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COOPERATIVE LEARNING IN MULTIAGENT SYSTEMS FROM
INTERMITTENT MEASUREMENTS∗

NAOMI EHRICH LEONARD† AND ALEX OLSHEVSKY‡

Abstract. Motivated by the problem of tracking a direction in a decentralized way, we consider
the general problem of cooperative learning in multiagent systems with time-varying connectivity
and intermittent measurements. We propose a distributed learning protocol capable of learning an
unknown vector µ from noisy measurements made independently by autonomous nodes. Our protocol
is completely distributed and able to cope with the time-varying, unpredictable, and noisy nature of
interagent communication, and intermittent noisy measurements of µ. Our main result bounds the
learning speed of our protocol in terms of the size and combinatorial features of the (time-varying)
networks connecting the nodes.
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1. Introduction. Widespread deployment of mobile sensors is expected to revo-
lutionize our ability to monitor and control physical environments. However, for these
networks to reach their full range of applicability they must be capable of operating in
uncertain and unstructured environments. Realizing the full potential of networked
sensor systems will require the development of protocols that are fully distributed and
adaptive in the face of persistent faults and time-varying, unpredictable environments.

Our goal in this paper is to initiate the study of cooperative multiagent learning
by distributed networks operating in unknown and changing environments, subject
to faults and failures of communication links. While our focus here is on the basic
problem of learning an unknown vector, we hope to contribute to the development
of a broad theory of cooperative, distributed learning in such environments, with the
ultimate aim of designing sensor network protocols capable of adaptability.

We will study a simple, local protocol for learning a vector from intermittent
measurements and evaluate its performance in terms of the number of nodes and the
(time-varying) network structure. Our direct motivation is the problem of tracking
a direction from chemical gradients. A network of mobile sensors needs to move in
a direction μ (understood as a vector on the unit circle), which none of the sensors
initially know; however, intermittently, some sensors are able to obtain a sample of μ.
The sensors can observe the velocity of neighboring sensors but, as the sensors move,
the set of neighbors of each sensor changes. The challenge is to design a protocol by
means of which the sensors can adapt their velocities based on the measurements of μ
and observations of the velocities of neighboring sensors so that every node’s velocity
converges to μ as fast as possible. This challenge is further complicated by the fact
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that all estimates of μ as well as all observations of the velocities of neighbors are
assumed to be noisy.

We will consider a natural generalization in the problem, wherein we abandon
the constraint that μ lies on the unit circle and instead consider the problem of
learning an arbitrary vector μ by a network of mobile nodes subject to time-varying
(and unpredictable) interagent connectivity, and intermittent, noisy measurements.
We will be interested in the speed at which local, distributed protocols are able to
drive every node’s estimate of μ to the correct value. We will be especially concerned
with identifying the salient features of network topology that result in good (or poor)
performance.

1.1. Cooperative multiagent learning. We begin by formally stating the
problem. We consider n autonomous nodes engaged in the task of learning a vector
μ ∈ R

l. At each time t = 0, 1, 2, . . . we denote by G(t) = (V (t), E(t)) the graph of
interagent communications at time t: two nodes are connected by an edge in G(t)
if and only if they are able to exchange messages at time t. Note that by definition
the graph G(t) is undirected. If (i, j) ∈ G(t) then we will say that i and j are
neighbors at time t. We will adopt the convention that G(t) contains no self-loops.
We will assume the graphs G(t) satisfy a standard condition of uniform connectivity
over a long-enough time scale: namely, there exists some constant positive integer B
(unknown to any of the nodes) such that the graph sequence G(t) is B-connected, i.e.,

the graphs ({1, . . . , n},⋃(k+1)B
kB+1 E(t)) are connected for each integer k ≥ 0. Intuitively,

the uniform connectivity condition means that once we take all the edges that have
appeared between times kB and (k + 1)B, the graph is connected.

Each node maintains an estimate of μ; we will denote the estimate of node i at
time t by vi(t). At time t, node i can update vi(t) as a function of the noise-corrupted
estimates vj(t) of its neighbors. We will use oij(t) to denote the noise-corrupted
estimate of the offset vj(t)− vi(t) available to neighbor i at time t:

oij(t) = vj(t)− vi(t) + wij(t).

Here wij(t) is a zero-mean random vector every entry of which has variance (σ′)2, and
all wij(t) are assumed to be independent of each other, as well as all other random
variables in the problem (which we will define shortly). These updates may be the
result of a wireless message exchange or may come about as a result of sensing by each
node. Physically, each node is usually able to sense (with noise) the relative difference
vj(t) − vi(t), for example, if the vi(t) represent velocities and measurements by the
agents are made in their frame of reference. Alternatively, it may be that nodes are
able to measure the absolute quantities vj(t), vi(t) and then wij(t) is the sum of the
noises in these two measurements.

Occasionally, some nodes have access to a noisy measurement

μi(t) = μ+ wi(t),

where wi(t) is a zero-mean random vector every entry of which has variance σ2; we
assume all vectors wi(t) are independent of each other and of all wij(t). In this case,
node i incorporates this measurement into its updated estimate vi(t + 1). We will
refer to a time t when at least one node has a measurement as a measurement time.
For the rest of the paper, we will be making an assumption of uniform measurement
speed, namely, that fewer than T steps pass between successive measurement times;
more precisely, letting tk be the times when at least one node makes a measurement,
we will assume that t1 = 1 and |tk+1 − tk| < T for all positive integers k.
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It is useful to think of this formalization in terms of our motivating scenario, which
is a collection of nodes—vehicles, UAVs, mobile sensors, or underwater gliders—which
need to learn and follow a direction. Updated information about the direction arrives
from time to time as one or more of the nodes takes measurements, and the nodes
need a protocol by which they update their velocities vi(t) based on the measurements
and observations of the velocities of neighboring nodes.

This formalization also describes the scenario in which a moving group of animals
must all learn which way to go based on intermittent samples of a preferred direction
and social interactions with near neighbors. An example is collective migration where
high costs associated with obtained measurements of the migration route suggest that
the majority of individuals rely on the more accessible observations of the relative
motion of their near neighbors when they update their own velocities [24].

1.2. Our results. We now describe the protocol which we analyze for the re-
mainder of this paper. If at time t node i does not have a measurement of μ, it nudges
its velocity in the direction of its neighbors:

(1.1) vi(t+ 1) = vi(t) +
Δ(t)

4

∑
j∈Ni(t)

oij(t)

max(di(t), dj(t))
,

where Ni(t) is the set of neighbors of node i at time t, di(t) is the cardinality of Ni(t),
and Δ(t) is a step size which we will specify later.

On the other hand, if node i does have a measurement μi(t), it updates as

(1.2) vi(t+ 1) = vi(t) +
Δ(t)

4
(μi(t)− vi(t)) +

Δ(t)

4

∑
j∈Ni(t)

oij(t)

max(di(t), dj(t))
.

Intuitively, each node seeks to align its estimate vi(t) with both the measure-
ments it takes and estimates of neighboring nodes. As nodes align with one another,
information from each measurement slowly propagates throughout the system.

Our protocol is motivated by a number of recent advances within the literature on
multiagent consensus. On the one hand, the weights we accord to neighboring nodes
are based on Metropolis weights (first introduced within the context of multiagent
control in [11]) and are chosen because they lead to a tractable Lyapunov analysis as
in [44]. On the other hand, we introduce a step size Δ(t) which we will later choose
to decay to zero with t at an appropriate speed by analogy with the recent work on
multiagent optimization [45, 58, 63].

The use of a step size Δ(t) is crucial for the system to be able to successfully
learn the unknown vector μ with this scheme. Intuitively, as t gets large, the nodes
should avoid overreacting by changing their estimates in response to every new noisy
sample. Rather, the influence of every new sample on the estimates v1(t), . . . , vn(t)
should decay with t: the more information the nodes have collected in the past, the
less they should be inclined to revise their estimates in response to a new sample.
This is accomplished by ensuring that the influence of each successive new sample
decays with the step size Δ(t).

We note that our protocol is also motivated by models used to analyze collective
decision making and collective motion in animal groups [22, 36]. Our time varying step
size rule is similar to models of context-dependent interaction in which individuals
reduce their reliance on social cues when they are progressing towards their target
[60].
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We now proceed to set the background for our main result, which bounds the rate
at which the estimates vi(t) converge to μ. We first state a proposition which assures
us that the estimates vi(t) do indeed converge to μ almost surely.

Proposition 1.1. If the step size Δ(t) is nonnegative, nonincreasing, and sat-
isfies
∞∑
t=1

Δ(t) = +∞,
∞∑
t=1

Δ2(t) < ∞, sup
t≥1

Δ(t)

Δ(t+ c)
< ∞ for any integer c,

then for any initial values v1(0), . . . , vn(0), we have that with probability 1

lim
t→∞ vi(t) = μ for all i.

