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Leadership in Animal Group Motion: A Bifurcation Analysis

Benjamin Nabet, Naomi E. Leonard, lain D. Couzin and Simon A. Levin

Abstract—We present a low-dimensional, continuous model of a multi-agent system motivated by simulation
studies on dynamics of decision making in animal groups in motion. Each individual moves at constant speed in
the plane and adjusts its heading in response to relative headings of others in the population. Two subgroups
of the population are informed such that individuals in each subgroup have a preferred direction of motion.
The model exhibits stable solutions corresponding to compromise by individuals with conflicting preferences.
We study the global phase space for the proposed model by computing equilibria and proving stability and
bifurcations.
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. INTRODUCTION

In this paper we study the dynamics of a low-dimensional, minimally parameterized, cooperative control
system, motivated by an interest in modelling and predicting the behavior of animal groups in motion. Many
social organisms move in groups when they forage or migrate, and it is thought that the movement decisions
they make may depend on social interactions among group members [1], [2], [3].

In Couzin et al [3], the mechanisms of decision-making and leadership are investigated using a discrete
simulation of particles moving in the plane. In this simulation, each particle represents an individual animal
and the motion of each individual is influenced by the state of its neighbors (e.g., relative position and
relative heading). Within this group, there are two subgroups of informed individuals; each subgroup has a
preferred direction of motion (representative of knowledge of location of food or migration route) that it can
use to make decisions along with the information on its neighbors. It is shown in [3] that information can be
transferred within groups even when there is no signaling, no identification of the informed individuals, and
no evaluation of the information of individuals.

The model we propose and study in a simplified form in this paper corresponds to a deterministic set of
ordinary differential equations. Each agent is modelled as a particle moving in the plane at constant speed
with steering rate dependent on inter-particle measurements and possibly on prior information concerning
preferred directions.

This model is similar to models used for cooperative control of engineered multi-agent systems. For instance,
a continuous model of particles moving at constant speed in the plane with steering control (heading rate)
designed to couple the dynamics of the particles has been used for stabilization of circular and parallel
collective motion [4], [5]. The use of the same kinds of models in the engineered and natural settings
is no accident. The very efficient way that animals move together and make collective decisions provides
inspiration for design in engineering. Likewise, tools that have been developed for analysis and synthesis in
the engineering context may prove useful for investigation in the natural setting. We note that the objectives
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in engineering applications may be analogous to objectives in the natural setting. For example, in the design
of mobile sensor networks (such as the autonomous ocean sampling network described in [6]), the goal
is to maximize information intake. This has parallels with optimal social foraging, although under most
biological circumstances grouping individuals are unrelated and thus perform selfishly, cooperative behavior
being selected for only when it benefits individual reproductive success.

The central goal in the present work is to study the global phase space for the proposed simple model by
computing equilibria and proving stability and bifurcations. Our planar particle model includes key features
of the discrete model; however, for the purpose of analysis, it is made simpler. For example, as a first step we
reduce the group to two informed subgroups, each with the same size population. We study bifurcations as a
function of two bifurcation parameteK > 0, the coupling gain that weights the attention paid to neighbors
versus the preferred direction, aéglc [0, 7], the relative angle of the two preferred directions. In Section I,
we present the general model and derive a reduced-order system. In Sections IV and V we study two specific
choices for the parameteds and . for which we can find a closed-form expression for the equilibrium
points and compute analytically the bifurcation diagrams. In Section VI we explain how the results change
for unevenly sized groups of informed individuals and discuss future directions.

Il. MODELS

We consider a population aV individuals with all-to-all coupling. This population is divided into three
subgroups. LetV; and N» be the number of agents, respectively, in two different subgroups of informed
individuals and letV3 be the number of naive (uninformed) individuals such tNat+ N, + N3 = N. Let
N; and N>, respectively, be the set of indices corresponding to subgroups 1 and 2 which comprise the two
different groups of informed individuals. LeY¥s; be the set of indices of the naive individuals. Then the
cardinality of A}, is Ny, k = 1,2, 3. The preferred heading direction for the individualshf is denoted;,
fori=1,2.

