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Abstract. We address stable synchronization of a network of rotating and
translating rigid bodies in three-dimensional space. Motivated by applications
that require coordinated spinning spacecraft or diving underwater vehicles, we
prove control laws that stably couple and coordinate the dynamics of mul-
tiple rigid bodies. We design decentralized, energy shaping control laws for
each individual rigid body that depend on the relative orientation and rela-
tive position of its neighbors. Energy methods are used to prove stability of
the coordinated multi-body dynamical system. To prove exponential stability,
we break symmetry and consider a controlled dissipation term that requires
each individual to measure its own velocity. The control laws are illustrated in
simulation for a network of spinning rigid bodies.

1. Introduction. In this paper, we derive a decentralized control methodology
to coordinate and stabilize a network of rigid bodies moving in three-dimensional
space. Coordination here refers to synchronization of the orientations and positions
of the rigid body network. A motivating application is the use of a coordinated
cluster of satellites carrying telescopes for astronomical interferometry. The goal
is to synchronize the motion of the satellites so that using the telescopes together
enhances resolution. Our results provide provably stable control laws that align the
orientations and synchronize the angular velocities of a network of n spinning rigid
bodies.

We are likewise motivated by the application of a fleet of sensor-equipped un-
derwater vehicles that move together in an organized pattern to identify and track
features in the ocean. An important goal is to synchronize the motion of the vehicles
so that resolution of the sensing array is optimized to minimize estimation error in
the sampled environment. In the case that the vehicles are used as an acoustic ar-
ray, synchronization of vehicle orientation also becomes critical. Our results provide
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provably stable control laws that align the orientations and positions and synchro-
nize the angular and translational velocities of a network of n rigid bodies moving in
three dimensions. The underwater vehicle dynamics used to design the control laws
are idealized; they assume potential flow and ignore the influence of ocean currents.
Application of the results to ocean-going vehicles requires additional attention to
the dynamic effect of the real ocean environment. One possibility, for instance, is to
use the idealized approach here as a motion planner, complemented with a robust
low-level controller designed to carry out the plan in the presence of currents. A
relevant and successful prior field demonstration of control of vehicles in the ocean
is described in [9].

In response to the growing interest in applications of robotic networks, there
has been much research activity on coordinated control of groups. The majority
of research has focused on networks of individuals modeled as particles, see, for
example, [21, 14, 31, 8, 16, 33] and references therein, or as nonholonomic systems
as in [7]. These simplified models are well justified as the focus is the role of
interconnection on collective motion independent of the dynamics of the individual
agents. Graph theoretical tools are used to study limited and possibly time-varying
communication topologies. In [1] the authors consider a group of mobile robots
modelled by point masses and a parameter dependent control law. Depending upon
the parameter, the group can undergo a rigid or an elastic transformation. The
parameter is chosen to shape the kinetic energy metric of the system and is close
in spirit to the geometric approach of this paper.

Simple particle models fall short, however, when the coordination problem re-
quires attitude synchronization. A number of researchers have investigated attitude
coordination of multiple satellites with rigid body dynamics, e.g., [25, 19, 12, 2, 13,
36, 18] and references therein. These works typically make use of an externally
provided trajectory or a leader-follower approach. Additionally, many of the works
make use of the non-unique quaternion representation for attitude. In some of the
earlier works the authors compute synchronization error by comparing quaternions
and angular velocities with respect to different reference frames. This problem is
rectified in [36] where comparisons are made with respect to a common reference
frame.

In a number of network control problems, it may be undesirable to decouple
synchronization from stabilization of individual dynamics. The coordination of
multiple satellites is one example where particle models are insufficient since the
required coordination is defined in terms of rigid body states. Other problems arise
when the individual systems are underactuated and/or have unstable dynamics.
For networks of autonomous systems such as unmanned helicopters or underwater
vehicles, stability of individual dynamics can be important and challenging, and it
may not always be possible (or desirable) to decouple the stabilization problem of
individual dynamics from the coordination problem.

