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A b s t r a c t  

This paper develops the stability theory of relative equilibria for mechanical systems with symmetry. It is especially 
concerned with systems that have a noncompact symmetry group, such as the group of Euclidean motions, and with relative 
equilibria for such symmetry groups. For these systems with rigid motion symmetry, one gets stability but possibly with drift 
in certain rotational as well as translational directions. Motivated by questions on stability of underwater vehicle dynamics, it 
is of particular interest that, in some cases, we can allow the relative equilibria to have nongeneric values of their momentum. 
The results are proved by combining theorems of Patrick with the technique of reduction by stages. 

This theory is then applied to underwater vehicle dynamics. The stability of specific relative equilibria for the underwater 
vehicle is studied. For example, we find conditions for Liapunov stability of the steadily rising and possibly spinning, bottom- 
heavy vehicle, which corresponds to a relative equilibrium with nongeneric momentum. The results of this paper should prove 
useful for the control of underwater vehicles. 
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1. I n t r o d u c t i o n  

1.1. Summary  and background 

This paper  begins with the deve lopment  of  stability theorems for relative equil ibria  of  mechanica l  systems that 

have noncompac t  symmetry  groups,  such as the group of  Eucl idean mot ions  o f  the plane or space. Some  of  our  

results apply to certain cases of  nongeneric  values of  the m o m e n t u m  for a mechanica l  system with symmetry.  The 
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techniques used build on the work of Patrick [30], where a fairly complete picture for the case of compact symmetry 

groups is given. However, in the noncompact case, the theory for nongeneric equilibria is not as complete. 

Our results apply to, and are motivated by, relative equilibria for the dynamics of an underwater vehicle studied 

by Leonard [ 19] and, in particular, clarify the nature of the stability one obtains. We also study relative equilibria 

with nongeneric values of their momentum such as a steadily rising or falling, bottom-heavy underwater vehicle. 

It is because of  the coincidence of the direction of gravity and the direction of  translation that the value of the 
momentum for this relative equilibrium is nongeneric. 

The results of  Patrick [30] need to be extended for the underwater vehicle example, in both the case of generic and 

nongeneric values of the momentum, because the properness hypothesis on the action of the symmetry group fails 

due to noncompactness of this group. In fact, numerical simulations support our claim that there is an additional 

drift instability in these noncompact directions, even for generic values of the momentum, and so this extension is 

essential; see Fig. 5. 

We emphasize that while the techniques developed in this paper make use of a substantial amount of theory, 

the application of these techniques is both straightforward and rewarding as evidenced by our underwater vehicle 

examples. Further, as explained in [19] and at the end of the present paper, we believe that the general context 

described here will provide a setting for other interesting developments, such as the study of  bifurcations that occur 

in the dynamics as parameters are varied, the development of control strategies for stabilization and tracking, the 
study of the effect of dissipation, etc. 

Of course, there have been many works on the dynamics of rigid bodies in fluids, and we make no attempt to 

survey them here. For example, Aref and Jones [1] study some nonintegrable cases for the dynamics of ellipsoids. 

Another important paper that treats some topics relevant to the problem, including some interesting comments on 

the possibility of  drift as a source of instability, is Novikov and Shmel'tser [29]. What makes our paper unique is the 

inclusion of  torques due to gravity and buoyancy, the study of the stability of relative equilibria, including careful 

attention to attitude and translation drifts and, in related works, the study of the control and stabilization problem. 

1.2. Nature o f  the stability results obtained 

The sense in which one has stability requires explanation. It may help to recall that in the study of solitary water 

waves, one can hope to obtain stability modulo translations at best, since nearby waves will move with slightly 

different velocities and hence will drift apart from the given wave. A similar thing can happen with an underwater 

vehicle, but now one must combine possible translational drifts with rotational drifts. Interestingly, the rotational 

drifts are not arbitrary and can only happen around an axis that stays close to the original axis of spin of  the relative 
equilibrium. 

The technique used here is the energy-momentum method developed by Simo et al. [32] (see [25] for an exposition 
and further references) combined with the Arnol'd, or energy-Casimir, method (see [12,26] for summaries and 

references). These methods have proven to be useful for the study of relative equilibria in mechanical systems with 
symmetry in a wide variety of  applications. 

The context for the energy-momentum method is a phase space P with a symmetry group G, a G-invariant 

Hamiltonian H and an associated conserved momentum J.  The method is used to determine the stability of a 
relative equilibrium; that is, a point Ze 6 P whose dynamical orbit is coincident with a one-parameter group orbit. 
Relative equilibria in many examples including the ones in this paper may be viewed, in the language of Routh 
(from around 1860) as steady motions. 

Patrick [30] extended the energy-momentum method to the case where the relative equilibrium ze is a regular 

point for the momentum map (i.e., the derivative of J is surjective at Ze ) but the corresponding value of the momentum 

#e may be nongeneric (this is defined precisely below). A crucial hypothesis in this result is a compactness condition 
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on the isotropy subgroup G~e, the subgroup of  elements of G that fix//~e. His result then gives stability modulo 
Guc. 

In this paper, we further generalize this result to allow some noncompactness, but at the expense of  taking stability 

modulo a larger group. Our technique is to use theorems on reduction by stages for groups that are semidirect 

products, which enable one to apply the theorem of Patrick to the stage involving compactness. We also relate the 
result to the energy-Casimir method. 

1.3. Summary of results for the underwater vehicle 

We now briefly summarize the results that are obtained for the example of an underwater vehicle. On the theoretical 

side, we extend the theory to cover the stability analysis for the equilibria studied in [19]. The theory we provide 

allows us to demonstrate stability modulo the appropriate group, even in the presence of noncompactness, as 

mentioned above. 

The underwater vehicle is modeled as a rigid body moving in ideal potential flow according to Kirchhoff's 

equations. The vehicle is assumed to be neutrally buoyant (often ellipsoidal), but not necessarily with coincident 

centers of gravity and buoyancy. We fix an orthonormal coordinate frame to the body with origin located at the center 

of buoyancy and axes aligned with the principal axes of the displaced fluid as shown in Fig. 1. When these axes are 

also the principal axes of the body and the vehicle is ellipsoidal, we let the inertia matrix of the body-fluid system be 

denoted by I = diag(ll ,  12, 13) and the mass matrix by M = diag(m l, m2, m3); note that these matrices include the 

"added" inertias and masses due to the fluid. The mass of the body alone is denoted m and the acceleration of  gravity 

is g. The vector from the center of buoyancy to the center of gravity with respect to the body-fixed frame is le3, 

where e3 -- (0, 0, 1) T indicates that the two centers are assumed to be aligned along the third principal axis. When 

the body is oriented so that the body-fixed frame is aligned with the inertial frame, the third principal axis aligns 

with the direction of gravity. Further, since our convention is to let the third axis of the inertial frame point "down" 

as in Fig. 1, the scalar I is positive if the center of gravity is below the center of buoyancy and negative if it is above. 
(1) The first case we study in Section 4.3.1 is that of a vehicle with coincident centers of buoyancy and gravity 

that translates with momentum (more properly impulse) P3 ° along one of  the principal axes, say the third, and 

center of 

mg (buoyant force) 

body fixed frame 

vehicle 

inertial frame 

T r 3 

Fig. 1. Schematic of a neutrally buoyant ellipsoidal underwater vehicle. 
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rotates with angular momentum (impulse)/7 o about the same axis. In this case, we also suppose that the body 3 
is symmetric about the third axis. We show that one has stability of this motion modulo rotations about the third 
axis and translations in any direction provided that 

pO/ > 4 1 2 ( 1 3  1 2 ) "  

The physical interpretation of this condition is discussed in Section 4.3.1. 
(2) The second case we study in Section 4.3.2 is that of a vehicle with noncoincident centers of buoyancy and gravity 

oriented with the third principal axis parallel to the direction of gravity and translating (but not spinning) with 
momentum pO along one of the other principal axes, say the second. We show that one has stability of this 

motion modulo translations in any direction provided that the system is bottom heavy (l > 0) and 

m2>ml ,  mgl> (12  1--3)(P°)2. 

The physical interpretation of this condition is also discussed in Section 4.3.2. 
(3) The third and fourth cases have nongeneric values of the momentum; that is, as will be evident, they are 

degenerate instances of the first two cases, respectively. The third case is the same as first case except that there 

is no translation; i.e., pO = 0. We show that one has stability of this motion modulo rotations about the third 
axis and translations in any direction provided that the axis of rotation is an axis of symmetry. When symmetry 
is broken, the rotation is unstable if 13 is the intermediate moment of inertia. Unlike the free rigid body, this does 
not necessarily mean instability of rotation about the intermediate axis of the body; see [ 19] and Section 4.4.1 
for further discussion. 

(4) The fourth case we study in Section 4.4.2 is that of a rising or falling vehicle with noncoincident centers of 
buoyancy and gravity oriented with the third principal axis parallel to the direction of gravity; as in the first 
case, we assume that the body is symmetric about the third axis. Suppose the body translates with momentum 
pO along the third axis and rotates with angular momentum/7° about that axis. This case is nongeneric because 
the direction of translation is parallel to the direction of gravity. We show that one has stability of this motion 

modulo rotations about the third axis and translations in any direction provided that 

( 1 1 ) (pO)2  1 ( m, ) ( /70)2.  
mgl > m3 m2 - 4 ml l ;~m2l  2 

(5) In the fourth case, some interesting bifurcation phenomena are identified, such as a Hamiltonian Hopf bifurcation 
(the splitting of eigenvalues off the imaginary axis) and the passing (resonance) of eigenvalues. The detailed 
investigation of these phenomena is not undertaken here. 

2. Stability theory for compact groups 

A standard basic strategy for dealing with a system whose symmetry group is the semidirect product of a compact 
group and a vector space, such as the group of Euclidean motions is to deal with them in two stages, the vector space 
of translation type variables followed by the compact group of rotation type variables. Therefore, it is appropriate 
to start in this section with some tools for treating stability in the compact case. 

The structure of the section is as follows. We begin in Section 2.1 by describing the notation and the setup that will 
be useful throughout the paper. In Section 2.2 we recall Theorem 6 of Patrick [30] and then in Section 2.3 we relate 
it to the context of systems on Lie groups and the energy-Casimir method. In the case of nongeneric orbits we will 
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need to make use of subcasimirs (defined below) to determine stability. The energy-Casimir context is convenient 

for doing the calculations. Linking Patrick's result with the energy-Casimir method and making use of subcasimirs 

is hinted at in the literature (see, e.g., [36]), but is made explicit here. 

2.1. Basic setup 

We begin by describing the basic notation and setup that will be useful throughout the theoretical part of  the 

paper. We refer to Marsden and Ratiu [26] for the details of results not explained here. 

We start with a (finite-dimensional) symplectic manifold P with symplectic form S2 and a Lie group G with a Lie 

algebra .q. We assume that G acts symplectically on P and that it has an equivariant momentum map J : P ~ .q*, 

where .q* is the dual of the vector space .q. Equivariant here means that the map J is equivariant with respect to the 

action of G on P and the coadjoint action on .q*. Denoting the relevant actions simply by gz and g # ,  respectively, 

equivariance means that J ( g z )  = gJ(z) .  For concrete examples, such as angular momentum, this just means that 

the angular momentum "transforms as a vector" under rotations. For each s e 6 .q, we let J~ = (J, s e) denote the 

component of  the momentum map along ~. 