We model each individual as a particle moving in the plane at constant speed. The heading direction of
individual j is denotedd;, and@; is allowed to take any value in the circk, for all j. Our simple model
describes the dynamics of the heading angles for all individuals in the population. This model defines steering
terms that depend only on relative heading angles. The model dynamics are given by

N
§; = sin(§1—9j)+§;sm(9l_9j>7 jeM
. _ K
0; = Sin(92—9j)+N;SIH(9[_9]), JeNy
. K
0; = N;Sin(el—@% JENs. @)

We note that the form of the coupling is based on the Kuramoto model for populations of coupled oscillators
[7]. The model is also similar to that used by Mirollo and Strogatz to model a group of coupled spins in
a random magnetic field [8]. In the coupled spin model, there are no subgroups; instead, each individual
oscillator has a randomly assigned “pinning” angjesuch that the pinning angles are uniformly distributed
around the circle. The authors look at bifurcations as a functioA of

For each subgroup = 1,2, 3 we define the average phasor over all individuals in the subgroup as

, 1 .
ot = 2 e
k JEN

The angley;, € S! defines the direction ang), < [0, 1] the magnitude of the average phasor for the individuals
in the kth subgroup fork = 1,2, 3. In the caseK >> 1 and N large, the large population model (1) has a



separation of time scales. Individuals within each subgroup synchronize quicklyysi.guickly converges
to 1 for k = 1,2,3. The slow dynamics are described by the following reduced system

o= s -0+ o S0 Nysin(y — )

=23
. _ K
Yo = sin(fh — o) + N ‘21:3 Njsin(; — 19)

J=1,
S K N s 2
vs = > Nysin(ih; —1bs). 2)

§=1,2

Here the three variableg, characterize the lumped behavior of each of the three subgroups. Further details
of the singular perturbation analysis will be reported in a future publication.

For the purposes of the bifurcation study in this paper, we consider the case inMhichV, and N3 = 0
such that (2) becomes

. o K .

Y1 = sin(f) — 1) + 0} sin(y2 — 1)

: o K

o = sin(fa — o) + ) sin(y; — 12). (3)
This model also appears to be the reduced model in the Ease N, > 1 and K > 0 not necessarily large.
Without loss of generality we sét = 0. The two bifurcation parameters afé > 0 and 6, € [0, 7]. We

note that the general reduced system (2) is a gradient system. In the c&$e-0lN, and N3, the gradient
dynamics are

. ov
Vi, = ~Pur 4)
whereV is given by "
V = —cos(t1) — cos(fz — 1) — 5 cos(tg — 7). (5)

Thus, by LaSalle’s Invariance Principle, all solutions converge to the set of critical points of (5).

[11. EQUILIBRIA

We first compute the equilibria of the system (3) but note that, in general, we cannot find closed form
expressions for all of them. The equilibria are given by

—sinys 4 o sin(ys — ) = 0
sin(fg — o) + %Sin(wl —1hg) = 0.
There are two sets of solutions, the first set given by
Y1 = =0+ o
sin(yg — 03) = %sin 0, (6)
and the second set given by
Y1 = Oy — 1y (7)
sin(fy — vg) = %sin(ng —0y). (8)



a) First set of solutions:EEquation (6) has two solutiongt, = 0> +arcsin(§ sinfy) andps = 7+ 0, —
arcsin(% sin ). These two solutions exist if and only [iff sin 65| < 1.

Lemma 3.1:If well defined, the two equilibriapg; = (11,v2)s1 and gy = (¥1,12)s2 satisfying (6)
given by
Pg = <7r + arcsin (2{ sin 92) .05 + arcsin (IZ( sin 92>) ,

K ~ _ K _
Pgg = <— arcsin (2 sin 02> , T + 05 — arcsin (2 sin 92)) ,

are saddle points K > 0 and V6, € [0, 7).
Proof: We look at the linearization of (3) at each of these two equilibria and show that its eigenvalues are
always real and of opposite sign. The Jacobian of the system (3) is given by

_ [—cosiy — % cos(tha — 1) % cos(tg — 1)
J = K ) K ’ (9)
5 cos(vg — 1) —cos(f2 — 2) — 5 cos(ha — 1)
When we evaluate this matrix at either one of the two equililgrig or 45, we get
J % cosfy + /1 — % sin® 6y [2( cos 0y
P i = = .
° gcosﬁg %(30502— 1—KTsin 0o
Since the Jacobian is symmetric, the eigenvalues are real. The product of the two eigenvalues is
K? _ K
AMAg = T sin2 92 —1<0 for Esineg < 1.