In previous work we have proven control laws to address stable synchronization
of a class of underactuated mechanical systems with otherwise unstable dynamics
[28]. In this case the integral treatment of coordination with individual stabilization
is critical; an energy shaping approach leads to a non-trivial definition of coupling
variable (i.e., not the naive choice) in order to both stabilize the otherwise unstable
dynamics and stably coordinate the network of systems. This point is well illus-
trated in the case of synchronization of a network of moving carts, each balancing
an inverted pendulum. The input directly controls the motion of the cart but not
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the angle of the pendulum. A decoupled approach might suggest to use a control
law so that each cart stabilizes its upright pendulum and then in parallel a coupling
control term that is a function of relative cart positions to synchronize cart motion.
However, stabilization and synchronization of the motion are proven with a coupling
term that depends on the relative measurement of a function of both cart position
and pendulum angle.

In the present paper we address the synchronization and stabilization problems
for rigid body dynamics. Unlike earlier efforts cited above, we work directly on the
configuration manifold avoiding non-unique representations of orientation such as
quaternions. Building on previous efforts, e.g., [20, 34, 10, 29], our approach makes
use of symmetry, reduction, energy shaping and energy methods. We consider first
the case in which each individual in the network has configuration space SO(3)
as is the case for a free rigid spacecraft. For a network of n such rigid bodies,
the total configuration space is SO(3)n = SO(3) × . . . × SO(3) (n times). In the
second case, each individual has configuration space SE(3) as is the case for a rigid
underwater vehicle. For a network of n such rigid bodies, the total configuration
space is SE(3)n = SE(3)× . . .× SE(3) (n times). For both cases, we assume that
the uncontrolled dynamics for each individual rigid body are Lagrangian where
the Lagrangian is quadratic in velocity. A potential is introduced as a function of
relative orientations to couple the rigid bodies. In the SE(3) case, a second potential
term is defined as a function of relative positions. These potentials break some but
not all of the symmetry in the multi-body system. To compute the control laws that
derive from these potentials, we identify the remaining symmetry and determine the
corresponding reduced equations for the coupled system dynamics.

In [10], the authors also consider a network of n rigid bodies with configura-
tion space SO(3)n or SE(3)n and coupled with a control law that derives from a
symmetry-breaking potential dependent on relative orientation and position. De-
termination of the corresponding symmetry, reduced space and Hamiltonian (Lie-
Poisson) structure is the main focus of the paper. Due to the inability to find all
Casimirs (invariants of the the Lie-Poisson dynamics, independent of the Hamil-
tonian), stability of relative equilibria are proven using the Energy-Casimir method
only in a limited number of cases. In the present paper, we compute the reduction
using the Lagrangian framework and we are able to prove stability more generally
using the Energy-Momentum method and Routh reduction [22].

In order to prove exponential stability we use an external reference direction of
motion which further breaks symmetry. We include an additional control term that
requires that each individual measure its own velocity. This is a limitation of the
approach. In [32] the authors prove asymptotic stability of synchronization in the
SO(3)n case where the control term does not require absolute velocities but instead
uses relative angular velocities.

Synchronization of spinning rigid bodies is most challenging in the case that the
bodies spin about their unstable (middle) axis. Likewise, synchronization of trans-
lating (underwater) vehicles moving along their unstable (e.g., middle or long) axis
requires stabilizing control. We address first the cases in which the desired motion
of each individual rigid body is already stable (e.g., spin around the short axis) and
we introduce potential shaping control only to provide the desired synchronization.
Finally, we show how to use control that shapes the kinetic energy to stabilize mo-
tion that is unstable for each individual rigid body and how to combine this with
the potential shaping control term to provide stable multi-body synchronization.
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Throughout this paper, we assume a fixed, connected, undirected (bi-directional)
graph for the communication between the rigid bodies. We present our method for
a particular representative from this class of communication graphs; however, the
results are easily extended to the whole class. Consider a graph with n nodes, each
corresponding to a rigid body and an edge between node i and node j if there is
a communication link between body i and body j. We consider the case in which
the communication is represented by a graph that is a chain, i.e., there is a (bi-
directional) edge between nodes j and j − 1 and between nodes j and j + 1 for
j = 2, . . . , n − 1. In [32] the authors have made progress in extending the SO(3)n

results to more general communication topologies using a consensus-based approach.
In this paper, we do not require the mass and inertia matrices of different rigid

bodies to be equal. This is in contrast with [28] for example, where the authors had
to assume equal mass matrices for asymptotic stability analysis purposes. We do
not consider the problem of collision avoidance or fuel cost optimization here but
these are of future interest.