We also assume that we are given a G-invariant Hamiltonian H that describes the dynamics of interest. The 

associated Hamiltonian vector field is denoted XH. Thus, the dynamical equations of motion of interest can be 

written ~ = X/4 (z). The vector valued function J is a constant of the motion along the trajectories of  this equation, 

which may be viewed as one form of  Noether 's  theorem. 

We will be considering a relative equilibrium Ze G P. This means that there is a Lie algebra element ~e c .q such 

that z(t)  = exp(~et)Ze for all real numbers t, where z( t )  denotes the dynamical orbit with initial condition Ze. We 

let the value of the momentum at the relative equilibrium be denoted #e = J ( z e )  and make the blanket assumption 

throughout this paper that Ze is a regular point of  J ;  that is, DJ(ze)  : TzeP --+ q.*, the derivative of  J at Ze from 

Tze P,  the tangent space to P at the point Ze, to .q*, is surjective. This assumption is equivalent to the condition that 

for each nonzero element ~ of  the Lie algebra, the corresponding infinitesimal generator evaluated at Ze, denoted 

sep (Ze), is nonzero. 

Although we assume that Ze is a regular point, we do not necessarily assume that #e is a generic point in g*. That 

is, the coadjoint orbit through the point #e need not be of maximal dimension. A theorem of Duflo and Vergne (see 

[26, pp. 278-279]) states that the generic points form an open and dense set in the dual of the Lie algebra. 

Another way to understand the meaning of "generic" is to introduce the isotropy group Gue of  #e, that is, the 

subgroup of G that leaves the point #e invariant under the coadjoint action of  G on .q*. A point is generic when its 

isotropy subgroup is minimal. Thus, nongeneric points will have isotropy subgroups that are "larger than normal". 

As is well known for relative equilibria, H - J~e has a critical point at Ze. The energy-momentum method of 

Simo et al. [32] is a method that determines stability by examining definiteness of the second variation of this 

augmented energy function. These authors concentrate on putting the second variation of H - J¢~ at ze c P along 

with the symplectic form into a normal form (with the second derivative of  H - Jse at Ze c P block diagonal) so that 

the definiteness can be determined. In this paper we are less concerned with this block diagonal form since we will 

be able to determine the definiteness using the energy-Casimir method. However, one should be aware that the block 

diagonal form of the second derivative of the augmented energy together with the normal form for the symplectic 

structure, is useful for putting the linearized equations at a relative equilibrium into normal form (see [3,4] for the 

explicit expression for this normal form). Such results may be useful for nonlinear normal form, bifurcation, and 

control results. 

In our examples, the isotropy group need not be compact, and the value O f # e  need not be generic, and it is known 

(e.g., see [14,24]) that one must be careful in such situations with the sense in which one has stability. 
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2.2. A result of Patrick 

Patrick's theorem rests on the following assumptions. 

Assumption 1. The restriction of the coadjoint action of Gue on ~,~* is proper and there is an inner product on ,q* that 

is invariant under this action. 

Assumption 1 holds, for example, if Gue is compact (and this in turn holds if G is compact). 

To state the next assumption, we will recall a few facts and establish a little notation. Since we are assuming that Ze 

is a regular point of  the momentum map J ,  it follows that kerDJ(ze) is the tangent space to the level set J (z)  = #e at 

the point Ze. Also, the tangent space to the Gue-orbit Of Ze at Ze is given by the vector space consisting of infinitesimal 

generators ~P(Ze) as s e ranges over SUe, the Lie algebra of  Gue. Choose a vector subspace Ez~ C kerDJ(ze) that 

complements the tangent space to the Gue-orbit of Ze; i.e., kerDJ(ze) = Ez e @ Tz e Gue (Ze), as in Fig. 2. 

Assumption 2. Assume that the second derivative of H - J~e at Ze G P restricted to Eze is definite. 

Assumption 2 is independent of the choice of complement chosen. The block diagonalization method of  

Simo et al. [32] chooses a particular complement E:e so that the second variation is block diagonal and, simultane- 

ously, that the symplectic form also achieves a certain normal form. 

Theorem 2.1 ((Patrick [30])). Under the conditions of Assumptions 1 and 2, the relative equilibrium Ze is stable 

modulo G#e. 

We next explain the meaning of  stability modulo a subgroup K of G, and in particular, stability modulo Gue. 

Consider the orbit (_9 = {z(t) I t _> 0}, where z(t) is an integral curve of the vector field XH. We say (,9 is stable 

modulo K provided that for every K-invariant open neighborhood U of (_9, there is an open neighborhood V of 69 

such that for any initial condition in V, its forward trajectory stays in U. In the Hamiltonian case, as here, one can, in 

fact, take the trajectories to be two sided in time, but of  course if dissipation is added, one considers the trajectories 

forward in time only. Intuitively, stability modulo K is the usual notion of Liapunov stability except that one allows 

arbitrary drift along the orbits of  K. 
The preceding theorem is proved by constructing, with the aid of  the invariant metric of  Assumption 1 and the 

conserved energy and momentum, a function that is used as a Liapunov function. The main point to be careful about 

is how to deal with points with different momentum value than that of the equilibrium, while remembering that the 

l r~ .  ll~1t'.  "~ BEe 

Fig. 2. A space Eze complementary to the group orbit within the level set of the momentum map. 
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isotropy groups of  nearby values of  the momentum may, in the nongeneric case, be smaller than that of the relative 

equilibrium. The invariant metric and the slice theorem for group actions allows one to do this. 

Patrick [3 1] studies the drift (geometric phase drift) along the group directions; i.e., the drift in the Guc directions 

that are not controlled by the stability theorem. As we shall see, both in theory and simulations, the underwater 

vehicle problem does have interesting drifts. 

2.3. Relation to the energy-casimir method 

It is useful to specialize the above theorem to the Lie-Poisson context and to relate it to the energy-Casimir 

method. In addition to this relation, we will need to generalize the result to allow certain kinds of  nonproperness. 

We do the latter in Section 3. 

Let G be a Lie group with Lie algebra .q; let G act on itself by left translation and lift this action to the cotangent 

bundle T*G by cotangent lift. Let J : T*G ~ .q* denote the corresponding momentum map, which in this case is 

simply right translation to the identity (see for example, [25,26] for the proofs of  these statements). 

Let H : T*G --+ ~ be a G-invariant Hamiltonian and let h : .q* -+ R be the corresponding function induced 

on the dual of the Lie algebra. Consider the coadjoint orbit (_9 through a point #e 6 .q* and let, as previously, G~, e 

denote the corresponding coadjoint isotropy group. Suppose that/Ze is an equilibrium point for h; that is, #e is a 

relative equilibrium for H.  In other words, h lO has a critical point at/Ze. 

Let ~e = 6h/3# evaluated at the point/Ze. The condition that the restriction of h to 69, the coadjoint orbit through 

#e, has a critical point at ~e is equivalent to the statement that/~e is a critical point of  H - J~e, where #e C .q* C T* G 

is regarded as a point in T*G. 

Using the preceding comments, we are ready to explain how to relate the energy-Casimir method on I* with the 

energy-momentum method on T*G. 

We use Assumption 1 with the following modified assumption: 

Assumption 2'. The second derivative of  h 1(_9 a t /z  e is definite. 

Assumption 2' is equivalent to Assumption 2. This follows for the present case in which P = T*G because of  the 

following facts. First, the reduced space at /z e is the coadjoint orbit 69 through/Ze. Second, the reduced Hamiltonian 

h is related to the original one H by H l J - l ( / ~ e )  = h o rre, where rre is the projection of J - l ( / z e )  to the reduced 

space (in this case, 7re is right translation to the identity). Third, J is constant on the level set and the derivative of 

7r e maps Eze isomorphically to the tangent space to 69 at #e. Finally, the second derivative of H - J~e at Ze G P 

restricted to Eze is mapped isomorphically to the second derivative of the reduced Hamiltonian h at the point/Ze 

restricted to 69. 

An important additional observation concerns the following condition: 

Condition 2~. There is a function C, constant on the orbit (_9, such that h ÷ C has a critical point at/.Ze, and the 

second variation of h + C taken within .q* at/.z e is definite. 

Proposition 2.2. Assumption 2 ~ is implied by Condition 2~. 

Proof. Since C is constant on the orbit, both h and h ÷ C restricted to the orbit have critical points a t / z  e. Also, 

the second variation of  the restriction of C to the orbit vanishes; therefore, the second variation of  the restriction 

h lO at #e equals the restriction of  the second variation of h ÷ C to the tangent space to the orbit at #e.  Thus, if the 

unconstrained second variation of h + C at #e is definite, so is the constrained second variation. [] 
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Proposition 2.2 relates our procedure to the energy-Casimir method. In our context, it is important to note that 

the function C need not be a Casimir function. If  the orbit is nongeneric, such functions are sometimes called 

subcasimirs. See [36] for information on the structure of such functions. 

In the energy-Casimir method, one often uses Casimir functions so that h + C is a Liapunov function to show 

that an equilibrium on .q* is Liapunov stable. However, in our context, we adopt a more detailed strategy, namely 

following Patrick, we use properness of the action to obtain the requisite stability in the directions off the orbit and 

we use Casimir functions (and subcasimir functions for nongeneric equilibria) for stability along the orbit. In the 

following, this strategy will be important because our groups will have both compact and noncompact subgroups 

and we need to separate the analysis appropriately for subgroups of each type. As we have mentioned in Section 1, 

the strategy will be to use the method of reduction by stages. 
Let us summarize what we have achieved so far. 

Corollary 2.3. Under Assumptions 1 and 2' (or 1 and 2~), the point ~e is Liapunov stable in 0" with respect to the 

dynamics of h. Moreover, relative to the dynamics of  H on T 'G,  the point #e is stable modulo the action of Gue. 

Proof As we already pointed out, Assumption 21 implies Assumption 2, and so the last statement follows from 

Theorem 2.1. Stability of/Ze 6 .q* is equivalent to stability of/~e E T*G modulo G, but this is implied by the 

stronger statement of stability modulo G~e. [] 

3. Stability theory for semidirect products 

In many examples, such as the underwater vehicle where the symmetry group is a semidirect product, the 

properness assumption (Assumption 1) fails and indeed one sees in numerical simulations (see Section 4) that the 

conclusions fail as well. An instructive example along the same lines is also presented in [30]. Thus, there is a need 

for generalizing the stability results given in the preceding section. 

Our approach to this problem is to make use of  the theory of reduction by stages to separate out the vector space, 

or the noncompact part of  a semidirect product group, and to apply the theory in the preceding section to the part 

of  the symmetry group that is compact. In our examples, the semidirect product groups involved are typified by 

the Euclidean group and for these groups the method of reduction by stages is appropriate, We therefore begin 

with some results on the theory of reduction by stages. Although more general results are given in [27], we give a 

self-contained exposition specific to the case we need here since it is important for our development. Other results 

on reduction by stages are given in [16,33]; however, they do not include the noncompact or nonzero momentum 

cases we require. 

3.1. Reduction by stages 

In this section, we will explain, in a setting appropriate for this paper, the method of reduction by stages. This 
method is the one in which reduction by a semidirect product can be carried out in two successive steps. 