Therefore, ford, € [0, 7] the eigenvalues of the linearization are real and of opposite sign. This implies that
equilibriat g, and g, if well defined, are saddle point&x” > 0 andvfsy € [0,7]. O

b) Second set of solutionsdn order to study (7)-(8 we make a change of varialiles, v2) — (p, ¥)
wherep € [0,1] and ¥ € S and we define

. 1 . .
pe'? = 5(e“/“ + €¥2),
Expanding this out and using (7) we compute

p(cos(¥) +isin(¥)) = %(cos(zm) + cos(¢2)) + %i(sin(l/q) + sin(¢2))

~ e 1 — by 1 + 12 i cos ) sin Y1 + P2

B 2 2 2 2

= cos <022 — ¢2> <cos <022> + isin <922>> . (10)
For @, € [0, 7], (10) implies thatt = % or ¥ = % 4+ 7. We can rewrite (8) as

6, 02 0y . 2 . 2 02 _
sin - cos (2 — ¢2> + cos — sin <2 — wQ) + K sin (2 — ¢2> cos <2 — w2> =0. (11)
In Section V we study the special caé;g 7. Here we focus o, € [0, 7r)

For & = 22, (10) implies thatcos( — 1) = p and sm( —1hg) + /1 — p?. Accordingly, (11) implies
that p SatISerS

0. 0.
psing—i— 1—p2(:os§2+Kp\/1—p2:0 (12)



or
0
psm——\/l—p cos——Kp\/l— =0. (13)

We get thatp = 1 if and only if f; = 0 andp = 0 if and only if &, = 7. For 3 € (0,7), equation (12)
does not have any solution fere (0,1) since every term on the left is positive, and equation (13) has one
solution forp € (0,1). We call the corresponding equilibriumh,,,,.; = (1, ¥2)sync1-

Lemma 3.2:The equilibriumsp,,,.., is a stable node for allK, ;) € [0,00) x [0, 7).
Proof In order to prove this result, we show that the Jacobian has both eigenvalues real and negative. Using
cos(— —1hy) = p and sm(— —1)9) = —y/1 — p? we can write the Jacobian evaluated at this equilibrium as
—(pcos %2 + /1 — p?sin 622 %(2;)2 -1)) (2p2 1)
K@2p*-1) —(pcos & 1 — p2sin % 4+ K(2p% — 1))

Since the diagonal matrix elements are equal and the off diagonal elements are equal, the eigenvalues are the
sum and difference of these elements:

T, =

0 0 K K
Ao = —(,OCOS§2 + /1= p? siHE2 + 5(2/)2 -1))+ 5(202 —1).

We find using (13) for all K, 62) € [0, 00) x [0,7) that

—/1 —p%in% —K(2p°-1)=+/1 —pQSin%Q - g(1 —p2)cos%2 —-1<0. (14)
P
Thus, for all(K, 6) € [0, 00) x [0, ), using (14) both eigenvalues are real and negative. Hgngg., is a
stable node for al( K/, 62) € [0,00) x [0, 7r) O

For ¥ = 92 + m, (10) implies thatcos( — 1) = —p and sin(% —1p9) = £4/1 — p%. Hence, by (11p
has to satlsfy

0
—psm;—i— 1—p? cos——Kp\/l— =0 (15)
or

0,
—psm——\/l—p cos—+Kp\/1—p =0. (16)

Equation (15) has one solution fpre [0, 1], we call the corresponding equilibriugh

= (¢17 7/}2)antisyncl .