We remark that this proposition may be viewed as a generalization of earlier
results on leader following and learning, which achieved similar conclusions either
without the assumptions of noise, or on fixed graphs, or with the assumption of a
fixed leader (see [26, 46, 41, 43, 2, 10, 33] as well as the related [25, 15]). Our protocol
is very much in the spirit of this earlier literature. All the previous protocols (as well
as ours) may be thought of as consensus protocols driven by inputs, and we note there
are a number of other possible variations on this theme which can accomplish the task
of learning the unknown vector μ.

Our main result in this paper is a strengthened version of Proposition 1.1 which
provides quantitative bounds on the rate at which convergence to μ takes place. We
are particularly interested in the scaling of the convergence time with the number of
nodes and with the combinatorics of the interconnection graphs G(t). We will adopt
the natural measure of how far we are from convergence, namely, the sum of the
squared distances from the final limit:

Z(t) =

n∑
i=1

||vi(t)− μ||22.

We will refer to Z(t) as the variance at time t.
Before we state our main theorem, we introduce some notation. First, we define

the notion of the very lazy Metropolis walk on an undirected graph: this is the random
walk which moves from i to j with probability 1/(4max(d(i), d(j))) whenever i and j
are neighbors. Moreover, given a random walk on a graph, the hitting time from i to
j is defined to be the expected time until the walk visits j starting from i. We will use
dmax to refer to the largest degree of any node in the sequence G(t) and M to refer to
the largest number of nodes that have a measurement at any one time; clearly both
dmax and M are at most n. Finally, �x� denotes the smallest integer which is at least
x, and recall that l is the dimension of μ and all vi(t). With this notation in place,
we now state our main result.

Theorem 1.2. Let the step size be Δ(t) = 1/t1−ε for some ε ∈ (0, 1). Suppose
each of the graphs G(t) is connected and let H be the largest hitting time from any
node to any node in a very lazy Metropolis walk on any of the graphs G(t). If t satisfies
the lower bound

(1.3) t ≥ 2T

[
288TH

ε
ln

(
96TH

ε

)]1/ε
,

then we have the following decay bound on the expected variance:

(1.4) E[Z(t) | v(1)] ≤ 39HT l
Mσ2 + nT (σ′)2

(t/T − 1)1−ε
ln t+ Z(1)e−

(t/T−1)ε−2
24HTε .
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In the general case when each G(t) is not necessarily connected but the sequence
G(t) is B-connected, we have that if t satisfies the lower bound

t ≥ 2max(T, 2B)

[
384n2dmax (1 + max(T, 2B))

ε
ln

(
128n2dmax (1 + max(T, 2B))

ε

)]1/ε
then we have the following decay bound on the expected variance:

(1.5)
E[Z(t) | v(1)] ≤ 51n2dmax(1 + max(T, 2B))2l

Mσ2 + n(σ′)2

(t/max(t, B))
1−ε ln t

+ Z(1)e
− (t/ max(T,2B))ε−2

32n2dmax(1+max(T,2B))ε .

Our theorem provides a quantitative bound on the convergence time of the re-
peated alignment process of (1.1) and (1.2). We believe this is the first time a conver-
gence time result has been demonstrated in the setting of time-varying (not necessarily
connected) graphs, intermittent measurements by possibly different nodes, and noisy
communications among nodes. The convergence time expressions are somewhat un-
wieldy, and we pause now to discuss some of their features.

First, observe that the convergence times are a sum of two terms: the first which
decays with t as O(ln t/t1−ε) and the second which decays as O(e−c·t1−ε

) (here O-
notation hides all terms that do not depend on t). In the limit of large t, the second
will be negligible and we may focus our attention solely on the first. Thus our finding
is that it is possible to achieve a nearly linear decay with time by picking a step size
1/t1−ε with ε close to zero.

Moreover, examining (1.5), we find that for every choice of ε ∈ (0, 1), the scal-
ing with the number of nodes n is polynomial. Moreover, in analogy to some recent
work on consensus [44], better convergence time bounds are available when the largest
degree of any node is small. This is somewhat counterintuitive since higher degrees
are associated with improved connectivity. A plausible intuitive explanation for this
mathematical phenomenon is that low degrees ensure that the influence of new mea-
surements on nodes does not get repeatedly diluted in the update process.

Furthermore, while it is possible to obtain a nearly linear decay with the number
of iterations t as we just noted, such a choice blows up the bound on the transient
period before the asymptotic decay bound kicks in. Every choice of ε then provides
a trade-off between the transient size and the asymptotic rate of decay. This is to
be contrasted with the usual situation in distributed optimization (see, e.g., [52, 58])
where a specific choice of step size usually results in the best bounds.

Finally, in the case when all graphs are connected, the effect of network topol-
ogy on the convergence time comes through the maximum hitting time H in all the
individual graphs G(t). There are a variety of results on hitting times for various
graphs which may be plugged into Theorem 1.2 to obtain precise topology-dependent
estimates. We first mention the general result that H = O(n2) for the Metropolis
chain on an arbitrary connected graph from [47]. On a variety of reasonably con-
nected graphs, hitting times are considerably smaller. A recent preprint [62] shows
that for many graphs, hitting times are proportional to the inverse degrees. In a
two-dimensional (2D) or three-dimensional grid, we have that H = Õ(n) [18], where

the notation Õ(f(n)) is the same as ordinary O-notation with the exception of hiding
multiplicative factors which are polynomials in logn.

We illustrate the convergence times of Theorem 1.2 with a concrete example.
Suppose we have a collection of nodes interconnected in (possibly time-varying) 2D



6 NAOMI EHRICH LEONARD AND ALEX OLSHEVSKY

grids with a single (possibly different) node sampling at every time. We are interested
in how the time until E[Z(t) | v(1)] falls below δ, scales with the number of nodes n
as well as with δ. Let us assume that the dimension l of the vector we are learning
as well as the noise variance σ2 are constants independent of the number of nodes.
Choosing a step size Δ(t) = 1/

√
t, we have that Theorem 1.2 implies that variance

E[Z(t) | Z(0)] will fall below δ after Õ(n2/δ2) steps of the protocol. The exact bound,
with all the constants, may be obtained from (1.4) by plugging in the hitting time of
the 2D grid [18]. Moreover, the transient period until this exact bound applies (from

(1.3)) has length Õ(n2). We can obtain a better asymptotic decay by picking a more
slowly decaying step size, at the expense of lenghtening the transient period.

1.3. Related work. We believe that our paper is the first to derive rigorous con-
vergence time results for the problem of cooperative multiagent learning by a network
subject to unpredictable communication disruptions and intermittent measurements.
The key features of our model are (1) its cooperative nature (many nodes working
together), (2) its reliance only on distributed and local observations, (3) the incorpo-
ration of time-varying communication restrictions, (4) noisy measurements and noisy
communication.

Naturally, our work is not the first attempt to fuse learning algorithms with
distributed control or multiagent settings. Indeed, the study of learning in games is
a classic subject which has attracted considerable attention within the last couple of
decades due in part to its applications to multiagent systems. We refer the reader
to the recent papers [3, 8, 9, 20, 19, 12, 23, 42, 1, 40, 27, 28] as well as the classic
works [37, 21] which study multiagent learning in a game-theoretic context. Moreover,
the related problem of distributed reinforcement learning has attracted some recent
attention; we refer the reader to [37, 59, 53]. We mention especially the recent surveys
[57, 50]. Moreover, we note that much of the recent literature in distributed robotics
has focused on distributed algorithms robust to faults and communication link failures.
We refer the reader to the representative papers [5, 39].

Our work here is very much in the spirit of the recent literature on distributed
filtering [48, 49, 55, 4, 56, 16, 38, 17, 32, 34, 54] and especially [14]. These works
consider the problem of tracking a time varying signal from local measurements by
each node, which are then repeatedly combined through a consensus-like iteration.
The above-referenced papers consider a variety of schemes to this effect and obtain
bounds on their performance, usually stated in terms of solutions to certain Lyapunov
equations, or in terms of eigenvalues of certain matrices on fixed graphs.

Our work is most closely related to a number of recent papers on distributed
detection [32, 29, 6, 7, 34, 33, 30, 31] which seek to evaluate protocols for networked
cooperative hypothesis testing and related problems. Like the previously mentioned
work on distributed filtering, these papers use the idea of local iterations which are
combined through a distributed consensus update, termed “consensus plus innova-
tions”; a similar idea is called “diffusion adaptation” in [54]. This literature clarified
a number of distinct phenomena in cooperative filtering and estimation; some of
the contributions include working out tight bounds on error exponents for choosing
the right hypothesis and other performance measures for a variety of settings (e.g.,
[29, 6, 7]), as well as establishing a number of fundamental limits for distributed
parameter estimation [33].

In this work, we consider the related (and often simpler) question of learning a
static unknown vector. However, we derive results which are considerably stronger
compared to what is available in the previous literature, obtaining convergence rates



MULTIAGENT LEARNING FROM INTERMITTENT MEASURES 7

in settings when the network is time varying, measurements are intermittent, and
communication is noisy. Most importantly, we are able to explicitly bound the speed
of convergence to the unknown vector μ in these unpredictable settings in terms of
network size and the combinatorial features (i.e., hitting times) of the networks.

