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Abstract

We study coarse-grained (group-level) alignment dynamics of individual-based animal group models for heterogeneous populations

consisting of informed (on preferred directions) and uninformed individuals. The orientation of each individual is characterized by an

angle, whose dynamics are nonlinearly coupled with those of all the other individuals, with an explicit dependence on the difference

between the individual’s orientation and the instantaneous average direction. Choosing convenient coarse-grained variables (suggested

by uncertainty quantification methods) that account for rapidly developing correlations during initial transients, we perform efficient

computations of coarse-grained steady states and their bifurcation analysis. We circumvent the derivation of coarse-grained governing

equations, following an equation-free computational approach.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Coordinated motions and pattern formation have been
studied for a wide range of biological organisms, from
bacteria and amoebae to fish, from birds and wildebeest to
humans (Ben-Jacob et al., 2000; Camazine et al. (2001);
Parrish et al., 2002; Partridge, 1982; Weidlich, 1991;
Wilson, 1975). Animal groups often behave as if they have
a single mind, displaying remarkable self-organized beha-
vior. At one extreme, the individuals seem to need little
information transfer (e.g., fish schools), while at the other
end the information exchange occurs in highly integrated
ways through long-term associations among the indivi-
duals (e.g., honeybee hives and human communities).
Controlling such an organized behavior in groups of
artificial objects, including autonomous underwater vehi-
cles (Leonard et al., 2007) and groups of autonomous
agents (Jadbabaie et al., 2003), has received extensive
attention in contemporary control theory. Challenges in
e front matter r 2006 Elsevier Ltd. All rights reserved.
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both natural and engineering settings involve understand-
ing which patterns emerge from the interaction among
individual agents.
Selected laboratory experiments have shed some light on

the schooling mechanism (Hunter, 1966; van Olst and
Hunter, 1970; Partridge and Pitcher, 1979, 1980; Pitcher
et al., 1976). It still remains unclear, however, how the
individual-level behavior and group-level (‘‘macroscopic’’,
or coarse-grained) patterns are related. More precise
experiments using three-dimensional tracking of every
individual in a population should lead to better under-
standing of this linkage. An ultimate experimental study
with precise control of every relevant detail may not be
possible, yet appropriate mathematical models would
provide a venue to establish behavioral cause, as one can
consider different hypothetical individual-level interaction
rules selectively (see e.g., Flierl et al., 1999).
Several different individual-based models have been

proposed, which reproduce certain types of collective
behavior in animal groups (e.g., see Aoki, 1982; Reynolds,
1987; Deneubourg and Goss, 1989). Self-organization
emerges also in a wide spectrum of physical and chemical
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systems, some of which (e.g., crystals and ferromagnetic
materials) exhibit apparent similarities with emergent
patterns observed in animal groups. Vicsek et al. (1995)
have introduced a discrete-time model of self-driven
particles, or self-propelled particles (SPP), based on near-
neighbor rules that are similar with those in the ferromag-
netic XY model (Kosterlitz and Thouless, 1973). The
authors analyzed statistical properties of the model,
including phase transition and scaling (Vicsek et al.,
1995). A long-range interaction has been incorporated into
the SPP model (Mikhailov and Zanette, 1999), and
continuum, ‘‘hydrodynamic’’ versions of this model have
been introduced (Toner and Tu, 1995, 1998; Topaz et al.,
2006). Recently, Couzin et al. (2002, 2005) have introduced
a model to provide insights into the mechanism of decision
making in biological systems, which reproduces many
important observations made in the field, and provides new
insights into these phenomena. A review for various
models can be found in Parrish et al. (2002) and Czirók
and Vicsek (2001).

The models of Couzin et al. (2005), and most other such
models, incorporate various detailed mechanistic steps.
These shed light on the role of leadership and imitation,
and produce a number of surprising results, such as the
influence that a few ‘‘informed’’ individuals can have on
large collectives. What is needed now are efforts to simplify
those models, and to show especially what properties of the
microscopic simulators are essential to explain that
behavior. For some models, closure schemes are available
(Flierl et al., 1999); but more generally, though we may
suspect that closures exist, we cannot derive explicit
expressions for them. In such circumstances, we need
methods such as those used in this paper; we perform the
coarse-grained dynamical analysis by circumventing the
derivation of governing equations, using an equation-free
computational approach (Theodoropoulos et al., 2000;
Kevrekidis et al., 2003). A particular goal is to understand
how much of the specific spatial detail is fundamental to
the behavior. But turning to the Kuramoto-type approx-
imation, where the interaction is assumed to be global, we
deliberately ignore local effects. To the extent that the
models fail to explain observed types of behavior, we will
need to turn next to more detailed models.

Most of previously proposed models concern popula-
tions of homogeneous (or indistinguishable) individuals.
Furthermore, the dynamical analysis in the literature is
often limited to a small subset of the entire parameter
space, and a systematic classification of possible global
dynamics remains elusive. In the current paper, we study
the coarse-grained alignment dynamics of individual-based
animal group models. The measurement of the mean
angular deviation of fish schools (e.g., clupeids and
scombroids; see Atz, 1953; Hunter, 1966) showed that it
varies continuously from no alignment to practically
perfect alignment. We account for this continuous change
by heterogeneity (‘‘quenched noise’’; characterized by
parameters of random variables drawn from a prescribed
distribution function) and the coupling strength. Our
approach is flexible in that the heterogeneity can be
introduced in various places in the model, and the way
we analyze different heterogeneity cases does not require
any significant modification.
The rest of the paper is organized as follows: models for

homogeneous and heterogeneous animal groups are
described in Sections 2.1 and 2.2, and our approach,
equation-free polynomial chaos, is explained in Sections
2.3 and 2.4. Coarse-grained dynamical analysis and its
comparison with fine-scale dynamics, for a system of two
informed individuals and a large number of heterogeneous
uninformed individuals, are presented in Section 3. The
case of two groups of heterogeneous informed individuals
is presented in Section 4. We conclude with a brief
discussion in Section 5.

