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Abstract 

We show how to stabilize, in stages, arbitrary steady translations of an underwater vehicle with feedback that derives 
from a potential and deliberately breaks symmetry in the dynamics. First, rotational symmetry is broken to ensure 
stability in the momentum parameters. Then, translational symmetry is broken to prevent drift. Stability of the 
closed-loop system is proved using the energy-Casimir method. A resulting property of the control law is robustness to 
model parameter uncertainty. © 1997 Elsevier Science B.V. 
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1. Introduction 

There has been recent interest in developing non- 
linear control theory specialized to mechanical 
systems because lraditional nonlinear control 
methods, which deal with a very large class of 
systems, do not exploit the rich structure of this 
smaller but important class of systems. One ex- 
pects, for example, that making use of the geometric 
structure of mechanical systems may lead to im- 
provements in robustness and efficiency in control 
as compared to methods such as feedback lineariz- 
ation which cancel nonlinearities. Recent work on 
control of mechanical systems includes [3, 6, 8, 9, 
15, 16]. 

A problem of interest for mechanical systems is 
stabilization of a relative equilibrium, i.e., a steady 
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motion. An example is stabilization of a spacecraft 
rotating steadily about a principal axis [1, 4, 7]. 
Another important example is stabilization of con- 
stant translations of an underwater vehicle. Here, 
a basic problem is that translation of a submerged 
rigid body along any but its short axis is unstable 
unless there are active or passive means to counter 
the destabilizing hydrodynamic forces. 

Under circumstances in which viscous effects are 
small, the dominant dynamics of an underwater 
vehicle can be described by a model of a submerged 
rigid body in an ideal fluid, namely Kirchhoff's 
equations. This model describes a mechanical sys- 
tem with symmetry, i.e., the system is Hamiltonian 
on the group of rigid body motions and there is 
symmetry in, i.e., invariance to, translations and 
(possibly only some) rotations. Because of this geo- 
metric structure, one can use tools from geometric 
mechanics to study underwater vehicle dynamics. 
In [11] we described the geometry of uncontrolled 
underwater vehicle dynamics and used the energy- 
Casimir method to investigate stability of steady 
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motions. The energy-Casimir method provides 
a step-by-step means to derive sufficient conditions 
for Lyapunov stability of a relative equilibrium for 
a mechanical system with symmetry. 

The energy-Casimir method can also be used to 
design feedback stabilizing control laws. This was 
demonstrated in the context of stabilizing a rigid 
spacecraft spinning about its intermediate axis [4] 
and further generalized in [5, 6]. There, the authors 
design control laws that effectively change the kin- 
etic energy in the Hamiltonian. That is, the controls 
are chosen so that the closed-loop system is still 
Hamiltonian but with a new Hamiltonian that 
reflects a modified kinetic energy. Because 
the closed-loop system is still Hamiltonian, the 
energy-Casimir method can be applied to the 
closed-loop system to determine conditions on the 
control gains that yield closed-loop stability. 

In this paper, feedback stabilizing control laws 
are designed for the underwater vehicle problem 
by means of the energy-Casimir method (see also 
[10]). However, here, the control law is chosen in 
order to effectively change or add potential energy 
to the Hamiltonian rather than kinetic energy. Fur- 
ther, the potential energy terms added by means of 
control are designed to break system symmetry. 
Symmetry-breaking potentials can be used not only 
to stabilize the momentum variables of the system, 
but also, unlike modifications to kinetic energy, 
they can be used to prevent drift in the remaining 
symmetry directions, i.e., in the rotational and 
translational parameters. An example is the prob- 
lem of stabilizing spin about the intermediate axis 
of a rigid spacecraft. In this case, the idea would be 
to provide a control law that effectively makes the 
rigid spacecraft look like a hanging top, i.e., to 
choose a control law that is the torque derived from 
a potential that looks similar to gravitational po- 
tential, such that rotational symmetry is broken in 
all directions except about the desired axis of rota- 
tion. By introducing attitude variables into the 
control law, this approach allows one not only to 
stabilize the spin but also to prescribe how the 
spacecraft is oriented in inertial space. 

