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Abstract— We define and analyze a multi-agent multi-armed
bandit problem in which decision-making agents can observe
the choices and rewards of their neighbors. Neighbors are
defined by a network graph with heterogeneous and stochastic
interconnections. These interactions are determined by the so-
ciability of each agent, which corresponds to the probability that
the agent observes its neighbors. We design an algorithm for
each agent to maximize its own expected cumulative reward and
prove performance bounds that depend on the sociability of the
agents and the network structure. We use the bounds to predict
the rank ordering of agents according to their performance and
verify the accuracy analytically and computationally.

I. INTRODUCTION

Animal and robotic foraging problems that involve search-
ing over spatially distributed patches with uncertain dis-
tribution of resource (reward) result in the explore-exploit
dilemma. Each animal or robotic forager chooses which
patch to sample, sequentially in time. The dilemma at every
time in the sequence is whether to choose a well sampled
patch that is expected to reap the highest reward (exploit) or
to choose a poorly sampled patch that is expected to reduce
uncertainty and possibly identify an option with an even
higher reward (explore). Choices to explore can be costly or
risky since they may not return much reward, but successful
exploiting requires sufficient information that comes from
exploration. The challenge is sorting out protocols for when
and where to explore versus when and where to exploit.

In decision theory, multi-armed bandit (MAB) problems
serve as models that capture the salient features of the
explore-exploit trade-off [1], [2]. Thus, advances in ad-
dressing MAB problems directly benefit understanding and
solving foraging and search problems. The MAB problem
is analogous to a scenario in which an agent is repeatedly
faced with several different options, each returning uncertain
reward, and aims to make a sequence of choices to maximize
the cumulative reward [3]. This is equivalent to minimizing
the cumulative regret [4].

In their seminal work, Lai and Robbins [4] established a
lower bound for the expected cumulative regret in the finite
time horizon case. Specifically, they derived a logarithmic
lower bound for the expected number of times a sub-optimal
option needs to be sampled by an optimal sampling rule.
They also established a confidence bound and a sampling rule
to achieve logarithmic cumulative regret. These results were
further simplified in [5] by introducing a confidence bound
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using a sample mean based method. Improving on these re-
sults, a family of Upper Confidence Bound (UCB) algorithms
for achieving asymptotic and uniform logarithmic cumulative
regret were proposed in [6]. These UCB algorithms are based
on the notion that minimizing the expected cumulative regret
is realized by choosing an appropriate uncertainty model,
which results in an optimal trade-off between reward gain
and information gain through uncertainty.

For the standard MAB problem the reward associated
with an option is considered to be an iid stochastic process.
Therefore, in the frequentist setting, the natural way of
estimating the expectation of the reward is to consider the
sample average [4], [5], [6]. The papers [7], [8] present how
to incorporate prior knowledge about reward expectation in
the estimation step by leveraging the theory of conditional
expectation in the Bayesian setting.

The papers [9], [10] extend this work to the multi-agent
setting where the explore-exploit problem is defined for a
group of agents. The objective is to understand how the
performance of individuals or the group can benefit from
inter-agent observations. A centralized multi-agent setting is
considered in [9] and a decentralized setting is considered in
[11]. The papers [12], [10] use a running consensus algorithm
in which agents observe the estimates of their neighbors. A
multi-agent multi-armed bandit (MAMAB) problem, where
agents observe instantaneous rewards and actions in a leader-
follower setting, is considered in [13], [14].

In the above works, agents observe their neighbors, de-
fined according to a static network graph. In this paper
we consider a MAMAB problem where agents observe
instantaneous rewards and actions of their neighbors through
stochastic interactions. Observing rewards and actions rather
than estimates is motivated by the foraging success of social
groups where agents can observe neighbors even when their
neighbors don’t necessarily want to share what they know
[15]. Further, we assume that each agent k only observes its
neighbors with some probability pk. This provides a frame-
work for evaluating efficiency and robustness to changes in
communication in terms of the pk.