Lemma 3.3:The equilibriumap,,,,;;,..1 is unstable for al(k’,6,) € [0, 00) x [0, ).

antisyncl

Proof In order to prove this result, we show that the Jacobian has at least one real, positive eigenvalue. Using
cos( —1hy) = —p and sm( —19) = /1 — p? we can write the Jacobian evaluated at this equilibrium as

peos % + /T — p2sin% — K(2p2 — 1) (2p 1)

J|11bantisyn(‘1 - K 2 92 K 2 :
: 5(2p° —1) pcos 2 1—p?sing — 5(2p" — 1)
The matrix has the same symmetry as in Lemma 3.2 and the eigenvalues can easily be computed to be
), K K
—(20* 1)+ —
5 (202 = 1) £
Qne eigenvalue is equal focos %2 + /1 — p?sin %2 > 0 for all (K,0;) € [0,00) x [0, 7). Hencey ,,,1isynet
is unstable for al( K, ;) € [0,00) x [0,7). O

Equation (16) has zero or two solutions fore [0, 1], although we are not able to find analytically the
range of parameters in which there are solutions nor the nature of their stability. The equilibria we get from

(16) will be Ca”ed'wsyan = (wlu¢2)sync2 and ¢antzsync2 (1/]13 wQ)antzsynCZ

0 0.
)\ngpcos;—i— 1—p2sin52— 20% — 1).



For all solutions (of the second set), in equations (13), (15) and (16)K agets increasingly large,
Kpy/1 — p? must approach zero. This means thatkas— co thenp — 0 or p — 1. We call an equilibrium
synchronizedf v, andi, are the same heading amdhti-synchronizedf the relative heading betweein
and ¢ is equal tor. Thus, for very large values oK all the equilibria will be eithersynchronizedor
anti-synchronizedFor modest values ok, the strength of the coupling is less than or equal to the strength
of the attraction to the preferred direction, and the equilibria are typically neither fully synchronized nor fully
anti-synchronized. In this case we call an equilibridfralmost synchronize{liX-almost anti-synchronizéd
if the corresponding equilibrium in the cagé > 1, is synchronized (anti-synchronized). As we showed,
almost synchronization occurs @t= %2 andV¥ = %2 + . Note that these correspond to an exact compromise
between the two preferred directions.

Figures 1 shows a bifurcation diagram in the cages- 1 rad andd, = 2 rad. The bifurcation parameter
is K andp is plotted as a function ofX for all equilibria in the second set of solutions. We see that there
are two equilibria that do not exist for some valuesigfthese two equilibria come from (16). We also note
in comparing Figures 1 (a) and (b) that the stability of these equilibria changes as a funcfiormmd 6.

This indicates the presence of bifurcations. There are two other equilibria that are defined for all vdtues of
The stable node ig,,, ., which comes from (13). This equilibrium becomes synchronize&d@screases,
i.e.,p — 1 asK — oo. The unstable node i,,;;s,,.1 Which comes from (15). This equilibrium becomes
anti-synchronized aX increases, i.ep — 0 as K — oo. It can be seen that ds increases approaches 0

or 1 also for the two other equilibria. The fact that for large value&ofall the equilibria in this set become
either synchronized or anti-synchronized is due to the t&rm/1 — p2 in (13)-(15) and (16).
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Fig. 1. Bifurcation diagrams in cases @ = 1 rad and (b)d> = 2 rad. The bifurcation parameter i and p is plotted as a
function of K for all equilibria in the second set of solutions. We note that two equilibria do not exist for some vallesSeébility
of these same two equilibria changes type between (a) and (b). This indicates the presence of bifurcations.

IV. ANALYTICALLY SOLVABLE CASE FIXING K = 2

In this section we sefl = 2 and study the bifurcations in th@,, ;) plane. In this case, the strength of
the attraction towards the preferred direction is equal to the strength of the attraction to align with the other
subgroup.

The system (3) now becomes

1 = —singy +sin(e — 1)
Yo = sin(fy — o) — sin(¢z — P1). (17)



A. Equilibria of the system
For K = 2, (8) becomesin(fs — 15) = sin(2i2 — f2). This equation has four solutions,
502
20, + 2
20, + 4

.

Py =

The system therefore has a total of six equilibria given by

o qu:’l/)syncl = (%927 %éQ)
Using Lemma 3.2 we know thap,,,,., is astable nodefor 6, € [0, ].