The structure of the control law is inspired by the 
kind of stabilizing (restoring) moment that is nat- 
urally produced when an underwater vehicle is 
bottom heavy, i.e., when the center of gravity is 
lower than the center of buoyancy. As shown in 
[11], a sufficiently low center of gravity ensures 
stability of a steadily rising or falling vehicle. Thus, 

to stabilize an otherwise unstable translation along 
an axis that is not parallel to gravity, the idea is 
to choose a feedback that mimics the naturally 
stabilizing moment. This means adding a control 
term that derives from a potential that mimics the 
potential energy due to buoyant and gravitational 
forces and so doing breaks rotational symmetry. 

As indicated above, even when stabilization has 
been achieved there still may be the possibility of 
drift in the remaining symmetry directions. This is 
particularly of issue in the case of systems with 
a noncompact configuration space, such as the 
space of rigid body motions, as was shown in [12]. 
For example, the stable, bottom-heavy rising 
vehicle may drift in translation in directions 
transverse to gravity. However, this too can be 
prevented with the addition of potentials (e.g., 
resembling spring potentials) that break the appro- 
priate translational symmetry. 

The control laws developed in this paper provide 
Lyapunov stability of an arbitrary constant trans- 
lation of an underwater vehicle with arbitrary pre- 
scribed orientation. With the addition of dissipative 
control, one could then achieve asymptotic stability 
(drag forces for the underwater vehicle problem will 
help in this regard). Further, we note that the con- 
trol laws developed in this paper are robust to 
uncertainties in model parameters in the spirit of 
the work of Zhao and Posbergh [17]. 

The paper is organized as follows. In Section 2, 
we describe underwater vehicle dynamics. Stability 
is discussed in Section 3 and stabilizing control 
laws derived from symmetry-breaking potentials 
are presented in Section 4. We give conclusions in 
Section 5. 

2. Underwater vehicle dynamics 

We describe underwater vehicle dynamics for 
a six degree-of-freedom vehicle modeled as a 
neutrally buoyant, submerged rigid body in an in- 
finitely large volume of irrotational, incompress- 
ible, inviscid fluid that is at rest at infinity. We do 
not make any assumptions on the shape of the 
vehicle nor do we require the mass of the vehicle to 
be distributed uniformly, i.e., we assume that the 
center of buoyancy and center of gravity are not 
coincident. This latter assumption is of practical 
interest since underwater vehicles are typically built 
with a relatively low center of gravity for stability. 
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We fix an orthonormal coordinate frame 
(b~,b2,b3) to the body with origin at the body's 
center of buoyancy and let (rl, r2, r3) be an inertial 
frame with r3 pointing "down", i.e., in the direction 
of gravity. The configuration space of the vehicle is 
the Euclidean group, SE(3), which globally de- 
scribes rigid body positions and orientations in 
three-dimensional space. An element in SE(3) is 
given by X =(R,b).  R ~ S O ( 3 )  is the rotation 
matrix that maps body coordinates into inertial 
coordinates and describes the orientation of the 
vehicle, b is the vector from the origin of the inertial 
frame to the origin of the body frame and describes 
the position of the vehicle. If we define f2 and v, 
respectively, to be angular and translational 
velocity of the vehicle given in body coordinates, 
then 

[~= RfL  b = Rv, 

where Oy =- (~ x y for y ~ ~3. 
We note that SE(3) = SO(3)®~ 3 is an example 

ofa  semidirect product. I fG is a Lie group that acts 
linearly on a vector space V and G x V is given 
the group structure defined by (91, vl)'(g2, v z ) =  

(g l  92, ~flV2 -1- /)l), with (91, v~), (92,/)2) (~ G x V, then 
G x V is a Lie gro:ap called a semidirect product 
and denoted G ® I/. 

Let {e~,e2, e3} be the standard Euclidean basis 
for ~3 and define 

A = RTel, X = Rre2, F = RTe3, 

so that R x = (A, X, F). F is the unit vector pointing 
in the direction of gravity expressed in body coordi- 
nates. Let the vector from the center of buoyancy to 
the center of gravity be lr where I is a scalar and r is 
a unit vector. 

Define H and P, respectively, to be the angular 
and linear components of the impulse of the 
system. Roughly, impulse refers to the finite part of 
the momentum of the system, but we will use the 
terms impulse and momentum interchangeably. 
Let 

~ =  , v =  , M =  DT . 

