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Abstract: Systematic design of decentralized feedback for coordinated control of multi-agent
systems has much to gain from the rigorous examination of the nonlinear dynamics of collective
animal behavior. Animals in groups, from bird flocks to fish schools, employ decentralized
strategies and have limitations on sensing, computation, and actuation. Yet, at the level of
the group, they are known to manage a variety of challenging tasks quickly, accurately, robustly
and adaptively in an uncertain and changing environment. In this paper we review recent work
on models and methods for studying the mechanisms of collective migration and collective
decision-making in high-performing animal groups. Through bifurcation analyses we prove
systematically how behavior depends on parameters that model the system and the environment.
These connections lay the foundations for proving systematic control design methodologies that
endow engineered multi-agent systems with the remarkable features of animal group dynamics.

1. INTRODUCTION

Multi-agent system dynamics have gained significant at-
tention in the control community in recent years. This
is due to the rich theory associated with decentralized
feedback control and system performance as well as to the
growing number of important and challenging applications
in cooperative control of networked dynamical systems,
from robotic vehicle networks to electric power networks
to synthetic biological networks (Antsaklis and Baillieul
[2004, 2007], Bullo et al. [2009], Mesbahi and Egerstedt
[2010], Zachary et al. [2011]). It is common in multi-agent
system dynamics to limit each individual agent in the
system in terms of what it can decide on its own, what
it can do on its own, and what it can measure on its
own about its local environment. A key objective is then
to prove that through judicious design of feedback and
interaction among the agents, the decentralized networked
multi-agent system can function at a very high level, meet-
ing demanding performance criteria in complex tasks.

The present paper reviews a selection of recent work by the
author, with collaborators from engineering and biology, to
develop abstract models and methods for rigorous exami-
nation of mechanisms of multi-agent dynamics. The focus
is on high-performing dynamics drawn from observations
and understanding of collective behavior in animal groups.
The study of collective animal behavior is particularly
relevant to decentralized feedback control design: animals
typically apply decentralized strategies and have limita-
tions on their ability as individuals to compute, act, and
sense, and yet as a group they adapt their behavior with
accuracy, speed and seemingly little effort.
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A central goal of the work presented is to derive analyt-
ically tractable dynamic models that capture the mecha-
nisms of collective animal behavior and lend themselves
to systematic study of sensitivity of performance to crit-
ical parameters of the system and the environment. This
creates foundations for developing provable and systematic
control design methodologies that enable engineered multi-
agent systems to inherit some of the remarkable features
of animal group dynamics.

The dynamics of collective animal behavior are typically
nonlinear due to nonlinearities in individual dynamics,
nonlinearities in interaction dynamics, nonlinear coupling
between the individual dynamics and the interaction dy-
namics, and nonlinearities in the configuration space.
Models also tend to be high-dimensional especially when
the number of agents in the group is large.

Approaches such as time-scale separation, or mean-field
approximation, can be used to derive reduced-order mod-
els. Bifurcation theory can then be applied to isolate
the influence of system and environmental parameters on
structural changes in the collective behavior. When bifur-
cation parameters, such as the feedback gains of individual
agents, are endowed with their own dynamics, either by
hypothesis to model animal groups or by design to con-
trol engineered networks, the resulting system dynamics
describe adaptive collective behavior, where conditions for
high performance can be proved in a possibly changing en-
vironment. Analytic approaches to investigating adaptive
behavior in biology, e.g., evolutionary dynamics and anal-
ysis of evolutionarily stable solutions, can be integrated
with control theoretic approaches to advance a theory of
multi-agent system dynamics.

Animal groups provide enormous inspiration when viewed
as high-performing multi-agent systems implementing de-
centralized feedback control in a changing and uncertain
environment. From bird flocks to fish schools, animal



groups exhibit a superior ability to manage a variety of
challenging tasks, from foraging to migration to preda-
tor evasion, that individual animals would not be able
to manage on their own (Krause and Ruxton [2002]).
Observations of collective behaviors suggest that animal
groups perform exceptionally well in the trade-off between
speed and accuracy and between robustness to disturbance
and responsiveness to environmental change (e.g., Ballerini
et al. [2008]). Biologists attribute the remarkable behavior
of these groups in large part to the social interactions
among individuals. Indeed, interactions among many rela-
tively limited individuals have been shown to yield collec-
tive dynamics that are much more than the sum of their
parts (Parrish and Edelstein-Keshet [1999]).

The work reviewed in the present paper focuses on dynam-
ics of collective migration and collective decision-making.
Many species of birds, fish, invertebrates and mammals
rely on social interactions during migration, especially
when it is costly for individuals to measure stochastic
environmental cues such as nutrient and thermal gradients,
magnetic fields, odor and visual markers (Fryxell and
Sinclair [1988], Holland et al. [2006]). Migration can be
an adaptive response to seasonal variability, competition
for dynamically changing resources, and shifting focus on
habitats for breeding, where animals must learn, agree on
and follow a single migration route. Collective migration
has been shown to be evolutionarily stable for certain
environmental conditions in the case that only a subset of
individuals invest in measuring the costly environmental
cue while the rest rely on cheaper social cues, imitating
the movement of invested neighbors (Guttal and Couzin
[2010], Fagan et al. [2012]). The collective migration prob-
lem can be abstracted to a collective tracking or learn-
ing problem, thus motivating the connection to nonlinear
control design and in particular design that seeks to use
minimal resources.

