrac-
tors, and red dots are unstable points. The projected
equilibrium is 0 when yB = 1 and 1 when yA = 1.
The dashed black lines correspond to the projected
decision thresholds yA = 0.7 and yB = 0.7. (a) Pitch-
fork bifurcation for equal value alternatives ∆v = 0
and σ as bifurcation parameter with bifurcation point
σ = σ∗. For σ > σ′ the stable solutions correspond to
decisions for A and B since yA > 0.7 and yB > 0.7. (b)
Bifurcation diagram for nearly equal value alterna-
tives vA > vB corresponds to the universal unfolding
of the pitchfork. For low values of σ there is a single
stable attractor, which for σ > σ

′′
corresponds to a

decision for A. As σ increases there is a saddle node
bifurcation which creates an unstable equilibrium and
a stable equilibrium that corresponds to a decision for
B if σ > σ†. (c) Bifurcation diagram shows hysteresis
in the decision as a function of ∆v.

It is nontrivial to design dynamics for a decision-maker
to reliably choose the best among finite alternatives when
they are sufficiently different and to quickly choose any
of the alternatives when they are similar and of suffi-
ciently good quality. The study of honeybee decision-
making dynamics suggests the possibility of designing col-
lective decision-making with tunable deadlock breaking. In
particular, the bifurcation analyses provide a systematic
way to understand how the cross-inhibitory rate σ can
be used to tune the threshold for breaking deadlock as
well as to tune the minimum difference in value between
the alternatives required for reliable discrimination. The
hysteresis shows how the collective outcomes are affected
by modifications in the perceived value of the alternatives.
It was also shown in Pais et al. [2013] that σ can be used
to tune the speed-accuracy trade-off in the case in which
uncertainty in the rates is taken into account.

4.3 Imitation and Error

Evolutionary dynamics provide a mathematical framework
for modeling the tenets of natural selection: replication,
mutation, competition, and strategy dependent fitness.
Fundamental connections have been made to game theory
(e.g., Smith [1982], Hofbauer and Sigmund [2003]) and
to control design (Vincent and Vincent [2000]). In the
natural setting, strategies refer to phenotypes or traits
of individuals. The evolutionary dynamics of strategies
depend on the reproductive fitnesses of the strategies,
which in turn depend on the payoffs of their interactions
with the environment and with other strategies. The
evolutionary dynamics are inherently competitive because
the interactions of the strategies affect the landscape on
which the strategies evolve.

The replicator equations provide a dynamic model of
competition among a finite set of strategies available in
a large population (Taylor and Jonker [1978]). Suppose
there are n distinct strategies and let xi(t) be the fraction
of the large population with strategy i for i = 1, . . . , n at
time t. The replicator equations are ordinary differential
equations that describe the dynamics of x = (x1, . . . , xn)
as a function of the fitnesses of the strategies. For pairwise
interactions, the fitness of strategy i is modeled as fi =∑n
j=1 bijxj , where bij > 0 is the payoff to agents with

strategy i on interacting with agents with strategy j and
bii = 1 for all i (Nowak and Sigmund [2004], Traulsen
et al. [2006]). The payoff matrix B with elements bij can
be interpreted as the adjacency matrix of a directed graph
with self-loops.

Let f = (f1, . . . , fN ) be the fitness vector and let φ = f · x
be the population average fitness. Since

∑n
i=1 xi = 1, the

dynamics evolve on an (n − 1)-dimensional simplex and
are defined as follows:

ẋi = xi(fi(x)− φ). (15)
Thus, the subpopulation with strategy i will grow in
size if its corresponding fitness fi is greater than the
average fitness φ; otherwise it will shrink. Equilibria of
the replicator dynamics that are Lyapunov stable are Nash
equilibria of the corresponding game (Weibull [1997]).