Then the relation,;hip between velocity and mo- 
mentum is given by 

J is the matrix that is the sum of the body inertia 
matrix plus the added inertia matrix associated with 
the potential flow model of the fluid. Similarly, M is 
the sum of the mass matrix for the body alone, i.e., 
the mass of the body m multiplied by the identity 
matrix, plus the added mass matrix associated with 
the fluid (note that M itself is not a multiple of the 
identity unless the body is symmetric). D accounts 
for cross terms. The body axes can always be 
chosen so that M is diagonal, i.e., one chooses them 
to be the principal axes of the added mass ellipsoid. 

Kirchhoff showed that the kinetic energy of the 
body-fluid system is given by ½3- M~ where ~ is 
positive definite so that the dynamic equations of 
motion (Kirchhoff's equations) become 

f l  = F I x f 2  + P x v  + J ,  
(1) 

P = P x O + ~ ,  

where Y and ~ are external torques and forces. In 
the absence of external forces and torques (this 
would require coincident centers of buoyancy and 
gravity), these dynamics can be viewed as Lie-  
Poisson dynamics on ~e(3)* [2, 11]; 5e(3)* is the 
dual of the Lie algebra of SE(3), and v = (/7, p):r is 
an element in 5e(3)*. 

The Lie Poisson dynamics on se(3)* can be in- 
terpreted as reduced dynamics starting from the 
dynamics on the system phase space T*SE(3), re- 
duced by the symmetry group SE(3). Given a differ- 
entiable manifold Y, T* Y is the cotangent bundle 
of Y, i.e., the disjoint union of the cotangent spaces 
to Y at the points yE Y. Thus, T*SE(3)  is the 
collection of all configuration and conjugate mo- 
mentum pairs for a rigid body in three-dimensional 
space. Symmetry in this context means that the 
Hamiltonian that describes the dynamics in 
T*SE(3)  is invariant to actions of SE(3), i.e., one 
can translate the inertial frame or rotate it in any 
direction and not affect the equations of motion. 
The equations of motion (1) are equivalent to the 
Lie-Poisson equations ?i = {vi, Hc} where the 
bracket is the reduced Poisson bracket on se(3)*, 
and the reduced Hamiltonian Hc is equal to the 
kinetic energy, i.e., 

Hc(v) = ½ v" ~ - 1 v. 

In the case of interest where the center of buoy- 
ancy and the center of gravity are noncoincident 
(and there are no other external forces or torques), 
Kirchhoff's equations need to include the torque 
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due to the buoyant and gravitational force pair as 

FI = FI xE2 + P x  v -- mglF xr ,  

P = P × ~ ,  (2) 

/~ = Fx£2.  

These equations can also be viewed as Lie-Poisson 
dynamics; however, this time on m*, the dual of the 
Lie algebra of the double semidirect product 
W = SO(3)®(~ 3 x ~3) [11-1. W is called a double 
semidirect product since from [11], W = 
SE(3) ® N3, i.e., a semidirect product of a semidirect 
product and a vector space. The Lie-Poisson dy- 
namics on to* can be interpreted as reduced 
dynamics starting from the dynamics on T*SE(3),  
reduced by the symmetry group SE(2)x N. This 
smaller symmetry group (relative to the case of 
coincident centers) reflects the fact that the torque 
due to gravity and buoyancy has broken some of 
the rotational symmetry, i.e., one can still translate 
the inertial frame but now only rotate it about the 
direction of gravity without affecting the equations 
of motion. Let /~ = (H, P, F) E w*. The Poisson 
bracket on m* is {F,K} (# )=  V F T A ( # ) V K  where 
F and K are smooth functions on m* and the 
Poisson tensor A is given by 

A(~, )=  P 0 . 

/~ 0 

The equations of motion (2) are equivalent to 
/)i={/~i,H}, i.e., / i=A(#)VH(/0 ,  with reduced 
Hamiltonian H equal to the kinetic plus potential 
energy, i.e., 

H(#) = ½ v" ~ - iv - -  mglF" r. 