2. Models and methods

2.1. A ‘‘minimal’’ model for identical individuals

We briefly discuss a ‘‘minimal’’ model proposed by
Nabet et al. (2006), which we extend in our study. It
concerns the alignment dynamics of a homogeneous
population of indistinguishable N individuals with two
subgroups of informed individuals (‘‘leaders’’) with popu-
lations N1 and N2, respectively, and N3 uninformed
individuals (‘‘followers’’), where N ¼ N1 þN2 þN3:

dc1

dt
¼ sinðY1 � c1Þ þ

K

N
N2 sinðc2 � c1Þ

þ
K

N
N3 sinðc3 � c1Þ,

dc2

dt
¼ sinðY2 � c2Þ þ

K

N
N1 sinðc1 � c2Þ

þ
K

N
N3 sinðc3 � c2Þ,

dc3

dt
¼

K

N
N1 sinðc1 � c3Þ þ

K

N
N2 sinðc2 � c3Þ. ð1Þ

Here ck characterizes the average direction of the
individuals in each of the two informed subgroups for k ¼

1; 2 and the average direction of the uninformed indivi-
duals for k ¼ 3. Yk is the corresponding informed,
preferred direction (Y1 can be set to zero without loss of
generality) and KðX0Þ is the coupling strength. This
minimal model corresponds to the reduced system of the
following system of N individuals (Nabet et al., 2006):

dyj

dt
¼ sinðY1 � yjÞ þ

K

N

XN

l¼1

sinðyl � yjÞ for 1pjpN1,

dyj

dt
¼ sinðY2 � yjÞ þ

K

N

XN

l¼1

sinðyl � yjÞ

for N1 þ 1pjpN1 þN2,

dyj

dt
¼

K

N

XN

l¼1

sinðyl � yjÞ for N1 þN2 þ 1pjpN, ð2Þ
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where the angle yj characterizes the direction in which the
jth individual is heading (we will refer to it as ‘‘orienta-
tion’’). The average direction ck is defined as the angle of
the average of the phasors (when each individual’s
dynamical state is considered as a phasor of unit radius
and a phase angle) of the individuals in the kth subgroup;
rk is the magnitude of the average of the phasors.
Formally, this is written as

r1e
ic1 �

1

N1

XN1

j¼1

eiyj ,

r2e
ic2 �

1

N2

XN1þN2

j¼N1þ1

eiyj ,

r3e
ic3 �

1

N3

XN

j¼N1þN2þ1

eiyj .

The large population model in Eq. (2) has a separation of
time scales. Individuals within each subgroup synchronize
quickly, i.e., rk quickly converges to 1. The slow dynamics
are described by the reduced system (Eq. (1)) where the
variables ck characterize the lumped behavior of each of the
three subgroups.

It is assumed that the alignment (orientational) dynamics
are independent of the translational counterpart (Sepulchre
et al., 2005); hence, the dynamical state of an individual can
be characterized by its orientation. The functional form for
mutual interaction is borrowed from the well-known
Kuramoto model (Kuramoto, 1984), a prototypical model
for coupled nonlinear oscillators. This simplified global
interaction model is consistent with an observation that the
strongest correlations are observed between the (speed and)
direction of the individual and the average (speed and)
direction of the entire school (Partridge, 1982): in the
mean-field form of the Kuramoto model, the interaction
term can be rewritten as

1

N

XN

l¼1

sinðyl � yjÞ ¼ r sinðc� yjÞ; where reic �
1

N

XN

l¼1

eiyl .

(3)

In this alternate expression, the dependence on the
difference between the individual direction and the average
direction stands out explicitly. In the absence of coupling
(K ¼ 0), each leader eventually heads for its preferred
direction. Nontrivial dynamical behavior for the minimal
model (Eq. (1)) is studied in Nabet et al. (2006);
bifurcations are analyzed for the global phase space in
the case N1 ¼ N2 and N3 ¼ 0.

2.2. Extension to heterogeneous populations

The aforementioned models concern populations of
homogeneous subgroups, where the individuals in each
subgroup quickly synchronize, nearly perfectly (rk�1),
during the initial transients (Nabet et al., 2006). In the more
general case, the mean angular deviation of fish schools is
finite (Atz, 1953; Hunter, 1966), which is not captured in this
‘‘minimal’’ model. We extend the model to account for the
distribution of directions within schools, assuming it arises
from the heterogeneity among the group members. We
introduce the heterogeneity in the following two ways:
(I) Two leaders and many heterogeneous followers—