Because mutation is an important ingredient of selection
theory, the replicator equations have been extended. The



replicator-mutator equations extend the replicator equa-
tions to include mutation by adding a probability that
individuals spontaneously switch from one strategy to
another (Bürger [1998], Page and Nowak [2002]). These
replicator-mutator dynamics have been used to model a
variety of systems in biology (Komarova [2004]), includ-
ing autocatalytic reaction networks (Stadler and Schuster
[1992]), and the evolution of language, where strategies
represent different grammars (Nowak et al. [2001]). They
are of interest in the context of multi-agent system dynam-
ics as they have been used recently to model the dynamics
of social networks (Olfati-Saber [2007], Hussein [2009]) and
wireless multi-agent networks (Tembine et al. [2010], Wang
and Hussein [2010]). Further, under certain conditions the
replicator-mutator dynamics represent models of decision-
making dynamics in networked multi-agent systems where
agents decide among n choices (strategies). In this setting,
replication captures imitation of successful strategies and
mutation captures errors in imitation.

Mutation probabilities qij , which define the probability of
a spontaneous switch from strategy i to j, are typically
defined in terms of a mutation strength parameter µ ∈
[0, 1]. The qij can depend on the bij in which case the
mutation matrix Q will inherit the graph structure. We
consider mutation probabilities defined as follows:

qii = (1− µ), qij =
µbij∑
i 6=j bij

i 6= j. (16)

In this model, spontaneous mutation to alternative strate-
gies is weighted in favor of strategies that yield higher
payoffs. In the decision-making scenario, where strategies
represent choices, the mutation probabilities represent er-
rors or exploratory behavior.

The replicator-mutator equations are given by

ẋi =
n∑
j=1

xjfj(x)qji(µ)− xiφ. (17)

These dynamics reduce to the replicator equations (15)
for µ = 0. In the literature the analysis of the replicator-
mutator equations (17) have focused on equilibrium be-
haviors and fitness matrices with symmetry. However, it
has been shown that the symmetric cases are structurally
unstable and that breaking symmetry can lead to chaotic
dynamics (Komarova and Levin [2010], Mitchener and
Nowak [2004]).

To illustrate, consider the simplest case of n = 2 studied
in Komarova and Levin [2010]. When b12 = b21, the
fitness matrix B and the mutation matrix Q are both
symmetric. The dynamics exhibit a pitchfork bifurcation
with µ the bifurcation parameter. For large µ, i.e., when
there is a lot of mutation (or error), there is a single
stable equilibrium called the mixed solution where x1 =
x2 = 0.5. As µ decreases below the bifurcation point µ∗,
the mixed solution becomes unstable and there emerge
two stable symmetric solutions (x1, x2) = (a, 1 − a) and
(x1, x2) = (1 − a, a), a ∈ (0.5, 1]. As µ decreases further,
a grows until at µ = 0 there is bi-stability of the two
pure solutions (x1, x2) = (1, 0) and (x1, x2) = (0, 1). The
bifurcation diagram looks like Figure 5(a), with decreasing
µ on the horizontal axis and the equilibrium value of x1

on the vertical axis.

Now suppose we break the symmetry by taking b12 6= b21.
The bifurcation diagrams correspond to the universal un-
folding of the pitchfork bifurcation as in Figure 5(b), with
decreasing µ on the horizontal axis and the equilibrium
value of x1 or x2 on the vertical axis, depending on the
value of b12− b21. That is, in the asymmetric case, instead
of the pitchfork there is a stable solution and a saddle node
bifurcation. The subtleties of the outcome as a function of
µ are thus analogous to those in the honeybee decision-
making problem as a function of σ. In Mitchener and
Nowak [2004] it was shown for larger n that the dynamics
exhibit limit cycles and chaos for certain model parame-
ters.

Motivated by these results and an interest in examin-
ing and designing dynamics that are richer than equi-
librium behavior, we have studied symmetry breaking
in the replicator-mutator equations for n ≥ 3 (17). In
collaboration with Darren Pais and Carlos Caicedo, we
proved bifurcations as a function of µ for asymmetric
(directed) graphs (Pais et al. [2012]). We showed rigorously
how certain asymmetries make possible a departure from
behaviors described only by equilibrium states, proving
conditions for the existence of stable limit cycles through
Hopf bifurcations.