The setting is formulated by defining an underlying undi-
rected network graph and imposing directed observation
probabilities on each edge. The underlying graph models
the inherent observation constraints present in the network.
Imposed observation probabilities capture the heterogeneous
social effort of agents in observing neighbors. We introduce
the notion of sociability of each agent k as the likelihood pk
that the agent observes its neighbors. We derive analytical
upper bounds for expected cumulative regret and propose
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a measure to rank agents according to their relative per-
formance as a function of each agent’s sociability and the
sociability of its neighbors. We show that our model predicts
how high performance requires an agent to have both high
sociability and neighbors with low sociability. This is an
important result: it implies that making an investment to
observe neighbors may be worthwhile only if those neighbors
are sufficiently explorative.

In Section II we introduce the MAMAB problem with
time-varying (stochastic) observation structure. We propose
an efficient sampling rule for an agent to maximize cumu-
lative expected reward. We analyze the performance of the
proposed sampling rule in Section III. In Section III-A we
analytically upper bound the expected cumulative regret and
in Section III-B we propose a measure to predict the ranks of
agents according to their relative performance. In Section IV
we provide numerical simulation results and computationally
validate the analytical results. We conclude in Section V and
provide additional mathematical details in the Appendix.

II. MULTI-AGENT MULTI-ARMED BANDIT PROBLEM

Consider a MAMAB with K agents and N arms, which
represent N options (patches). Let Xi be a sub-Gaussian
random variable with variance proxy (σ′i)

2 that denotes the
reward associated with option i ∈ I , {1, 2, . . . , N}. Define
µi as the expected reward E(Xi) of option i. Let i∗ be
the optimal option such that µi∗ = max{µ1, . . . , µN}. Each
agent k ∈ {1, . . . ,K} chooses one option at each time step
with the goal of maximizing its cumulative reward, which is
equivalent to minimizing its cumulative regret. We assume
that the µi are unknown and the σ′i are known to the agents
(e.g., if σ′i is the magnitude of sensor noise).

Let G(V, E) be an undirected graph that encodes the
observation structure of the system. If there exists an ob-
servation link ekj from agent k to agent j, j, k ∈ V , then
{k, j}, {j, k} ∈ E , ekj = ejk = 1, and we say agents k and
j are neighbors. For social or robotic groups searching over
physical space, observation links may exist between pairs
of agents when they are sufficiently close to be visible (or
otherwise observable) to each other. Let dk be the number
of neighbors and Vdk the set of neighbors of agent k.

Let ϕtk ∈ I and Xt
i be random variables that denote

the option chosen and reward received by agent k at time
t, respectively. Let Xt

i , ∀t, be i.i.d copies of Xi. Define
σi =

√
Kσ′i. Consider the probability space (Ω,U ,P) and

the increasing sequence of subalgebras F0 ⊂ F1 · · · ⊂
Ft · · · ⊂ FT−1 ⊂ U for t = 0, 1, · · · , T , where P is the
probability measure on the sigma algebra U of Ω. Here Ft
is the sigma algebra generated by information available at
time t. Let I{ϕtk=i} be a Ft−1 measurable indicator random
variable that takes the value one if option i is chosen by
agent k at time t and is zero otherwise. Define It{k,j} to be
an Ft−1 measurable indicator random variable that takes the
value one if agent k can observe agent j at time t and is
zero otherwise.

Let pk be the probability that agent k observes the
instantaneous actions and rewards of its neighbors. Then we

have E
(
It{k,j}

)
= pk,∀j 6= k such that {k, j} ∈ E . We let

It{k,k} = 1 and It{k,j} = 0,∀j 6= k such that {k, j} /∈ E . An
agent k that has high probability pk is more likely to obtain
observations from its neighbors. We introduce the notion of
an agent’s sociability to refer to its value of pk: we interpret
agents with high pk values to be more sociable and agents
with low pk values to be less sociable.