1.4. Outline. We now outline the remainder of the paper. Section 2, which
comprises most of our paper, contains the proof of Proposition 1.1 as well as the
main result, Theorem 1.2. The proof is broken up into several distinct pieces since
some steps are essentially lengthy exercises in analysis. We begin in section 2.2 which
contains some basic facts about symmetric substochastic matrices which will be useful.
The following section 2.3 is devoted solely to analyzing a particular inequality. We
will later show that the expected variance satisfies this inequality and apply the decay
bounds we derived in that section. We then begin analyzing properties of our protocol
in section 2.4, before finally proving Proposition 1.1 and Theorem 1.2 in section 2.5.
Finally, section 3 contains some simulations of our protocol and section 4 concludes
with a summary of our results and a list of several open problems.

2. Proof of the main result. The purpose of this section is to prove The-
orem 1.2; we prove Proposition 1.1 along the way. We note that the first several
subsections contain some basic results which we will have occasion to use later; it is
only in section 2.5 that we begin directly proving Theorem 1.2. We begin with some
preliminary definitions.

2.1. Definitions. Given a nonnegative matrix A ∈ R
n×n, we will use G(A)

to denote the graph whose edges correspond to the positive entries of A in the fol-
lowing way: G(A) is the directed graph on the vertices {1, 2, . . . , n} with edge set
{(i, j) | aji > 0}. Note that if A is symmetric then the graph G(A) will be undi-
rected. We will use the standard convention of ei to mean the ith basis column vector
and 1 to mean the all-ones vector. Finally, we will use ri(A) to denote the row sum
of the ith row of A2 and R(A) = diag(r1(A), . . . , rn(A)). When the argument matrix
A is clear from context, we will simply write ri and R for ri(A), R(A).

2.2. A few preliminary lemmas. In this subsection we prove a few lemmas
which we will find useful in the proofs of our main theorem. Our first lemma gives a
decomposition of a symmetric matrix and its immediate corollary provides a way to
bound the change in norm arising from multiplication by a symmetric matrix. Similar
statements were proved in [11], [44], and [61].

Lemma 2.1. For any symmetric matrix A,

A2 = R−
∑
k<l

[A2]kl(ek − el)(ek − el)
T .

Proof. Observe that each term (ek − el)(ek − el)
T in the sum on the right-hand

side has row sums of zero, and consequently both sides of the above equation have
identical row sums. Moreover, both sides of the above equation are symmetric. This
implies it suffices to prove that all the (i, j)-entries of both sides with i < j are the
same. But on both sides, the (i, j)th element when i < j is [A2]ij .

This lemma may be used to bound how much the norm of a vector changes after
multiplication by a symmetric matrix.

Corollary 2.2. For any symmetric matrix A,

||Ax||22 = ||x||22 −
n∑

j=1

(1− rj)x
2
j−
∑
k<l

[A2]kl(xk − xl)
2.
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Proof. By Lemma 2.1,

||Ax||22 = xTA2x

= xTRx−
∑
k<l

[A2]klx
T (ek − el)(ek − ek)

Tx

=

n∑
j=1

rjx
2
j −

∑
k<l

[A2]kl(xk − xl)
2.

Thus the decrease in squared norm from x to Ax is

||x||22 − ||Ax||22 =

n∑
j=1

(1− rj)x
2
j +

∑
k<l

[A2]kl(xk − xl)
2.

We now introduce a measure of graph connectivity which we call the sieve constant
of a graph, defined as follows. For a nonnegative, stochastic matrix A ∈ R

n×n, the
sieve constant κ(A) is defined as

κ(A) = min
m=1,...,n

min
||x||2=1

x2
m +

∑
k 	=l

akl(xk − xl)
2.

For an undirected graph G = (V,E), the sieve constant κ(G) denotes the sieve con-
stant of the Metropolis matrix, which is the stochastic matrix with

aij =

{
1

2max(di,dj)
if (i, j) ∈ E and i 	= j,

0 if (i, j) /∈ E.

The sieve constant is, as far as we are aware, a novel graph parameter: we are not
aware of any previous works making use of it. Our name is due to the geometric
picture inspired by the above optimization problem: one entry of the vector x must
be held close to zero while keeping it close to all the other entries, with κ(A) measuring
how much “sieves” through the gaps.

The sieve constant will feature prominently in our proof of Theorem 1.2; we will
use it in conjunction with Lemma 2.2 to bound how much the norm of a vector
decreases after multiplication by a substochastic, symmetric matrix. We will require
a bound on how small κ(A) can be in terms of the combinatorial features of the graph
G(A); such a bound is given by the following lemma.

Lemma 2.3. For any nonnegative, stochastic A, we have κ(A) ≥ 0. Moreover,
denoting the smallest positive entry of A by η, we have that if the graph G(A) is weakly
connected1 then

κ(A) ≥ η

nD
,

where D is the (weakly-connected) diameter of G(A). For a symmetric matrix A, the
above lower bound an be doubled.

Proof. It is evident from the definition of κ(A) that it is necessarily nonnegative.
Let E be the set of edges obtained by considering all the (directed) edges in G(A)
and ignoring the orientation of each edge. We will show that for any m,

min
||x||2=1

x2
m +

∑
(i,j)∈E

(xi − xj)
2 ≥ 1

Dn
.

This then implies the lemma immediately from the definition of the sieve constant.

1A directed graph is weakly connected if the undirected graph obtained by ignoring the orienta-
tions of the edges is connected.



MULTIAGENT LEARNING FROM INTERMITTENT MEASURES 9

Indeed, we may suppose m = 1 without loss of generality. Suppose the minimum
in the above optimization problem is achieved by the vector x; let Q be the index
of the component of x with the largest absolute value; without loss of generality, we
may suppose that the shortest path connecting 1 and Q is 1 − 2 − · · · − Q (we can
simply relabel the nodes to make this true). Moreover, we may also assume xQ > 0
(else, we can just replace x with −x).

Now the assumptions that ||x||2 = 1, that xQ is the largest component of x in
absolute value, and that xQ > 0 imply that xQ ≥ 1/

√
n or

(x1 − 0) + (x2 − x1) + · · ·+ (xQ − xQ−1) ≥ 1√
n
,

and applying Cauchy–Schwarz

Q(x2
1 + (x2 − x1)

2 + · · ·+ (xQ − xQ−1)
2) ≥ 1

n
,

or

x2
1 + (x2 − x1)

2 + · · ·+ (xQ − xQ−1)
2 ≥ 1

Qn
≥ 1

Dn
.

We note this proof is inspired by a similar argument found in [35].

2.3. A decay inequality and its consequences. We continue here with some
preliminary results which we will use in the course of proving Theorem 1.2. The proof
of that theorem will proceed by arguing that a(t) = E[Z(t) | Z(0)] will satisfy the
inequality

(2.1) a(tk+1) ≤
(
1− q

t1−ε
k+1

)
a(tk) +

d

t2−2ε
k

for some increasing integer sequence tk and some positive constants q, d. We will
not turn to deriving this inequality for E[Z(t) | Z(0)] now; this will be done later in
section 2.5. The current subection is instead devoted to analyzing the consequences
of the inequality, specifically deriving a bound on how fast a(tk) decays as a function
of q, d, and the sequence tk.

The only result from this subsection which will be used later is Corollary 2.10;
all the other lemmas proved here are merely steps on the way of the proof of that
corollary.

We begin with a lemma which bounds some of the products we will shortly en-
counter.

Lemma 2.4. Suppose q ∈ (0, 1] and ε ∈ (0, 1) and for integers a, b such that
2 ≤ a ≤ b define

Φq(a, b) =
b−1∏
t=a

(
1− q

t1−ε

)
.

Moreover, we will adopt the convention that Φq(a, b) = 1 when a = b. Then we have

Φq(a, b) ≤ e−q(bε−aε)/ε.

Proof. Taking the logarithm of the definition of Φq(a, b), and using the inequality
ln(1− x) ≤ −x,

lnΦq(a, b) =

b−1∑
t=a

ln
(
1− q

t1−ε

)
≤ −

b−1∑
t=a

q

t1−ε
≤ −q

bε − aε

ε
,
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where, in the last inequality, we applied the standard technique of lower bounding a
nonincreasing nonnegative sum by an integral.

We next turn to a lemma which proves yet another bound we will need, namely,
a lower bound on t such that the inequality t ≥ β log t holds.

Lemma 2.5. Suppose β ≥ 3 and t ≥ 3β lnβ. Then β ln t ≤ t.
Proof. On the one hand, the inequality holds at t = 3β ln β:

β ln(3β lnβ) = β ln 3 + β lnβ + β ln lnβ ≤ 3β lnβ.

On the other hand, the derivative of t − β ln t is nonnegative for t ≥ β, so that the
inequality continues to hold for all t ≥ 3β lnβ.

Another useful bound is given in the following lemma.
Lemma 2.6. Suppose ε ∈ (0, 1) and 0 < α ≤ b. Then

(b− α)ε ≤ bε − ε

b1−ε
α.