The organization of the paper is as follows. In §2, we define the configuration
manifolds and Lagrangians and set the notation to be used in the rest of the pa-
per. In §3, we define the potentials used to couple the rigid body network. The
corresponding coupling control laws are derived, following [5], by calculating the re-
duced equations of motion for the network. In §4, we prove Lyapunov stability for
the synchronized relative equilibria in the case that the motion for each individual
system is stable. We introduce the symmetry-breaking potential that depends on
an external reference direction of motion since we require this for proving exponen-
tial stability. Using it already in this section reduces the symmetry to an Abelian
group, thereby allowing us to apply the Routh stability criteria. After adding a
control term to emulate dissipation, exponential stability of the relative equilibria
is proved in §5. Simulations illustrate the results. In §6 we derive a control that
shapes kinetic energy and can be used to stabilize otherwise unstable motions of the
individual rigid bodies. We then show how the kinetic shaping control is used with
the potential shaping control to provide stable synchronization even in the case that
the individuals have unstable dynamics. We make final remarks and discuss future
directions in §7.

2. Rigid body models. In this section we define the configuration spaces, state
spaces, Lagrangians, uncontrolled equations of motion and synchronized motions
for the rigid bodies studied in the paper. We also set the notation used throughout
the rest of the paper.

2.1. SO(3)n network. For a free rigid body in space, the configuration space is
the set of all possible orientations of the body. This set is the Lie group SO(3)
which consists of all the rotation matrices R given by

SO(3) = {R ∈ R3×3 | det(R) = 1, RT R = I3×3}

where I3×3 is the 3 × 3 identity matrix. The state space for the body is TSO(3),
where a particular element (R, ω) ∈ TSO(3) denotes the orientation of the rigid
body in inertial space and the angular velocity of the rigid body in inertial space.
The angular velocity of the body in the body frame is denoted by Ω ∈ R3. In the
language of Lie groups, ω is the right translate of the element Ṙ ∈ TRSO(3) to the
tangent space at the identity TISO(3) denoted by so(3) and Ω is the left translate
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of Ṙ to so(3), i.e.,

Ṙ = ω̂R, Ṙ = RΩ̂.

Hereˆis a map from R3 to so(3): given a vector a ∈ R3, â ∈ so(3) denotes a matrix
such that âx = a × x for any vector x ∈ R3.

We are interested in a network of n such rigid bodies. Let Ri ∈ SO(3) describe
the orientation of the ith rigid body, i = 1, . . . , n. The n rigid body system has
phase space T (SO(3)n) with coordinates

(R1, . . . , Rn, Ṙ1, . . . , Ṙn).

The angular velocity of the ith body in the inertial frame is denoted by ωi ∈ R3

and in the ith body frame by Ωi ∈ R3. Let Ii ∈ R3×3 be the moment of inertia
matrix for the ith body and let the (k, l) entry of this matrix be Ii,kl. We assume
the body fixed frame is chosen so that Ii is a diagonal matrix and we assume that
it has diagonal entries where Ii,11 > Ii,22 > Ii,33, i.e., Ii,11 corresponds to the short
axis and Ii,33 corresponds to the long axis. Note that we do not assume that the
rigid bodies have the same moment of inertia matrices.

The Lagrangian for each rigid body (before coupling) is defined by its kinetic

energy (1/2)ΩT
i IiΩi. The equations of motion for its dynamics are

IiΩ̇i = (IiΩi) × Ωi + uτi, (2.1)

for i = 1, . . . , n, where uτi ∈ R3 is the vector of external control torques for the ith

rigid body.
Our goal is to design uτi, i = 1, . . . , n to couple n spinning rigid bodies using

potentials designed to align (synchronize) their orientations in inertial space and
drive the axis of rotation of each to a common prescribed direction. Without loss
of generality we let the prescribed common direction be e1 = (1, 0, 0)T in inertial
space and the prescribed angular rate equal to 1. This is an arbitrary choice; any
other desired direction and angular rate can be stabilized using the same methods
derived in this paper. Until §6 we assume that each rigid body is to spin about
its short axis. The desired synchronized network motion is given by the relative
equilibrium:

R1 = . . . = Rn = Re,

Ree1 = e1 (2.2)

Ωi = ωi = e1.