Three independent Casimir functions C~:m* ~ 
are C1 = P . F ,  C2 = [IPI[ 2, C3 = IIFII 2. These are 
functions which Poisson commute with any func- 
tion K on m*, i.e., {Ci, K} = 0, and thus, are con- 
served quantities along the equations of motion. 
A point in reduced space is called generic if the 
Poisson tensor has maximum rank; otherwise, it is 
called nongeneric. Here,/t is generic as long as P ~ F .  

tonian systems since linearization techniques can- 
not be used to prove stability. This is because 
a stable Hamiltonian system will have all its eigen- 
values on the imaginary axis. 

The energy-Casimir method provides sufficient 
conditions for nonlinear (Lyapunov) stability of 
a generic equilibrium #e in the reduced dynamics. 
This establishes nonlinear stability of the correspond- 
ing relative equilibrium ze in phase space modulo the 
symmetry group G used in reduction. Stability 
modulo G is just the usual notion of Lyapunov stabil- 
ity except that one allows arbitrary drift along the 
orbits of G. For the uncontrolled underwater vehicle, 
a relative equilibrium ze is a solution of the dynamics 
in T* SE(3) which corresponds to an equilibrium point 
/~e : (He, P~, F¢)~ w*, i.e., relative equilibria are 
steady translations and rotations. 

The energy-Casimir method consists of finding 
a (Lyapunov) function H~,, = H + ~(Ci) + 4)j(cj), 
where H is the Hamiltonian, C~ are Casimirs, cj are 
other constants of motion and 4)(.) and qSj(-) are 
smooth functions to be determined. The condition 
that <b(.) and ~bj(.) can be found so that ~e is 
a critical point of H , . ,  and the second derivative of 
H,.+ is definite at /~, is sufficient for Lyapunov 
stability of #e [14]. 

In [12], stability theorems were derived that ex- 
tend the energy-Casimir method to predict stability 
modulo a group smaller than the symmetry group 
and to allow for nongeneric equilibria such as the 
steadily rising or falling vehicle. In general, steady 
translation with no spin along any but the short 
axis of a vehicle is unstable. However, the extended 
theorems of [12] helped to show that steady trans- 
lation along even the long axis of an ellipsoidal 
vehicle can be made stable by design if the body is 
translating parallel to gravity (i.e., rising or falling) 
and the center of gravity is sufficiently far below the 
center of buoyancy. The stabilizing moment due to 
gravity and buoyancy derives from a potential that 
breaks rotational symmetry except about the direc- 
tion of gravity. Stability is modulo SE(2) x R, i.e., 
the body is stable in the momentum parameters but 
may rotate about the axis of motion or may drift in 
any translational direction. 

3. Stability 

The main tool that we use to analyze stability is 
the energy-Casimir method, applicable to Lie 
Poisson systems. We need such tools for Hamil- 

4. Stabilization 

Inspired by the naturally stabilizing effect of 
gravity and buoyancy in the case of a rising or 
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falling underwater vehicle, we derive control laws in 
this section using 'symmetry-breaking potentials 
that stabilize arbitrary constant vehicle transla- 
tions without spin. ~[he desired translation does not 
have to be a stead3, motion for the uncontrolled 
dynamics; it will be turned into a stable steady 
motion for the closed-loop system. The desired 
motion will be denoted by variables with subscript 
d, e.g., the desired velocity in body coordinates 
va E E3 is assumed to be given and the desired body 
angular velocity is taken to be f2a = 0 (no spin). It 
will also be of interest to consider a desired orienta- 
tion of the vehicle given by Ra ~ SO(3). 

We assume that control torques u ~ ~ R 3 and for- 
ces u f ~ N3 can be provided by available actuators 
such as propellers, so that the system dynamics 
with control become 

I I  = H x ( 2  + P x  v - m g l F x r  + u ~, 

P = P x g 2  + u f, 

/~ = R~, (3) 

b = Rv. 

4.1. Stabilization in momentum space 

Stabilization of the desired steady motion is 
achieved in this section modulo the possibility of 
translational drift. Let 

= Rava/Ilvall 

be the unit vector that describes the desired vehicle 
velocity with respect to the inertial frame. We as- 
sume that k # e 3. In the case that RaVdl] e3, the 
desired motion corresponds to a rising or falling 
vehicle. This case is discussed in Remark 4.3. Define 
O as the vector ~: in body coordinates, i.e., 

O = RT~.  