Firstly, we consider the cases when the population consists
of two leaders (which possibly represent lumped behavior
of groups of homogeneous leaders) and N ðb1Þ followers:

dc1

dt
¼ sinðY1 � c1Þ

þ
K

N þ 2

X2
j¼1

sinðcj � c1Þ þ
XN

j¼1

sinðyj � c1Þ

" #
,

dc2

dt
¼ sinðY2 � c2Þ

þ
K

N þ 2

X2
j¼1

sinðcj � c2Þ þ
XN

j¼1

sinðyj � c2Þ

" #
,

dyi

dt
¼ oi þ

K

N þ 2

X2
j¼1

sinðcj � yiÞ þ
XN

j¼1

sinðyj � yiÞ

" #

for 1pipN, ð4Þ

where the heterogeneity is accounted for through the
tendency to deviate from the average direction, character-
ized by oi, an i.i.d. random variable drawn from a
prescribed distribution function gðoÞ (of standard devia-
tion so with mean value zero). For notational convenience,
we drop the subscript of a random variable to represent a
vector variable of the appropriate length (cf. oi and o). As
Y1 can be set to zero without loss of generality, Y2 and K

are control parameters. In the current study, we consider
gðoÞ to be Gaussian, but our analysis is not limited to this
particular choice.
(II) Two groups of heterogeneous leaders—Secondly, we

consider two groups of heterogeneous leaders without any
followers, focusing only on the dynamics among leaders.
The heterogeneity is accounted for by introducing random-
ness in the angles preferred by the leaders. The orientations
of the leaders in each group are denoted by wi’s and fi’s (of
sizes N1 and N2), respectively:

dwi

dt
¼ sinðXi � wiÞ þ

K

N1 þN2

XN1

j¼1

sinðwj � wiÞ

"

þ
XN2

j¼1

sinðfj � wiÞ

#
for 1pipN1,

dfi

dt
¼ sinðFi � fiÞ þ

K

N1 þN2

XN1

j¼1

sinðwj � fiÞ

"

þ
XN2

j¼1

sinðfj � fiÞ

#
for 1pipN2, ð5Þ

where the preferred angles Xi and Fi are randomly drawn
from prescribed distributions g1ðXÞ and g2ðFÞ (i.e., i.i.d.
random variables of standard deviations sX and sF),
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respectively. We set hXi ¼ 0, and will vary KðX0Þ and hFi
ð2 ½0; p�Þ as control parameters (and investigate some cases
of different values of sX and sF in Section 4.2).

2.3. Wiener polynomial chaos

The Kuramoto model, a paradigm for all-to-all, phase-
coupled oscillator models, has been extensively studied and
used to shed light on many synchronization phenomena
(Kuramoto, 1984; Acebrón et al., 2005, and references
therein). This model has the property that, in the full
synchronization regime (of large enough K values), phase
angles become quickly correlated with (or ‘‘sorted’’
according to) the natural frequencies during the initial
short transients (Moon et al., 2006). Similar correlations
(between the angles and heterogeneity random variables)
are expected to arise in the current model (which is indeed
the case, as will be shown later in Fig. 1), since the coupling
term is qualitatively similar. As in Moon et al. (2006), we
choose expansion coefficients in Wiener polynomial chaos
as coarse-grained ‘‘observables’’, to explore low-dimen-
sional, coarse-grained dynamics.

Wiener(-Hermite) polynomial chaos was introduced by
Wiener (1938), who represented a random process in terms
t =1
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Fig. 1. Direct integration of a system of two leaders (open circles; dashed l

uniformly distributed orientations with randomly assigned heterogeneity varia

transient ((a)–(c)), and for much longer time scales ((d)–(f)). Insets illustrate tim

correlations develop during a short time t�10. After that, the leaders and follow

It takes of the order of t�103 for the system to asymptotically converges to th

initial transients, we functionally expand y in terms of o and use the expansio
of functional expansions of Wiener process (historically,
this method has been termed as polynomial ‘‘chaos’’,
because of its initial usage on homogeneous chaos, such as
turbulence and Brownian motion, rather than the nature of
the method). Ghanem and Spanos (1991) later extended
this idea to treat random processes as functional expan-
sions of random variables, or elements in the Hilbert space
of random functions, in which a spectral representation in
terms of polynomial chaos is identified. The projections (or
coefficients) on the polynomial base then can be deter-
mined through a Galerkin approach. This method was
subsequently applied in uncertainty quantification of
various problems (e.g., see Ghanem, 1999; Jardak et al.,
2002), and has been extended to general situations using
the Askey scheme (Xiu and Karniadakis, 2002; now known
as generalized polynomial chaos).
In this method, dependent random variables (y of the

followers for the case (I), and w and f for the case (II)) are
expanded in polynomials of independent random variables
(o, orX and F) using appropriately chosen basis functions.
Details for the two cases are as follows:
(I) Two leaders and many heterogeneous followers—For

convenience, we introduce the unit Gaussian random
variable x � o=so. Using this newly defined variable, we
t =10
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-0.2 0 0.2

-2

0

2

ω

θ

t =500
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f

ines indicate preferred angles) and 300 followers (dots), initialized from

ble (i.e., no initial correlations between y and o), is shown for an initial

e evolution of the followers’ orientations on the y2o plane, where strong

ers, the latter effectively as a ‘‘unit’’, slowly drift to the stable steady state.

is final state (K ¼ 1:0; Y2 ¼ p=4). When correlations fully develop, after

n coefficients as our coarse-grained variables.
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expand yðo; tÞ (i.e., yðx; tÞ) in Hermite polynomials of x
[H0ðxÞ ¼ 1, H1ðxÞ ¼ x, H2ðxÞ ¼ x2 � 1, H3ðxÞ ¼
x3 � 3x; . . .]:

yðx; tÞ ¼
Xp

n¼0

anðtÞHnðxÞ, (6)

where p is the highest order retained in the truncated series,
Hn is the nth Hermite polynomial, and the an’s are the
expansion coefficients which will be referred to simply as
‘‘chaos coefficients’’ in this paper. Wiener polynomial
chaos, utilizing Hermite polynomials as basis functions, is
the appropriate choice for Gaussian random variables that
we consider in the present study. The probability density
function of the Gaussian random variables appears as the
weighting function in the orthogonality relations of
Hermite polynomials, and the Hermite polynomial expan-
sion is suggested to converge exponentially for Gaussian
processes (Lucor et al., 2001). For other random variables,
use of different basis functions (for instance, Legendre
polynomials for uniform random variables) has been
suggested for fast convergence, which is the basis of the
development of the generalized polynomial chaos (Xiu and
Karniadakis, 2002).