In §6 we address the case in which each rigid body is to spin about its unstable
(middle) axis. As mentioned in the introduction, we do not consider collision avoid-
ance in this paper. These issues are important even in the case of SO(3) when
physical displacements in inertial space are not a concern. For the SO(3) case,
collision avoidance can mean avoiding certain orientations in space. For example,
if one has sensitive imaging sensors for interferometry purposes, orientations which
point the sensor to a bright source like the sun are to be avoided.

We note that we can have a system where each body has the same rotation
matrix, but different “physical orientations”. This is because, for each body, its
rotation matrix is defined with respect to a reference orientation in space given
by the identity matrix. For different choices of reference orientation, the bodies
will, after synchronization, have the same values of rotation matrices but different
physical orientation. This is related to the freedom in choosing the matrix K in
[10]. In [10], the bodies have the same reference configuration but different rotation
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matrices. The synchronized state for the network corresponds to RT
i+1KRi = I3×3,

i.e., the bodies have different physical orientation if K 6= I.

2.2. SE(3)n network. We now consider the case in which the rigid bodies can
rotate and translate in three dimensions. The configuration space for a single rigid
body is the Lie group SE(3), the space of rigid body motions. An element in SE(3)
is denoted by (R, b) with R ∈ SO(3), b ∈ R3 and group multiplication

(R, b) · (R1, b1) = (RR1, Rb1 + b).

Here, R represents the orientation of the body and b the vector to the body from
the origin of an inertial frame. For this action, the inverse of (R, b) is (RT ,−RT b).
It is useful to represent elements in SE(3) in matrix form so that the group action
is represented by matrix multiplication as follows:

[
R b

0 1

]
·

[
R′ b′

0 1

]
=

[
RR′ Rb′ + b

0 1

]
.

The angular and linear velocities of the body in the inertial space are obtained by
computing the right translate to the tangent space at the identity TISE(3), denoted
by se(3), of an element belonging to the tangent space of SE(3) at a particular point
(R, b) as follows:

[
Ṙ ḃ

0 0

]
·

[
RT −RT b

0 1

]
=

[
ω̂ ḃ − ω̂b

0 0

]
.

Here, ω ∈ R3 is the angular velocity of the body in inertial space and ḃ is its linear
velocity in inertial space. The velocity components in the body frame are similarly
obtained using the left translate. They are denoted by Ω ∈ R3 and v ∈ R3 and
calculated as follows:[

RT −RT b

0 1

]
·

[
Ṙ ḃ

0 0

]
=

[
RT Ṙ RT ḃ

0 0

]
=

[
Ω̂ v

0 0

]
.

We are interested in a network of n such rigid bodies. Let (Ri, bi) ∈ SE(3)
describe the orientation and position of the ith rigid body, i = 1, . . . , n. The n rigid
body system has phase space T (SE(3)n) with coordinates

(R1, . . . , Rn, Ṙ1, . . . , Ṙn, b1, . . . , bn, ḃ1, . . . , ḃn).

The angular velocity of the ith body in the inertial frame is denoted by ωi ∈ R3 and
in the ith body frame is denoted by Ωi ∈ R3. The linear velocity of the ith body in
the inertial frame is ḃi ∈ R3 and in the ith body frame is denoted by vi ∈ R3.

We let the rigid bodies be immersed in a fluid defined by potential flow. Then to
each rigid body there is a moment of inertia matrix Ii ∈ R3×3 and a mass matrix
Mi ∈ R3×3 that includes rigid body and fluid terms [11]. Let the (k, l) entry of
these matrices be Ii,kl and Mi,kl, respectively. We assume the mass is distributed
uniformly and the body frame chosen so that both Ii and Mi are diagonal for all
i = 1, . . . , n. We further assume that Ii,11 > Ii,22 > Ii,33 and Mi,11 > Mi,22 > Mi,33.
Note that we do not assume that the rigid bodies have the same moment of inertia
matrices or mass matrices.