Consider the control law 

u ~ = 6) × ( M  - ~I)va II Vdll -- mglF x (flFa -- r), 

U f = 0, (4) 

where ~ and fl are scalar control gains to be deter- 
mined. As shown in the next lemma, this control 
law derives from a symmetry-breaking potential. 
The first term in the control law comes from a po- 
tential that breaks all remaining rotational sym- 
metry. The second term comes from a potential 
that adds to the existing gravitational potential as 

needed to hold the vehicle in the desired orientation 
(no symmetry broken with this term). 

Lemma 4.1. The closed-loop dynamics (3) with 
control given by (4) describe a system that is 
Hamiltonian on T*SE(3)  with symmetry group ~3. 
Reduction by this symmetry group yields L i e -  
Poisson dynamics on ~*, the dual o f  the Lie algebra of  
the semidirect product S = SO(3)(~)(~ 3 X ~3 X ~ 3 ) .  

The reduced space ~* is parametrized by #s = 
(17, P, F, O) and the reduced dynamics are 

/ ' / =  17x O + P x  v + 69 x ( M  - ~I)vajlVdll 

- mglflF x Fa, 

P = P x Y 2 ,  

f" = C x ~ ,  (5) 

0 = O x f 2 .  

These dynamics correspond to /is = Ad#s)VHd#s) 
where 

[ ~ P F O  

~ P  o o  o 

As(#s) = i f f  0 0 0 

\ 0 o o o  
and 

Hs(#s) = ½ v- M - Xv + O "(M - ~I) va II vd ql 

- mglflF'Fd. (6) 

Six independent Casimirs Ci: ~* ~ I~ are P" F, P" O, 
F ' O ,  NPN 2, IIFII 2, lIOI] 2. 

Proof. By analogy to the description of the open- 
loop system dynamics [11], the closed-loop system 
can be described as a system on SE(3) with kinetic 
energy T = 13. M ~ and potential energy 

V = R T k ' ( M  -- ~I)Vd II Va 11 -- mglfl(RXe3)" r. 

The Lagrangian L: TSE(3) ~ R is L(R, b, R(2, Rv) 
= T -  V. L is left-invariant under the action of the 

group 

G = { ( R , b ) ~  S E ( 3 ) I R T e 3  = e3, R T k  = k }  = ~ 3  

s i n c e  e3~k. The corresponding Hamiltonian system 
on T*SE(3) is also necessarily left-invariant to the 
action of N3. Reduction by R3 is possible using the 
semidirect product reduction theorem of [13]. This 
yields the Lie-Poisson dynamics of the lemma. []  
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One can check that the desired motion in reduced 
space, 

(Hd, Pa, Fd, Oa) 

= (DVd, MVd, Rde3, Vd/ll Vd II) ~ ~*, (7) 

is a steady motion for the closed-loop dynamics (5). 
By Lemma 4.1, the closed-loop dynamics are 
Lie-Poisson, and so we can apply the energy-Casimir 
method to the closed-loop system to determine condi- 
tions on the control gains ~, fl that make the desired 
motion (7) a stable relative equilibrium. 

Theorem 4.2. The equilibrium solution (7) is stable for 
the closed-loop system (5) if ~ and fl satisfy 

:~ I -  M > O and lfl > O. (8) 

Stability in T*SE(3) is modulo ~3. 

Proof. The theorem follows by application of the 
energy-Casimir method to the conserved quantity 

He = Hs + qo(p. F, P. O, F. O, I[PII 2, IIF[I 2, I10[1~), 

where Hs is given by (6). [] 