Proof. We may rewrite the inequality as

b

(
b− α

b

)ε

≤ b− εa.

Note that for fixed α ≤ b the expression on the left is a convex function of ε and we
have equality for both ε = 0 and ε = 1. By convexity this implies the inequality for
all ε ∈ [0, 1].

We now combine Lemmas 2.4 and 2.6 to obtain a convenient bound on Φq(a, b)
whenever a is not too close to b.

Lemma 2.7. Suppose q ∈ (0, 1] and ε ∈ (0, 1). Then if a satisfies 2 ≤ a < b and
a ≤ b− 2

q b
1−ε ln(b), we have

Φq(a, b) ≤ 1

b2
.

Proof. Indeed, observe that as a consequence of Lemma 2.6,

bε − aε ≥ bε −
(
b− 2

q
b1−ε ln(b)

)ε

≥ bε −
(
bε − ε

b1−ε

2

q
b1−ε ln b

)
=

2ε

q
ln b

and consequently

e−q bε−aε

ε ≤ e−2 ln b =
1

b2
.

The claim now follows by Lemma 2.4.
The previous lemma suggests that as long as the distance between a and b is at

least (2/q)b1−ε ln b, then Φq(a, b) will be small. The following lemma provides a bound
on how long it takes until the distance from b/2 to b is at least this large.

Lemma 2.8. Suppose b ≥ [ 12qε ln
4
qε ]

1/ε, q ∈ (0, 1], and ε ∈ (0, 1). Then b −
2
q b

1−ε ln(b) ≥ b/2.
Proof. Rearranging, we need to argue that

bε ≥ 4

q
ln b.
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Setting t = bε this is equivalent to

t ≥ 4

qε
ln t

which, by Lemma 2.5, occurs if

t ≥ 12

qε
ln

4

qε

or

b ≥
[
12

qε
ln

4

qε

]1/ε
.

For simplicity of presentation, we will henceforth adopt the notation

α(q, ε) =

[
12

qε
ln

(
4

qε

)]1/ε
.

With all these lemmas in place, we now turn to the main goal in this subsection,
which is to analyze how a sequence satisfying (2.1) decays with time. Our next lemma
does this for the special choice of tk = k. The proof of this lemma relies on all the
results derived previously in this subsection.

Lemma 2.9. Suppose A(k) is a nonnegatuve sequence such that

a(k + 1) ≤
(
1− q

(k + 1)1−ε

)
a(k) +

d

k2−2ε
,

where q ∈ (0, 1], ε ∈ (0, 1), and d are nonnegative. Then for

k ≥ α(q, ε)

we have

a(k) ≤ 25d

q

ln k

k1−ε
+ a(1)e−q(kε−2)/ε.

Proof. Let us adopt the shorthand φ(k) = d/k2−2ε. We have that

a(k) ≤ φ(k − 1) + φ(k − 2)Φq(k, k + 1) + φ(k − 3)Φq(k − 1, k + 1)

+ · · ·+ φ(1)Φq(3, k + 1) + a(1)Φq(2, k + 1).

We will break this sum up into four pieces:

a(k) ≤

(2/q)k1−ε ln k�∑

j=1

φ(k − j)Φq(k + 2− j, k + 1)

+

�(2/q)k1−ε ln k
+1∑
j=
(2/q)k1−ε ln k�+1

φ(k − j)Φq(k + 2− j, k + 1)

+
k−1∑

j=�(2/q)k1−ε ln k
+2

φ(k − j)Φq(k + 2− j, k + 1) + a(1)Φq(2, k + 1).

We will bound each piece separately.
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The first piece can be bounded by using Lemma 2.8 to argue that each of the
terms φ(k − j) is at most d(1/(k/2))2−2ε, the quantity Φq(k − j + 2, k + 1) is upper
bounded by 1, and there are at most (2/q)k1−ε ln k terms in the sum. Consequently,


(2/q)k1−ε ln k�∑
j=1

φ(k − j)Φq(k − j + 1, k) ≤
(
2

q
k1−ε ln k

)
d

(k/2)2−2ε
≤ 8d ln k

qk1−ε
.

In the second piece, there are at most two terms, each of the Φq(·, ·) is at most one,
and we use Lemma 2.8 again to argue that the piece is upper bounded by

d

(k/2− 1)2−2ε
+

d

(k/2− 2)2−2ε
≤ 4d

(k/2)2−2ε
≤ 16d

k2−2ε
,

where the penultimate inequality is true because k ≥ α(q, ε) implies k ≥ 12 ln 4 ≥ 16.
We bound the third piece by arguing that it is at most

k−1∑
j=�(2/q)k1−ε ln k
+2

φ(k − j)Φq(k − (j − 2), k)

and then arguing that all the terms φ(k − j) are bounded above by d, whereas the
sum of Φq(k − (j − 2), k) over that range is at most 1/k due to Lemma 2.7. Thus

k−1∑
j=�(2/q)k1−ε ln k
+2

φ(k − j)Φq(k + 2− j, k) ≤ d

k
.

Finally, the last term is bounded straightforwardly by Lemma 2.4. Putting these
three bounds together gives the statement of the current lemma.

Finally, we turn to the main result of this subsection, which is the extension of
the previous corollary to the case of general sequences tk. The following result is the
only one which we will have occasion to use later, and its proof proceeds by an appeal
to Lemma 2.9.

Corollary 2.10. Suppose a(k) is a nonnegative sequence such that

a(tk+1) ≤
(
1− q

t1−ε
k+1

)
a(tk) +

d

t2−2ε
k

,

where q ∈ (0, 1], d are nonnegative, ε ∈ (0, 1), and tk is some increasing integer
sequence satisfying t1 = 1 and

|tk+1 − tk| < T for all nonnegative k,

where T is some positive integer. Then if

k ≥
[
12T

qε
ln

(
4T

qε

)]1/ε
,

we will have

a(tk) ≤ 25dT ln k

qk1−ε
+ a(1)e−q(kε−2)/(Tε).
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Proof. Define b(k) = a(tk). Then

b(k + 1) ≤
(
1− q

t1−ε
k+1

)
b(k) +

d

t2−2ε
k

.

Since k ≤ tk ≤ kT , we have that

b(k + 1) ≤
(
1− q/T 1−ε

(k + 1)1−ε

)
b(k) +

d

k2−2ε
.

Applying Lemma 2.9, we get that for

k ≥
[
12T

qε
ln

(
4T

qε

)]1/ε
,

we have

(2.2) b(k) ≤ 25dT ln k

qk1−ε
+ b(1)e−q(kε−2)/(εT ).

The corollary now follows since a(tk) = b(k).

2.4. Analysis of the learning protocol. With all the results of the previous
subsections in place, we can now turn to the analysis of our protocol. We do not
begin the actual proof of Theorem 1.2 in this subsection, but rather we derive some
bounds on the decrease of Z(t) at each step. It is in the next section 2.5 that we will
make use of these bounds to prove Theorem 1.2.

For the remainder of section 2.4, we will assume that l = 1, i.e., μ and all vi(t)
belong to R. We will then define v(t) to be the vector that stacks up v1(t), . . . , vn(t).

The following proposition describes a convenient way to write (1.1). We omit the
proof (which is obvious).

Proposition 2.11. We can rewrite (1.1) and (1.2) as follows:

y(t+ 1) = A(t)v(t) + b(t),

q(t+ 1) = (1 −Δ(t))v(t) + Δ(t)y(t+ 1),

v(t+ 1) = q(t+ 1) + Δ(t)r(t)+Δ(t)c(t),

where the following hold:
1. If i 	= j and i, j are neighbors in G(t),

aij(t) =
1

4max(di(t), dj(t))
.

However, if i 	= j are not neighbors in G(t), then aij(t) = 0. As a conse-
quence, A(t) is a symmetric matrix.

2. If node i does not have a measurement of μ at time t, then

aii(t) = 1− 1

4

∑
j∈Ni(t), j 	=i

1

max(di(t), dj(t))
.

On the other hand, if node i does have a measurement of μ at time t,

aii(t) =
3

4
− 1

4

∑
j∈Ni(t), j 	=i

1

max(di(t), dj(t))
.
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Thus A(t) is a diagonally dominant matrix and its graph is merely the inter-
communication graph at time t: G(A(t)) = G(t). Moreover, if no node has a
measurement at time t, A(t) is stochastic.

3. If node i does not have a measurement of μ at time t, then bi(t) = 0. If node
i does have a measurement of μ at time t, then bi(t) = (1/4)μ.

4. If node i has a measurement of μ at time t, ri(t) is a random variable with
mean zero and variance σ2/16. Else, ri(t) = 0. Each ri(t) is independent of
all v(t) and all other rj(t). Similarly, ci(t) is the random variable

ci(t) =
1

4

∑
j∈N(i)

wij(t)

max(di(t), dj(t))
.

Each ci(t) has mean zero, and the vectors c(t), c(t′) are independent when-
ever t 	= t′. Moreover, c(t) and r(t′) are independent for all t, t′. Finally,
E[c2i (t)] ≤ (σ′)2/16.