Start with a Lie group that is a semidirect product, S = G (~) V where V is a vector space and the Lie group G 

acts on V (and hence on its dual space V*). Recall that as sets, S = G × V and that group multiplication is given by 

(gl, Vl) • (g2, v2) = (gig2, Vl q-glv2),  

where the action of  g c G on v 6 V is denoted simply as gv. The Lie algebra of  S is the semidirect product of Lie 
algebras: ~ = .q (~) V. The bracket is given by 
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[(~1, Vl), (~2, V2)] = ([~1, ~2], ~1 V2 -- ~2Vl), 

where we denote the induced action of .q on V by concatenation, as in ~l v2. 

Later, we will need the formulas for the adjoint and the coadjoint actions for semidirect products. Denoting these 

and other actions by simple concatenation, they are given as follows (see, e.g., [28]): 

(g, v)(~, u) = (g~, gu - Pv(g~)) and (g, v ) (# ,  a) = (g#  + p~(ga),  ga),  

where (g, v) 6 S = G x V, (~, u) E e = .q x V, ( /~,a)  6 ~* = g* x V* and where Pv : .q --+ V is the derivative 

of the map g ~ gv at the identity and p* : V* -+ .q* is its dual. The infinitesimal action of .q on V will often be 

denoted by ~v; note that ~v = Pv(~). 

Next we consider a symplectic action of S on a symplectic manifold P and assume that this action has an 

equivariant momentum map J s  : P ~ ~*. Since V is a (normal) subgroup of S, it also acts on P and has a 

momentum map J v  : P ~ V* given by 

J v  = tv  o J s ,  

• "* " ~ *  V *  where iv  V ~ ~ is the inclusion v ~+ (0, v) and t v ~ is its dual. We think of  this merely as saying that 

J v  is the second component of  J s .  

We can regard G as a subgroup of  S by g ~ (g, 0). Thus, G also has a momentum map that is the first component 

of Js .  Equivariance of  J s  under G implies the following relation for J r :  

J v  (gz) = g J r  (z), 

where we denote the appropriate action of  g 6 G on an element by concatenation, as before. To prove this formula, 

one uses the fact that for the coadjoint action of S on ~*, the second component is just  the dual of the given action 

of  G on V. 

We can carry out reduction of  P by S at a regular (but not necessarily generic !) value e = (# ,  a) of the momentum 

map J s  for S in two stages using the following procedure: 

- First reduce P by V at the value a c V* (assume it to be a regular value) to get the reduced space Pa = J v  I (a) / V. 

Here the reduction is by an abelian group, so the quotient is done using the whole of  V. We will let the projection 

to the reduced space be denoted rra: 

rra " J v l ( a )  --+ Pa. 

- Form the group Ga consisting of elements of  G that leave the point a 6 V* fixed using the action of  G on V*. 

One shows (see Appendix A) that the group Ga acts symplectically on Pa and has a naturally induced momentum 

map Ja " Pa ---+ .q*, where .qa is the Lie algebra of Ga 

- Reduce Pa at the point #a :=  #]ga 6 .q~ to get the reduced space (Pa)ua = J a  1 (IXa)/(Ga)u~. 

The main theorem on reduction by stages for semidirect products, which is proved in Appendix A, can now be 

stated (see Fig. 3). 

Theorem 3.1 (Reduction by stages f o r  semidirect products). The reduced space (Pa)uc, is symplectically diffeo- 

morphic to the reduced space P~ obtained by reducing P by S at the point ~ = (#,  a) .  

In the preceding theorem, choose P = T*S  where S = G @  V is a semidirect product as above, with the 

cotangent action of S on T*S induced by left translations of S on itself. Reducing T*S by the action of V gives 

a space naturally isomorphic to T*G. Thus, the reduction by stages theorem gives as a corollary, the well known 

semidirect product reduction theorem: 
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Fig. 3. Reduction by a semidirect product can be achieved in two successive stages. 

Theorem 3.2 (Semidirec tproduct  reduction). The reduction of T * G  by Ga at values/Za -- #l~a gives a space that 

is isomorphic to the coadjoint orbit through the point a ---- (# ,  a) 6 ~* = .q* × V*, the dual of  the Lie algebra 

of S. 

The original proof  of this result given in [28] requires an essential modification to obtain the more general 

reduction by stages result, Theorem 3.1. 

In the framework of  the reduction by stages theorem, one can also reduce the dynamics of a given invariant 

Hamiltonian in two stages. Reduction by stages allows one to drop the dynamics of a given S-invariant Hamiltonian 

H in two steps. An additional remark is relevant here, namely in many problems, one does not start with a 

Hamiltonian on P ,  but with one on Pa. That is, the physical problem may start with a phase space that is rec- 

ognized to be the result of  a first reduction and with a Hamiltonian Ha : Pa -+ ~ that is recognized to be the 

reduction of an S-invariant Hamiltonian H on T*S.  The condition on Ha which guarantees that it will be the 

reduction of  an S-invariant H is that Hga([gz]) = Ha([Z]), where [z] E Pa denotes the equivalence class of 

Z 6 J r !  (a). 
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For example, for the heavy top (a rigid body with a fixed point and moving in a gravitational field), the physical 

phase space is T* SO (3) and the symmetry group is S 1, regarded as rotations about the z-axis, the axis of gravity. 

In this case, one identifies the phase space T'SO(3)  with the reduction of the cotangent bundle of  the special 

Euclidean group SE(3) by the Euclidean translation subgroup R 3 and identifies the symmetry group S l with the 

isotropy group Ga = S ! where a is a vector aligned with the direction of gravity and where SO(3) acts on R 3 in 

the standard way. The semidirect product reduction theorem then shows that the reduced space is the reduction of 

T*SE(3) by the (left) action of SE(3),  that is, coadjoint orbits of SE(3).  

On the other hand, by the cotangent bundle reduction theorem (see, e.g., [25]), the reduction of T'SO(3)  by the 
isotropy group Ga = S 1 is the cotangent bundle of  S 2 = S 0 ( 3 ) / S  l with a canonical plus magnetic symplectic 

structure. The semidirect product reduction point of view is useful because it allows one to use the structure of 

the dual of  the Euclidean Lie algebra for the stability calculations by means of the energy-Casimir method. In our 

example, we will use a similar strategy, but in a context where the orbits (both generic and nongeneric) are richer 

than in the dual of the Euclidean Lie algebra. 

3.2. Semidirect product stability- Generic momenta 

Our technique for studying stability is that if (Ga)#a is compact (or more generally that the relevant properness 

and invariant metric hypotheses apply), then we can apply Patrick's result to the second reduction in the method 

of reduction by stages to obtain stability in the original space P modulo (Ga)lza (~ V. In this section we will make 

the assumption that the value of the momentum map is generic. This will be useful, for example, in the case of the 

underwater vehicle with coincident centers of buoyancy and gravity and nonzero linear momentum. Section 3.4 

deals with the more general case of  nongeneric momentum and it requires an additional hypothesis. In the present 

case one does not need the full strength of Patrick's theorem. 

In the setting of  the reduction by stages theorem, let Ze 6 P be a relative equilibrium for the action of  S and 

for an S-invariant Hamiltonian H. Let the corresponding values of the momentum map be denoted a = (#, a) - 

we drop the subscripts e on the momenta for simplicity of notation. As above, let [Ze] = zra (Ze) C Pa denote the 

corresponding point in Pa. Thus, [Ze] is a relative equilibrium in Pa for the action of  Ga. We will now apply the 

previous stability results to this context. Correspondingly, we make the following assumptions. 

Assumption 1GS. The action of (Ga)#~ on ~a* is proper and there is an inner product on ~q* that is invariant under 

this action. 

Assumption 1GS holds, for example, if (Ga)~a is compact (and this holds if G is compact). Analogous to the 

earlier situation, we choose a vector subspace ElM C kerDJa([Ze]) that complements the tangent space to the 

(Ga)~,,,-orbit of [Ze]; i.e., kerDJa([Ze]) = E[ze] ~) T[ze](Ga)#~([Ze]). Note that kerDJa([Ze]) is the tangent space 
to the level set Ja ([z]) = #a at the point [Ze]. Also, the tangent space to the (Ga)u~-orbit of [ze] at [Ze] is given by 

the vector space consisting of infinitesimal generators ~e ([Ze]) as ~ ranges over (.qa)ua, the Lie algebra of  (Ga)iza. 
We let ~e C O~a denote the Lie algebra element corresponding to the relative equilibrium [Ze]. Also, we let the 
Hamiltonian reduced to the first stage space Pa be denoted Ha. 

Assumption 2GS. The second derivative of Ha - (Ja)~e at [Ze] C Pa restricted to E[zel is definite. 

Finally, we assume for this section: 

Assumption 3GS. The value #a = (Ja)~e ([Ze]) is generic in ~q*. 
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Theorem 3.3. Let Assumptions 1GS, 2GS and 3GS hold, let H be an S-invariant Hamiltonian as above, and let 

Ze ~ P be a relative equilibrium for the group S. Then the point [Ze] c Pa is Liapunov stable modulo the action of 

(Ga)u ,  for the dynamics of Ha and Ze is Liapunov stable in P modulo the action of (Ga)m, @ V. 

Proof The stability of  [ze] E Pa modulo (Ga)u, follows from the previous stability theorem in Section 2. But 

stability for the dynamics of [Ze] in P,  is equivalent to the stability of  Ze in J v  1 (a) modulo (Ga)u~ @ V. We complete 

the proof by noting that we can extend this statement to a whole neighborhood of  Ze in P (that is, we can extend it 

to nearby level sets) because we are assuming that a is a regular value of J r  and, because V is abelian, the quotient 

on this upper level is by afixed group V. We also note that the reduced spaces ( P a ) , ,  are locally diffeomorphic as 

the value of tXa is changed since we are assuming that #a is a generic point. Thus, the stability results on the single 

reduced space extend to a whole neighborhood of  [Ze]. [] 

We can verify Hypothesis 2as by using an argument on the Poisson reduced space P / S  as we did earlier with 

the energy-Casimir argument. Namely: 

Proposition 3.4. Let h : P / S  --~ ~ denote the Poisson reduced Hamiltonian and let [[Ze]] E P / S  denote the 

Poisson reduced relative equilibrium. Hypothesis 2GS holds if there is a function C : P / S  ~ ~ constant on the 

symplectic leaf (that is, the symplectic reduced space obtained by reducing P by the action of S) through [[Ze]] such 

that h + C has a critical point at [[ze]] and such that the second variation of  h + C evaluated at [[Ze]] is definite. 

This follows by an argument analogous to that we gave in the case P = T*G earlier. In this generic case, one 

normally would use Casimir functions here. In Section 3.4 we will use Assumption 2GS for nongeneric equilibria. 

In that case, C may also be a function of subcasimirs. 

3.3. A double semidirect product stability theorem 

There is an additional consequence of Theorem 3.3 that will prove to be useful for the underwater vehicle with 

noncoincident centers of buoyancy and gravity. This is the double semidirect product case in which not only is the 

symmetry group a semidirect product (as in Section 3.2) but also reduction by this symmetry group is described by 

semidirect product reduction (Theorem 3.2). Let G be a Lie group, V a vector space, and suppose that G acts on V. 

We start with the phase space of  a mechanical system given by Pmech = T ' G ,  where, for notational convenience, 

we let (~ = G @ V  

Next, we consider a double semidirect product of the form W = G @ (V x V), where the action of G on V x V 

is defined to be g • (v, u) = (gv, gu). One checks that W = (~@ V, where the action of  (i  on V is defined to be 

(g, v) • u = gu. Let P = T*W and notice that V acts on W by translation in the last factor and hence on P; this 

action has a momentum map Jv  : P --+ V*. The space Pmech is isomorphic to the reduced space associated with 

this momentum map. We also need to recall (by the Lie-Poisson reduction theorem) that the reduced space P~ W 

is isomorphic to the dual of the Lie algebra of  W, i.e., ~v* = ,q* x V* x V*. 