Social interactions in animal groups likewise play a central
role in collective decision-making. The striking capabilities
of animal groups as decision-makers also motivate the
connection to nonlinear control design. Couzin et al. [2005]
have shown that a group of animals moving together can
make a critical collective decision on direction of motion,
even if there is a conflict between directional preferences of
informed individuals and uninformed individuals have no
preference at all. No explicit signaling nor identification
of informed individuals is assumed; individuals merely
adjust their steering in response to socially acquired es-
timates on relative motion of neighbors. Another example
is the collective decision-making of house-hunting honey-
bee swarms. Seeley and Buhrman [2001] showed how a
unanimous best-of-N nest-site selection results from the
dynamics of the “waggle dance,” an activity that honeybee
scouts perform on the surface of the swarm to advertise
the quality of potential nest sites. More recently, a cross-
inhibitory signal among scouts that tempers the dancing
has been shown to enable breaking deadlock among near-
equal quality nest sites (Seeley et al. [2012]).

The present paper continues in Section 2 with some back-
ground and a very limited survey of relevant previous and
current work. Models, mechanisms, bifurcation analyses,
and prospects for nonlinear control design of multi-agent

systems are presented in Sections 3 and 4. Final remarks
are provided in Section 5.

Section 3 examines the evolution of leadership in collective
migration (tracking) using an adaptive dynamic model,
motivated by the work of Guttal and Couzin [2010] and
Torney et al. [2010]. Each agent has a scalar real-valued
investment strategy that slowly adapts and changes the
interaction network upon which the collective migration
dynamics depend. Analytic results are presented in the
case of very large populations using a mean-field approxi-
mation and in the case of relatively small populations using
a time-scale separation. This section highlights the PhD
research of Darren Pais (Pais [2012]).

Section 4 examines three models of collective decision-
making. The first model, motivated by Couzin et al.
[2005] and described in Section 4.1, uses a continuous-
time model to derive rigorous conditions for decision versus
poor compromise in the case of subsets of individuals
in the group with conflicting preferences. This section
builds on the PhD research of Benjamin Nabet (Nabet
[2009]). The second model, motivated by the honeybee
nest site selection dynamics of (Seeley et al. [2012]) and
described in Section 4.2, is used to prove bifurcations in
decision-making behavior, including deadlock breaking, as
a function of the strength of the cross-inhibitory signal and
the quality of the nest sites. The third model, described in
Section 4.3 uses the replicator-mutator equations (Nowak
et al. [2001]) to represent imitation and error in decision-
making among finite alternatives. Conditions are proved
on the network structure and error rate that yield stable
limit cycles, which represent cycling among a subset of
alternatives. The dynamics of the second and third models
describe the distribution of very large populations and
evolve on simplices. These two subsections highlight the
PhD research of Darren Pais (Pais [2012]).

2. BACKGROUND

There is a wide range of high performing collective dynam-
ics of animal groups, and we do not try to survey them all
here. Indeed, collective dynamics can vary dramatically
across species since different aggregations form as a result
of very different selective pressures on self-interested indi-
viduals (Parrish and Hamner [1997]). In the field of col-
lective animal behavior the mechanistic approach, which
examines how group level behavior is produced, is tightly
coupled to the functional approach, which seeks to explain
why group level behaviors evolved in terms of natural
selection (Sumpter [2010]). Couzin and Krause [2003] re-
viewed early progress on using mathematical modeling
and self-organization theory to identify underlying prin-
ciples of collective animal behavior. Vincent and Vincent
[2000] examined the connections between the evolutionary
process and stability and optimization in control design.
Wei et al. [2009] evaluated feedback controlled steering
strategies for pursuit in planar pursuit-evasion dynamics
using an evolutionary game theoretic setting.

Social interactions in groups such as birds and fish are
often modeled as repulsion, attraction, and/or alignment
movements by individuals in response to nearby con-
specifics that are, respectively, a little too close, a little
too far, or heading off in a somewhat different direc-



tion. The numerical investigation of Couzin et al. [2002]
showed how slow changes in the social interaction model
parameters lead to transitions between parallel motion,
circular motion and disordered swarming of the group.
They showed further that for variation in the range of
neighbors used in the alignment response, there is hys-
teresis in the transitions. Conditions for bi-stability and
hysteresis of these motions were proved for a continuous-
time dynamical model in Paley et al. [2007b].

It has been shown that animal groups perform well at
tasks such as foraging and search, even in the presence
of disturbances and noisy measurements. For example,
individual aquatic animals during foraging may be limited
to sampling their environment at scales much smaller than
the scales at which resources are distributed. Furthermore,
small-scale stochastic fluctuations may corrupt local gra-
dients of resource. Grünbaum [1998] showed that schooling
behavior enhances the group’s ability to navigate and
climb gradients. When individuals respond to social cues
by staying close to one another and aligning their direction
of motion, the corrupting effect of noise in individual
measurements is dampened.

Motivated by these kinds of insights, Bachmayer and
Leonard [2002] designed bio-inspired decentralized feed-
back strategies for a small formation of mobile sensor-
equipped vehicles to climb the gradient in a sampled field.
This approach was further developed into a more general
methodology for gradient climbing (Ögren et al. [2004])
and level-set tracking (Zhang and Leonard [2010]) with
adaptive formation shape changes for optimized filtering.
The methodology was successfully demonstrated on au-
tonomous underwater vehicles in an ocean sampling field
experiment in Monterey Bay, California in 2003 (Fiorelli
et al. [2006]). Torney et al. [2009] showed further that
when individual fish continuously adjust how much they
use social cues according to the confidence they have in
their own strategy, the school can successfully track an
advected chemical filament. Wu and Zhang [2012] have
capitalized on this mechanism to prove a highly efficient
source-seeking control strategy.