Putting it all together, we may write our update as

v(t+ 1) = (1−Δ(t))v(t) + Δ(t)A(t)v(t) + Δ(t)b(t) + Δ(t)r(t) + Δ(t)c(t).

Let us use S(t) for the set of agents that have a measurement at time t. We use
this notation in the next lemma, which bounds the decrease in Z(t) from time t to
t+ 1.

Lemma 2.12. If Δ(t) ∈ (0, 1) then

E[Z(t+ 1) | v(t), v(t − 1), . . . , v(1)]

≤ Z(t)− Δ(t)

8

∑
(k,l)∈E(t)

(vk(t)− vl(t))
2

max(dk(t), dl(t))

− Δ(t)

4

∑
k∈S(t)

(vk(t)− μ)2 +
Δ(t)2

16

(
Mσ2 + n(σ′)2

)
.

Recall that E(t) is the set of undirected edges in the graph at time t, so every pair of
neighbors (i, j) appears once in the above sum. Moreover, if S(t) is nonempty, then

E[Z(t+ 1) | v(t), v(t− 1), . . . , v(1)]

≤
(
1− 1

8
Δ(t)κ [G(t)]

)
Z(t) +

Δ(t)2

16

(
Mσ2 + n(σ′)2

)
.

Proof. Observe that, for any t, the vector μ1 satisfies

μ1 = A(t)μ1+ b(t)

and, therefore,

(2.3) y(t+ 1)− μ1 = A(t)(v(t) − μ1).

We now apply Corollary 2.2 which involves the entries and row sums of the matrix
A2(t) which we lower bound as follows. Because A(t) is diagonally dominant and
nonnegative, we have that if (k, l) ∈ E(t) then

[A2(t)]kl ≥ [A(t)]kk [A(t)]kl ≥ 1

2

1

4max(dk(t), dl(t))
≥ 1

8max(dk(t), dl(t))
.
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Moreover, if k has a measurement of μ then the row sum of the kth row of A equals 3/4,
which implies that the kth row sum of A2 is at most 3/4. Consequently, Corollary 2.2
implies

(2.4) ||y(t+ 1)− μ1||22 ≤ Z(t)− 1

8

∑
(k,l)∈E(t)

(vk(t)− vl(t))
2

max(dk(t), dl(t))
− 1

4

∑
k∈S(t)

(vk(t)− μ)2.

Next, since Δ(t) ∈ (0, 1) we can appeal to the convexity of the squared two-norm to
obtain

||q(t+ 1)− μ1||22 ≤ Z(t)− Δ(t)

8

∑
(k,l)∈E(t)

(vk(t)− vl(t))
2

max(dk(t), dl(t))
− Δ(t)

4

∑
k∈S(t)

(vk(t)− μ)2.

Since E[r(t)] = 0, E[b(t)] = 0, and E[||r(t) + c(t)||22] ≤ (Mσ2 + n(σ′)2)/16 indepen-
dently of all v(t), this immediately implies the first inequality in the statement of the
lemma. The second inequality is then a straightforward consequence of the definition
of the sieve constant.

2.5. Completing the proof. With all the lemmas of the previous subections
in place, we finally begin the proof of our main result, Theorem 1.2. Along the way,
we will prove the basic convergence result of Proposition 1.1.

Our first observation in this section is that it suffices to prove it in the case when
l = 1, (i.e., when μ is a number). Indeed, observe that the update equations (1.1)
and (1.2) are separable in the entries of the vectors vi(t). Therefore, if Theorem 1.2
is proved under the assumption l = 1, we may apply it to each component to obtain
it for the general case. Thus we will therefore be assuming without loss of generality
that l = 1 for the remainder of this paper.

Our first step is to prove the basic convergence result of Proposition 1.1. Our
proof strategy is to repeatedly apply Lemma 2.12 to bound the decrease in Z(t) at
each stage. This will yield a decrease rate for Z(t) which will imply almost sure
convergence to the correct μ.

Proof of Proposition 1.1. We first claim that there exists some constant c > 0
such that if tk = kmax(T, 2B), then

(2.5) E[Z(tk+1) | v(tk)] ≤ (1− cΔ(tk+1))Z(tk)+max(T, 2B)Δ(tk)
2(Mσ2 + n(σ′)2).

We postpone the proof of this claim for a few lines while we observe that, as a
consequence of our assumptions on Δ(t), we have the following three facts:

∞∑
k=1

cΔ(tk+1) = +∞,
∞∑
k=1

max(T, 2B)Δ(tk)
2(Mσ2 + n(σ′)2) < ∞,

lim
k→∞

max(T, 2B)Δ(tk)
2(Mσ2 + n(σ′)2)

cΔ(tk+1)
= 0.

Moreover, it is true for large enough k that cΔ(tk+1) < 1. Now as a consequence of
these four facts, Lemma 10 from Chapter 2.2 of [51] implies limt→∞ Z(t) = 0 with
probability 1.
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To conclude the proof, it remains to demonstrate (2.5). Applying Lemma 2.12 at
every time t between tk and tk+1 − 1 and iterating expectations, we obtain

E[Z(tk+1) | v(tk)] ≤ Z(tk)−
tk+1−1∑
m=tk

⎛⎝Δ(m)

8

∑
(k,l)∈E(m)

E[(vk(m)− vl(m))2 | v(tk)]
max(dk(m), dl(m))

+
Δ(m)

4

∑
k∈S(m)

E[(vk(m)− μ)2 | v(tk)]
⎞⎠

+Δ2(tk)max(T, 2B)
Mσ2 + n(σ′)2

16
.

(2.6)

Note that if Z(tk) = 0, then the last equation immediately implies (2.5). If Z(tk) 	= 0,
then observe that (2.5) would follow from the assertion

inf

∑tk+1−1
m=tk

∑
(k,l)∈E(m) E[(vk(m)− vl(m))2 | v(tk)] +

∑
k∈S(m) E[(vk(m)− µ)2 | v(tk)]

∑n
i=1(vi(tk)− µ)2

> 0,

where the infimum is taken over all vectors v(tk) such that v(tk) 	= μ1 and over all
possible sequences of undirected communication graphs and measurements between
time tk and tk+1 − 1 satisfying the conditions of uniform connectivity and uniform
measurement speed. Now since E[X2] ≥ E[X ]2, we have that

inf

∑tk+1−1
m=tk

∑
(k,l)∈E(m) E[(vk(m)− vl(m))2 | v(tk)] +

∑
k∈S(m) E[(vk(m)− µ)2 | v(tk)]

∑n
i=1(vi(tk)− µ)2

≥ inf

∑tk+1−1
m=tk

∑
(k,l)∈E(m) E[vk(m)− vl(m) | v(tk)]2 +

∑
k∈S(m) E[vk(m)− µ | v(tk)]2

∑n
i=1(vi(tk)− µ)2

.

We will complete the proof by arguing that this last infimum is strictly positive.
Let us define z(t) = E[v(t) − μ1 | v(tk)] for t ≥ tk. From Proposition 2.11 and

(2.3), we can work out the dynamics satisfied by the sequence z(t) for t ≥ tk:

z(t+ 1) = E[v(t+ 1)− μ1 | v(tk)]
= E[q(t+ 1)− μ1 | v(tk)]
= E[(1−Δ(t))v(t) + Δ(t)y(t+ 1)− μ1 | v(tk)]
= E[(1−Δ(t))(v(t) − μ1) | v(tk)] + E[Δ(t)(y(t + 1)− μ1) | v(tk)]
= E[(1−Δ(t))(v(t) − μ1) | v(tk)] + E[Δ(t)A(t)(v(t) − μ1) | v(tk)]
= [(1−Δ(t))I +Δ(t)A(t)] z(t).

(2.7)

Clearly, we need to argue that

(2.8) inf

∑tk+1−1
m=tk

∑
(k,l)∈E(m)(zk(m)− zl(m))2 +

∑
k∈S(m) z

2
k(m)∑n

i=1 z
2
i (tk)

> 0,

where the infimum is taken over all sequences of undirected communication graphs sat-
isfying the conditions of uniform connectivity and measurement speed and all nonzero
z(tk) (which in turn determines all the z(t) with t ≥ tk through (2.7)).

From (2.7), we have that the expression within the infimum in (2.8) is invariant
under scaling of z(tk). So we can conclude that, for any sequence of graphs G(t)
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and measuring sets S(t), the infimum is always achieved by some vector z(tk) with
||z(tk)||2 = 1.

Now given a sequence of graphs G(t) and a sequence of measuring sets S(t),
suppose z(tk) is a vector with unit norm that achieves this infimum. Let S+ ⊂
{1, . . . , n} be the set of indices i with zi(tk) > 0, S− be the set of indices i with
zi(tk) < 0, and S0 be the set of indices with zi(tk) = 0. Since ||z(tk) − μ1||2 = 1
we have that at least one of S+, S− is nonempty. Without loss of generality, suppose
that S− is nonempty. Due to the conditions of uniform connectivity and uniform
measurement speed, there is a first time tk ≤ t′ < tk+1 when at least one of the
following two events happens: (i) some node i′ ∈ S− is connected to a node j′ ∈
S0 ∪ S+, (ii) some node i′ ∈ S− has a measurement of μ.