We focus on the replicator-mutator dynamics with circu-
lant payoff matrix B ∈ Rn×n, n ≥ 3, given by B = BC =
Circulant(1, α, 0, . . . , 0, β), where α, β ∈ [0, 1) and α+β >
0, and the mutation probabilities given by (16). Figure 6
shows the bifurcation diagram in two examples for n = 3.
Our theory shows generically for n = 3, when α 6= β, that
the mixed solution corresponding to x1 = x2 = x3 = 1/3
undergoes a supercritical Hopf bifurcation at µ = µ0,
leading to stable limit cycles for µ < µ0, where

µ0 =
(2− α− β)(α+ β)

6(α+ β + αβ)
.

The stable limit cycles can be observed in both examples
of Figure 6. In Figure 6(a) there is coexistence of the stable
limit cycle and three stable equilibria.

In the context of the imitation and error decision-making
paradigm, the parameter µ can be interpreted as a learning
parameter that decreases in value as the agents learn and
do a better job at avoiding error. For large µ close to
1, the stable solution is the mixed equilibrium, where
xi = 1/n for all i. As µ decreases (i.e., learning improves),
one or more limit cycles appear which correspond to a
majority of the population making cycles through a set
of alternatives. As µ decreases further towards zero, the
limit cycles disappear and the stable solutions approach
the pure single strategy solutions, which each correspond
to a unanimous choice for a single alternative.

This interpretation suggests opportunities for designing
adaptive dynamics for the parameter µ in an engineered
decision-making network such that µ decreases as the
system gains information, explores options and learns,
and then makes an informed collective choice among
alternatives.

5. FINAL REMARKS

Animals that travel in a group exhibit remarkable collec-
tive behavior: as individuals they are limited in sensing,



(a) α = 0.95 and β = 0.05

(b) α = 0.4 and β = 0.05

Fig. 6. Adapted from Pais et al. [2012]. Bifurcation plots
for the dynamics (17) for n = 3, circulant payoff
matrix BC , and parameters α and β as indicated. The
existence of Hopf bifurcations and stable limit cycles
follows from the theory of Pais et al. [2012]. Note the
coexistence of stable equilibria with stable limit cycles
in (a).

computation and actuation, but as a group they excel
at tracking and decision-making tasks in uncertain and
dynamic environments. We have shown ways in which
nonlinear dynamics and control theory can be used to
rigorously investigate mechanisms of feedback and inter-
action in this context.

To better understand the adaptive behavior of animal
groups and the corresponding opportunities for design of
adaptive dynamics in a changing environment, we have
analyzed bifurcations in the collective dynamics of groups
as a function of system and environmental parameters.
We have observed a range of bifurcations and behaviors
including Hopf bifurcations and stable limit cycle behavior
in decision-making. In the three different decision-making
problems in the case of two choices, we observed the
universal unfolding of the pitchfork bifurcation with the
introduction of an asymmetry.

We have used models and methods from evolutionary
dynamics to examine the evolution of feedback strategies,
and we have discussed how these tools can be translated
into adaptive control laws for engineered systems. Future
work is needed to connect evolutionarily stable outcomes
with optimal and robust emergent design solutions.

In ongoing work, we are using singularity theory (Golubit-
sky and Schaeffer [1985]) as an organizing framework and a
means to develop constructive design methodology for col-
lective decision-making. A similar approach has been used
for the realization of nonlinear behaviors such as switches,
relaxation oscillators, and bursters (Franci and Sepulchre
[2014]). It is also of interest to investigate variations and
generalizations of the models and mechanisms of collective
behavior described here, to explore additional exemplary
collective dynamic phenomena and to evaluate perfor-
mance bounds. An ultimate goal is to develop provable
and systematic control design methodologies that yield
high-performing, adaptive multi-agent system dynamics
and address the myriad challenges that arise in the growing
number of real-world applications.
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