The model of social interactions in flocks and schools
motivated development of a methodology for systematic
stabilization of a family of parallel and circular motion
patterns (Sepulchre et al. [2007, 2008]). The dynamics,
which exploit a spatial extension of coupled oscillator
dynamics, provide decentralized control strategies. This
methodology was used both for studying the dynamics
of schooling fish from experimental data (Paley et al.
[2007a]) and for controlling the dynamics of mobile sensor
networks into patterns that maximize information in data
collected (Leonard et al. [2007]). The coordinated motion
pattern design methodology was used successfully on six
autonomous underwater gliders for 24 days straight in
an adaptive ocean sampling field experiment in Monterey
Bay, California in 2006 (Leonard et al. [2010]). Motivated
by experimental data of schooling in which the fish ex-
hibited coordinated oscillations in their speed, Swain and
Leonard [2009] expanded the family of stabilizable coordi-
nated motion patterns to include richer circular patterns
that yield high spatial density in measurements, periodic

exchange of roles among agents, and possibilities for lever-
aging redundancy of sensor platforms.

Collective animal behavior was an early inspiration for
collective robotics (Beckers et al. [1994]) and influenced
the behavioral-based approach of the 1990’s (Mataric
[1992]). In recent years there has been renewed interest
in enabling a collective capability in robotic groups using
mechanisms attributed to social insect swarms (Berman
et al. [2011], Trianni et al. [2011], Pratt and Sasaki [2012]).
Butail et al. [2013] described the reconstruction of 3D
trajectories from data of wild mosquito swarms and its
use in informing a mechanistic model of male coordinated
behavior. Chicoli et al. [2013] described reconstruction of
3D interactions of schooling fish and its use in a rigorous
examination of the role of the flow field on the information
transmission dynamics among the interacting fish. This
work has potential implications for coordinated control of
multi-agent systems in the air or water where there may
be a steady flow.

3. COLLECTIVE MIGRATION

In the collective migration problem, a group of animals
must learn and travel along a route that takes it from its
current location to its new habitat or feeding ground. Mi-
gration is possible because animals can detect directional
cues from the environment; however, acquiring this infor-
mation may be costly in terms of time and energy, which
could be spent on other demands such as reproduction,
growth, or predator vigilance (Dall et al. [2005], Guttal
and Couzin [2010]). Animals that migrate in groups can
also use social cues such as observations of the relative
movement of nearby animals, which may require little
investment in time and energy. Collective migration will
thus depend on there being a set of individuals in the
group that invests in the costly environmental cue and
can “lead” the rest of the group successfully.

Guttal and Couzin [2010] used simulation to study the
evolutionary dynamics of a socially interacting migratory
population where individuals adjust how much they invest
in the costly environmental cue and how much they
leverage social cues to optimize the trade-off between
their migration benefit and their investment cost. They
showed that for a sufficiently high cost, the population
splits (branches) into invested “leaders” and uninvested
“followers”. They also predicted a strong hysteretic effect
in which migration is lost at very high cost after which
recovery of migration requires a significant reduction in
cost.

The collective migration problem can be abstracted as a
decentralized collective tracking (or learning) problem in
which a multi-agent system as a whole should track (learn)
an unknown signal. It is assumed that each agent has the
capacity to measure the relative state of other agents (its
neighbors), and to measure the unknown signal at a cost.
In the case of an engineered system such as a network
of mobile robotic sensors, measuring the unknown signal
might involve turning on sensors that are power intensive
such as a camera, as compared to less costly operation
of proximity sensors for measuring the relative position of
nearby robots. All measurements are assumed to be noisy,
and thus performance can be defined both for an agent



and for the whole system in terms of the trade-off between
tracking accuracy and investment cost. Other performance
criteria might include tracking speed and adaptability to
changes in the investment cost, the unknown signal, or the
structure of the interconnections.

The problem of selecting a finite set of leaders that mini-
mizes total system error in a multi-agent linear, stochastic,
decentralized coordinated control dynamic has received
recent attention in the literature (Patterson and Bamieh
[2010], Clark et al. [2012], Lin et al. [2013]). In these works
a fixed set of leaders is selected using a centralized (top-
down) algorithm given a fixed interconnection graph. In
contrast the evolution of collective migration describes
dynamics in which the leadership and the interconnection
graph emerges through a decentralized (bottom-up) and
adaptive process. These adaptive dynamics are nonlinear
even if the dynamics with fixed leadership are linear be-
cause the leadership investments and weights on social
information are changing. In collaboration with Darren
Pais, we analyzed the nonlinear dynamics and bifurcations
to provide a means to systematically predict the influence
of model parameters on the emergence of leadership and
on collective tracking performance. This in turn suggests
systematic approaches to high performance and efficient
design of multi-agent system dynamics.

In Pais and Leonard [2013] the multi-agent system dynam-
ics were modeled to approximate the detailed evolutionary
simulation model used by Guttal and Couzin [2010]. The
model is presented here using the terminology of collective
migration; the abstraction to the collective tracking or
learning problem is implied. There are N agents and the
migration route is defined by a scalar direction µ. The state
of agent i is defined by its migration direction 1 xi ∈ R
and its investment gain ki ∈ [0, 1]. The dynamics have two
time-scales: the migration dynamics of xi are fast and the
evolutionary dynamics of ki are slow.

Our model of migration dynamics builds on the model used
by Torney et al. [2010] in which individuals respond to the
noisy measurement of the environmental cue with a gain
that depends on ki and to the noisy measurement of the
social cues with a gain that depends on (1 − ki). The re-
sponse to the environmental cue is modeled as an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein [1930]). The
response to social cues is modeled as noisy linear consensus
dynamics using a directed graph (digraph) representation
of the interaction topology (Xiao et al. [2007]); this gen-
eralizes the model of Torney et al. [2010] which uses a
mean-field approximation to reduce the social graph to an
all-to-all interconnection.