In the former case, zi′(t
′) < 0 and zj′(t

′) ≥ 0 and, consequently, (zi′(t
′)−zj′ (t

′))2

will be positive; in the latter case, zi′(t
′) < 0 and consequently z2i′(t

′) will be positive.
We have thus shown that for every sequence of graphs G(t) and sequence of

measuring sets S(t) satisfying our assumption and all z(tk) with ||z(tk)||2 = 1 we
have that the expression under the infimum in (2.8) is strictly positive. Note that
since the expression under the infimum is a continuous function of z(tk), this implies
that, in fact, the infimum over all z(tk) with ||z(tk)||2 = 1 is strictly positive. Finally,
since there are only finitely many sequences of graphs G(t) and measuring sets S(t)
of length max(T, 2B), this proves (2.8) and concludes the proof.

Having established Proposition 1.1, we now turn to the proof of Theorem 1.2. We
will split the proof into several chunks. Recall that Theorem 1.2 has two bounds: (1.4)
which holds when each graph G(t) is connected and (1.5) which holds in the more
general case when the graph sequence G(t) is B-connected. We begin by analyzing
the first case. Our first lemma towards that end provides an upper bound on the
eigenvalues of the matrices A(t) corresponding to connected G(t).

Lemma 2.13. Suppose each G(t) is connected and at least one node makes a
measurement at every time t. Then the largest eigenvalues of the matrices A(t) satisfy

λmax(A(t)) ≤ 1− 1

24H for all t,

where, recall, H is an upper bound on the hitting times in the very lazy Metropolis
walk on G(t).

Proof. Let us drop the argument t and simply refer to A(t) as A. Consider the
iteration

(2.9) p(k + 1)T = p(k)TA.

We argue that it has a probabilistic interpretation. Namely, let us transform the
matrix A into a stochastic matrix A′ in the following way: we introduce a new node
i′ for every row i of A which has row sum less than 1 and set

[A′]i,i′ = 1−
∑
j

[A]ij , [A′]i′,i′ = 1.

Then A′ is a stochastic matrix and, moreover, observe that by construction [A′]i,i′ =
1/4 for every new node i′ that is introduced. Let us adopt the notation I to be the
set of new nodes i′ added in this way, and we will use N = {1, . . . , n} to refer to the
original nodes.

We then have that if p(0) is a stochastic vector (meaning it has nonnegative entries
which sum to one), then p(k) generated by (2.9) has the following interpretation:
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pj(k) is the probability that a random walk within initial distribution p(0), taking
steps according to A′, is at node j at time k. This is easily seen by induction: clearly it
holds at time 0, and if it holds at time k, then it holds at time k+1 since [A]ij = [A′]ij
if i, j ∈ N and [A′]i′,j = 0 for all i′ ∈ I and j ∈ N .

Next, we note that I is an absorbing set for the Markov chain with transition
matrix A′ and, moreover ||p(k)||1 is the probability that the random walk starting
at p(0) is not absorbed in I by time k. Defining T ′

i to be the expected time until a
random walk with transition matrix A′ starting from i is absorbed in the set I, we
have that by Markov’s inequality, if p(0) = ei then for any t ≥ 2�T ′

i�,

||p(t)||1 ≤ 1

2
.

Therefore, for any stochastic p(0),∣∣∣∣∣∣∣∣p(2�max
i∈N

T ′
i �
)∣∣∣∣∣∣∣∣

1

≤ 1

2
.

Thus for any nonnegative integer k,∣∣∣∣∣∣∣∣p(2k�max
i∈N

T ′
i�
)∣∣∣∣∣∣∣∣

1

≤
(
1

2

)k

.

This implies that for all initial vectors p(0) (not necessarily stochastic ones),∣∣∣∣∣∣∣∣p(2k�max
i∈N

T ′
i�
)∣∣∣∣∣∣∣∣

1

≤
(
1

2

)k

||p(0)||1.

By the Perron–Frobenius theorem, λmax(A) is real and its corresponding eigenvector
is real. Plugging it in for p(0), we get that

λ
2k�maxi∈N T ′

i

max ≤

(
1

2

)k

or

(2.10) λmax ≤
(
1

2

)1/(2�maxi∈N T ′
i
)

≤ 1− 1

4�maxi∈N T ′
i�
,

where we used the inequality (1/2)x ≤ 1− x/2 for all x ∈ [0, 1].
It remains to rephrase this bound in terms of the hitting times in the very lazy

Metropolis walk on G. We simply note that [A′]i,i′ = 1/4 by construction, so

max
i

T ′
i ≤ 4(H+ 1).

Thus ⌈
max

i
T ′
i

⌉
≤ 4(H+ 1) + 1 ≤ 6H.

Combining this bound with (2.10) proves the lemma.
With this lemma in place, we can now proceed to prove the first half of Theo-

rem 1.2, namely, the bound of (1.4).
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Proof of (1.4). We use Proposition 2.11 to write a bound for E[Z(t + 1) | v(t)]
in terms of the largest eigenvalue λmax(A(t)). Indeed, as we remarked previously in
(2.3),

y(t+ 1)− μ1 = A(t)(v(t) − μ1);

we therefore have that

||y(t+ 1)− μ1||22 ≤ λ2
max(A(t))Z(t) ≤ λmax(A(t))Z(t),

where we used the fact that λmax(A(t)) ≤ 1 since A(t) is a substochastic matrix.
Next, we have

||q(t+ 1)− μ1||22v ≤ [1−Δ(t)(1 − λmax(A(t))]Z(t)

and finally

E[Z(t+ 1) | v(t)] ≤ [1−Δ(t) (1− λmax(A(t)))]Z(t) + Δ(t)2
Mσ2 + n(σ′)2

16
.

Let tk be the times when a node has had a measurement. Applying the above equation
at times tk, tk+1, . . . , tk+1−1 and using the eigenvalue bound of Lemma 2.13 at time
tk and the trivial bound λmax(A(t)) ≤ 1 at times tk + 1, . . . , tk+1 − 1, we obtain

E[Z(tk+1) | v(tk)] ≤
(
1− 1

24Ht1−ε
k

)
Z(tk) +

Mσ2 + nT (σ′)2

16t2−2ε
k

≤
(
1− 1

24Ht1−ε
k+1

)
Z(tk) +

Mσ2 + nT (σ′)2

16t2−2ε
k

.

Iterating expectations and applying Corollary 2.10, we obtain that for

(2.11) k ≥
[
288TH

ε
ln

(
96TH

ε

)]1/ε
,

we have

E[Z(tk) | v(1)] ≤ 25(1/16)(Mσ2 + nT (σ′)2)24HT ln k

k1−ε
+ Z(1)e−(kε−2)/(24HTε).

Using the inequality k ≤ tk ≤ kT ,

(2.12) E[Z(tk) | v(1)] ≤ 38HT
Mσ2 + nT (σ′)2

(tk/T )1−ε
ln(tk) + Z(1)e−((tk/T )ε−2)/(24HTε).

Finally, for any t satisfying

(2.13) t ≥ T + T

[
288TH

ε
ln

(
96TH

ε

)]1/ε
there is some tk with k satisfying (2.11) within the last T steps before t. We can
therefore get an upper bound on E[Z(t) | Z(1)] applying (2.12) to that last tk, and
noting that the expected increase from that Z(tk) to Z(t) is bounded as

E[Z(t) | v(1)]− E[Z(tk) | v(1)] ≤ nT (σ′)2

t2−2ε
k

≤ nT (σ′)2

t1−ε
k

≤ nT (σ′)2

(t/T − 1)1−ε
.
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This implies that for t satisfying (2.13), we have

E[Z(t) | v(1)] ≤ 39HT ln t
Mσ2 + nT (σ′)2

(t/T − 1)1−ε
ln t+ Z(1)e−((t/T−1)ε−2)/(24HTε).

After some simple algebra, this is exactly the bound of the theorem.
We now turn to the proof of the second part of Theorem 1.2, namely, (1.5). Its

proof requires a certain inequality between quadratic forms in the vector v(t) which
we separate in the following lemma.

Lemma 2.14. Let t1 = 1 and tk = (k−1)max(T, 2B) for k > 1, and assume that
the entries of the vector v(tk) satisfy

v1(tk) < v2(tk) < · · · < vn(tk).

Further, let us assume that none of the vi(tk) equal μ, and let us define p− to be
the largest index such that vp−(tk) < μ and p+ to be the smallest index such that
vp(tk) > μ. We then have

tk+1−1∑
m=tk

∑
(k,l)∈E(m)

E[vk(m)− vl(m) | v(tk)]2 +
∑

k∈S(m)

E[vk(m)− μ | v(tk)]2

≥ (vp−(tk)− μ)2 + (vp+(tk)− μ)2 +
∑

i=1,...,n, i	=p−

(vi(tk)− vi+1(tk))
2.