The Lagrangian for each rigid body (before coupling) is defined by its kinetic

energy (1/2)ΩT
i IiΩi + (1/2)vT

i Miv. The equations of motion for its dynamics are

IiΩ̇i = (IiΩi) × Ωi + (Mivi) × vi + uτi

Miv̇i = (Mivi) × Ωi + ufi (2.3)
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for i = 1, . . . , n, where uτi ∈ R3 is the vector of external control torques and
ufi ∈ R3 the vector of the external control forces for the ith rigid body.

Our goal is to design uτi and ufi, i = 1, . . . , n, to couple n moving rigid bod-
ies using potentials designed to align (synchronize) their orientations and relative
positions in inertial space and drive the axis of translation of each to a common pre-
scribed direction. Without loss of generality we let the prescribed common direction
be e1 = (1, 0, 0)T in inertial space and the prescribed angular rate and linear speed
equal to 1. This is an arbitrary choice; any other desired direction and angular rate
and linear speed can be stabilized using the same methods derived in this paper.
Until §6 we assume that each rigid body is to translate and rotate along its short
axis. The desired synchronized network motion is given by the relative equilibrium:

R1 = . . . = Rn = Re,

b1 = b2 − d12 . . . = bn − d1n = be,

Ree1 = e1 (2.4)

be ‖ e1

Ωi = ωi = e1,

vi = e1.

In (2.4), dij ∈ R3 are fixed vectors determining the constant desired interpositioning
between the bodies i and j. Since the vectors dij are constant, we can choose new

coordinates b1, b̃2 = b2 − d12, . . . , b̃n = bn − d1n without changing the form of the
Lagrangian. Further, the dissipation controller that we design in (5.14) depends only

on the time derivative of bi which is equivalent to the time derivative of b̃i. Hence,
without loss of generality, we can set the vectors dij in (2.4) to be zero. However,
the terms dij will be important in incorporating collision avoidance schemes into
the present framework. In §6 we address the case in which each rigid body is to
translate and rotate along its middle (unstable) axis.

3. Reduction for rigid body networks. We define the potential that couples
the rigid bodies in the network as a function of relative orientations and relative
positions that are available given the communication graph. As mentioned in the
introduction, we use a chain as the communication graph, i.e., the connected, undi-
rected graph on n nodes depicted as follows:

1 2oo //2 . . .oo // . . . n − 1oo //n − 1 noo //

The coupling potentials Ṽ1 and Ṽ2 designed below in (3.1) and (3.21) for the SO(3)n

and SE(3)n networks, respectively, are consistent with the above communication
graph.

We define the controlled system dynamics to be those given by the Lagrangian
that is the sum of the original kinetic energy and the coupling potential. We identify
the symmetry in the system and then derive the reduced equations of motion for the
network using the method of Lagrangian reduction [5]. This procedure yields the
coupling control inputs; these correspond to the terms in the equations of motion
associated with the coupling potentials.

The central idea in Lagrangian reduction, following [5], is to start with the vari-
ational formulation of the network mechanics and then split the variations into a
horizontal and a vertical part. The vertical directions are the ones which preserve
the symmetry structure and the horizontal directions are orthogonal (with respect
to the kinetic energy metric) to the vertical directions. These variations gives rise
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to horizontal and vertical equations of motion, respectively. In [10], the reduction
for the rigid body network is carried out using semi-direct product reduction theory.

Stability of the synchronized rigid body networks using the control laws derived
in this section is proved in §4 and §5.