For each agent i we denote the standard deviation of the
additive white noise associated with the environmental
measurement as σD and with the social cues as σSi.
Consider a digraph G that encodes the available social
interconnections; we refer to the set of agents that agent
i can sense as the neighbors of agent i. Let L be the
Laplacian matrix associated with the social digraph. For
convenience we define the change of coordinates x̃i = (xi−

1 For moderate deviations of xi from µ (e.g., due east), we can let
xi ∈ R. This is not the case in Section 4.1 where there are two
desirable directions (e.g., due east and due west) and directional
dynamics on the circle are relevant.

µ)/σD. Then, for each agent i the fast time-scale migration
dynamics are

dx̃i = −k2
i x̃idt−(1−ki)2Lix̃dt+

√
k2

i + (1− ki)2
σ2

Si

σ2
D

dWi,

(1)
where Li is the ith row of L and dWi is the standard
Wiener increment. The first term on the right of (1) drives
xi to µ at a rate k2

i . The second term on the right drives
xi to a weighted average of the states of its neighbors at a
rate proportional to (1− ki)2.

The third term of (1) is the sum of the two sources of noise.
Inspired by the model of Torney et al. [2010] we let

σ2
Si

σ2
D

= β2(1− knbhd,i), (2)

where β > 0 is a constant and knbhd,i is the average
investment gain of the neighbors of agent i.

In the fast migration time-scale, we can take ki, i =
1, . . . , N to be constant and the migration model (1)-(2)
is then a linear stochastic differential equation. Rewriting
as a matrix equation we get

dx̃ = −(K1 +K2L)x̃ dt+ SdW , (3)
where K1 = diag(k2

i ), K2 = diag
(
(1− ki)2

)
and S =

diag
(√

k2
i + β2(1− ki)2(1− knbhd,i)

)
.

In Pais and Leonard [2013] it is proved that for digraph
G, the deterministic dynamics of (3) are stable if and
only if kj > 0 for each j in a minimal root set 2 R(G).
These conditions imply for the stochastic dynamics (3)
that lim

t→∞
E [x̃(t)] = 0, i.e., the steady-state expected value

of xi is µ for all i. In other words, if the set of leaders (in-
vested agents) contains a minimal root set R(G), then the
group will migrate. Further, the steady-state covariance
matrix Σ = lim

t→∞
E
[
x̃(t)T x̃(t)

]
will satisfy the Lyapunov

equation:
(K1 +K2L)Σ + Σ(K1 +K2L)T = SST . (4)

The migration accuracy of agent i is defined by the
diagonal element σ2

ss,i = Σi,i, which is the steady state
variance of xi about µ. Variance about consensus was used
in Young et al. [2013] to evaluate robustness to uncertainty
in the collective behavior of starling flocks from data taken
in the wild.

The fitness of agent i is defined following Guttal and
Couzin [2010], Torney et al. [2010] as

Fi = exp

(
−σ2

ss,i

2

)
exp

(
−ck2

i

)
, (5)

where the first exponential models the migration speed of
agent i and thus the benefit to agent i, and the second
exponential models the cost to agent i associated with
its investment in tracking. Here, c > 0 is a scaling
cost parameter. This model of fitness, which can also be
interpreted as a utility or payoff function, has features that
are more generally representative of cooperative games. Do
et al. [2010] argue for a general form that is the difference
2 We define a minimal root set R(G) of a digraph G to be a set of
nodes of minimal cardinality such that there is a directed path from
every node in G to at least one node in R(G).



between a benefit that is sigmoidal (saturating) in the
strategic parameter and a cost that is super linear in the
strategic parameter. The fitness (5) has this general form
since for β > 1 the migration speed is sigmoidal in ki and
the cost is quadratic in ki.

The slow time-scale evolutionary dynamics of the invest-
ment strategies ki can be computed using the roulette-
wheel selection algorithm of Mitchell [1998] plus a small
mutation on each “generation” of a large population:
agents “reproduce” with a probability proportional to
their fitness relative to the average fitness, and their “off-
spring” inherit their traits modulo a small mutation with
a zero-mean Gaussian distribution. In the engineering con-
text, this can be translated as a dynamic on the distribu-
tion across the group of control strategies over time driven
by performance associated with these strategies (encoded
by fitnesses).

An agent without any social interactions will evolve its
strategy ki to balance the increase in migration speed with
increasing ki against the decrease in investment cost with
decreasing ki; for such an agent in isolation the strategy
that maximizes its fitness is ki = (σ2

D/8c)
1/3. In the social

context, however, the fitness landscape is frequency and
network dependent, i.e., each agent’s fitness depends on
how frequent within the group and where in the network
are the different values of the different agents’ fitnesses;
this implies an evolutionary game. For example, agents
with strongly invested neighbors can develop high fitness
without having to invest. As shown in the simulation
studies of Guttal and Couzin [2010] the investment cost
parameter c is critical to the evolutionary outcome. We
have made this rigorous for our migration plus evolution-
ary dynamic model by proving bifurcations in the behavior
of the group with c the bifurcation parameter (Pais and
Leonard [2013]).

Let us first consider the case of a large population in which
every agent can in principle sense every other agent 3 ,
i.e., the underlying graph is all-to-all with weights on
edges dependent on the changing values of strategies ki.
The evolved behaviors of the two time-scale system are
represented by the equilibrium solutions k∗i of the slow evo-
lutionary dynamics of the strategies ki. A monomorphic
solution corresponds to ki = k∗ for all i = 1, . . . , N . Bista-
bility of equilibrium values k∗f ≈ 0 and k∗l ≈ 1 represents
the possibility of co-existence of two subpopulations, one
of leaders with ki = k∗l and one of followers with ki = k∗f .