« Eq2 thsyan = (%éQ - 2%, %gg + 2%)

—2
eigenvalues of this matrix afe- cos(362—37), —3 cos(302 — 37) }. Both eigenvalues are strictly positive
for 62 € [0, 5), and both strictly negative fdt; € (5, ]. So the equilibrium,, ., is anunstable node
for 6, € [0, 5) and astable nodédor 0y € (5, ).

M Eq3 ’lpantisyncl - (%52 - 4%7 %9_2 + 4%)

Using Lemma 3.3 we know that the equilibriugh,,,;;.,..1 iS anunstable noddor 02 € [0, 7).

The Jacobian of the system evaluated at this equilibriuny is= cos(36, — 2F) <_12 1 > The

« Eq4: ¢antisyn02 = (§2 -, 7T)

G (1) . The eigenvalues of this
matrix are{— cos 62, cos 2} which are of opposite sign for all; € [0, 5) U (3, 7]. So the equilibrium
Yantisyncz 1S asaddle pointfor 6, € [0, 5) U (5, 7).

e EQ5:tpg, = (02 + m,20)

Using Lemma 3.1 we know thap g, is asaddle pointfor all 65 € [0,%) U (5, 7].

e EQ6:tpgy = (—02,7)

Using Lemma 3.1 we know thap g, is asaddle pointfor all 6, € [0,%) U (3, 7).

The Jacobian of the system evaluated at this equilibriuth 4s cos 6

Figure 2 shows an example of the six equilibria in the dase 1 rad.

B. Analysis of the bifurcation diagram:

Using the analysis of the previous subsection, we can see that the stability type of one of the equilibria,
P sync2, Changes afl, = 7 from an unstable node to a stable node. When we look closgr,at, for b, = I,
we see that it is a highly degenerate equilibrium; the linearizafias equal to the zero matrix. Figure 3
shows the bifurcation diagram in th{#é., ;) plane, i.e,7»; as a function of bifurcation parametés. The
bifurcation diagram in théfs, ) plane looks similar. In the bifurcation diagram (Figure 3) we see that four
equilibria come together at the point in phase spagev-) = (37”, 7) whenfy = 5. This bifurcation is one
of the seven of Thom’s elementary catastrophes; it is calleceliitic umbilic [9].

Catastrophe theory applies to gradient systems, and the elementary catastrophes are classified by looking
at the form of the potential. As previously mentioned, our system obeys gradient dynamics and the associated
potential forK =2 is

V = cos(1) + cos(0a — 1a) + cos(v1 — 12). (18)
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Fig. 2. Picture of the six equilibria fokl = 2 andd, = 1 rad. The solid arrow represenis on the unit circle, i.e., the average
heading of the first informed subgroup, and the dashed arrow reprasgrise average heading of the second informed subgroup.
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Fig. 3. Bifurcation diagram in théd, 1) plane, i.eg; as a function of bifurcation paramety fixing K = 2. Since the equilibria
Vantisyncz @Nd P g, have the same value fap, (but a different value for),), we see on this diagram only five equilibria even
though there are six. Ad2 = 7 there are only three distinct equilibria; this is the degenerate point of the system. The multiplicity
of the equilibrium(2F, «) is four.

To identify the bifurcation as an elliptic umbilic, we look at the unfolding of this potential near the catastrophe
(1,12, 05) = (35,7, T). We write (18) as
V = cos(u + 3%) + COS(% +a— (m+v)) + cos(u + 3?7? — (7 +)), (19)

whereu andwv are respectively the deviation gf; from 37” and1, from 7, anda the deviation ofd, from
5. We do a Taylor expansion of (19), keeping terms up to third order amd v, and get
(cos(a) —1) 5  wv? wvu? sin(a) ,

V = T’U + 7 — ? — TU + (1 — COS(Q))U + sin(a). (20)



We now make the following change of variable:

. 1, (4cos(a)—1)v

2 3
2{ 1 )
Y «/4cos \f 2\/6U ’

2 x 35 sin(a) 22X 35 (cos(a) — 1)
(4cos(a) — 1)5 (4cos(a) — 1)s
In (21) we recognize the standard unfolding of the potential of an elliptic umbilic [10].