In order to maximize the cumulative reward in the long
run, agents need to both identify the best options through
exploring and sample the best options through exploiting.
Since agents with high sociability values are more likely to
obtain a greater number of observations, they can identify
the best options with less exploring. However the usefulness
of their observations is affected by the sociability values of
their neighbors. Better performance can be obtained by an
agent when it observes neighbors that do a lot of exploring
(because they are less sociable), as compared to when it
observes agents that do a lot of exploiting (because they are
more sociable). This is, the agent will be able to exploit more,
without compromising performance, when it has neighbors
that are less sociable.

Let the number of times agent k samples option i in T
trials be given by the FT−1 measurable random variable
nki (T ) ,

∑T
t=1 I{ϕtk=i}. And let the total number of times

that agent k observes rewards from option i be the FT−1
measurable random variable Nk

i (T ), given as

Nk
i (T ) =

T∑
t=1

K∑
j=1

I{ϕtj=i}I
t
{k,j}.

We define a sampling rule for agent k as follows. Let the Ft
measurable random variable µ̂ki (T ) be the estimate of option
i by agent k at time t. We define

µ̂ki (T ) =
Ski (T )

Nk
i (T )

,

where Ski (T ) =
∑T
t=1

∑K
j=1X

t
i I{ϕtj=i}I

t
{k,j} is the total

reward observed by agent k from option i in T trials.
Definition 1: The sampling rule {ϕtk}T1 for agent k at time

t ∈ {1, . . . , T} is defined as

I{ϕt+1
k =i} =

{
1 , Qki (t) = max{Qk1(t), · · · , QkN (t)}
0 , o.w.

(1)

with

Qki (t) , µ̂ki (t) + Cki (t) (2)

Cki (t) , σi

√
2(ξ + 1)

(
Nk
i (t) + f(t)

)
Nk
i (t)

log t

Nk
i (t)

(3)

where ξ > 1 and f(t) a sublogarithmic nondecreasing
nonnegative function.

III. PERFORMANCE ANALYSIS

In this section we proceed to analyze the performance
of the proposed sampling rule by analyzing the expected
cumulative regret of the agents. Recall that the expected
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cumulative regret depends on the expected number of times
the agents sample suboptimal options and the goal of each
agent is to maximize its individual cumulative reward.

A. Regret Analysis

Let i be a suboptimal option. The total number of times
agent k samples from option i can be upper bounded as
follows:

nki (T ) =

T∑
t=1

I{ϕtk=i} ≤
T∑
t=1

I{Qki (t)≥Qki∗ (t)}.

Here I{Qki (t)>Qki∗ (t)} is an indicator function that takes value
one if the objective function of option i is greater than
the objective function of the optimal option i∗ and zero
otherwise, i.e.,

I{Qki (t)>Qki∗ (t)} =

{
1 , Qki (t) ≥ Qki∗(t)
0 , o.w.

Thus we have

E
(
nki (T )

)
≤

T∑
t=1

P
(
Qki (t) ≥ Qki∗(t)

)
.

Let Rki (T ) be the cumulative regret of agent k from option
i. Define ∆i , µi∗ − µi. Then we have, from [16],

E
(
Rki (T )

)
= ∆iE

(
nki (T )

)
. (4)

We proceed to analyze the expected number of samples from
suboptimal options as follows.

First we note that ∀i, k, t we have{
Qki (t) ≥ Qki∗(t)

}
⊆
{
µi∗ < µi + 2Cki (t)

}
∪
{
µ̂ki∗ ≤ µi∗ − Cki∗(t)

}
∪
{
µ̂ki ≥ µi + Cki (t)

}
(5)

E
(
nki (T )

)
≤

T∑
t=1

P
(
µi∗ < µi + 2Cki (t)

)
+

T∑
t=1

P
(
µ̂ki∗ ≤ µi∗ − Cki∗(t)

)
+

T∑
t=1

P
(
µ̂ki ≥ µi + Cki (t)

)
.

(6)

Next we proceed to analyze concentration probability
bounds on the estimates of options.