(2.14)

Proof. The proof parallels a portion of the proof of Proposition 1.1. First, we
change variables by defining z(t) as

z(t) = E[v(t)− μ1 | v(tk)]

for t ≥ tk. We claim that

(2.15)

tk+1−1∑
m=tk

∑
(k,l)∈E(m)

(zk(m)− zl(m))2 +
∑

k∈S(m)

z2k(m)

≥ z2p−(tk) + z2p+
(tk) +

∑
i=1,...,n−1, i	=p−

(zi(tk)− zi+1(tk))
2.

The claim immediately implies the current lemma.
Now we turn to the proof of the claim, which is similar to the proof of a lemma

from [44]. We will associate with each term on the right-hand side of (2.15) a term
on the left-hand side of (2.15), and we will argue that each term on the left-hand side
is at least as big as the sum of all terms on the right-hand side associated with it.

To describe this association, we first introduce some new notation. We denote
the set of nodes {1, . . . , l} by Sl; its complement, the set {l + 1, . . . , n}, is then Sc

l .
If l 	= p−, we will abuse notation by saying that Sl contains zero if l ≥ p+; else,
we say that Sl does not contain zero and Sc

l contains zero. However, in the case of
l = p−, we will say that neither Sp− nor Sc

p− contains zero. We will say that Sl “is
crossed by an edge” at time m if a node in Sl is connected to a node in Sc

l at time
m. For l 	= p−, we will say that Sl is “crossed by a measurement” at time m if a
node in whichever of Sl, S

c
l that does not contain zero has a measurement at time

m. We will say that Sp− is “crossed by a measurement from the left” at time m
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if a node in Sp− has a measurement at time m; we will say that it is “crossed by
a measurement from the right” at time m if a node in Sc

p− had a measurement at
time m. Note that the assumption of uniform connectivity means that every Sl is
crossed by an edge at least one time m ∈ {tk, . . . , tk+1 − 1}. It may happen that Sl

is also crossed by measurements, but it isn’t required by the uniform measurement
assumption. Nevertheless, the uniform measurement assumption implies that Sp−
is crossed by a measurement at some time m ∈ {tk, . . . , tk+1 − 1}. Finally, we will
say that Sl is crossed at time m if it is either crossed by an edge or crossed by a
measurement (plainly or from left or right).

We next describe how we associate terms on the right-hand side of (2.15) with
terms on the left-hand side of (2.15). Suppose l is any number in 1, . . . , n− 1 except
p−; consider the first time Sl is crossed; let this be time m. If the crossing is by an
edge, then let (i, j) be any edge which goes between Sl and Sc

l at time m. We will
associate (zl(tk)−zl+1(tk))

2 on the right-hand side of (2.15) with (zi(m)−zj(m))2 on
the left-hand side of (2.15); as a shorthand for this, we will say that we associate index
l with the edge (i, j) at time m. On the other hand, if Sl is crossed by a measurement2

at time m, let i be a node in whichever of Sl, S
c
l does not contain zero which has a

measurement at time m. We associate (zl(tk)−zl+1(tk))
2 with z2i (m); as a shorthand

for this, we will say that we associate index l with a measurement by i at time m.
Finally, we describe the associations for the terms vp−(tk)

2 and vp+(tk)
2, which

are more intricate. Again, let us suppose that Sp− is crossed first at time m; if the
crossing is by an edge, then we associate both these terms with any edge (i, j) crossing
Sp− at time m. If, however, Sp− is crossed first by a measurement from the left, then
we associate v2p−(tk) with z2i (m), where i is any node in Sp− having a measurement at
time m. We then consider u, which is the first time Sp− is crossed by either an edge or
a measurement from the right; if it is crossed by an edge, then we associate vp+(tk)

2

with (zi(u)− zj(u))
2 with any edge (i, j) going between Sp− and Sc

p− at time u; else,

we associate it with z2i (u), where i is any node in Sc
p− having a measurement at time

u. On the other hand, if Sp− is crossed first by a measurement from the right, then
we flip the associations: we associate v2p+

(tk) with z2i (m), where i is any node in Sc
p−

having a measurement at time m. We then consider u, which is now the first time
Sp− is crossed by either an edge or a measurement from the left. If Sp− is crossed
by an edge first, then we associate vp−(tk)2 with (zi(u)− zj(u))

2 with any edge (i, j)
going between Sp− and Sc

p− at time u; else, we associate it with z2i (u), where i is any
node in Sp− having a measurement at time u.

It will be convenient for us to adopt the following shorthand: whenever we asso-
ciate v2p−(tk) with an edge or measurement as shorthand we will say that we associate
the border p−, and likewise for p+. Thus we will refer to the association of indices
l1, . . . , lk and borders p−, p+ with the understanding that the former refer to the terms
(vli(tk)− vli+1(tk))

2 while the latter refer to the terms v2p−(tk) and v2p+
(tk).

We now go on to prove that every term on the left-hand side of (2.15) is at least
as big as the sum of all terms on the right-hand side of (2.15) associated with it.

Let us first consider the terms (zi(m) − zj(m))2 on the left-hand side of (2.15).
Suppose the edge (i, j) with i < j at time m was associated with indices l1 < l2 <
· · · < lr. It must be that i ≤ l1 while j ≥ lr + 1. The key observation is that if any

2If Sl is crossed both by an edge and a measurement at time m, we will say it is crossed by an
edge first. Throughout the remainder of this proof, we keep to the convention breaking ties in favor
of edges by saying that Sl is crossed first by an edge if the first crossing was simultaneously by both
an edge and by a measurement.
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Sl has not been crossed before time m then

max
i=1,...,l

zi(m) ≤ zl(tk) ≤ zl+1(tk) ≤ min
i=l+1,...,n

zi(m).

Consequently,

zi(m) ≤ zl1(tk) ≤ zl1+1(tk) ≤ zl2(tk) ≤ zl2+1(tk) ≤ · · · ≤ zlr(tk) ≤ zlr+1(tk) ≤ zj(m)

which implies that

(zi(m)− zj(m))2 ≥ (zl1+1(tk)− zl1(tk))
2

+ (zl2+1(tk)− zl2(tk))
2 + · · ·+ (zlr+1(tk)− zlr (tk))

2.

This proves the statement in the case when the edge (i, j) is associated with indices
l1 < l2 < · · · < lr.

Suppose now that the edge (i, j) is associated with indices l1 < l2 < · · · < lr
as well as both borders p−, p+. This happens when every Sli and Sp− is crossed for
the first time by (i, j), so that we can simply repeat the argument in the previous
paragraph to obtain

(zi(m)− zj(m))2 ≥ (zl1+1(tk)− zl1(tk))
2 + (zl2+1(tk)− zl2(tk))

2

+ · · ·+ (zlr+1(tk)− zlr(tk))
2 + (zp−(tk)−zp+(tk))

2

which, since (zp−(tk)−zp+(tk))
2 ≥ z2p−(tk)+z2p+

(tk) proves the statement in this case.
Suppose now that the edge (i, j) with i < j at time m is associated with indices

l1 < l2 < · · · < lr as well as the border p−. From our association rules, this can
only happen in the following case: every Sli has not been crossed before time m,
Sp− is being crossed by an edge at time m and has been crossed from the right by
a measurement but has not been crossed from the left before time m, nor has it
been crossed by an edge before time m. Consequently, in addition to the inequalities
i ≤ l1, j ≥ lr + 1 we have the additional inequalities i ≤ p− while j ≥ p+ (since (i, j)
crosses Sp−). Because Slr has not been crossed before and Sp− has not been crossed
by an edge or measurement from the left before, we have

zi(m) ≤ min(zp−(tk), zl1(tk)),

zj(m) ≥ max(0, zlr+1(tk)),

so that

(zi(m)− zj(m))2 ≥ (zl1+1(tk)− zl1(tk))
2 + (zl2+1(tk)− zl2(tk))

2

+ · · ·+ (zlr+1(tk)− zlr(tk))
2 + (zp−(tk)− 0)2(tk)

which proves the statement in this case.
The proof when the edge (i, j) is associated with index l1 < · · · < lr and z2p+

(tk)
is similar, and we omit it. Similarly, the cases when (i, j) is associated with just one
of the borders and no indices and both borders and no indices are proved with an
identical argument. Consequently, we have now proved the desired statement for all
the terms of the form (zi(m)− zj(m))2.

It remains to consider the terms z2i (m). So let us suppose that the term z2i (m)
is associated with indices l1 < l2 < · · · < lr as well as possibly one of the borders
p−, p+. Note that due to the way we defined the associations it cannot be associated
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with them both. Moreover, again due to the association rules, we will either have
l1 < · · · < lr < p− or p+ ≤ l1 < · · · < lr; let us assume it is the former as the proof
in the latter case is similar. Since Sl1 has not been crossed before, we have that

zi(m) ≤ zl1(tk) ≤ zl1+1(tk) ≤ zl2(tk) ≤ zl2+1(tk)

≤ · · · ≤ zlr(tk) ≤ zlr+1(tk) ≤ zp−(tk) < 0

and therefore

z2i (m) ≥ (zl1+1(tk)− zl1(tk))
2 + (zl2+1(tk)− zl2(tk))

2

+ · · ·+ (zlr+1(tk)− zlr(tk))
2 + (zp−(tk)− 0)2

which proves the result in this case. Finally, the case when zi(m) is associated with
just one of the borders is proved with an identical argument. This concludes the
proof.