In the following paragraph we examine the different equilibria in each of the various regions of the
bifurcation diagram. Region 1.A is defined I8y < [0, 5] and Region 1.B by, € (5,7|. For each case
studied, we draw the pictures of each possible equilibrium (stable and unstable) on the unit circle, a solid
arrow corresponding t@); and a dashed arrow corresponding/te Becausek = 2 implies equal strength
of the coupling as compared to the preferred direction, equilibria are usually not fully synchronized nor
anti-synchronized; the equilibriab,,..;, Ysync2s Yantisynet @3N Yypiisynce are K-almost synchronizedr
K-almost anti-synchronizedSince g, and g, from (6) are not defined fo’ > 1, we cannot use this
terminology. However, we note that the relative heading/pfand +, is always equal tar — 6, for g,
and  + 0 for ¥ ¢,. As 0, increases tar, the two saddles become synchronized. We call an equilibrium
f,-almost synchronizeif the corresponding equilibrium in the cage — = is synchronized.

and get for the potential

V =2® - 3xy® — x + sin(a). (22)

\I’syncl \I]sync2 qjantisyncl
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Fig. 4. These diagrams show pictures of all the equilibriadfoe= Z. This is representative of the possible equilibria for the system
in Region 1A without its boundary, i.e., fék € [0, 7). The only stable equilibrium ig,,,.; which corresponds to the motion with
¥ = % direction.

sync

Region 1.A6; € [0, Z]. The equilibria in the casé, € [0, Z) are shown in Figure 4. Figure 5 shows the
equilibria at the bifurcation poini; = 7. In Figure 4 we see that there are three types of equilibriaZthe
almost synchronizeg,,,,.; andy,,,, ., the K-almost anti-synchronized ,,,;; s,nc1 @AY ;4502 @Nd theds-
almost synchronizeg s, andg,. The only stable equilibriumy,,, ., is the K-almost synchronized motion

of ¢1 ands in the direction¥ = 92 with each heading remaining on its side (nearest its preferred direction)
of U = 92 . The unstable equmbrla are the twig-almost anti-synchronized,,,,;;s,nc1 @Nd Y gpisynce, the
remalnlngK -almost synchronizedp,, ., which flanks ¥ = 92 + 7 and the twof,-almost synchronized



synel Vaynezs Yantisynce; Us1, Usa Yantisynel

Fig. 5. These diagrams show the equilibria of the system at the critical point, i.e wherkbetB andd, = 7. We only have three
equilibria. The second equilibrium drawn is the superposition of four equilibtig, .o, ¥ 4ntisyne2s P51 @Nd 5, it has multiplicity
four. It is called a monkey-saddle in the catastrophe theory literature.

saddles. The first saddigg, is closer to the preferred directidh = 0, and the second saddigg, is closer
to 52.

As mentioned previously, the case at the boundary= 5 Is highly degenerate. There are only three
distinct equilibria. We still have only one stable equilibrium whichkisalmost synchronized at = %2 =T
There is also an unstabl€-almost anti-synchronized equilibrium,,,;; s, .1 at ¥ = %2 +7 = 5Z. The other
equilibrium corresponds t¥ = %2 4+ = %’“ When we look at the bifurcation diagram, we see that it is the
superposition of four equilibriab,,,,.o, ¥ g1, Y52 @AY 4,155ync2- This equilibrium is called anonkey-saddle
in the catastrophe theory literature [10]

\Ilsyncl \Ijsync2 \Ilantisyncl

\Ijantisync2 \1151 \I/SQ

Fig. 6. These diagrams show the pictures of all the equilibrigdor ?ﬂf. This is representative of the possible equilibria for the
system in Region 1B without its boundary i.e oy € (5,m). The two saddlesy 5, and+ g, tend to be more synchronized (than
in Figure 4) since), is closer tor. 1, is closer to the preferred direction of the first subgroup gngd is closer to the preferred

direction of the second subgroup. There are two stable equilifrig, ., and

sync2*
Region 1.B#, € (%, n]. The equilibria in the casé, € (5, ) are shown in Figure 6. Figure 7 shows
the equilibria at the boundars, = =. In Figure 6 the equilibria we have are similar to those from the case

wheref, € [0,%) in Figure 4 except that now th&-almost synchronized equilibriung.,,, ., at %2 +7is
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Fig. 7. These diagrams show the equilibria of the system at the right boundary of Region 1.B, ife.=for. Only equilibrium
Yoyner ANA Y, o (the K-almost synchronized equilibria) depend én The other equilibria are anti-synchronizeg (,,; ., .1
and ,,1i5yne2) OF Synchronized s, and g,) for all K.