Remark 4.3. The case of a vehicle with coincident 
centers is an interesting special case in which 
stabilization by breaking rotational symmetry may 
be handled in two stages. Recall that the uncontrolled 
vehicle with coincident centers has full rotational and 
translational symmetry. To stabilize a desired steady 
translation, first consider applying the control torque 
given by (4) with l =  0. This will break rotational 
symmetry except about the desired axis of motion. 
The closed-loop system will have SE(2) x N symmetry 
and the reduced dynamics will be Lie-Poisson on w*. 
One can then use the energy-Casimir method to 
determine conditions on c¢ for stability. If the desired 
translation is along one of the body axes, i.e., 
Pd ]l Od = Vd/I[Vd II, then the equilibrium is nongeneric 
and analogous to the rising/falling bottom-heavy ve- 
hicle. As in the case of the rising/falling vehicle, using 
the extended stability theorems of [12] one could find 

such that the dynamics are stable modulo 
SE(2) x N, i.e., there may be rotational drift about (but 
not away from) the desired axis of motion as well as 
translational drift. If rotational drift is unacceptable, 
one could include a second control torque term de- 
rived from a potential that breaks the remaining 

rotational symmetry. In the case of the bottom-heavy 
rising/falling vehicle the first control torque term can 
be provided by gravity and buoyancy with a suffi- 
ciently low center of gravity. 

Remark 4.4. One can also use control laws derived 
from (gyroscopic) terms that do not break symmetry, 
but do stabilize the desired motion modulo a possibly 
larger group. Such an alternative is described in [10]. 
In this case, the control law is a function of P instead 
of O. Having such an alternative gives one a choice of 
which dynamic variables one needs to measure for 
feedback. 

Remark 4.5. The feedback control law (4) is robust to 
uncertainty in the model parameters. That is, we can 
choose values for control gains c¢ and fi so that even if 
we are incorrect in our knowledge of the model 
parameters, the resulting motion of the closed-loop 
system will stay close to the desired motion. This can 
be understood as follows. First, suppose that we 
choose our control law using a nominal model, i.e., 
our best guess at the model parameters. We will 
denote the nominal parameters with a subscript 0, 
The control law looks like 

u ~ = 0 x (Mo - :~I)Vd U Vdll - mogloF x (fiFa - ro). 

The closed-loop system takes the same form as (5) 
except that 

FI = I I x f 2  + P x  v + O x ( M  - ~l)v~llv*N 

- mogloflF x F*, (9) 

where 

v* I[ vJ' [I = (M - ~I)- I ( M  o - -  eI)va I[va li, 

l ( ~ o l o r - r o ) + F d ,  

i.e., Vd, Fa are replaced by v~', F* and mgl is replaced 
by moglo. It follows that the motion 

( H , P , F , O ) = ( D v * , M v * , F ~ , v ~ / r l v * l l ) ~ *  (10) 

is a relative equilibrium of the closed-loop dynamics 
(5) with (9). For the generic case in which My*, v*2, F* 
are not all parallel, from Theorem 4.2, (10) is a stable 
equilibrium for the closed-loop system (5) with (9) if 
we choose c~ and fl to satisfy (8). This can be done if an 
upper bound on the size of M (e.g., maximum singular 
value of M) and the sign of l are known. Note, further, 
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that v~ + Vd as ~ --+ oD and F* ~ Fd as fl ~ go. Thus, 
we can choose ~ and fl large enough to ensure that the 
stabilized motion (10) is close enough to the desired 
motion (7). 

4.2. Preventing translational drift 

In this section we augment the control law from the 
previous section in order to prevent translational drift 
away from the desiled motion. The added control 
term derives from a potential that breaks transla- 
tional symmetry in directions transverse to the direc- 
tion of desired motion. Let a" = diag(1, 1,0) and let 
Q ~ SO(3) satisfy 

QRdVd = e3 Ilvd II. 

Q maps inertial frame vectors into vectors described 
in terms of a frame in which the third axis corre- 
sponds to the desired direction of motion. Define. 

3 = Qb, g = JQb = Jb, 

i.e., ~; describes b is this new frame and ~ replaces the 
third component  of i~ with zero. Thus, 

= SORv, 

and so Z;(t) = b(0) when R = R d and v = Yd. Without 
loss of generality, we will take b(0)= 0 so that the 
desired translational displacement is given by 
~3 d = ~ ( 0 )  = O, i.e., the vehicle should translate only in 
the desired direction of motion. 