Theorem 1: For any ζ > 1 and for σi > 0 there exists a
ϑ > 0 such that

P

(
µ̂ki (t)− µi >

√
ϑ

Nk
i (t)

)
≤ ν logKt

exp(2κϑ)

where

ν =
1

log ζ
, κ =

1

σ2
i

(
ζ

1
4 + ζ−

1
4

)2 .
Proof of Theorem 1: See Appendix.
Using symmetry we conclude that

P

(∣∣∣µ̂ki (t)− µi
∣∣∣ >√ ϑ

Nk
i (t)

)
≤ ν logKt

exp(2κϑ)
.

Lemma 1: For ϑ = 2σ2
i (δ(ξ) + δ′(ε)) log t, with ε > 0,

δ(ξ) > 0, δ′(ε) = δ(ξ)ε/4, there exists a ζ > 1 such that

P

(∣∣∣µ̂ki (t)− µi
∣∣∣ > σi

√
2 (δ(ξ) + δ′(ε)) log t

Nk
i (t)

)
≤ ν logKt

tδ(ξ)
.

Proof of Lemma 1: Define Γ(ζ) = 1(
ζ

1
4 +ζ−

1
4

)2 where

ζ > 1. Γ(ζ) is a monotonically decreasing function and
limζ→1 Γ(ζ) = 1

4 . This implies that κ < 1
4σ2
i

since κ =

Γ(ζ)/σ2
i . Choose ζ > 1 such that κ = 1

(4+ε)σ2
i
, where ε > 0.

Then ∃δ′(ε) > 0 such that 4κ(δ(ξ) + δ′(ε))σ2
i = δ(ξ). This

proves that ∃ζ > 1 such that 2κϑ = δ(ξ) log t. The lemma
follows from Theorem 1.

We proceed to upper bound the summation of the
probabilities of the events

{
µi∗ < µi + 2Cki (t)

}
for t ∈

{1, 2, . . . , T} as follows. Using the equation (3) we have
that the inequality µi∗ < µi + 2Cki (t) implies

∆2
i

4σ2
i

(
Nk
i (t)

)2 − 2(ξ + 1) log t
(
Nk
i (t) + f(t)

)
< 0.

This inequality does not hold for Nk
i (t) > ηi(t), where

ηi(t) =
4σ2

i (ξ + 1)

∆2
i

(
1 +

√
1 +

∆2
i

2σ2
i (ξ + 1)

f(t)

log t

)
log t.

Thus we have
T∑
t=1

P
(
Qki (t) ≥ Qki∗(t), Nk

i (t) < ηi(t)
)
≤ ηi(T ). (7)

Using probability bounds given in Lemma 1 and equation
(7) we prove our main result on performance bounds.

Theorem 2: The total expected number of times agent k
samples suboptimal option i until time T is upper bounded
as

E
(
nki (T )

)
≤ Γ(ζ, ξ,K) +

1

T ξ−1 log ζ

(
logK

Tξ
+

1

ξ − 1

)
+

4σ2
i (ξ + 1)

∆2
i

(
1 +

√
1 +

∆2
i

2σ2
i (ξ + 1)

f(T )

log T

)
log T

where Γ(ζ, ξ,K) = 1
log ζ (1+logK)+ 1

2ξ log ζ

(
logK
ξ + 2

ξ−1

)
and ζ, ξ > 1.

Proof of Theorem 2: See Appendix.
Since f(T ) is a sublogarithmic function, the expected

number of suboptimal samples are logarithmically bounded.

B. Performance Measure

In this section we provide a measure to rank the agents
according to their relative performance. We motivate with
the following two cases for a set of four agents where there
is an underlying all-to-all observation structure:

k 1 2 3 4
Case 1 pk 0.5 0 0 0
Case 2 pk 0.5 1 1 1

.

In Case 1, neighbors of agent 1 are not at all sociable and
in Case 2 they are maximally sociable. Therefore neighbors

3504



of agent 1 explore more in Case 1 than in Case 2. As
a result, in Case 1, agent 1 tends to obtain observations
from neighbors about lesser known options and this allows
agent 1 to exploit more. In Case 2, agent 1 tends to obtain
observations from neighbors about well sampled options, and
this forces agent 1 to explore more. As a result agent 1
performs better in Case 1 as illustrated in Figure 1.