We choose the first few nonvanishing chaos coefficients
an’s, as well as the orientations of the leaders (c1 and c2),
to be the coarse-grained ‘‘observables’’. Due to symmetry,
all the even order an’s vanish, except for the zeroth
order a0 that corresponds to the average direction of
the followers. Geometrically, a1 and a3, respectively,
represent a measure for the linear order spread of the
angles (the ‘‘slope’’ between y and o) and the cubic order
measure. In the continuum limit (N !1), the chaos
coefficients can be exactly determined using the orthogon-
ality relations for Hermite polynomials. However, in the
finite cases of single realization we consider, N�Oð102Þ,
those relations hold only approximately, and the coeffi-
cients are evaluated using least squares fitting, following
Moon et al. (2006).

(II) Two groups of heterogeneous leaders—In the second
case, we expand w and f in terms of X and F, respectively:

w ¼
Xp

n¼0

anHnðzÞ,

f ¼
Xp

n¼0

bnHnðZÞ, ð7Þ

where the chaos coefficients a and b are the coarse
‘‘observables’’ of our choice, Hn’s are Hermite polynomials
(for Gaussian g1 and g2), and z � X=sw and Z � F=sf are
unit Gaussian random variables.
2.4. ‘‘Equation-free’’ computational approach

A prerequisite to coarse-grained dynamical analysis
(which is the main goal of the current study) is, in a
traditional sense, an explicit derivation of coarse-grained
governing equations. In principle, such equations for chaos
coefficients, in the continuum limit (N !1), might be
obtained through a stochastic Galerkin method (Ghanem
and Spanos, 1991).
In the present study, we do not even attempt to derive

such equations. We circumvent their derivation by using
an equation-free multiscale computational approach
(Theodoropoulos et al., 2000; Kevrekidis et al., 2003,
2004). This approach enables us to explore the coarse-
grained dynamics without the assumption of the con-
tinuum limit. The premise of this approach is that coarse-
grained governing equations conceptually exist, but are
not explicitly available in closed form. This approach is
based on the recognition that short bursts of appropri-
ately initialized microscopic (fine-scale) simulations
during a time horizon DT and the projection of the
results onto coarse-grained variables, say x, result in time
steppers (mappings) for those variables UDT (which is
effectively the same as the discretization of unavailable
equations):

xnþ1 ¼ UDT ðxnÞ. (8)

One then processes the results of the short simulations to
estimate various coarse-grained quantities (such as time
derivatives, action of Jacobians, residuals) to perform
relevant coarse-grained level numerical computations, as if
those quantities were obtained from coarse-grained gov-
erning equations. For instance, one can integrate unavail-
able governing equations in time (coarse projective
integration; see below), or compute the steady states of
the above coarse time stepper, by utilizing fixed point
algorithms (such as Newton–Raphson or New-
ton–GMRES).
Equation-free computations consist of the following

steps:
1.
 Identify coarse-grained variables (‘‘coarse observables’’)
that sufficiently describe both the micro- and macro-
scopic dynamics; in our study, they are an’s (and bn’s).
For convenience, we denote the microscopic (macro-
scopic) descriptions by h ðaÞ.
2.
 Choose an appropriate lifting operator mL, which maps a

to one (or more) consistent description(s) h (for the
purposes of variance reduction and ensemble aver-
aging). In the current study, this can be achieved by
using the relations in Eqs. (6) and (7); once random
variables are drawn, these relations are used to obtain
corresponding h.
3.
 Starting from lifted initial condition(s) hðt0Þ ¼ mLðaðt0ÞÞ,
run the microscopic simulator to obtain hðt0 þ DTÞ at a
later time (DTX0).
4.
 Use an appropriate restriction operator MR (least
squares fitting, in the current study) which maps the
microscopic state(s) to the macroscopic description
aðt0 þ DTÞ ¼MRðhðt0 þ DTÞÞ, which effectively results
in time series of coarse observables, or their coarse time
stepper UDT ; aðt0 þ DTÞ � UDT ðaðt0ÞÞ.
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Fig. 2. (Color online) Accelerated computation of stable steady states via

coarse projective integration using five coarse-grained variables, shown

here for two different time scales (K ¼ 1:0; Y2 ¼ p=4). Initially, all the
values are assigned to be 0. Both a1 and a3 reach their steady state values

relatively quickly (see (a)), while the others are slowly varying (see (b); they

are still varying at t ¼ 500). Dots represent the time intervals during which

short direct integration is performed (and restricted), in the course of the

projective integration using forward Euler method. Solid lines represent

the trajectories of direct full integration during the entire time. Higher

efficiency can be achieved by optimally choosing the time horizon for the

direct integration, the projection stepsize, and projection method.
Apply desired numerical techniques using the coarse-
grained variables obtained from step 4 and repeat some
of the above steps as needed.