In Pais and Leonard [2013] the existence and stability of
the equilibrium strategies as a function of c was computed
using an analytic computation of fitness from (4)-(5)
and the analysis tools of evolutionary adaptive dynamics
(Geritz et al. [1997a,b], Diekmann [2004]). Consider that
most of the population, called the resident population, has
common strategy kR and let there be a very small mutant
population with common strategy kM . The relative fitness
S of the small mutant population with respect to the larger
resident population can be computed explicitly as

3 If agent i is fully invested, i.e., ki = 1, then it does not pay
attention to any other agents even if the social cues are available.
Thus, even if the underlying social structure can be represented by
an undirected all-to-all graph, distribution in strategies ki will lead
to a directed graph.

S(kR, kM ) = FM (kR, kM )− FR(kR),
where resident fitness FR and mutant fitness FM are
computed from (4)-(5) as

FR = exp
(
−k

2
R + β2(1− kR)3

4(2k2
R − 2kR + 1)

− ck2
R

)
,

FM = exp
(
−k

2
M + β2(1− kR)(1− kM )2

4(2k2
M − 2kM + 1)

− ck2
M

)
.

Following Geritz et al. [1997a,b], Diekmann [2004], the
evolutionary dynamics of the resident strategy kR are

dkR

dt
= γ

∂S

∂kM

∣∣∣∣
kM=kR

=: γ g(kR),

where γ > 0. An equilibrium k∗ such that g(k∗) = 0
satisfies
k∗
[
β2(1− k∗)− 1

]
(k∗ − 1) + 4ck∗(2k∗2 − 2k∗ + 1)2 = 0.

A solution k∗ is a convergent stable strategy (CSS) if
dg

dkR

∣∣∣
kR=k∗

< 0, and either a local evolutionary stable

strategy (ESS) or if ∂2S
∂k2

M

∣∣∣
kM=kR=k∗

> 0 a branching point.

Suppose that β > 1. Then, the follower solution k∗f = 0
is an equilibrium for all values of c: it is unstable for
0 < c < c0 = (β2−1)/4 and stable for c > c0. In the range
0 < c < c0 there is only one other solution k∗l (c) > 0,
which decreases with increasing c, and it is ESS. Thus
for relatively low cost 0 < c < c0, all agents will invest
equally in the environmental signal, ki = k∗l . In the range
c0 < c < c1 there is bi-stability of the leader solution k∗l
and the follower solution k∗f with a third unstable solution;
the bi-stability allows for the coexistence of leaders and
followers. This is also true for c1 < c < c2; however,
in this range k∗l is a branching point which leads to an
initially monomorphic population splitting into leaders
and followers. For c > c2 the only solution is k∗f and
thus migration is lost. After migration is lost at c > c2,
migration can only be recovered if c is reduced below c0
when the follower solution becomes unstable again (see
Pais and Leonard [2013] for expressions for c1 and c2 and
further discussion). This bifurcation analysis describes, for
large populations with dense interconnection, the changing
behavior with increasing investment cost, from a single
investment strategy to leader-follower strategies to loss of
leadership and thus loss of migration at very high cost
with the associated hysteresis as observed in the original
simulations of Guttal and Couzin [2010].

How the behavior changes with the density of edges
and the topology of the social graph is also critical to
understanding the mechanisms of leadership and collective
migration. Analyzing the differential fitness landscape for
large populations with limited underlying social graphs
can be challenging; however, parametric numerical studies
of the evolutionary dynamics can be pursued relatively
easily because fitness is easily computed from (4)-(5) even
for N large. In Pais and Leonard [2013] evolutionary
branching was studied as a function of probability of a
pairwise edge (number of neighbors) in random graphs
and cyclic lattices; it was shown that branching occurs
above a minimum threshold in edge probability (number
of neighbors) and this minimum can be quite low. That
is, it only takes a small amount of connectivity, when



investment cost is high, for a population to split into
leaders that invest and followers that rely on social cues.

The influence of the graph topology on emergence of lead-
ership and collective migration can be further studied for
small populations by replacing the evolutionary dynamics
with a slow time-scale greedy adaptive dynamic such as

k̇i =
∂Fi

∂ki
. (6)

This can be interpreted as a decentralized adaptive control
law for agent i, also known as gradient play (Shamma and
Arslan [2005]). Assuming that agent i can measure its own
fitness Fi it does not need to know the strategies of its
neighbors. Alternatively, if it knows the strategies of its
neighbors it could estimate its fitness Fi. The nonlinear
dynamics of the adaptive dynamic network can be studied
by substituting the expression for Fi from (4)-(5) into (6).

In the case of N = 2 a complete bifurcation analysis
was computed with bifurcation parameter c, analogous
to the large population case. In this case for low values
of c, there is one stable equilibrium k∗(c) that decreases
with increasing cost c, i.e., both agents invest the same
amount. With further increase in c there is first two saddle
node bifurcations in which a symmetric pair of stable
solutions appear; these correspond to one of the agents
investing a lot and one investing very little. At a slightly
higher c, there is a pitchfork bifurcation and the common
solution k∗ becomes unstable and thus the only stable
solutions correspond to one leader and one follower. In
similar analysis with larger N , there is multi-stability of
solutions in which a subset of agents lead and the rest
follow; as c increases the number of leaders decreases. In
the case of an underlying star graph, it emerges that at low
cost the fringe agents lead, at intermediate cost all agents
invest but at a lower level, and at high cost only the center
agent invests and the fringe agents follow. These and other
results are described in Pais and Leonard [2013].

These bifurcation analyses can inform development of
decentralized control strategies for multi-agent systems.
For example, for adaptation of strategies ki in collective
tracking that derives as above, parameters such as c could
be designed to target a desired number of leaders. An
important step is deriving the relationship between the
strategic outcomes and the group-level performance (e.g.,
using results on top-down optimal leader selection). Then,
for example, fitness functions could be shaped so that
the emergent locations of the leadership in the network
yield optimal group performance. Alternatively, the fitness
functions could be designed so that agents add or subtract
communication links and the network changes structure
to best leverage a prescribed set of leaders, for example,
vehicles that carry extra sensors (such as cameras) to
measure external signals. Approaches from distributed
optimization (e.g., Nedic and Ozdaglar [2009]) may prove
useful in this context.