Now consider again the phase space Pmech = T*~;. Following the semidirect product reduction theorem, we 

compute (~a2 = Ga2 @ V where a2 c V*. Then reduction of  T*(~ by (~a2 at values (# ,  al)],qa2 C ~2 gives a space 

isomorphic to the coadjoint orbit through (#,  a l ,  a2) c ~* x V* = llJ*. 

Now suppose that we have Hamiltonian dynamics on Pmech given by a Ga2-invariant Hamiltonian Hmech. Suppose 

further that Hmech is the reduction of a W-invariant Hamiltonian H on P. We denote the reduced Hamiltonian on 

~v* by h. For Zemech E Pmech a relative equilibrium, we let Ze be the corresponding equilibrium in P and [[Ze]] = 

co e = (/z, a l ,  a2) c Iv* the reduced relative equilibrium. 
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We can apply the preceding proposition to this setup with the following assumptions: 

Assumption 1DSDP- Let a = (al, a2) ~ V* x V*. Assume that the action of (Ga)u,, on ,%* is proper and there is an 

inner product on %* that is invariant under this action. 

Assumption 1DSDP holds, for example, if (Ga)uo is compact (and this holds if G is compact). 

Assumption 2DSDP. Consider the coadjoint orbit O C .q* × V* x V* through the point 09 e = (#, al, a2). Assume 

that there is a function C constant on O such that h + C has a critical point at o) e and that its second variation at 

this point is definite. 

Assumption 3DSDP. The point We = (/z, aj,  a2) is a generic point in ,q* x V* x V*. 

Theorem 3.5. Let Assumptions 1DSDP, 2DSDP and 3DSDr' hold. Then the point 7.emech G Pmech is Liapunov stable 
modulo the action of (Ga)lza (~) V for the dynamics of Hmech. Moreover, o) e is a stable point of  the Lie-Poisson 

dynamics on ~*. 

Proof From Theorem 3.3 and Proposition 3.4 applied to P = T * ( G ~ ) ( V  × V)), it follows that Ze c P is 

stable modulo (Ga)ua ~) (V x V) = ((Ga)ua (~ V) (~ V. But, stability for the dynamics of  ze in P modulo 

((Ga)ua (~) V) @ V is equivalent to stability of  Z, emech in J v  1 (a2)/V modulo (Ga)~n , (~ V. [] 

3.4. Semidirect product stability - Nongeneric momenta 

Consider again the setup of  Section 3.2. When the momentum value of  a relative equilibrium is nongeneric, as 

in the case of a rising, bottom-heavy underwater vehicle, we can proceed in two ways. First, we can restrict our 

attention to a single reduced space (a single coadjoint orbit). The results above would then apply, without the third 

assumption. We call this phenomenon leafwise stability. However, this need not imply stability for values of  the 

momentum close to but not equal to a since the dimension of the reduced space and the stability properties on it may 

change as the momentum is varied. An example showing that some additional hypothesis is needed is the following: 

Example (Patrick). Consider the dual of the Lie algebra of  the Euclidean group in the plane, ~e (2)* with its standard 

Lie-Poisson structure. Identify this space (see [26] for details) with R 3. Coadjoint orbits consist of cylinders centered 
on the z-axis with nonzero radius and single points on the z-axis. Each point on the z-axis is a relative equilibrium 

for any Hamiltonian and also each such point is obviously leafwise stable since it is a single point. However, such 
points need not be stable in _~e(2)* as the following smooth Hamiltonian written in cylindrical coordinates shows: 

H(z, r, 4~) = r cos 4~. The instability arises from a slow drift in the z-direction as is seen from the equations of 

motion for this Hamiltonian. The hypotheses introduced later in this section exclude this Hamiltonian. 

The second way to proceed is to find additional sufficient conditions to guarantee that leafwise stability extends 
to stability. We provide sufficient conditions that are relevant to some relative equilibria of the underwater vehicle. 

As we shall point out, there are some places where additional theoretical work is needed. 
For the rising/spinning, bottom-heavy underwater vehicle one has a nongeneric value of  the momentum. For- 

tunately, the conditions for leafwise stability occur in a regime for which our conditions below are satisfied (as 
we shall see) and so one in fact gets stability. As we shall also see, the failure of the stability conditions corre- 
sponds precisely to interesting critical phenomena in the spectrum of the linearized equations: each critical spectral 
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event in this example (passing of  eigenvalues, splitting of eigenvalues) corresponds to an interesting event in the 

energy-momentum stability analysis. 
To extend leafwise stability to stability, the critical issue is to control the momentum variables in the new 

"noncompact directions" that may arise in the reduced space when we shift from the given equilibrium with a 

nongeneric momentum value to a nearby generic one. By the arguments used to prove Patrick's theorem, we do not 

need to worry about any other new "compact directions" that may arise. 
The main point involved can be seen using the formula for the coadjoint action for a semidirect product given 

earlier: 

(g, v ) (# ,  a) = (g#  ÷ p*(ga),  ga).  

The "compact part" of  the group action corresponds to the action of G while the "noncompact part" corresponds 

to the action of  V. As we change (/x, a) from a nongeneric to a generic point, the orbit for this action can change 

dimension; the part we are concerned with is the change due to the noncompact part. This change is thus given by 

the difference between the sets 

E :=  {(pv(a),O)lv c V} C g* x V 

at our equilibrium value of the momentum a and the corresponding set for other values a '  near a: 

E t , t = {(Pv(a ) , O ) l v  c V} C g* x V. 

Thus, we are concerned with a complement to the linear space E within E'.  Let such a complement be denoted 

F;  that is, the vector space F should be such that 

(1) for all generic a ~ in a neighborhood of a, we have E ~ F = E '  and 

(2) for all a ~ in a neighborhood, generic or not, E @ F D E ~. 

For example, if a = 0 and if U = g*, then we may choose F = .q* x {0}. 

Assumption 3NG. For some dynamically invariant function (usually Casimir functions and other conserved quanti- 

ties) C, and choice of  complement F satisfying the above two conditions, the function h + C has a partial derivative 

at the nongeneric equilibrium in the direction F equal to zero and its second variation in this direction at the 

equilibrium is positive definite. 

Remarks. 

1. Using the description of reduced spaces as J -  1 ( O ) / S ,  one can also phrase this condition in terms of  the unreduced 

geometry, in the same manner as we have related the energy momentum method to the energy Casimir method. 

2. If  at the nongeneric equilibrium, h + C has a critical point for the entire dual of the Lie algebra (,q @ V)* and if 

the second variation is definite, then Assumption 3NG holds. As we shall see, for the rising and spinning, bottom- 

heavy underwater vehicle, the transition from this condition to the more delicate condition in Assumption 3NG 
signals an interesting spectral event. 

Theorem 3.6. Let Assumptions 1GS, 2GS and 3NG hold, let H be an S-invariant Hamiltonian and let Ze 6 P be a 

relative equilibrium for the group S. Then the point Ze is Liapunov stable in P modulo the action of  (Ga)l~a (~ V. 

Proof  We obtain the required stability by constructing a Liapunov function obtained by adding together, in the 
original unreduced phase space, the function of  Patrick (controlling the extra compact directions), the function of 

the above condition 3NG, which controls the extra noncompact momentum directions and the energy-momentum 
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function. This total function is then used as in [30] to give stability of the relative equilibrium orbit modulo the 

action of  (Ga)~a @ V. [] 

A variant of  the above theorem is to use the following: 

Assumption 3~NG . For some dynamically invariant function (usually a Casimir function and other conserved quanti- 
ties) C, and choice of  complement F satisfying the above two conditions, we have: the space F is one-dimensional 

and the kernel of the derivative of the function h ÷ C, evaluated at the nongeneric equilibrium, is transverse to F. 

Theorem 3.7. Let Assumptions 1GS, 2GS and 3~G hold, let H be an S-invariant Hamiltonian and let Ze 6 P be a 

relative equilibrium for the group S. Then the point Ze is Liapunov stable in P modulo the action of (Ga)t~ (~) V. 

Given the double semidirect product setup of  Section 3.3, the stability analysis of nongeneric equilibria is extended 

analogously using Assumption 3NG or 3~q G. 

Corollary 3.8. Let Assumptions 1DSDP, 2DSDP with 3NG or 3~G hold. Then the point Zemech G Pmech is Liapunov 
stable modulo the action of (Ga)tz~ (~) V for the dynamics of nmech. Moreover, 60 e is a stable point of  the Lie-Poisson 

dynamics on Iv*. 

The proof is analogous to the proof of Theorem 3.5 except that Theorem 3.6 or Theorem 3.7 is used "in place of 

Theorem 3.3. 

Remarks. 

1. If F is two-dimensional one can seek two conserved functions whose level sets are transverse to F and to each 

other. In this case, one can use strips bounded by these level sets to trap orbits in neighborhoods in F. This type 

of  approach may be useful in the nongeneric case of an underwater vehicle with spin only in three-dimensional 

space since F has dimension greater than 1. However, in this example, if there is an axis of symmetry, one can 

use Theorem 3.6 (and the remark that precedes it about h -+- C). 

2. For the planar underwater vehicle, F is one-dimensional, and a direct analysis that uses the integrability of the 

dynamics confirms what one finds by Theorem 3.7. The rising and spinning bottom-heavy underwater vehicle 

in three-dimensional space with no axis of  symmetry is another example where Assumption 3~G may be used. 

4. Dynamics of an underwater vehicle 

In this section, we apply the theorems of Sections 3.2-3.4 to determine the stability of relative equilibria for the 

dynamics of  underwater vehicles. 

4.1. Review of  the Lie-Poisson form of  the dynamics 

In [ 19] it was shown that the dynamics of the underwater vehicle problem can be viewed as Lie-Poisson dynamics 

in the following way. We assume the underwater vehicle is a neutrally buoyant, rigid body submerged in an infinitely 
large volume of incompressible, inviscid, irrotational fluid which is at rest at infinity. The dynamics of the body- 

fluid system are described by Kirchhoff's equations, where we assume that the only external forces and torques 
acting on the system are due to buoyancy and gravity. Consider the group W, the semidirect product of SO(3) 
with two copies of It~ 3, i.e., W = S O ( 3 ) @ ( R  3 x R3), where we take the action of  SO(3) on ~3 x R 3 to be 
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R • (b, w) = (Rb, Rw) .  If we further let the action of  SE(3) = SO(3) @ R 3 on N3 be (R, b) • w = Rw then we 

also have that W = (SO (3) @ N3) @ R3. Group multiplication in W is defined for (R, b, w), (R', b', w') 6 W by 

(R, b, w) (R ' ,  b', w')  = (RR' ,  Rb I + b, Rw '  + w). 

Note that Iv* = ~o(3)* x R 3. x N3* is nine-dimensional. Because we allow for the possibility that the vehicle's center 

of buoyancy may not be coincident with its center of  gravity, the underwater vehicle dynamics has Lie-Poisson 

form on Iv*. The generic orbit in Iv* is six-dimensional; all of  the orbits are calculated explicitly in [ 19]. 