An extensive discussion can be found in Kevrekidis et al.
(2003, 2004).

3. Results for case I

Direct integration of the ‘‘fine-scale’’ model of Eq. (4) in
the strong coupling regime (K ¼ 1:0; so ¼ 0:1), started
from randomly assigned orientations and the heterogeneity
variable (the latter is a Gaussian random variable),
illustrates that a strong correlation between y and o
develops during a short, initial transient time; the orienta-
tions of the followers quickly become a monotonically
increasing function of their heterogeneity variable (Fig. 1),
after which they slowly drift as a ‘‘unit’’ until they settle
down in the final steady state. During the latter slow drift,
the system can be described as two leaders and a single

‘‘clump’’ of followers, whose coarse-grained states can be
successfully described by a small number of chaos
coefficients. A similar time scale separation exists in the
model of homogeneous populations. In this case, followers
quickly collapse asymptotically to the same direction
(Nabet et al., 2006).

3.1. Computations of steady states

We begin by accelerating the approach to a stable steady
state using an equation-free algorithm, the coarse projec-
tive integration method (Gear and Kevrekidis, 2003). In
contrast to a conventional, direct integration of the full
fine-scale model during the entire time (until sufficient
convergence to stable, final states), this method exploits
smoothness in the coarse variables (estimated through a
direct integration during a short time), in order to
extrapolate and take a large projective time step (compared
to the original integration time-step size). This saves
computational effort. The procedure consists of (i) lifting

(appropriate initialization of the fine-scale simulator, an
integrator of Eq. (4), consistent with prescribed coarse-
grained values), (ii) direct integration of the microscopic
simulator during a relatively short time interval (but long
enough to accurately estimate local coarse-grained time
derivatives), (iii) restriction (of fine-scale description onto
coarse-grained variables), and (iv) taking a projective step

(using a traditional numerical integration scheme such as
forward Euler). The computational payoff of this method
depends on the ratio between a short direct integration
time interval, the projective time-step size, and the
computational effort required for lifting/restriction proce-
dures (see e.g., Rico-Martinez et al., 2004). More im-
portantly, successful computation of steady states through
this method naturally attests to the validity of the chosen
coarse-grained observables in describing both fine-scale and
coarse-grained states.
Projective integration using five coarse-grained variables
(c1;c2, and the first three nonvanishing an’s; a0, a1, and a3)
follows virtually the same trajectories of the full, direct
integration (Fig. 2), even if o is newly drawn at each lifting;
the agreement is even better if the same o were used (hence
the dynamics are fully deterministic). Both lifting (simply
using Eq. (6)) and restriction (least squares fitting)
operations require minimal computational efforts. There-
fore, the computational efficiency in the present case is
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Table 1

A coarse steady state computation at K ¼ 1:0 and Y2 ¼ p=4 for N ¼ 300, using the Newton–GMRES method. Values at each iteration have been

averaged over an ensemble of 100 realizations. The last column shows relative residuals

Iteration c1 c2 a0 a1 a3 Residuals

0 0.0 0.0 0.0 0.0 0.0 1.0

1 3:421� 10�5 4:143� 10�1 3:478� 10�5 5:963� 10�2 2:969� 10�9 2:680� 10�3

2 8:871� 10�4 3:900� 10�1 9:293� 10�4 8:632� 10�2 2:435� 10�5 8:135� 10�4

3 1:245� 10�3 3:969� 10�1 1:991� 10�3 9:819� 10�2 9:387� 10�5 2:056� 10�4

4 1:338� 10�1 5:275� 10�1 2:679� 10�1 1:010� 10�1 8:338� 10�4 3:820� 10�5

5 1:959� 10�1 5:896� 10�1 3:929� 10�1 1:010� 10�1 1:754� 10�4 3:660� 10�7

6 1:958� 10�1 5:896� 10�1 3:927� 10�1 1:010� 10�1 1:760� 10�4 6:513� 10�12
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nearly exclusively determined by the projective step size,
which is a factor of about four in Fig. 2; with a more
sophisticated projection algorithm, a higher efficiency can
be obtained. We see that both a1 and a3 reach their steady
state values quickly (t�5), showing that the correlation
between y and o are fully developed by then. However, the
other chaos coefficient a0 (representing the average
direction) slowly drifts toward the steady state, and so do
c1 and c2 (note that it is still varying at t ¼ 500); the
computation of an asymptotic, steady state requires a very
long time integration.

Direct integration (including projective integration)
cannot compute unstable steady states and are inappropri-
ate for stability computations and parametric bifurcation
studies. Both stable and unstable steady state values can be
systematically (and much more efficiently than the
projective integrations) computed by applying coarse-
grained fixed point algorithms to the steady state condition
of Eq. (8), i.e., x�UDT ðxÞ ¼ 0, in much lower dimension
than that of individual level. We use the coarse New-
ton–GMRES (Kelley, 1995), a matrix-free, method to
compute coarse-grained fixed points. We observe that the
algorithm accurately converges within a few steps (Table
1); the converged values are accurately consistent with the
restricted values of the fixed point solution of the detailed
(i.e., (N+2)-dimensional) problem, within prescribed con-
vergence tolerance. By combining a coarse fixed point
algorithm with pseudo-arc-length continuation (Keller,
1987), we numerically compute coarse-grained bifurcation
diagrams in the following sections. The computational
efficiency of the coarse fixed point algorithm varies with the
choice of the initial guess for the iteration. With a totally
uneducated guess, it could take even longer than the direct
integration (note that the latter never computes the exact
solutions); however, during the continuation computation
shown below, a good initial guess is always available from
the previous parameter value(s), and even several orders of
magnitude of computational efficiency can be achieved.