Fig. 1. Expected cumulative regret of agent 1 in Cases 1 and 2.

With this intuition we propose a measure as follows. First
we restrict our attention to a class of problems where the
underlying observation structure of the agents is a symmetric
d−regular graph. This means that dk = d, ∀k, i.e., every
agent has the same number of neighbors. The all-to-all graph
is a special case of the class of d−regular graphs with d =
K − 1. We also assume pk ∈ {.05, .10, .15, . . . , 1},∀k.

We define performance measure εkp ∈ (0, 1] for agent k as

εkp ,
1

pk + 1

√√√√ 1

dk

K∑
j=1,j∈Vdk

pj . (8)

Our goal is to show that a lower εkp implies a lower cumu-
lative regret and therefore higher performance for agent k.
The measure εkp is inversely related to agent k’s sociability pk
and directly related to the sociability pj of the neighbors j of
agent k. It then makes sense intuitively that lower εkp implies
higher performance for agent k, since the higher the pk the
more agent k observes and the lower the pj the more its
neighbors explore and the more valuable is their information.

We next design a protocol for each agent k that depends
on εkp and show in Corollary 1 that the bound on agent k’s
cumulative regret is directly related to εkp , which suggests that
the ordering of agents by εkp predicts the ordering of agents
by performance. We plan to prove in a future publication
that the same ordering is predicted even when the protocol
does not depend on εkp . Simulations in Section IV provide
validation of these assertions.

Let f(t) = εkp. Then the objective function becomes

Qki (t) , µ̂ki (t) + σi

√
2(ξ + 1)

(
Nk
i (t) + εkp

)
Nk
i (t)

log t

Nk
i (t)

.

This assumes that each agent k knows the pj of each of its
neighbors j. From Theorem 2, the expected number of times
agent k samples the suboptimal option i is bounded as

E
(
nki (T )

)
≤ Γ(ζ, ξ,K) +

1

T ξ−1 log ζ

(
logK

Tξ
+

1

ξ − 1

)

+
4σ2

i (ξ + 1)

∆2
i

1 +

√
1 +

∆2
i

2σ2
i (ξ + 1)

εkp
log T

log T.

This suggests that lower εkp values correspond to lower
cumulative expected regret and hence better performance.
Using the bound on E

(
nki (T )

)
and equation (4) we upper

bound the cumulative expected regret of agent k as follows.
Corollary 1: Let Rk(T ) be the regret of agent k up to

time T . Then we have

E
(
Rk(T )

)
≤

N∑
i=1

∆iΓ(ζ, ξ,K)

+

N∑
i=1

(
∆i

T ξ−1 log ζ

(
logK

Tξ
+

1

ξ − 1

))

+

N∑
i=1

4σ2
i (ξ + 1)

∆i

1 +

√
1 +

∆2
i

2σ2
i (ξ + 1)

εkp
log T

 log T.

Expected cumulative regret is then logarithmically bounded.
The performance measure εkp can be bounded as

εkp ≤
1

pk + 1
, ∀k.

Accounting for the sociability of neighbors, as we have
done, provides a more accurate and tighter bound than only
considering individual sociability values. However, for an all-
to-all observation structure the rank order can be predicted
using only individual sociability values as shown next.

Lemma 2: Let G be an all-to-all graph. Let pk, pk′ be the
sociability of agents k, k′ such that pk > pk′ . Then εkp < εk

′

p .
Proof of Lemma 2: Since pk > pk′ and dk = dk′ = K−1

we have

1

pk + 1
<

1

pk′ + 1
;

√√√√ 1

dk

K∑
j=1,j∈Vdk

pj <

√√√√√ 1

dk′

K∑
j=1,j∈Vd

k′

pj

By equation (8), this proves that εkp < εk
′

p .

IV. NUMERICAL SIMULATIONS

We ran numerical simulations to evaluate the performance
of sampling rule (1)–(2) with f(t) = εkp for agent k and with
f(t) = log log t. The results in both cases verify the accuracy
of agent ranks predicted by the performance measure εkp:
lower εkp corresponds to lower cumulative regret, hence
higher performance. We show plots in the case f(t) = εkp .