Let (/7, P, F )  be an element in Iv*. For the underwater vehicle,/7 and P correspond, respectively, to angular and 

linear components of  the impulse of the system (roughly, the momentum of the system less a term at infinity). The 

vector F describes the direction of gravity in body-fixed coordinates. The Poisson bracket on Iv* is 

{F, K}(/7,  P, F )  = V F T A ( / 7 ,  P, F ) V K ,  

where F and K are smooth functions on Iv* and the Poisson tensor A is given by 

A ( H ,  P, F )  = 0 . (4.1) 

0 

In this equation, ^ : R 3 --~ ~o(3) is the standard isomorphism of R 3 with the Lie algebra of  the rotation group and 

is defined by c~/3 = oe x/~ for oe,/~ c N3. Let s'2 be the angular velocity of the vehicle about the center of buoyancy 

and v be the linear velocity of  the center of  buoyancy, both vectors expressed with respect to body coordinates. 

Then, 

H = I£2 + Dr ,  P = My  + DTs'2 

or equivalently 

52 = A/7 + BTp, v = CP + B/7, 

where 

A = ( I - - D M - I D T )  -1, B = - C D T I  I = - - M - 1 D T A ,  C =  ( M - D T I - 1 D )  -1. 

I is the matrix that is the sum of the body inertia matrix plus the added inertia matrix associated with the potential 

flow model of the fluid. Similarly, M is the sum of the mass matrix for the body alone, i.e., the mass of the body 

m multiplied by the identity matrix, plus the added mass matrix associated with the fluid (note that M itself is not 

a multiple of the identity unless the body is symmetric). The matrix D accounts for cross terms. In the examples, 
we will consider the case in which the rigid body has three mutually perpendicular planes of symmetry, i.e., an 
ellipsoidal body, and with the appropriate choice of  body-fixed coordinate frame (i.e., putting the origin of the frame 

at the vehicle's center of  buoyancy and choosing the axes along the principal axes of  the displaced fluid), M and I 

are diagonal and D = m?G. Here, rG is the vector from the center of buoyancy to the center of gravity. 
With these definitions, the underwater vehicle dynamics has Lie-Poisson form on Iv* determined by the 

Hamiltonian 

h(H,  P, F)  = I (/TT A/7  + 2F/TBTp + p T c p  - 2 m g ( F  • r6)). (4.2) 

Let o) = (/7, P, F )  c Iv*. Then, the equations of  motion are given by 6)i = {wi, h} or, equivalently, 

d) = A(o))Vh(~o). 
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These equations of motion can be computed to be 

f l = H x ~ + P x v - m g F x r o ,  P = P x a"2, /~ = F x a'2. (4.3) 

A point o9 = (/7, P, F )  ¢ m* is generic if the coadjoint orbit through that point has maximal dimension 6. 

Equivalently, co is genetic if the Poisson tensor A has maximal rank 6 when evaluated at co. Considering the form 

(4.1) of A, o9 is generic if and only if P }1F (which implies P 56 0 and F' 56 0). For genetic points, the following 
are three independent Casimir functions: 

C I ( / / , P ,  F )  = P . F ,  C2(/7, P, F ) =  IIPII 2, 63(/7, P, F ) =  IIFIE 2. 

These are functions which Poisson commute with any function K on w*, i.e., {Ci, K} = 0. In particular, take K = h 

to see that Casimir functions are conserved quantities along the equations of motion. 

A point co = (/7, P, F )  c w* is nongeneric if P II F.  In the case that P and F are not both zero, then the rank 

of A(og) is four and the coadjoint orbit through co has dimension 4. Besides the three Casimirs defined above, two 

additional conserved quantities on the nongeneric coadjoint orbits are 

C 4 ( / 7  , P , / ' )  = / 7  - P, C5(/7, P, F )  = / 7 .  F. 

These conserved quantities are subcasimirs. If P = F = 0 with/7  56 0, then the rank of  A (co) is 2 and the coadjoint 

orbit through o9 has dimension 2. An additional subcasimir on this nongeneric coadjoint orbit is 

C6(/7 , P, F )  = 11/7112. 

The underwater vehicle in the case that the center of  buoyancy and the center of  gravity are coincident, i.e., 

rG = 0, was studied as a special case in [19]. For this case, consider the group SE(3),  i.e., the semidirect product of 

SO (3) with only one copy of R 3. The dynamics of the underwater vehicle with coincident centers has Lie-Poisson 

form on ~e(3)* (which is six-dimensional). The generic orbit in ~e(3)* is four-dimensional. Here F plays no role 

in the dynamics and (/7, P) describes an element in ee(3)*. The Poisson tensor on ~e(3) is given by 

f, 

The Hamiltonian describing the dynamics is 

h(H, P) = ½(HT A/7 + 2/TT BT p + p T c p )  (4.4) 

with B = D = 0 if the vehicle is ellipsoidal. The equations of  motion are 

H = / 7  x f 2 + P x  v, 1 5 = P x  ~ .  (4.5) 

All points (/7, P) c ee(3)* for which P 56 0 are generic. Two independent Casimirs are 

Cj (/7, P) = / 7  • P, C2(/7, P) = IIPII 2. 

This is the standard Lie-Poisson description of Kirchhoff's equations for a rigid body in a fluid with no external 
forces or torques, as can be found, for example, in [2]. In the case that P = 0, the point (H, 0) 6 _~e(3)* is nongeneric, 
the orbit through this point is two-dimensional and a subcasimir is C3 (H, P) = ]1/7 H 2. 
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4.2. Dynamics on the physical phase space 

147 

Using the semidirect product theory recalled earlier, one can view the Lie-Poisson dynamics described in the 

previous section as reduced dynamics starting from either of two places. 

First, one can start with W itself and consider the left invariant Hamiltonian on T* W whose value at the identity 

is given by (4.2). Then, the Lie-Poisson reduction theorem (see [26]) gives the reduced dynamics on the coadjoint 

orbits in to*. 

Second, one can start, as in [19], with the (more physical) group SE(3) as the starting configuration space, which 

represents the literal configurations of  the underwater vehicle and the same Lagrangian or Hamiltonian, but which 
now is only invariant under translations and rotations about the directions of  gravity. That is, the symmetry group 

is not the whole group of rotations and translations SE(3),  but rather the subgroup SE(2) x N. This breaking of 

symmetry is due to the noncoincidence of the center of gravity and the center of buoyancy, as explained in [ 19]. 

From this starting point, it is semidirect product reduction, Theorem 3.2, that gives the reduced dynamics on the 

coadjoint orbits in m*. 

In the case that the centers of buoyancy and gravity are coincident, the two starting points are the same, i.e., one 

starts with SE(3) and the left-invariant Hamiltonian on T*SE(3) given by (4.4). Since gravity plays no role, the 

symmetry group is SE(3).  The Lie-Poisson reduction theorem gives the reduced dynamics on the coadjoint orbits 

in ~e(3)*. 

4.3. Stability of generic momentum values 

In this section we apply the stability theorems (Theorems 3.3 and 3.5) to the generic equilibria of the underwater 

vehicle studied in [19]. The purpose is to show that for the same stability conditions derived in [19], the nature of  

stability is better than that predicted by the energy-Casimir method alone. Simulation results given below indicate 

that this extended stability is now the best we can expect. 

We note that in each of the cases studied below, our extension of  Patrick's result using reduction by stages is 

essential. That is, our examples fail to satisfy the conditions of Patrick's theorem, in particular, Assumption 1 

(used in Theorem 2.1) does not hold. This is a result of  the fact that for our examples, the symmetry group is not 

compact. 

4.3.1. Generic equilibria for a vehicle with coincident centers 

The first case we examine is the vehicle with coincident centers of buoyancy and gravity, which, as was shown 

in Section 4.1, has dynamics that are Lie-Poisson on ~e(3)*. Here the Poisson manifold is P = T*SE(3) and 

the symmetry group is S = SE(3).  Following the notation of Section 3.1, S = G @  V where G = SO(3) and 

V = N3. The Poisson-reduced space is P / S  = ~c(3)* and the Poisson-reduced Hamiltonian is h as given by (4.4). 

Let Ze E T*SE(3) be a relative equilibrium for the action of S and [[Ze]] ~ ~e(3)* the Poisson-reduced relative 
equilibrium. Following the notation of Section 3.2, [[ze]] = a = (#, a) where # c 5o(3)* and a E N3*. 

Consider the two-parameter family of equilibrium solutions 

= pO T # =  (0,0, H°)  T, a (0,0, 3) , (4.6) 

which corresponds to steady translation along and rotation about one of the principal axes of the body. As long as 
pO 7~ 0, this relative equilibrium is generic. Let the vehicle be ellipsoidal with inertia matrix I = diag(ll ,  12, 13) 

and mass matrix M = diag(ml, m2, m3). Further, suppose that the vehicle is symmetric about the axis of rotation, 
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i.e., 11 = 12 and ml = m2. Leonard [19] showed that Assumption 2GS is satisfied following the arguments of 
Proposition 3.4 if and only if 
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Fig. 4. The angular velocity (rad/s) and translational velocity (m/s) versus time (s) for the underwater vehicle of the simulation example. 

For our illustration we consider an ellipsoidal vehicle with semiaxis lengths Ii = 12 = 0.4 m and 13 = 0.75 m 

and with mass m = 500 kg so that the vehicle is approximately neutrally buoyant (density of  water is 1000 k g / m  3). 

Accordingly, the inertia and mass matrix parameters are computed to be 11 = 12 = 87 kg m 2, 13 = 32 kg m 2, 

ml = m2 = 840kg,  and m3 = 613kg.  The equilibrium momentum values are H 0 --  13£20 and P30 = m3v 0 

where we let equilibrium values of the velocities be S2 ° = 10 rad/s  and v ° = 1 m/s .  Using Theorem 4.1, it is 

straightforward to check that this is a stable equilibrium modulo drift in 2/3 and b. Let the initial conditions be 

$2(0) = (0.01, - 0 . 008 ,  10) T rad/s ,  v(0) = (0.009, 0.011, 1) T m/s ,  y(0)  = 0 rad  and b(0) = 0m.  The trajectory 

of the vehicle for these initial conditions is given in Figs. 4 and 5. Fig. 4 shows plots of £2 and v as a function of  

time. As expected there is no drift in velocity (and thus momentum). Fig. 5 shows plots of attitude parameters y and 

position b as a function of time. Note that the rotational parameters do not drift away from the equilibrium rotation 

axis. However, there is drift in the translational parameters, notably in b] and b2. 

4.3.2. Generic equilibria f o r  a vehicle with noncoincident centers 

The second case we examine is the vehicle with noncoincident centers and Lie-Poisson dynamics on to*. Following 

the notation of  Section 3.3, the phase space is Pmech = T* SE(3)  = T* G ---- T* (G (~) V), where G = S O  (3), V = 

~3 and (} = SE (3). The Poisson manifold P is P = T* W where W = S O (3) (~) (~3 × ~3) _-- (S O (3) (~) ~3) (~) ~3. 

The Poisson reduced space is P~ W = to* = ~o(3)* × •3, × ~3", and the Poisson-reduced Hamiltonian is h as 

given by (4.2). Let a2 c ~3", then Pmech is the reduction of P by ~3 at a2. Further, Ga2 = SE(2)  × R is the 

symmetry group for the dynamics on Pmech, and the reduction of Pmech by G a2 at values (/z, a l)l~a2 E ~o(3)* × ~3" 

is isomorphic to the coadjoint orbit through (/z, a] ,  a2) E vo*. Let Zemech E T*SE(3 )  be a relative equilibrium for 

the action of (~a2, Ze the corresponding equilibrium in T * W  and [[Ze]] = (/z, a l ,  a2) ~ to* the Poisson-reduced 
equilibrium. We let a = (a],  a2) E ~3" × 1i~3". 
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Fig. 5. The attitude (rad) and position (m) versus time (s) for the underwater vehicle of the simulation example. 