4. COLLECTIVE DECISION-MAKING

In the collective decision-making problem a group of
animals must make a choice among a finite number of
alternatives, e.g., a set of possible resource-rich locations
or a set of candidate nest sites. A unanimous decision

will typically be advantageous since individuals that get
separated from the group will lose the benefits of group
living. Sometimes there will be a best alternative, but a
lesser alternative may often be better than a deadlock or a
poor compromise. This collective decision-making problem
translates to engineered multi-agent systems that must
choose as a group among uncertain alternatives in tasks
such as search and allocation.

In this section three different models and mechanisms for
collective decision-making are presented with an emphasis
on understanding behavior through bifurcation. The first
model with agent-based dynamics similar to Section 3
is used to explore the role of neighborhood size and in-
formed versus uninformed populations on decision-making
between two alternative desirable directions. The second
and third models both assume very large populations and
formulate the dynamics of the distribution of the pop-
ulation among alternative choices. The second model is
used to examine the role of recruitment in making the
best collective decision and the role of cross-inhibition in
breaking deadlock. The third model is an evolutionary
model that includes replication and mutation and allows
for the possibility of limit cycle behavior. This model,
which resembles models of imitation and error, is used
to explore the role of network topology and mutation
(error) rate on stability and existence of equilibria and
limit cycles.

4.1 Leadership

(Couzin et al. [2005]) used simulation to study how a group
of agents moving together in the plane can make a collec-
tive decision for one of two equal value alternative direc-
tions of motion given conflict in the directional preferences
of two small subgroups of informed agents. Inter-agent
communication was limited to agents sensing the relative
position and heading of nearby agents without being able
to distinguish between the informed and uninformed. It
was shown that a collective decision to move in one of the
two alternative directions is made with high probability for
sufficiently large magnitude preference conflict, i.e., large
enough difference in preferred directions. Otherwise, the
group makes a poor compromise and moves together in
the direction that splits the difference between the two
alternatives.

In collaboration with Tian Shen, Benjamin Nabet, Luca
Scardovi, Iain Couzin and Simon Levin (Leonard et al.
[2012]), we used a system of ordinary differential equa-
tions to approximate the high degree-of-freedom model of
Couzin et al. [2005] and to rigorously explain the collective
decision-making result and explore the parameter space.
We present the model and summarize the main results
here. There are N agents and each agent is a member of
one of three subgroups: there are N1 informed agents in
subgroup 1 with a preference for moving in the direction
θ̄1, there are N2 informed agents in subgroup 2 with a
preference for moving in the direction θ̄2, and there are
N3 uninformed agents in subgroup 3 with no preference
on direction. Each agent j moves like a self-propelled
particle in the plane at constant speed vc in the direc-
tion θj(t) at time t such that its velocity in the plane
is vj(t) = (vc cos θj(t), vc sin θj(t)). Each agent j puts a



weight 0 ≤ ajl(t) ≤ 1 at time t on its response to its
measurement of the relative direction of motion of agent l;
if agent j cannot sense agent l then ajl = 0. The neighbors
of agent j at time t are the agents l such that ajl(t) > 0.

The steering rate for each agent in subgroup 1 is

dθj

dt
= sin(θ̄1−θj(t))+

K1

N

N∑
l=1

ajl(t) sin(θl(t)−θj(t)), (7)

in subgroup 2 it is

dθj

dt
= sin(θ̄2−θj(t))+

K1

N

N∑
l=1

ajl(t) sin(θl(t)−θj(t)), (8)

and in subgroup 3 it is

dθj

dt
=
K1

N

N∑
l=1

ajl(t) sin(θl(t)− θj(t)) . (9)

The first term on the right of (7) and (8) steers the agent
towards its preferred direction and the second term and
only term of (9) steers the agent towards its neighbors’
direction. The constant parameter K1 > 0 weights the
attention paid to social cues relative to preference. The
dynamics of the interconnection weights are

dajl

dt
= K2(1− ajl(t))ajl(t)(ρjl(t)− r), (10)

where K2 > 0 is a constant, ρjl = | cos( 1
2 (θj − θl))|

measures synchrony of direction of motion of l and j, and
0 ≤ r ≤ 1 is a chosen fixed threshold representing an
agent’s sensing range. It holds that ρjl = 1 if l and j move
in the same direction and ρjl = 0 if they move in opposite
directions. If ρjl > r, then j and l are considered close
enough to sense each other so ajl eventually converges to
the maximum interaction strength of 1. If ρjl < r, then j
and l are not considered close enough to sense each other
so ajl eventually converges to 0.

The model exhibits fast and slow dynamics even for
moderate values ofK1 andK2; Leonard et al. [2012] proved
a time-scale separation for large K1 and K2. In the fast
dynamics all agents within a subgroup quickly converge
to a single direction and all ajl converge quickly either
connecting or disconnecting the subgroups. For example,
ajl = A12 for all j in subgroup 1 and all l in subgroup 2,
and subgroup 1 and subgroup 2 are connected if A12 = 1
and disconnected if A12 = 0. The slow variables are Ψ1,
Ψ2, and Ψ3, where Ψk is the average direction of motion of
subgroup k. The fast dynamics have a number of isolated
solutions including eight that can be classified by A12,
A13 and A23 each taking value 0 or 1. The slow dynamics
derived on each of these eight manifolds are

dΨ1

dt
= sin(θ̄1 −Ψ1(t)) +

K1

N
(A12N2 sin(Ψ2(t)−Ψ1(t))