3.2. Types of fine-scale dynamical behavior

We first analyze the detailed ðN þ 2Þ-dimensional fine-
scale model in the full synchronization regime, in order to
obtain insights on fine-scale dynamics to be compared with
our coarse-grained analysis below. We use AUTO2000
(Doedel et al., 2000) to compute the fine-scale bifurcation
diagrams as functions of Y2 at a fixed value of K; only
projections for one leader (c2) are shown in Fig. 3 and for
one follower in Fig. 4(a). All the other followers exhibit
essentially the same dynamical behavior as the one shown
here (except for some quantitative differences).
The interaction between the individuals causes the steady

state directions of the leaders to deviate from the preferred
angles 0 and Y2, respectively. Such deviation can occur in
two directions, either toward the region bounded by ½0;Y2�

(an ‘‘obvious’’ steady state where followers are directed in
between the directions of the leaders; see Fig. 3(b)) or the
other way around (e.g., Fig. 3(a)). The analysis shows that
for small Y2 values only the former state is stable, while for
large values, both of these states become stable. The
branches for ‘‘obvious’’ stable steady states, which
correspond to lower straight solid lines, exhibit no
bifurcations (see Figs. 3 and 4(a)). On the other branches,
forward pitchfork bifurcations at some critical value of Y2

give birth to another stable branch (a state on this stable
branch is shown in Fig. 3(a)), as well as two unstable
asymmetric solution branches, hence the population
becomes bistable. The critical value of Y2 for the onset
of the bistability depends on K (precisely speaking, K=so);
the critical value is Y2�0:45ð2:2Þ at K ¼ 1:0ð0:5Þ. As K

decreases further, the critical value monotonically increases
until fully synchronized steady states lose stability at some
critical value of K.
3.3. Coarse-grained dynamics

We now compute coarse-grained steady state solutions.
A coarse-grained bifurcation diagram for a0 (representing
the average direction of the followers) is compared with the
corresponding diagram observed for one follower, in
Figs. 4(b) and (a); (b) is a blowup of the region around
the bifurcation. Both sides of the bifurcation point can be
described by the same set of coarse-grained observables,
which clearly summarize group level dynamical behavior of
the followers before and after the bifurcation.
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Fig. 3. (Left panel) A bifurcation diagram observed on one leader c2, computed using AUTO2000 (K ¼ 1:0). Solid (dashed) lines represent stable

(unstable) branches. There exist a few other unstable branches that are not shown here. At some critical value of Y2, an unstable state in the upper branch

undergoes a forward pitchfork bifurcation; two unstable states coincide. The lower branch of ‘‘trivial’’ solutions does not exhibit any bifurcation. (Right

panels) Snapshots of two (symmetric) stable states in the bistable regime (Y2 ¼ 2:0), marked by dots in the left panel.
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As K decreases in the Kuramoto model, oscillators
get desynchronized (Kuramoto, 1984), starting with the
oscillator with the maximum value of joij (the ‘‘extreme’’
oscillator) through a saddle-node (actually a ‘‘sniper’’)
bifurcation on a limit cycle (Moon et al., 2006). We expect
the same type of bifurcation to occur in this model.
However, when we try to compute the coarse-grained
steady states as functions of K using the previously
mentioned five coarse variables via coarse Newton–
GMRES method and pseudo-arc-length continuation,
neither a bifurcation nor an unstable branch is
appropriately identified. The computation, initialized at
large K-steady states, accurately follows stable branches
down to some critical value of K (where the transition
occurs), and then fails to converge. Our coarse-grained
observables are not sufficient to describe the states on the
‘‘other side’’ of the bifurcation point, as we will explain
below.

A fine-scale bifurcation diagram (computed using
AUTO2000) obtained by starting from a stable steady
state on the lower branch in Fig. 3 is shown in Fig. 5(a).
Here the diagrams for two leaders and only a few followers,
including the extreme one, are shown. We find that both
stable and unstable branches for each angle nearly coincide
for all the individuals (see inset of Fig. 5(a)), except for the
extreme one. As the difference between stable and unstable
branches (at the same value of K) is appreciable only when
observed on this extreme oscillator, a smooth mapping
between y and o does not prevail for unstable states, and
the previously used chaos coefficients are not appropriate
any more.

Taking these observations into account, it is easy to
remedy the situation as follows: the fact that stable and
unstable branches nearly coincide, discounting the extreme
follower, suggests that all the individuals except for the

extreme follower can be again described by the same set of
chaos coefficients. Thus, we treat the orientation of the
extreme one separately (introducing it as an additional
coarse-grained variable), and discount it from the poly-
nomial chaos expansion. (From the fact that the extreme
follower gets desynchronized at the transition, one can
also intuitively see that followers have to be considered
as a combination of a clump of synchronized ‘‘bulk’’ and a
separate, extreme one.) We compute the solutions
with continuation, using this new set of six coarse
variables, which captures the bifurcation and appropriately
describes the unstable steady states (Fig. 5(b)); we have
analyzed exactly the same realization used in Fig. 5(a)
for direct comparison. When bifurcation diagrams are
computed for ensembles of many realizations, an uncer-
tainty will arise in the exact quantification of the
bifurcation point, due to the fluctuation of finite-dimen-
sional random variables among realizations, while the
results are qualitatively the same as those of a single
realization (Xiu et al., 2005).
The coarse bifurcation results shown in Fig. 5(b)