Consider the control law 

u ~ = 0 x (M - ~I)Vd Ilvd II -- mvIF x (flFa -- r), 
(11) 

u f = _ RTQTJK~, 

where K is a 3 x 3 control gain matrix and e, fl are 
scalar control gains, all to be determined. As shown in 
the next lemma, the new control force derives from 
a symmetry-breaking potential that looks like 
a spring potential and breaks translational 
symmetry. 

Lemma 4.6. The closed-loop dynamics (3) with control 
given by (11) are Hamiltonian on T*SE(3)  with sym- 
metry group R. Reduction by this symmetry group 
yields Lie-Poisson dynamics on n*, the dual o f  the Lie 
algebra o f  the semidirect product N = 
SE(3)®(N 3 x N3 x D;t 3 x N3). The reduced space n* is 
parametrized by #~ = (17, P, A, X, F, ~) and the re- 

duced dynamics are 

I5I = H × f 2  + P x v  + 0 x ( M  - Cd)VdrlVdll 

- mglflF x Fd, 

[9 = p x f2 -- RTQTjKb,  

z] = A x Q ,  

2 = S x f 2 ,  

P = F x f 2 ,  

= JORv, 

where R T = (A, X, F) 
RT Q'r e3 = Q31A + 

correspond to tin = 

P o 

3 o 
An(#n) = £ 0 

0 J Q R  

and 

(12) 

A X F 0 

0 0 0 --RTQT3 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Hn(/~.) = ½v" ~ - l v  -[- O "(M --  ~I)v  d II vail 

- mgl3F'Fd + 1"~. KT). (13) 

Seven independent Casimirs Ci: rt* ~ [R are A . X, A " F, 

S.F, I1~112, IISII 2, Ilrll 2, e~QRP. 

Proof. Here, the closed-loop system can be described 
as a system on SE(3) with kinetic energy T = ½3" M~ 
and potential energy 

V = R r k ' ( M  - ~I)vdllvdll - mglfl(RTe3)'r 

+ ½(JOb) 'KJQb.  

The Lagrangian L : TSE(3) -+ IR is L(R, b, RY2, Rv) 
= T - V. L is left-invariant under the action of the 

group 

G = {(R, b) ~ SE(3) IRTe3 = e3, RTI¢ = 1¢, 

JQh = 0} = ~. 

The corresponding Hamiltonian system on T*SE(3) 
is also necessarily left-invariant to the action of N. 
Reduction by N is possible using the semidirect prod- 
uct reduction theorem of 1-13]. This yields the 
Lie-Poisson dynamics of the lemma. [ ]  

and 0 = RTRdVd/IIvdlt = 
Q32 -F + Q33 ft. These dynamics 

An (]2n) V nn  (fin), where 
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One can check that  desired mot ion in reduced 
space, 

(Ha, Pa, Ad, Xd, rd,  bd) 

= (Dr d, MVd, Rdeb Rde2, Rde3, 0)e  n*, (14) 

is a steady mot ion for the closed-loop dynamics (12). 
By Lemma 4.6, the closed-loop dynamics are 
Lie Poisson, and so we can apply the energy-Casimir 
method to the closed-loop system to determine condi- 
tions on the control  gains that make  the desired 
mot ion (14) a stable relative equilibrium. 

Theorem 4.7. The equilibrium solution (14) is stable for 
the closed-loop system (12) if or, fl and K satisfy 

~ I - M > 0 ,  l f l>O and K > 0 .  (15) 

Stability in T*SE(3) is modulo ~. 

Proof. The theorem follows by applicat ion of the 
energy-Casimir method to the conserved quanti ty 

H ,  = H n q- ~(A . X,A . F ,X .  F, 

[11112, tl~ll 2, IIFII 2, e~QRP), 

where Hn is given by (13). [ ]  

F r o m  Theorem 4.7, since stability is modulo  N, 
there is no longer the possibility of drift in directions 
transverse to the direction of motion. 

5. Conclusions 

A technique which uses symmetry-breaking poten- 
tials to stabilize relative equilibria has been proposed 
and applied to the dynamics of an underwater vehicle. 
Future plans include coupling the method of sym- 
metry-breaking potentials with the method of modify- 
ing the kinetic energy which together will allow more 
flexibility in the nature of the control law and the 
number and type of actuators needed for control. It is 
also of interest to consider extensions to tracking. 
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