+ A13N3 sin(Ψ3(t)−Ψ1(t)))
dΨ2

dt
= sin(θ̄2 −Ψ2(t)) +

K1

N
(A12N1 sin(Ψ1(t)−Ψ2(t))

+ A23N3 sin(Ψ3(t)−Ψ2(t)))
dΨ3

dt
= 0 +

K1

N
(A13N1 sin(Ψ1(t)−Ψ3(t))

+ A23N2 sin(Ψ2(t)−Ψ3(t))). (11)

Three manifolds of interest are M010, which corresponds
to A12 = 0, A13 = 1, A23 = 0 and a decision for direction
θ̄1, M001, which corresponds to A12 = 0, A13 = 0,
A23 = 1 and a decision for direction θ̄2, and M111, which
corresponds to A12 = 1, A13 = 1, A23 = 1 and a solution
between the directional choices, i.e., a poor compromise is
made. It was shown that M010 and M001, i.e., decisions
for one of the two preferred directions, are both stable if
and only if the difference in preferred direction is greater
than the critical angle θ̄c = cos−1(2r2 − 1); otherwise, the
compromise solution on M111 is stable.

This bifurcation in behavior as a function of the magnitude
of the conflict qualitatively matches the original results
of Couzin et al. [2005]. Further, it provides a sharp
condition on the bifurcation point and the dependence of
the bifurcation point on the sensing region parameter r.
As r increases, the sensing region decreases and the critical
value θ̄c decreases, meaning that it becomes easier for the
group to make a decision. When r is small, the sensing
region is large and the agents cannot distinguish between
the alternatives; they function more as a filter and move
according to a compromise between the two alternatives.

The model was also used to examine rigorously the role of
the uninformed population size N3 on the group decision-
making dynamics. Leonard et al. [2012] showed how the
model predicts an increasing likelihood of a collective
decision for one or the other alternative with increasing
N3. In a related study Couzin et al. [2011] examined the
beneficial role of the uninformed population in preserving
democratic consensus in the case of conflict where the
smaller informed subgroup has a stronger preference than
the larger informed subgroup.

The rigorously derived relationship between decision-
making performance and parameters such as sensing range
and relative size of informed and uninformed populations
suggests opportunities for design of decentralized control
strategies for high performance collective decision-making
in engineered networks.

4.2 Recruitment and Cross-Inhibition

In the honeybee house-hunting problem, an entire swarm
must unanimously choose a nest site where it will live
as a new colony with its queen. The process starts with
a number of bees each scouting out a possible nest site
and ends with the swarm choosing the best of the scouted
out alternatives. In contrast to the limitations on signaling
in groups described in Sections 3 and 4.1, each informed
honeybee scout uses explicit signaling in the form of a
“waggle dance” to recruit uninformed bees to commit to
its discovered nest site. Seeley et al. [2012] showed from
empirical data in which there were two alternative sites
that the scouts also use a cross-inhibitory stop-signal to
make the scouts recruiting for the competing alternative
stop dancing. This stop-signal contributes positively to the
collective decision-making; of particular note, it was shown
to help with breaking deadlock in the case of two near-
equal value alternative sites.

Seeley et al. [2012] derived a model of the mean-field
population-level dynamics under the assumption that the
total bee population size N is very large. The model



describes the dynamics of yA = NA/N and yB = NB/N ,
the changing fraction of bees committed to nest site A
and B, respectively. Since N is constant, yA +yB +yU = 1
where yU is the fraction of uncommitted bees. Thus, the
dynamics evolve on the two-dimensional simplex as

ẏA = γAyU − yA(αA − ρAyU + σByB)

ẏB = γByU − yB(αB − ρByU + σAyA),

where γi is the rate of scouting discovery and commitment,
αi is the rate of abandonment of commitment, ρi is the
rate of recruitment, and σi is the rate of stop-signaling.
It is assumed that all but the stop-signal rate depend
on the value vi (quality) of the nest site; in particular,
γi = ρi = vi and αi = 1/vi. The two stop-signal rates
are assumed to be the same, i.e., σi = σ. When yA or
yB crosses a quorum threshold ω, a collective decision is
reached.

Together with Darren Pais, Patrick Hogan and James
Marshall, we have studied these nonlinear dynamics and
identified bifurcations in the collective decision-making
behavior in terms of the stop-signal rate σ, the mean
value of the alternatives v̄ = (vA + vB)/2 and and the
difference in value of the alternatives ∆v = vA − vB

(Pais et al. [2013]). For example, it can be shown that for
near-equal value sites and a given rate of stop-signaling
there is a threshold such that deadlock is broken for good
quality nest sites, i.e., when the mean value v̄ is above the
threshold, and deadlock is maintained for poor quality nest
sites, i.e., when the mean value v̄ is below the threshold.
The deadlock in the case of poor quality sites could be
useful in case a newer better alternative is discovered.
The bifurcation analyses provide a systematic way to
understand how the stop-signal rate can be used to tune
the threshold for breaking deadlock, to tune the minimum
difference in value between the alternatives required for
reliable discrimination, and to tune the speed-accuracy
trade-off in the case in which uncertainty in the rates is
taken into account.

It is nontrivial to design dynamics for a decision-maker
to reliably choose the best among finite alternatives when
they are sufficiently different and to quickly choose any of
the alternatives when they are similar and of sufficiently
good quality. The bifurcation analyses described above
point to opportunities for collective decision-making with
tunable deadlock breaking in engineered multi-agent sys-
tems by designing cross-inhibitory signals into decentral-
ized control laws with gains that adapt with the changing
environment.