illustrate that the steady state directions of the leaders
and the average direction of followers (a00, discounting the
extreme one; a prime is added to distinguish it from the
previously used notation) are virtually the same for a
range of K. Only higher order chaos coefficients (only a01 is
shown in Fig. 5) appreciably vary as a function of K,
which means that individuals spread more widely as K

decreases, until the extreme one eventually starts to
oscillate freely, while the average steady state direction
remains the same.
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same case as in Fig. 3). Superscript ‘f’ has been added to emphasize that

this is the orientation of a follower. A few other existing unstable branches

are not included here. The upper branch undergoes a pitchfork bifurcation

and becomes stable. (b) A coarse bifurcation diagram observed on a0
(average direction), obtained by the coarse Newton–GMRES method with

pseudo-arc-length continuation. Only a blowup around the bifurcation

point is shown. Coarse-grained dynamics exhibit the same structure as in

the fine-scale level. Filled (open) circles represent stable (unstable) steady-

states.
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Fig. 5. (Color online) (a) A bifurcation diagram observed on a few

followers, including the one with the maximum of joij (the ‘‘extreme’’

follower), as a function of K (Y2 ¼ p=4), computed using AUTO2000. A

critical value where the extreme individual gets desynchronized corre-

sponds to a saddle-node bifurcation point on a limit cycle (a ‘‘sniper’’

bifurcation). Except for the extreme follower, stable and unstable branches

nearly coincide (see the inset). (b) In order to capture the fine-scale

bifurcation, the angle of the extreme follower has to be discounted from

the chaos expansion and considered as an extra coarse-grained variable

(see text). We distinguish these chaos coefficients (from the ones used so

far) by adding a prime. It was computed via the coarse Newton–GMRES

method with continuation.
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4. Results for case II

4.1. Dynamics of statistically similar groups

Here, we explore both the fine-scale and coarse-grained
dynamics of a model for two groups of heterogeneous

leaders (with no followers) shown in Eq. (5), and compare
the results of the two different scales. One notable
difference from the Kuramoto model is that ‘‘oscillators’’
in Eq. (5) do not have finite random variables (natural
frequencies), hence there is no onset of the synchronization
that occurs at a finite value of K (or, they can be
alternatively seen as Kuramoto-like oscillators of zero
natural frequencies, which result in the onset at K ¼ 0,
hence they get synchronized for all K values). The analysis
of the minimal model (the first two of Eq. (1) with
N1 ¼ N2; N3 ¼ 0) reveals that for large enough
Y2 ð4�p=2Þ the system exhibits bistability for a certain
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range of K (Nabet et al., 2006), as in the previous case in
Section 3. Here, we will vary hFi as the main parameter for
two different values of K. For large coupling strengths
(K42:0), the bistability in the minimal model appears
through a forward pitchfork bifurcation, when Y2 is varied
as a parameter (Fig. 6). This minimal model can be seen as
a special case of the current model, where bothX and F are
assumed to be delta functions and each group consists of
identical individuals.

We begin by asking whether our model for hetero-
geneous groups exhibits similar types of dynamical
behavior. One can also do accelerated computations of
steady states using the coarse projective integration, but
here we skip such computations and present only the
coarse bifurcation analysis results. Coarse bifurcation
diagrams obtained through the coarse Newton–GMRES
method (Kelley, 1995) and pseudo-arc-length continuation
(Keller, 1987) (for Gaussian distributions of X and F;
sX ¼ sF ¼ 0:1, N1 ¼ N2 ¼ 100) show that the heteroge-
neous groups indeed exhibit the same qualitative type of
coarse dynamical behavior around the pitchfork bifurca-
tion point (Fig. 7). As we consider symmetric unimodal
distribution functions, all the even order chaos coefficients
(except for a0 and b0) virtually vanish. The diagram for
a0 of the first group hwi (average direction) exhibits
reasonably good quantitative agreement with the
corresponding diagram for the minimal model, within
fluctuations of finite-size random variables, shown in
Figs. 6 and 8. It is interesting to note that at the critical
point, all the followers are headed for the same direction
(a1 ¼ 0, which corresponds to the ‘‘slope’’ between X and
w); see Fig. 7(b).
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Fig. 6. Lines: a bifurcation diagram observed on c1 in the minimal model

(the first two ODEs in Eq. (1) with N1 ¼ N2 ¼ 1; N3 ¼ 0), for varying Y2

at a fixed value of K ¼ 2:4, obtained by AUTO2000. For large enough

preferred angles (Y2=p4�0:7), the system becomes bistable through a

forward pitchfork bifurcation. Circles: a coarse bifurcation diagram near

the pitchfork bifurcation, observed on a0, as a function of hFi=p,
computed by the coarse Newton–GMRES method. Filled (open) circles

represent stable (unstable) steady states.
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Fig. 7. Coarse-grained bifurcation diagrams observed on the first two

chaos coefficients: (a) a0: the average direction of the first group of leaders

and (b) a1: the ‘‘slope’’ between w and X, as functions of hFi. These are

blowups of the region around the forward pitchfork bifurcation point in

Fig. 6.
The Hermite polynomial expansion converges so quickly
that the expansions can be accurate even when truncated at the
third order. Due to the reflection symmetry (about hFi/2), b

coefficients have similar structures as the a ones, after proper
reflection and translation. Only results on a are presented here.
As the coupling strength decreases across K ¼ 2:0, the nature
of the bifurcation changes (from a pitchfork) to a saddle-node
bifurcation (Fig. 8) at K ¼ 2:0, which also occurs in the model
for homogeneous populations; the nature of the transition
between these different bifurcations, a higher codimension
bifurcation, has been discussed in Nabet et al. (2006).