Let the vehicle be ellipsoidal with inertia matrix I = diag(ll ,  12, 13) and mass matrix M = diag(ml, m2, m3). 

Further, assume that rG = (0, 0,/)T, i.e., the center of gravity is located along the third principal axis a distance Ill 

from the center of  buoyancy (recall Fig. 1). Consider the one-parameter family of equilibrium solutions 

# = ( - m l P ° / m 2 ,  O, 0) T, al = (0, pO, 0)T, a2 =-- (0, 0, 1) T. (4.8) 

This corresponds to the body oriented so that the third principal axis is parallel to gravity with steady translation 

(but no spin) along one of the other principal axes (perpendicular to gravity). As long as pO ~ 0, this relative 

equilibrium is generic. In [19], the author showed for such a generic equilibrium that Assumption 2DSDP is satisfied 

if and only if 

The condition l > 0 requires that the vehicle be bottom heavy, i.e., with center of  gravity lower than center of  

buoyancy at the equilibrium. Recall that mi is inversely related to the length of  the ellipsoid's ith semiaxis li. Thus, 
if the axis of translation 12 is the shortest of three axes, then m2 > ml and m2 > m3, and conditions (4.9) are met 
as long as l > 0. If the axis of translation 12 is the intermediate axis and the axis parallel to gravity is the shortest 

axis, i.e., II > 12 > 13, then m3 > m2 > ml, and conditions (4.9) are met provided that I is positive and sufficiently 
large for a given translation. If the axis of  translation 12 is the longest axis, then conditions (4.9) are never met. By 
the energy-Casimir method, if (4.9) is met, then Zemech is stable in T*SE(3)  modulo SE(2) × E. 

Using the extended stability theorem(Theorem 3.5), we can say more about the stability of Zemech. 

Theorem 4.2. If  (4.9) is met, then Zemech as described by (4.8) is stable in T*SE(3)  modulo E3. 
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Proof Since G = SO(3) is compact, Assumption 1DSDP holds. Therefore, if (4.9) is met, then by Theorem 3.5, 

Zemech is stable in T*SE(3) modulo (Ga)Iza @ V. We compute 

Ga = {A C SO(3) I Aal = al ,  Aa2 = Aa2} = e, 

e the identity in SO(3).  Thus, (Ga)iz~ = e and so Zemech is stable in T*SE(3) modulo [~3. [] 

This is a stronger result than that given by the energy-Casimir method, since now the stability conclusion implies 

that there is no drift in rotational parameters. 

4.4. Stability of nongeneric momentum values 

In this section we apply the stability theorems of  Section 3.4 to nongeneric equilibria of the underwater vehi- 

cle. Nongeneric equilibria of  the underwater vehicle were discussed in [19], and conditions for instability were 

determined using linearization. However, conditions for nonlinear stability could not be fully determined using the 

energy-Casimir method alone. Here we make use of subcasimirs and the additional sufficient conditions derived in 

Section 3.4 to prove conditions for nonlinear stability of  the nongeneric equilibria. 
As was the case in Section 4.3, our extension of Patrick's result using reduction by stages is essential. This again 

is a result of the fact that for our examples, the symmetry group is not compact. 

4.4.1. Nongeneric equilibria for a vehicle with coincident centers 
The first case we examine is the vehicle with coincident centers of buoyancy and gravity and Lie-Poisson dynamics 

on ~e(3)*. The setup is the same as in Section 4.3.1 except that we consider the one-parameter family ofnongeneric 

equilibrium solutions 

/z = (0, 0, H°)  T, a = (0, 0, 0) T. (4.10) 

which corresponds to steady rotation about one of the principal axes of  the vehicle (and no translation). Further, to 

begin we do not assume that the axis of  rotation is an axis of  symmetry. 

Recall from Section 4.1 that the orbit through this equilibrium is two-dimensional and there are two Casimirs, 
H • P and 11P[[2, and one subcasimir [[H[] 2, where (H, P) c ~e(3)*. To satisfy Assumption 2GS, we show that there 

exists a function q5 - ~3 ._~ ~ such that 

h~ = ½(HTA/7 + p T c p ) +  q)( /7.  P, IlPll 2, IIHII 2) 

has a critical point at (H, P) = (#, a) and such that the second variation of hq~ evaluated at (/x, a) is definite. 

To do this, define 

O(H. P) '  0(IIPII2) ' 0([I/7112) 

When evaluated at the equilibrium the first derivative of h~ is zero if and only if at the equilibrium 

g5 = 0, 2~P t - 1 13" (4.11) 

~P' can be arbitrary at the equilibrium. 
The matrix of the second derivative of  h,~ at the equilibrium, where we make the substitutions from (4.11), is 
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1 1 

11 13 

0 

0 

0 

0 

0 

0 

1 1 

12 13 
0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

(/-/°)2qo t t  0 0 2( / - /°)2~ t 

l 
0 - -  4- 2q ~ 0 0 

ml 
1 

0 0 - -  4- 2q~ ~ 0 
m2 

1 
2(/7~')2~ t "  -- 0 0 - -  4- 2 ~ '  4- (/-/~,)2 q~ " "" 

m3 

where first and second partials of  q~ are evaluated at (#,  a).  For positive definiteness of this matrix, it is clearly 

necessary that 

1 1 1 1 

11 13 12 13 
- - - - - -  > 0 .  

It can also be seen to be sufficient if  we choose the equilibrium values of the partials of  q~ such that ¢,t~ > 0 and 

q~1 = qSt = ~ = 0. Similarly, for negative definiteness, it is necessary that 

1 1 1 1 

I1 13 12 13 
- - - - - -  < 0 .  

It is seen to be sufficient by choosing the equilibrium values of  the partials of q~ such that q~tt < 0, 2q~ / < 

m i n i = l , Z , 3 ( - I / m i )  and qSt = ~6 = 0. Thus, the second variation ofh,p at (# ,  a)  is definite if and only if 

{13 > I1 and 13 > 12} or {13 < Ii and /3 < 12}. (4.12) 

This condition is sufficient for leafwise stability of the pure rotation. Using linearization, one can show that the 

condition is also a necessary condition for stability (leaving aside the case of equality). The preceding condition 

is the same as that for stability of a free rigid body in space; however, the implications for the submerged rigid 

body are different in the following way. In both cases the rotation is stable (leafwise for the submerged body) if the 

moment of  inertia about the axis of rotation is either the largest or the smallest of  the three moments of  inertia. For 

the free rigid body in space, this corresponds to stability about the longest and shortest axes and instability about 

the intermediate axis. For the submerged rigid body, because the moments of  inertia include added inertia terms 

due to the presence of the fluid, the intermediate moment of inertia of  the body-fluid system can correspond to the 

long, short or the intermediate length axis. That is, depending upon the configuration of  the body, the unstable axis 

can be the long, short or intermediate axis. See [19] for background on added inertia. 

Proving stability of the pure rotation in the full phase space appears to be much more delicate (even than the 

nongeneric case of the rising bottom-heavy vehicle of Section 4.4.2). One can show that the space F has dimension 

greater than 1 and so we cannot use Theorem 3.6 or 3.7. One could possibly make use of  an argument like that given 

in Remark 1 following Theorem 3.6. Rather than pursue this here we show in the following the stability result when 

we assume that the vehicle is symmetric about the axis of  rotation, i.e., I1 = 12 and ml = m2. 

In this case with the additional symmetry, /73 is a conserved quantity. To satisfy Assumption 2GS, we consider 

the conserved function 

h~ = ½( /TTA/- /+  p T c p )  + ~ ( / - / •  P, IlPll 2) + ~b(/-/3), 

where ~ : ~2 ___+ R and ~b • R --~ R. Note that this function does not include subcasimirs. 
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A simple computation shows that the first derivative of  h~ is zero at the equilibrium if and only if 4 / =  -/7°/13 
and @' = 0 when evaluated at the equilibrium. Further, choosing the remaining partial derivatives of 4> and 

to be zero yields a (positive) definite second derivative of h~ at the equilibrium. Thus, Assumption 2GS is 
satisfied. Assumption 3NG is also satisfied since h~ is a dynamically invariant function (see Remark 2 following 

Assumption 3NG)- 

Theorem 4.3. Assuming that the axis of  rotation is an axis of symmetry, Ze as defined by (4.10) is stable in T* S E (3) 
modulo SE(2)  x R. 

Proof Since G = SO (3) is compact, Assumption 1GS holds. Since Assumptions 2GS and 3NG hold, by Theorem 3.6, 
Ze is stable in T*SE(3) modulo (Ga)u, (~) V. We compute 

Ga = {A ~ SO(3)  ] Aa = a} = SO(3) .  

Thus, ~,~ = ~o(3), so ~a E 8" = /Z. We compute 

(Ga)ua = {A C SO(3)  ] A#  = / z}  = S 1. 

Thus, Ze is stable in T*SE(3) modulo S 1 @ ~ 3  = SE(2)  × ~. [] 

4.4.2. Nongeneric equilibria for a vehicle with noncoincident centers 
The second case we examine is the vehicle with centers of  buoyancy and gravity that are noncoincident and 

Lie-Poisson dynamics on Iv*. The setup is the same as in Section 4.3.2 except that we consider the two-parameter 

family of  nongeneric equilibrium solutions 

/z = (0, 0, /-/O)T, al  = (0, 0, pO)T, a2 = (0, 0, 1) y. (4.13) 

This corresponds to the body oriented so that the third principal axis is parallel to gravity with the body rotating 
about and translating along this same axis, i.e., the body rises or falls and spins about the axis of gravity. Further, 
suppose that the vehicle is symmetric about the axis of rotation, i.e., Ii = I2 and ml = m2. Then 173 is a conserved 
quantity. 

Recall from Section 4.1 that the orbit through this equilibrium is four-dimensional and there are three Casimirs, 
P.  F ,  [[p[[2 and []F[I 2, and two subcasimirs H .  P and H .  F ,  where (H, P, F )  c Iv*. To satisfy Assumption 2DSDP, 
we need to show that there exist functions q) • ~5 _+ ~ and q) • ~ --+ R such that 

hq> = ½(/TTA/7 + 2/TTBTp q_T CP - 2mgl(F. e3)) + qO(p. F, IIPII 2, LIFII 2 , / 7 .  P , / 7 .  F )  + q5 (/73) 

has a critical point at (/7, P, F )  = (#,  a l ,  a2) and such that the second variation of h e  evaluated at (#,  al ,  a2) is 
definite. 

Define 

O(P. F ) '  O([IPII2) ' 0(11/'112) ' 0 ( /7 .  P ) '  O(H./ ' )"  

When evaluated at the equilibrium the first derivative of  h~ is zero if and only if at the equilibrium 

=_/7o + opo 
13 

(' ) , = _  ~33 + 2 ~ ,  pO ~a/70, 
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(1 ) 
2clg+=mgl--q~b/70 + ~ 3 3 + 2 q  5' (PO)Z +cbaI-lOpO. 

The equilibrium values of  q~', ¢,a and q~b can be arbitrary. 