We consider 6 agents playing 10-armed bandit problems
with two distinct observation structures: A) an all-to-all
graph and B) a cyclic graph. In all simulations we let the
reward distributions be Gaussian with variance (σ′i)

2 = 25,
i = 1, . . . , 10, mean values given by
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Fig. 2. Expected cumulative regret of the 6 agents using the sampling
rule given in (1)–(2) and performance measure defined in (8) with distinct
observation probabilities pk and underlying all-to-all observation structure.

i 1 2 3 4 5 6 7 8 9 10
µi 40 50 50 60 70 70 80 90 92 95

,

and sociability values given by

k 1 2 3 4 5 6
pk 0.50 0.85 0.05 0.50 1.00 0.90

.

We provide results for 500 time steps with 1000 Monte Carlo
simulations. We set the sampling rule parameter ξ = 1.1.

A. All-to-all observation

The underlying observation graph structure is all-to-all,
equivalently a 5-regular graph. We calculate the performance
measure εkp for each agent k using equation (8):

k 1 2 3 4 5 6
εkp 0.542 0.415 0.825 0.542 0.374 0.401

.

The best predicted performer is agent 5 with lowest
performance measure ε5p = 0.374 and highest sociability
value p5 = 1.0. Second and third best predicted performers
are agent 6 and agent 2, respectively, with second and third
highest sociability. Agents 1 and 4 are ranked next with
equal sociability and ε1p = ε4p. The worst predicted performer
is agent 3, with lowest sociability and highest performance
measure ε3p. These predictions on performance ranking are
verified in the simulation results of Figure 2. The results also
verify that for an underlying all-to-all graph, the performance
rank ordering is predicted by the sociability rank ordering.

B. Cyclic observation

The underlying observation graph structure is a cycle,
equivalently a 2-regular graph, defined as {k, j} ∈ E , where
|(k − j) mod 6| = 1. We calculate the εkp using (8):

k 1 2 3 4 5 6
εkp 0.624 0.284 0.783 0.483 0.418 0.456

.

The best predicted performer is agent 2 with the lowest
performance measure ε2p = 0.284, but not the highest
sociability. In fact, agents 5 and 6 have higher sociability than
agent 2. However, while all three agents 2, 5, and 6 have one

Fig. 3. Expected cumulative regret of the 6 agents using the sampling
rule given in (1)–(2) and performance measure defined in (8) with distinct
observation probabilities pk and underlying cyclic observation structure.

neighbor with sociability 0.5, the other neighbor of agents
5 and 6 has sociability 0.9 and 1, respectively, whereas the
other neighbor of agent 2 has sociability 0.05. The very low
sociability of one of agent 2’s neighbors improves agent 2’s
performance significantly enough that it outperforms agents 5
and 6. This result illustrates the important role of sociability
of neighbors in an agent’s performance. Further, while agents
1 and 4 are indistinguishable by their own sociability, agent
4 has a neighbor with sociability 0.05 whereas agent 1
has neighbors with relatively high sociability. Therefore as
predicted by the performance measure, agent 4 outperforms
agent 1. Figure 3 validates the predicted rankings.

V. CONCLUSIONS

We studied a MAMAB problem where agents observe
instantaneous actions and rewards of their neighbors ac-
cording to a stochastic network graph in which agents are
distinguished by their sociability, defined as the probability
of observing their neighbors. We derived an upper bound
for expected cumulative regret of agents. We proposed a
measure to predict relative performance ranking of the agents
as a function of sociability of agents and their neighbors.
We verified that having less sociable neighbors improves
the performance of agents. Accuracy of the measure has
been verified analytically through expected cumulative regret
bounds and computationally through numerical simulations.

ACKNOWLEDGMENT

The first author wishes to thank Peter Landgren for helpful
comments during the preparation of this paper.