4.2. Statistically different groups

So far we have considered statistically similar groups,
namely N1 ¼ N2 and sX ¼ sF; they differed only by
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Circles: a coarse bifurcation diagram observed on the average direction of

the first group of leaders (a0) around the saddle-node bifurcation, as a

function of hFi=p, computed via the coarse Newton–GMRES method

with continuation. Filled (open) circles represent stable (unstable) steady

states.
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Fig. 9. (Color online) Coarse-grained bifurcation diagrams near a turning

point in Fig. 8, for X distributions of three different widths (the standard

deviation sX ¼ 0.1 for circles; 0.2 for squares; 0.3 for triangles), obtained

via the coarse Newton–GMRES method and continuation. The standard

deviation for the second group, sF, is kept the same at 0.1

(K ¼ 1:8; N1 ¼ N2 ¼ 100). Filled and open symbols represent stable

and unstable states, respectively. (a) The first chaos coefficients a0 (average
direction of the first group) are nearly the same for the three cases. The

difference between the cases becomes apparent in higher order coefficients

that reflect the degree of spreading; see a1 in (b).
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average preferred directions. It is natural to ask how the
dynamics change as the parameters concerned with the
distributions (for the preferred directions) are varied. It is
readily expected that the essential dynamics of two
different size groups can be reflected in the minimal model
using two different coupling strengths, which is considered
in Nabet et al. (2006). Here, we consider only the cases with
varying width of the distributions (sFasX), which has no
analog in the minimal model.

Coarse bifurcation diagrams for three different Gaussian
distributions for X (sX is varied while sF is kept at 0.1; see
Fig. 9) show that the average directions (a0’s) hardly vary
with the width of the distributions; the primary parameter
that affects on the average direction is the group size. For
the distributions of different widths, the fixed point
computation with continuation fails to converge at
different values of a0’s; points marked by arrows in
Fig. 9 are the last points the Newton–GMRES computa-
tions converged in each case, when approached from the
stable branches. Such a failure of convergence can be
expected, because the steady states on this unstable branch
overlap with another nearby unstable branch (which is not
shown in this figure, but was shown in Fig. 8); characteriz-
ing the distribution with a few Wiener chaos coefficients
does not provide an accurate description any more. The
differences between the three cases (of different distribution
widths) manifest themselves clearly in higher order chaos
coefficients. While the average behavior remains nearly
the same (Fig. 9(a)), individuals in the group spread
more widely (as reflected in a1 and higher order coeffi-
cients; Fig. 9(b)), as the width of the random variable
(distribution) increases.
5. Conclusions

We have demonstrated a computational venue (an
equation-free polynomial chaos approach) to study
coarse-grained dynamics of individual-based models ac-
counting for the heterogeneity among the individuals in
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animal group alignment models. We considered finite

populations of (I) two ‘‘leaders’’ (which have direct
knowledge on preferred directions) and Nðb1Þ unin-
formed, heterogeneous ‘‘followers’’, and (II) two groups
of heterogeneous ‘‘leaders’’. We explored the coarse-

grained, group level (low-dimensional) dynamics using the
polynomial chaos expansion coefficients as coarse-grained
observables; these observables account for rapidly devel-
oping correlations between random variables, and suffi-
ciently specify both fine-scale and coarse-grained (group-
level) dynamical states.

All the analysis in our study was done expressively
avoiding the derivation of coarse-grained governing
equations, following a nonintrusive, equation-free compu-
tational approach wrapped around the direct system
simulator. It should be noted that we have not assumed
that N is infinitely large (so-called the ‘‘continuum limit’’).
Our approach can be used for systems of any finite, large
number of populations, and it can be equally applied to
various types of random variables (following generalized
polynomial chaos) and/or various heterogeneity. We
compared our results with those of minimal models that
do not account for heterogeneity among the individuals.
They show good agreement in the lowest order (i.e.,
average directions), which clearly highlights the correspon-
dence between the individual- and group-level dynamics
(Figs. 6 and 8). Indeed this implies that the results in Nabet
et al. (2006), where no heterogeneity is explicitly accounted
for, are more robust than demonstrated in that paper
alone.

In order to analyze different coarse-grained bifurcations,
it became necessary to use different sets of coarse-grained
variables, even if the model is the same in the fine-scale level
(Fig. 5). This clearly shows that an appropriate choice of
coarse-grained observables (in terms of which one can
obtain useful closures) is an essential step; different coarse-
grained observables are required, as the same fine-scale
model closes differently.

In the present study, we assumed that the orientational
dynamics can be separated from their translational
counterpart, and considered the simplest nontrivial cases
of all-to-all (‘‘all-visible’’), sinusoidal coupling. Our future
work will involve the incorporation of the translational
dynamics and more complicated coupling/network topol-
ogy, including heterogeneous couplings. Our work pre-
sented here is the first step of our effort toward the
development of more detailed (and biologically more
plausible) models and their coarse graining.
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