A long calculation (done with the help of Mathematica) shows that with the appropriate choices of the second 

partials and the unrestricted first partials of  ¢',  the matrix of  the second derivative of h,p at the equilibrium is 

(positive) definite (i.e., Assumption 2DSDP holds) if and only if 

mgl > m3 rnz 

where 

ml 

m112 - m2l 2 

To minimize the right-hand side of  (4.14), choose 

~a  _ fi2H0 
2pO 

Then, (4.14) becomes 

Theorem 4.4. If  (4.15) is met, then Zemech as defined by (4.13) is stable in T*SE(3)  modulo SE(2) x ~. 

Proof Since G = SO(3) is compact, Assumption 1DSDP holds. Therefore, if (4.15) is met and Assumption 3NG 

holds, then by Corollary 3.8, Zemech is stable in T*SE(3)  modulo (Ga)#a ~) V. We compute 

Ga = {A E SO(3) ] Aal = al, Aa2 = a2} = S 1. 

and #a 6 -qa* = ~o(2)*. Since Ga is abelian, (Ga)ua = Ga = S 1. 

To complete the proof we check Assumption 3NG. First of  all, we compute the space F. The coadjoint action of 

W on vo* has the expression 

(R, b, w)(x ,  y, z) = (Rx + b × Ry + w × Rz, Ry,  Rz).  

In this case, the space E corresponds to the noncompact orbit through the nongeneric point (#,  a 1, a2) = (#, a 1, P°a 1 ) ,  

namely the space E of  vectors of the form ((b + P ° w )  x al ,  0, 0) for arbitrary vectors b and w. This space is two- 

dimensional. The corresponding space for nearby generic points (/z', a '  1 , a~), a '  l J~ a~, is E' ,  the space of vectors 
t ' 0, 0), which is three-dimensional. Thus, we can choose as F, the space of vec- of  the form (b × a 1 + w × a 2, 

tors of  the form (al, 0, 0). Next, we choose the function h + 4~ where ~b(H3) satisfies q5'(/7 °) = -17°/13 and 

d/l(H °) > -1 /13 .  This satisfies Assumption 3NG since at the equilibrium it has a critical point in the direction of F 
and its second derivative in that direction is (1/13) + 4)"(/7 °) which is positive. Thus, Zemech is stable in T*SE(3)  
modulo S 1(~)~3 = SE(2) × ~. [] 

The condition of Theorem 4.4 is also a necessary condition (leaving aside the case of equality), as follows from 

the results of Leonard [19]. 

Remarks. In the stability analysis of  the heavy top (see [23]) one can view the top as a system on T 'SO(3)  with 
S 1 symmetry (rotations about the axis of  gravity) and by the semidirect product theory, the reduction leads to 
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a Lie-Poisson system on ~e(3)*. When the top has an additional body axis of symmetry, one gets an additional 

conserved quantity that is used in the stability analysis on ~e(3)*. However, for the upright top, care is needed since 

the momentum of this state for the whole symmetry group S 1 x S 1 including the body symmetry, is not a regular 

value. A similar caution is needed in the underwater vehicle when it has an axis of symmetry. However, we do not 

include this extra symmetry in our basic setup and only use it as an aid in the stability analysis in the Lie-Poisson 

setting, so this point does not cause problems. 

Condition (4.15) says that both spin and low center of gravity serve to stabilize the equilibrium motion. The 
motion can be stabilized, whether or not the axis of rotation and translation is the short axis or the long axis, as long 

as the center of  gravity is sufficiently low and/or the angular velocity is sufficiently high. It is easier to stabilize 
the case in which the axis of motion is the short axis rather than the long axis. However, the motion of  a top-heavy 

body can be stabilized with fast enough spin even when the axis of motion is the long axis. 

We showed the last step of  the analysis of positive definiteness to make note of  the fact that only with the use of 

the subcasimirs it is possible to derive condition (4.15). Recall that q~a is the partial derivative of • with respect 

to the subcasimir/7 - P. If we had analyzed this case without this subcasimir, then ~a  would have been identically 

zero and the last term in (4.15) would be missing, i.e., the stabilizing effect of spin would not have been evident. 

In other words, to prove stability under the more restrictive condition that 

( 1 1 )(pO)2, (4.16) 
mgl > m3 m2 

we could use the simpler conserved function 

h~ = ½(/TTA/7 + 2/7TBp + p T c p  - 2mgl(F.  e3)) + ~ ( P . / - ' ,  IIPll 2, 11/"211) + q~(/73), 

which does not include the subcasimirs. At the nongeneric equilibrium, this function has a critical point as a function 

defined on all of to* and the second derivative is positive definite if condition (4.16) holds. Therefore, Assumption 

3NG follows trivially, as discussed in the remark that precedes Theorem 3.6, and stability follows. The transition 

from condition (4.16) to condition (4.15) corresponds to a passing of  imaginary eigenvalues of  the linearization of 

the dynamics at the equilibrium point as discussed below. 

This case reveals some interesting bifurcation phenomena including a Hamiltonian Hopf bifurcation and the 

passing of eigenvalues on the imaginary axis. To examine these, we look at the eigenvalues of  the linearization of 

the dynamics (4.3) at the equilibrium (4.13) as the equilibrium linear momentum pO is varied. The characteristic 

polynomial for the linearization at the equilibrium is 

_~_ -- ( ) 4  _~_ p )  2 .q_ q), 
13 ] ] 

)3 (~2 

where 

= (12 

q = 

+ (P30) 2 + (1 + (1 -- 5213) 2) \ 13 ] 
m3 

( (  + 1 1 mgl ~ (pO)2 _ (1  - a 2 1 3 )  
52 m2 m3 (eo)2] \ I3 ] ) 

There are three eigenvalues fixed at the origin and two eigenvalues fixed at :~(/7°/13)i. The remaining four eigen- 
values, the roots of the quartic polynomial factor, move as the parameter pO is varied. These eigenvalues are on 
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the imaginary axis as long as condition (4.15) is met. Suppose m3 < m2 (i.e., 13 > /2) and mgl > 0. As P30 is 
increased, the pair of eigenvalues above the real axis and the pair below each meet and then split off the imaginary 
axis. The point at which each pair of eigenvalues meets, i.e., the Hamiltonian Hopf bifurcation point, corresponds 
to the value of pO that makes condition (4.15) an equality. 

Before the Hamiltonian Hopf bifurcation occurs, i.e., while the eigenvalues are all on the imaginary axis, each 
of the eigenvalues fixed at t ( 1 7 ° / I 3 ) i  is passed by one of the moving eigenvalues. This passing (resonance) of 
eigenvalues occurs when pO is such that condition (4.16) holds with equality, i.e., 

mgl -- m3 m2 

at which point the quartic polynomial becomes 

X 4 + p X 2 + q  = X 2 + \ / 3  ] J X 2 + ( 1 - a 2 1 3 ) 2 \  /3 J • 

We note that the second derivative of the augmented Hamiltonian h45 at the equilibrium is positive definite throughout 
this passing of eigenvalues, while the second derivative of h~ loses definiteness at this passing. For a generic 
equilibrium one expects a change in definiteness for an eigenvalue passing and further that symmetry breaking 
will destroy stability. Here, because we are at a nongeneric point and there is a conserved quantity that does not 
lose definiteness, it is possible that symmetry breaking might not destroy stability. See [10,34,35] for discussions 

of the Hamiltonian Hopf bifurcation and [9] for a discussion of eigenvalue movement for the Hamiltonian Hopf 
bifurcation for Hamiltonian systems with symmetry. Stability analysis of the rising and spinning, bottom-heavy 

/ 
underwater vehicle without an axis of symmetry will make use of Assumption 3NG, since without the conserved 
quantity ¢ (H3), it may not be possible to prove Assumption 3NG. Further investigation of bifurcation phenomena 

is left for future work. 
The plot of Fig. 6, generated by MATLAB, illustrates the movement of the eigenvalues and the bifurcation and 

eigenvalue passing phenomena. For this illustration we let inertia and mass matrix parameters be Ii = 12 = 87 kg m 2, 
13 = 32kgm 2, ml = m2 = 840kg, m3 = 613kg and m = 500kg, g ---- 9 .gm/s  2, 1 = 0.1 m. The equilibrium 
angular momentum is H ° = 150 kg m2/s and pO is increased from 400 to 1400 kg m/s. The five eigenvalues that 

remain fixed are drawn as circles (note there are three eigenvalues at the origin). The crosses indicate the positions 
of the four remaining eigenvalues at the point when pO = 400 kg m/s. The dotted lines show the paths of these four 
eigenvalues as pO is increased to 1400 Kg m/s. The eigenvalue crossing occurs when pO ~ 1054 kg m/s, and the 

Hamiltonian Hopf bifurcation point corresponds to pO ~ 1124 kg m/s. 

5. Future directions 

As was described in [19] and references therein, one of the main goals of future work in this area is to make 
use of various control strategies to control the movement of underwater vehicles. The work of Leonard [ 18,20] and 
Leonard and Krishnaprasad [22] has already shown that control strategies using Lie group methods are useful for 
attitude and position control. We believe that the setup of the problem as we have described it will be useful for other 
endeavors along these lines. For example, the setup has already been used to derive feedback controls for stabilizing 
otherwise unstable equilibria in [21]. The technique is related to the work of Bloch et al. [5] (see also [7]). On the 
other hand, the techniques of saddle point control (see [6,8], and references therein) may be useful in open-loop 
control problems where one has limited actuation energy. Future work in investigating bifurcation phenomena will 
complement this effort. 



N.E. Leonard, J.E. Marsden/Physica D 105 (1997) 130-162 157 

c~ 

"~ 0 
m 
E 

4 

i i i i I i 

t -"dWIIIIDOOOO 0 • Q • • • ----- t OOO(" 

o 

6 
I I I I I I 

2 1.5 1 0.5 05. 1 1,5 2 

D o o o o o e  • • • • o o o o o o o a 0 ~  ! ' ~  

0 
Real 

Fig. 6. Hamiltonian Hopf bifurcation and eigenvalue passing for eigenvalues of linearization as pO is varied from 400 to 1400 kg m/s. 
The eigenvalues that remain fixed are identified by circles. The crosses identify the four other eigenvalues when pO = 400 kg m/s. The 
dotted lines and arrows show the paths of these four eigenvalues as pO is increased to 1400 kg m/s. 

Another direction that warrants further investigation is making more realistic models of  the fluid dynamics, 

especially in cases when vorticity is generated by the body-fluid interaction. Normal form theory as in [ 17] should 

be helpful in this regard. Including elastic and flexible properties of the body would also be interesting. 

Another item that requires additional attention in this situation is the effect of dissipation. For example, the results 

of  [3,4,11 ] (and references therein) would be interesting to study in the present context. Specifically, that theory says 

that at relative equilibria where the second variation is indefinite but the eigenvalues are on the imaginary axis, one 

gets a linear instability when small dissipation is added. This dissipation can be of  Rayleigh dissipation function 

type when viewed from the point of view of  the dynamics on the physical configuration space, namely T*SE(3) ,  

or can be of  Brockett double bracket type when viewed from the Lie-Poisson point of view. Obviously, the effects 

of  the addition of  dissipation is important in the underwater vehicle problem; since the dissipation is often small, 

the present point of view should be useful. 
The dynamic bifurcations that are observed in our analysis, especially the Hamiltonian Hopf bifurcation, need to 

be studied in more detail. In addition, the effects of symmetry breaking (such as the S l symmetry of  the vehicle in 
the case of the rising vehicle) needs additional attention. The techniques of Knobloch et al. [13] may prove useful in 
this regard. A complication in this regard is that, because of the nongeneric nature of the coadjoint orbit, the theory 

of eigenvalue movement (see [9]) requires additional work. All these aspects of the underwater vehicle problem 

should provide interesting additional motivations for the continued development of the basic theory. 
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In this paper we have used the method of reduction by stages to generalize the stability results of  Patrick, which 
allow nongeneric momentum values, to include the case in which the appropriate groups do not satisfy the required 

properness conditions. We have related the method to the energy-Casimir technique as an aid to check the hypotheses. 