APPENDIX

Proof of Theorem 1: Since Xi is a sub-Gaussian random
variable with variance proxy (σ′i)

2, we have

E (exp(λ(Xi − µi))) ≤ exp

(
λ2(σ′i)

2

2

)
.

Define a new random variable such that

Y ki (τ) =

K∑
j=1

(Xτ
i − µi) I{ϕτj=i}I

τ
{k,j}.
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Note that E(Y ki (τ)) = E(Y ki (τ)|Fτ−1) = 0. Let Zki (t) =∑t
τ=1 Y

k
i (τ). Let T ki (τ) =

∑K
j=1 I{ϕτj=i}I

τ
{k,j} For any λ >

0

E
(
exp(λY ki (τ))|Fτ−1

)
≤ exp

(
λ2σ2

i

2
T ki (τ)

)
.

I{ϕτj=i} is an Fτ−1 measurable random variable, and so

E

(
exp

(
λY ki (τ)− λ2σ2

i

2
T ki (τ)

) ∣∣∣Fτ−1) ≤ 1.

Further, using the properties of conditional expectations

E

exp

 ∑
1≤τ≤t

λY ki (τ)− λ2σ2
i

2
T ki (τ)

∣∣∣Ft−1


≤ exp

 ∑
1≤τ≤t−1

λY ki (τ)− λ2σ2
i

2
T ki (τ)

 .

Thus we see that

E

(
exp

(
λZki (t)− λ2σ2

i

2
Nk
i (t)

))
≤ 1.

The rest of the proof closely follows the papers [17], [18].
For clarity and completeness we include the main steps. Let
ζ > 1. Then 1 ≤ Nk

i (t) ≤ ζDt where Dt = logKt
log ζ . For

λj = 2
σi

√
κϑ

ζj−1/2 and ζj−1 ≤ Nk
i (t) ≤ ζj we have

2κϑ

λj
√
Nk
i (t)

+
σ2
i

2
λj

√
Nk
i (t) ≤

√
ϑ,

where κ = 1

σ2
i

(
ζ

1
4 +ζ−

1
4

)2 .

Recall from the Markov inequality that P(Y ≥ a) ≤ E(Y )
a

for any random variable Y . Thus,

P

(
Zki (t)√
Nk
i (t)

≥
√
ϑ

)
≤ ∪DTj=1 exp(−2κϑ).

Proof of Theorem 2: From equations (6)–(7) we have

E
(
nki (T )

)
≤

T∑
t=1

P
(
µ̂ki∗ ≤ µi∗ − Cki∗(t), Nk

i (t) > ηi(t)
)

+ ηi(T ) +

T∑
t=1

P
(
µ̂ki ≥ µi + Cki (t), Nk

i (t) > ηi(t)
)
.

Note that Nki (t)+f(t)

Nki (t)
≥ 1,∀t ≥ 1. Using Lemma 1 and

δ(ξ) = ξ + 1− δ′(ε) we have

E
(
nki (T )

)
≤ ηi(T ) + 2ν

T∑
t=1

logKt

tδ(ξ)
.

Since δ′(ε) can be made arbitrarily small, the summation
term can be evaluated as follows:

T∑
t=1

logKt

tδ(ξ)
≤

T∑
t=1

logK

tξ+1
+

T∑
t=1

1

tξ

≤ logK

(
1 +

∫ T

2

1

tξ+1
dt

)
+ 1 +

∫ T

2

1

tξ
dt

= 1 + logK +
1

2ξ

(
logK

ξ
+

2

ξ − 1

)
+

1

T ξ

(
logK

ξ
+

T

ξ − 1

)
.

Thus we have

E
(
nki (T )

)
≤ 1

log ζ
(1 + logK) +

1

2ξ log ζ

(
logK

ξ
+

2

ξ − 1

)
+

1

T ξ−1 log ζ

(
logK

Tξ
+

1

ξ − 1

)
+

4σ2
i (ξ + 1)

∆2
i

(
1 +

√
1 +

∆2
i

2σ2
i (ξ + 1)

f(T )

log T

)
log T.
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