We are now finaly able to prove the very last piece of Theorem 1.2, namely, (1.5).
Proof of (1.5). As in the statement of Lemma 2.14, we choose t1 = 1, and

tk = (k − 1)max(T, 2B) for k > 1. Observe that by a continuity argument Lemma
(2.14) holds even with the strict inequalities between vi(tk) replaced with nonstrict
inequalities and without the assumption that none of the vi(tk) are equal to μ. More-
over, using the inequality

(vp−(tk)− μ)2 + (vp+(tk)− μ)2

≥ (vp−(tk)− μ)2 + (vp+(tk)− μ)2 + (vp−(tk)− vp+(tk))
2

4
,

we have that Lemma (2.14) implies that

tk+1−1∑
m=tk

∑
(k,l)∈E(m)

E[(vk(m)− vl(m))2 | v(tk)]

+
∑

k∈S(m)

E[(vk(m)− μ)2 | v(tk)] ≥ 1

4
κ(Ln)Z(tk).

Because Δ(t) is decreasing and the degree of any vertex at any time is at most dmax,
this in turn implies

tk+1−1∑
m=tk

Δ(m)

8

∑
(k,l)∈E(m)

E[(vk(m)− vl(m))2 | v(tk)]
max(dk(m), dl(m))

+
Δ(m)

4

∑
k∈S(m)

E[(vk(m)− μ)2 | v(tk)] ≥ Δ(tk+1)

32dmax
κ(Ln)Z(tk).

Now appealing to (2.6), we have

E[Z(tk+1) | v(tk)] ≤
(
1− Δ(tk+1)κ(Ln)

32dmax

)
Z(tk) +Δ(tk)

2Mσ2 + n(σ′)2

16
max(T, 2B).

Now applying Corollary 2.10 as well as the bound κ(Ln) ≥ 1/n2 from Lemma 2.3, we
get that for

(2.16) k ≥
[
384n2dmax (1 + max(T, 2B))

ε
ln

(
128n2dmax (1 + max(T, 2B))

ε

)]1/ε
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we will have

E[Z(tk) | v(1)] ≤ 25(1/16)
Mσ2 + n(σ′)2

k1−ε
(1 + max(T, 2B))232n2dmax ln k

+Z(1)e−(kε−2)/(32n2dmax(1+max(T,2B))ε).

Now using tk = (k − 1)max(T, 2B) for k > 1, we have

E[Z(tk) | v(1)] ≤ 50n2dmax(1 + max(T, 2B))2
Mσ2 + n(σ′)2

(1 + tk/max(T, 2B))1−ε ln tk

+Z(1)e−((1+tk/max(T,2B))ε−2)/(32n2dmax(1+max(T,2B))ε).

For a general time t, we have that as long as

t ≥ max(T, 2B)

+max(T, 2B)

[
384n2dmax (1 + max(T, 2B))

ε
ln

(
128n2dmax (1 + max(T, 2B))

ε

)]1/ε
we have that there exists a tk ≥ t − max(T, 2B) with k satisfying the lower bound
of (2.16). Moreover, the increase from this E[Z(tk) | v(0)] to E[Z(t) | v(0)] is upper
bounded by max(T, 2B)(1/16)[Mσ2 + n(σ′)2]/t2−2ε

k . Thus

E[Z(t) | v(1)] ≤ 51n2dmax(1 + max(T, 2B))2
Mσ2 + n(σ′)2

(t/max(T, 2B))
1−ε ln t

+Z(1)e−((t/max(T,2B))ε−2)/(32n2dmax(1+max(T,2B))ε).

After some simple algebra, this is exactly what we sought to prove.

3. Simulations. We report here on several simulations of our learning protocol.
These simulations confirm the broad outlines of the bounds we have derived; the
convergence to μ takes place at a rate broadly consistent with inverse polynomial
decay in t and the scaling with n appears to be polynomial as well.

Figure 1 shows plots of the distance from μ for the complete graph, the line
graph (with one of the endpoint nodes doing the sampling), and the star graph (with
the center node doing the sampling), each on 40 nodes. These are the three graphs
in the left column of the figure. We caution that there is no reason to believe these
charts capture the correct asymptotic behavior as t → ∞. Intriguingly, the star graph
and the complete graph appear to have very similar performances. By contrast, the
performance of the line graph is an order of magnitude inferior to the performance of
either of these; it takes the line graph on 40 nodes on the order of 400,000 iterations
to reach roughly the same level of accuracy that the complete graph and star graph
reach after about 10,000 iterations.

Moreover, Figure 1 also shows the scaling with the number of nodes n on the
graphs in the right column of the figure. The graphs show the time until ||v(t)−μ1||∞
decreases below a certain threshold as a function of number of nodes. We see scaling
that could plausibly be superlinear for the line graph and essentially linear for the
complete graph and essentially linear for the star graph over the range shown.

Finally, we include in Figure 2 a simulation for the lollipop graph defined to be
a complete graph on n/2 vertices joined to a line graph on n/2 vertices. The lollipop
graph often appears as an extremal graph for various random walk properties (see,
for example, [13]). The node at the end of the stem, i.e., the node which is furthest
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Fig. 1. The graphs in the first column show ||v(t) − µ1||∞ as a function of the number of
iterations in a network of 40 nodes starting from a random vector with entries uniformly random in
[0, 5]. The graphs in the second column show how long it takes ||v(t)−µ1||∞ to shrink below 1/2 as
a function of the number of nodes; inital values are also uniformly random in [0, 5]. The two graphs
in the first row correspond to the complete graph; the two graphs in the middle row correspond to
the star graph; the two graphs in the last row correspond to the line graph. In each case, exactly one
node is doing the measurements; in the star graph it is the center vertex and in the line graph it is
one of the endpoint vertices. Step size is chosen to be 1/t1/4 for all three simulations.

from the complete subgraph, is doing the sampling. The scaling with the number of
nodes is considerably worse than for the other graphs we have simulated here.

Finally, we emphasize that the learning speed also depends on the precise location
of the node doing the sampling within the graph. While our results in this paper
bound the worst case performance over all choices of sampling node, it may very well
be that by appropriately choosing the sensing nodes, better performance relative to
our bounds and relative to these simulations can be achieved.
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Fig. 2. The plot on the left shows ||v(t) − µ1||∞ as a function of the number of iterations
for the lollipop graph on 40 nodes; the plot on the right shows the time until ||v(t) − µ1||∞ shrinks
below 0.5 as a function of the number of nodes n. In each case, exactly one node is performing
the measurements, and it is the node farthest from the complete subgraph. The starting point is a
random vector with entries in [0, 5] for both simulations and step size is 1/t1/4.

4. Conclusion. We have proposed a model for cooperative learning by multi-
agent systems facing time-varying connectivity and intermittent measurements. We
have proved a protocol capable of learning an unknown vector from independent
measurements in this setting and provided quantitative bounds on its learning speed.
Crucially, these bounds have a dependence on the number of agents n which grows
only polynomially fast, leading to reasonable scaling for our protocol. We note that
the sieve constant of a graph, a new measure of connectivity we introduced, played
a central role in our analysis. On sequences of connected graphs, the largest hitting
time turned out to be the most relevant combinatorial primitive.

Our research points to a number of intriguing open questions. Our results are for
undirected graphs and it is unclear whether there is a learning protocol which will
achieve similar bounds (i.e., a learning speed which depends only polynomially on n)
on directed graphs. It appears that our bounds on the learning speed are loose by
several orders of magnitude when compared to simulations, so that the learning speeds
we have presented in this paper could potentially be further improved. Moreover, it
is further possible that a different protocol provides a faster learning speed compared
to the one we have provided here.

Finally, and most importantly, it is of interest to develop a general theory of de-
centralized learning capable of handling situations in which complex concepts need
to be learned by a distributed network subject to time-varying connectivity and in-
termittent arrival of new information. Consider, for example, a group of UAVs all of
which need to learn a new strategy to deal with an unforeseen situation, for example,
how to perform formation maintenance in the face of a particular pattern of turbu-
lence. Given that selected nodes can try different strategies, and given that nodes
can observe the actions and the performance of neighboring nodes, is it possible for
the entire network of nodes to collectively learn the best possible strategy? A the-
ory of general-purpose decentralized learning, designed to parallel the theory of PAC
(provably approximately correct) learning in the centralized case, is warranted.

Acknowledgments. An earlier version of this paper published in the 2013 Con-
ference on Decision and Control proceedings had an incorrect decay rate with t in the
main result. The authors are grateful to Sean Meyn for pointing out this error.
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