stable. Two of the unstable equilibri@ {,,;;sync1: ¥ antisync2) are K-almost anti-synchronized. As mentioned

above, forig, and g, the particles synchronize #s increases; the saddigg, is closer to the preferred

direction of the first particle and the saddle;, is closer to the preferred direction of the second particle.
When looking at the cas# = , we still have two stable equilibriaj{;,,,c1,% ,nc2) Which are K-almost

synchronized atV = %2 =Fand¥ = %2 +7m= 37” The unstable equilibriap,, ;s nc @aNd Y g,45ynce are
anti-synchronized. The two saddles are synchronizgeg; is synchronized at the preferred direction of the
first particle ¢; = 0) and 4, is synchronized at the preferred direction of the second partigle-(r).

V. ANALYTICALLY SOLVABLE CASE FIXING 0y =

In this section, we seff; = 7, and study the bifurcation in thek, ;) plane. For this case, the two
preferred headings differ by 180 degrees. For this valug othe disagreement is so large that in some range
of K the group will split without making any compromise; this kind of splitting is sometimes observed in
swarm-bees [11]. The system (3) now becomes

i = —singn 4 sin(n — )

Py = sinyg + 5 sin(¢ — 12). (22)
We note that this system appears in chapter 8 of [12].

A. Equilibria of the system

The equation (8) now becomes iy, = —% sin 2¢)9. After some trigonometric manipulation we can
rewrite this equation as
sin (1 + K cosg) = 0. (23)

We consider first the case that € [0,1). In this case equation (23) has two solutions

w={1

This give us a total of four equilibria given by
o qu Q/Jantisyncl = (71', 0)



Using Lemma 3.3 we know that the equilibriuh,,,,;, .1 iS anunstable nodédor K € [0, 1].

* Eq2 wantisynd = (O,ﬂ')

. , PR £ R S 1 :
The Jacobian of the system evaluated at this equilibriuch4s 4;( 2 1 f x |- The eigenvalues
2 ATy

of this matrix are{—1, —1 + K}. Hence the linearization has both eigenvalues strictly neg&tivec
[0,1). So the equilibriump ;<. IS astable node/K € [0, 1).

* Eq3:¢5’1 = (070)
Using Lemma 3.1 we know thap g, is a saddle pointfor all K € [0, 1].

* Eq4 1)05’2 - (7T, 7T)
Using Lemma 3.1 we know thapg, is asaddle pointfor all K € [0, 1].

We consider next the case th&t> 1. Equation (23), in this case has four solutions

arccos(— )

by = a arccos(—+)

.

We have now a total of six equilibria given by

o BEqlitpyy = (m— arccos(— ), arccos(—+))

Using Lemma 3.2 we know thap,, ., is astable nodeor K > 1.

o BEQ2:vp 0 = (7 + arccos(—%), — arccos(—%))

_K _1 ., K
The Jacobian of the system evaluated at this equilibriuﬁh:is( 1 i x K ; 2 ) The eigenvalues
) ) 2
of this matrix are{—%, 1}? +. hence the linearization has both eigenvalues strictly neggfive> 1.

So the equilibriumgp,,, ., is astable nodevK > 1.
B3 Yuntisynct = (,0)

Using Lemma 3.3 we know that the equilibriugh,,,;;,...1 IS anunstable noddor K > 1.
e BEA4: Y untisynce = (0,7)

. : o (14 B K :
The Jacobian of the system evaluated at this equilibriuth4s _z 2 1 j k |- The eigenvalues

2 2
of this matrix are{—1,—1 + K}. Hence the linearization has its eigenvalues of opposite 6ign> 1.
So the equilibriumep ;.2 is asaddle pointV K > 1.

« Eq5:9pg = (0,0)
Using Lemma 3.1 we know thap g, is asaddle pointfor all K > 1.
° Eq6 Q:DSQ = (7T, 7T)

Using Lemma 3.1 we know thap g, is asaddle pointfor all K > 1.