We have applied this stability theory to underwater vehicle dynamics, treating both the cases of  relative equilibria 

whose momenta are generic as well as those that are not generic. We have found explicit criteria for stability and 

have observed phase drifts consistent with the theory. Moreover, for a rising, bottom-heavy vehicle, as the vertical 

momentum (impulse) is increased, a Hamiltonian Hopf bifurcation is identified. 

Appendix A. Reduction by stages 

This appendix is devoted to the proof of the reduction by stages theorem (3.1). We shall first check that the group 

Ga acts symplectically on the reduced space Po and that it has a momentum map Ja. As we shall see, the momentum 

map will be induced by a natural construction. 

To see this, first note that the group Go leaves the set J v  I (a)  invariant. Indeed, suppose that J v  (z) = a and that 

g c G leaves a invariant. By equivariance, we have J v  (gz)  = g J r  (z) = ga = a. Thus, Ga acts on the set J v  I (a). 
We denote this action by ~g  • j ~ l  (a) ~ j ~ l  (a). 

The action q/a induces an action q/a on the quotient space J v  I ( a ) / V  as follows. If we let elements of the quotient 

space J v  I ( a ) / V  he denoted by [z], regarded as equivalence classes, then we claim that g[z] = [gz] defines the 

induced action on the quotient space. We only need to show that it is well defined; indeed, suppose that v c V so 

that [z] = [vz]. Identifying v = (e, v) and g = (g, 0) in the semidirect product, we have 

[gvz] = [(g, 0)(e, v)z] = [(e, g v ) ( g ,  0)z] = [ (gv) (gz)]  = [gz]. 

Thus, the action ~a of Ga on the V-reduced space Po is well defined. The action of a group element g ~ Go will 

be denoted by q/g,a : Pa --+ Pa. We shall next show that this action is symplectic. 

Let Jr a : J v  I (a) ~ Pa denote the natural projection and ia " J v  1 (a) --> P be the inclusion. By construction, 

q/g.a o 7ra = 7ra o q/g and q/g Q ia = ia o q/g, where q/g: P -+ P denotes the action of g 6 G. Recall also from the 

standard symplectic reduction theorem that ia*£2 = 7r~* ~2a (~2 is the symplectic form on P and ~2a is the symplectic 

form on Pa). Therefore, 

:r~q/g, aF2a = (q/g)*Jr*F2a = (q/g)*ia*F2 = ia*q/g*~ = i * ~  : 7r*~2a. 

Since Jra is a surjective submersion, we may conclude that 

q/;,a ff2a ~-- ~'~a. 

Thus, we have a symplectic action of Ga on Pa. 

To show that this resulting action of Ga on Pa has a momentum map, we first show that the momentum map of 
the G action restricted to .qa, namely J s  projected to .%* induces a well-defined map of Pa to .q*. First of all, we 
restrict J s  to the set J v  I (a) and project it to .q*. We claim that this map drops to the quotient space. To check this, 
note that for z 6 J v  1 (a), and ~ ~ .qa, equivariance gives us 

( J s ( v z ) ,  ~) = ( v J s ( z ) ,  ~) = ((e, v ) J s ( z ) ,  ~) = (J s ( z ) ,  (e, U) -1 (~, 0)). 

Here, the symbol (e, v)-1 (~, 0) means the adjoint action of the group element (e, v)-1 = (e, - v )  on the Lie algebra 
element (~, 0). Thus, (e, v) -1 (~, 0) = (~, ~v), and so, continuing the above calculation, and using the fact that 

J v  (z) = a, we get 



N.E. Leonard, J.E. Marsden/Physica D 105 (1997) 130-162 159 

( J s ( v z ) ,  ~) = ( J s ( z ) ,  (e, v ) - l ( ~ ,  0)) = ( J s ( z ) ,  (~, ~v))  

= (JG(Z), ~) + ( J r ( z ) ,  ~v)  = (JG(Z), ~) - -  (~a, v) = (JG(z) ,  ~ ) .  

In this calculation, the term (~a, v) is zero since ~ ~ .qa. Thus, we have shown that the expression 

<Ja(Iz]), ¢) : <Jc(z),  ~) 

for ~ c .qa is well defined. This expression may be written as 

Ja o 7r a : t a o JG o ia, 

where ta " ~qa ~ ~ is the inclusion map and ta* • ~* ~ .q* is its dual. 

To show that the m a p J a  is the momentum map, we first note that for all ~ ~ ~a, the vector fields ~ p l ( J a l ( a ) )  

and ~p, are Zra-related. Thus, 

zr* (i~e l-2a) : i~ei S S-2 : t a (i~eI2 ) : i* (d (JG, ~ ) ) : 7r a (d (Ja, ~ ) ) . 

Again, since 7r a is a surjective submersion, we may conclude that 

and hence Ja is the momentum map for the G a  action on Pa. 

Equivariance of Ja  follows from that for J 6 ,  by a diagram chasing argument as above, using the relation Ja o Zra : 

t*~ o JG o ia and the relations between the actions of  G on P ,  J v  I (a) and on Pa. 

Now we turn to the proof  of  the reduction by stages theorem. Start with the natural inclusion map 

j : J s l ( c  r) --+ J v l ( a ) ,  

which makes sense since the second component of  ~r is a. Composing this map with Zra, the projection of J v 1 ( a )  

to Pa, we get the map 

rra o j  " J s l ( o  ") --+ Pa. 

This map takes values in JS -1 (#a)  because of the relation J~ o tea = t a o JG o ia and /z  a = ta*(# ). Thus, we can 

regard it as a map 

7ra o j : J s l ( o  -) ~ J a l  (/.Za). 

Letting ~r ---- (# ,  a) ,  there is a group homomorphism 7t : S~ --+ (Ga)tz,  defined by projection onto the first factor. 

The first component g of (g, v) E S~ lies in ( G a ) u a  because 

(lz, a) = (g, v)(Iz ,  a) = ( g #  + p~ (ga) ,  ga)  

implies that, from the second component,  that g 6 Ga and from the first component and the identity t*p*a = 0 that 

g also leaves/Za invariant. 

The map 7r~ o j is equivariant with respect to the action of S~ on the domain and the action of  (G~)ua on the 
range via the homomorphism ~p. Thus, Jr a o j induces a map 

[Yra o j ]  : Po ---+ (Pa)u~" 

Diagram chasing, as above, shows that this map is symplectic. 
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We will show that this map is a diffeomorphism by finding an inverse. We begin with the construction of  a map 

~b : J a l ( / z a )  ---+ Pa. 

To do this, we first choose an equivalence class [P]a 6 J a  1 (#a) C Pa for p 6 J v  I (a). The equivalence relation is 

that associated with the map 7g a ; that is, with the action of  V. For each such point, we consider a new point vp and 

will choose v such that vp 6 J s  1 (a) .  For this to hold, we must have 

(/z, a)  = Js (vp) .  

By equivariance, the right-hand side equals 

vJs (p )  =s (e, v ) ( J G ( p ) , J v  (p) ) = (e, v) (JG(p) ,  a) = (JG(P) + p * (a), a). 

Thus, we require that 

# = JG (P) + Pv (a). 

This follows from the next lemma. 

Lemma A.1. Denoting the annihilator of ga by .qo, we have 

go a = {p*a I v  ~ g}, 

Proof The identity we showed above, namely taPva* * = 0, shows that 

.qo ,a D { p ' a i r  C V}, 

Now we use the following elementary fact from linear algebra. Let E and F be vector spaces, and F0 C F be a 

subspace. Let T : E --+ F* be a linear map whose range lies in the annihilator F~ of F0 and that every element 

f c F that annihilates the range of  T is in F0. Then T maps onto F~. (We are phrasing things this way so that 

the basic framework will also apply in the infinite-dimensional case, with the understanding that at this point one 

would invoke Fredholm type alternative arguments. In the finite-dimensional case, the result may be proved by a 

dimension count.) 

In our case, we choose E = V, F = g, F0 = g a ,  and we let T • V --+ g* be defined by T(v)  = p~(a). To verify 

the hypothesis of this linear algebra fact, recall that we have already shown that the range of T lies in the annihilator 

of ga. Let ~ c .q annihilate the range of T. Thus, for all v 6 V, 

0 * = (~, Pva) = (Pv~, a) = (~v, a) = - ( v ,  ~a) 

and so ~ 6 ga as required. Thus, the lemma is proved. [] 

We now apply Lemma A. 1 to /z  - Ja  (p), which lies in the annihilator of  ~a because ta* (Jo (p)) = #a. Thus, by 

Lemma A.1, there is a v such that # - - JG(P)  = p~a. 
The above argument shows how to construct v so that vp c J s  1 (a). We continue with the definition of the map 

~b by mapping vp to [vp]~, its Sa-equivalence class in P,r. 

To show that the map 4' so constructed is well defined, we replace p by another representative up of the class [P]a ; 
here u is an arbitrary member of V. Then choose vj so thatJs(vl  up) = a. Now we must show that [vp]~ = [Vl up]~. 

In other words, we must show that there is a group element (g, w) c S,~ such that (g, w)(e,  v )p  = (e, vl)(e,  u)p.  

This will hold if we can show that (g, w) :=  (e, v~)(e, u)(e, v) -~ E Sc~. However, by construction, Js (vp )  = a = 
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Js (v lup) ;  in other  words,  we have ~ = (/~, a)  = (e, v)Js(p)  = (e, vt)(e, u)Js(p) .  Thus, by isolating Js (p) ,  we 

get  (e, v ) - l a  = (e, u) - l ( e ,  Vl)-1~ and so our (g, w) satisfies the required condit ion.  Thus, our map q~ is well  

defined. 

Next  we must  show that the map 4, is invariant under (Ga)~za. Thus, let [P]a 6 J a  I (#a )  and let go ~ (Ga)~ .  

Let  v be chosen so that vp c J s l ( ~ )  and let u be chosen so that ugop c J s l ( a ) .  We must  show that [vp]o = 
[ugop]o. In other  words, we  must find a (g, w) 6 So such that (g, w)(e, v)p = (e, u)(go, O)p. This will hold if  

we can show that (g, w) : =  (e, u)(go, 0)(e,  v) -1 c So. But we know that a = Js (vp)  = Js(ugop)  or, in other  

words,  by equivariance,  a = (e, v)Js(p)  = (e, u)(go, O)Js (p). By isolating Js (p) ,  this impl ies  that (e, v ) - I a  = 

(go, 0 ) - l ( e ,  u) - l ~  which means  that our (g, w) is indeed in So. Hence  4~ is invariant, and so gives a wel l -def ined 

map 

[~] : (Pa)tta ~ Po. 

Chasing the definit ions shows that [~] is the inverse of  the map [zrv o j ] .  Thus, both maps are symplectic diffeo- 

morphisms.  Thus,  the reduct ion by stages theorem is proved.  
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