4.3 Imitation and Error

The replicator-mutator equations from evolutionary dy-
namics model replication of a finite set of n strategies in
terms of their relative fitnesses and mutation in terms of a
probability of spontaneous switches of strategies (Bürger
[1998], Page and Nowak [2002]). These dynamics have been
used to model a variety of systems in biology (Komarova
[2004]), including autocatalytic reaction networks (Stadler
and Schuster [1992]), and the evolution of language, where
strategies represent different grammars (Nowak et al.
[2001]). They have also been used recently to model the

dynamics of social networks (Olfati-Saber [2007], Hussein
[2009]) and wireless multi-agent networks (Tembine et al.
[2010], Wang and Hussein [2010]). Under certain condi-
tions these dynamics represent models of decision-making
dynamics in networked multi-agent systems where agents
decide among n choices: replication captures imitation of
successful strategies and mutation captures errors.

Under the assumption of very large populations, the
dynamics describe the evolution of xi, the fraction of
the total population with strategy i, for i = 1, . . . , n.
Since

∑n
i=1 xi = 1, the dynamics evolve on an (n − 1)-

dimensional simplex. The fitness of strategy i is defined
as fi =

∑n
j=1 bikxj , where bij > 0 is the payoff to an

agent with strategy i on interacting with an agent with
strategy j and bii = 1 for all i. The payoff matrix B with
elements bij can be interpreted as the adjacency matrix of
a directed graph. Mutation probabilities qij , which define
the probability of a spontaneous switch from strategy i to
j, are typically defined in terms of a mutation strength
parameter µ ∈ [0, 1] and can depend on the bij and
thus also adopt a graph structure. The replicator-mutator
dynamics are given by

ẋi =
n∑

j=1

xjfj(x)qji(µ)− xi

n∑
k=1

fk(x)xk. (12)

In the literature the analysis of the replicator-mutator
equations (12) have focused on equilibrium behaviors and
fitness matrices with a lot of symmetry. However, it has
been shown that the symmetric cases are structurally
unstable and that breaking symmetry can lead to chaotic
dynamics (Komarova and Levin [2010], Mitchener and
Nowak [2004]). Motivated by these results and an interest
in examining and designing dynamics that are richer than
equilibrium behavior, we have studied symmetry breaking
in the replicator-mutator equations (12). In collaboration
with Darren Pais and Carlos Caicedo, we proved bifurca-
tions as a function of µ for asymmetric (directed) graphs
(Pais et al. [2012]). We showed rigorously how certain
asymmetries make possible a departure from behaviors
described only by equilibrium states; indeed we proved
conditions for the existence of stable limit cycles through
Hopf bifurcations.

In the context of the imitation and error decision-making
paradigm, the parameter µ can be interpreted as a learning
parameter that decreases in value as the agents learn and
do a better job at avoiding error. For large µ close to
1, the stable solution is the mixed equilibrium, where
xi = 1/n for all i. As µ decreases (i.e., learning improves),
one or more limit cycles appear which correspond to a
majority of the population making cycles through a set
of alternatives. As µ decreases further towards zero, the
limit cycles disappear and the stable solutions approach
the pure single strategy solutions, which each correspond
to a unanimous choice for a single alternative.

This interpretation suggests opportunities for designing
adaptive dynamics for the parameter µ in an engineered
decision-making network such that µ decreases as the
system gains information, explores options and learns,
and then makes an informed collective choice among
alternatives.



5. FINAL REMARKS

Animals that travel in a group exhibit remarkable collec-
tive behavior: as individuals they are limited in sensing,
computation and actuation, but as a group they excel
at tracking and decision-making tasks in uncertain and
dynamic environments. We have shown ways in which
nonlinear dynamics and control theory can be used to
rigorously investigate mechanisms of feedback and inter-
action in this context. Our goal is to twofold: we aim to
help explain how complex collective animal behavior can
emerge from relatively simply individual behaviors, and we
aim to lay the foundations for nonlinear control design of
engineered multi-agent system dynamics that inherit the
remarkable capabilities of animal groups.

To better understand the adaptive behavior of animal
groups and the corresponding opportunities for design of
adaptive dynamics in a changing environment, we have
analyzed bifurcations in the collective dynamics of groups
as a function of system and environmental parameters. For
example, we have studied bifurcations in the evolution of
leadership and network weights in collective tracking as a
function of a parameter c that models the cost of leadership
to individuals. In the case of animal groups, c models the
difficulty in sensing the environmental cue, including the
extent of fragmentation in the environment. In the case
of designed groups, c can be used as a design parameter
that incentivizes leadership as appropriate for changing
operational or environmental circumstances.

In problems of collective decision-making we have stud-
ied bifurcations that determine how the group can avoid
poor compromise between alternatives as a function of
sensing range or can tune the conditions for maintaining
or breaking deadlock as a function of a cross-inhibitory
signal among subgroups with commitment to compet-
ing alternatives. We have also studied bifurcations in a
decision-making model as a function of a learning param-
eter and shown conditions for stable limit cycles, which
may contribute to useful information gathering during the
collective decision-making process. For design, the sensing
range, cross-inhibitory strength, or learning parameter can
each be used as a design parameter to control collective
decision-making behavior in response to changes in alter-
natives, availability of resources, etc.

We have used models and methods from evolutionary
dynamics to examine the evolution of feedback strategies,
and we have discussed how these tools can be translated
into adaptive control laws for engineered systems. Future
work is needed to connect evolutionarily stable outcomes
with optimal and robust emergent design solutions. It is
also of interest to investigate variations and generaliza-
tions of the models and mechanisms of collective behavior
described here, to explore additional exemplary collective
dynamic phenomena and to evaluate performance bounds.
An ultimate goal is to develop provable and systematic
control design methodologies that yield high-performing,
adaptive multi-agent system dynamics and address the
myriad challenges that arise in the growing number of real-
world applications.
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