B. Analysis of the bifurcation diagram

Using the analysis of the previous subsection, we can see that a bifurcation oc&ues &t Looking
at the bifurcation diagram (Figure 8), we hypothesize that theresspercritical pitchfork bifurcationIn



unstable equilibrium
ol stable equilibrium

Fig. 8. Bifurcation diagram in thé¢k, ) plane, i.e,; as a function of bifurcation parametéf fixing 0> = 7. At K = 1 we
have a supercritical pitchfork bifurcation. We have one stable equilibriunkfer 1 and for K > 1 there are two stable equilibria.

order to prove it, we use the extension for pitchforks of the general theorem for saddle node bifurcations in
[13]. There are three conditions to check in the theorem. We defijne (¢1,2)o = (0,7), Ko = 1.

« First condition: nondeglenerzflcy of the linearization

Jo = % oK =( % 7), wheref is the vector field given by (22) with corresponding state
0:1%0 2 T2

vector ¢ = (v1,12). Hence the linearization of the system at the bifurcation point has a simple zero

eigenvalue. We set = _11 andw = (1 —1) to be respectively the right and left eigenvectors of

the linearization for the zero eigenvalue.
« Second condition: transversality condition to control nondegeneracy with respect to the parameter
0 f (1 -1

_—r = = i 782f =
PEIR |y 1, T 2 <_1 1 ) this leads tow. WaK‘wo,Ko w=2#0

« Third condition: transversality condition to control nondegeneracy with respect to the dominant effect
of the cubic nonlinear term

o3 ..
W; VULV m oK = —6 < 0, wherei, j, k,[ go from 1 to 2.
0

This last condition completes the proof of the existence of a supercritical pitchfork bifurcat{onmgt for
K=1.

Before the bifurcation K < 1), the only stable equilibrium ig,,,;;s,..2 = (0,7). This corresponds to the
case where each informed subgroup follows its own preferred direction; there is no compromise between the
individuals and the group splits. Whei < 1 the strength of the coupling force compared to the preferred
direction is too weak to influence the stable steady state of the systemi Ferl, there are two stable
equilibria, ¥, and,,, -; they correspond, respectively, to the motion in the directiéns- % =7
andv = 92—2 + 7= 37” As we increase the bifurcation paramefér the two directiong); andi» become
synchronizedf, = 7 is the only case where we have two stable equilibria for large valug.of

VI. CONCLUSION

We have studied equilibria, stability and bifurcation for a groupVo&= N, + N> + N3 coupled individuals
moving in the plane where there afg informed individuals with a preferred directidh = 0, N, = N,
informed individuals with a second preferred directterand N3 = 0 uninformed individuals. We showed that
the system has either one or two stable equilibria. Khalmost synchronized motion of the two subgroups in



the directionlV = %2 is always stable. For some range of the paramekeesdd, the K -almost synchronized
motion of the two subgroups in the directign= %2+7r is stable. In the cas®; # N,, the stable equilibrium
does not correspond t& = %2 but rather to a weighted average of 0 ahd For example, ifN; > Ny, the
stable solution? corresponds to a direction closer to 0 tharg4oFor N, fixed and with increasingv;, the
stable equilibrium value o asymptotically approaches 0 as shown in Figure 9. LikewiseMpfixed and
with increasingN,, the stable equilibrium value oF asymptotically approaches.

The reduced model restricted to informed individuals only (if&;,= 0) does not exhibit full synchro-
nization of the group unless the coupling gdinis very large. This means that for the full model (1) the
individuals in the population do not fully aggregate and the group splits. In ongoing work, motivated by
further simulation studies that reveal factors contributing to aggregation and group decision making, we are
developing and studying the dynamics of models that include uninformed individuals and more complicated
interconnections.

steady-state for N2=5 and N1 increasing

151\ :
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Fig. 9. The equilibrium values af, and- corresponding to the stable motiaf, ., as a function of subgroup population size
N; for fixed subgroup population siz&> = 5. As N; increases the stable equilibrium values of bgthand 2 approach 0, the
preferred directior®; of the subgroup with dominating population si2&.
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