3.1. Reduction for SO(3)n network. For the rigid body network on SO(3)n, we
define the coupling potential to be

Ṽ1 = σ1

n−1∑

i=1

tr(RT
i+1Ri) (3.1)

where σ1 ∈ R. Note that Ṽ1 depends only on relative orientations that can be
measured given the fixed communication topology assumed above. When σ1 < 0,
the global minimum of Ṽ1 is R1 = R2 = · · · = Rn as desired. The potential (3.1)
resembles the potential used in [4] and [30]. In these works, the authors use the
potential for asymptotic tracking of prescribed attitude. However, the authors of
[4] and [30] choose to cancel the natural dynamics of the system; whereas we choose

to preserve the Lagrangian structure of the system. The potential Ṽ1 is also used
in [24] to study the topological structure of SO(3).

We define the controlled system by the Lagrangian dynamics with Lagrangian L
equal to the sum of the kinetic energies of each individual system minus the coupling
potential:

L =
1

2

n∑

i=1

(
ΩT

i IiΩi

)
− σ1

n−1∑

i=1

tr(RT
i+1Ri). (3.2)

L has SO(3) as its symmetry group with the symmetry action given by

R · (R1, . . . , Rn, R1Ω̂1, . . . , RnΩ̂n) = (RR1, . . . , RRn, RR1Ω̂1, . . . , RRnΩ̂n).

For i = 1, . . . , n − 1, let

Xi = RT
i+1Ri,

i.e., Xi is the relative orientation of individuals i and i + 1. Figure 3.1 illustrates
the relative orientations in a system of three rigid bodies. Since

Ẋi = XiΩ̂i − Ω̂i+1Xi (3.3)

we have that

ŵi := ẊiX
−1
i = XiΩ̂iX

−1
i − Ω̂i+1

= X̂iΩi − Ω̂i+1. (3.4)

Then wi = XiΩi − Ωi+1 is the difference between the angular velocities of the ith

and (i + 1)th bodies represented in the (i + 1)th body frame.
We identify the reduced space as

[
R1, R2, . . . , Rn, R1Ω̂1, R2Ω̂2, . . . , RnΩ̂n

]
SO(3)

= (X1, X2, . . . , Xn−1, Ẋ1X
−1
1 , Ẋ2X

−1
2 , . . . , Ẋn−1X

−1
n−1,Ω1) (3.5)

= (X1, X2, . . . , Xn−1, w1, w2, . . . , wn−1,Ω1).

Here, we have used the notion of a principal connection on a principle bundle. In
our case, the “value” of the principle connection is the angular velocity of the first
rigid body in its body frame and belongs to the Lie algebra so(3). Note that there is
no unique choice for the principal connection. Each such choice gives rise to its own
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Figure 3.1. Illustration of relative orientation X1 = RT
2 R1 of

body 1 with respect to body 2 and relative orientation X2 = RT
3 R2

of body 2 with respect to body 3.

set of horizontal and vertical equations, which after change of variables is equivalent
to the corresponding equations we derive in this section.

The full (unreduced) space is T (SO(3)n) and the symmetry group is SO(3). The
Lagrangian reduced space is the sum of two bundles. They are the tangent bundle of
SO(3)n/SO(3) and another bundle with base space SO(3)n/SO(3) and fibre given
by so(3). Let

(X, w,Ω1) := (X1, . . . , Xn−1, w1, . . . , wn−1,Ω1).

We denote by l the Lagrangian (3.2) on the reduced space such that

l(X, w,Ω1) =
1

2

n∑

i=1

(
ΩT

i IiΩi

)
− V (X) (3.6)

where Ωj , j = 2, . . . , n can be expressed in terms of (X, w,Ω1) using the recursion

Ωj = Xj−1Ωj−1 − wj−1

and

V (X) = σ1

n−1∑

i=1

trXi.

The equations of motion are derived using the variational formulation of me-
chanics. An arbitrary variation in the full configuration space can be split into a
vertical part and a horizontal part once a connection is chosen. Here the variations
are split using the identification given by (3.5). The vertical variations correspond
to variations in the symmetry group direction, i.e., to variations in Ω1. These vari-
ations preserve the shape of the system. The horizontal variations correspond to
variations in the reduced space, which in our case is the (X, w) space. The horizon-
tal variations do not preserve the shape but instead preserve the total momentum
of the system [5].

The variation δΩ1 is computed as follows. Let t0, t1 be the initial and final time,
respectively, of the paths in the variations. Let η̂ = RT

1 δR1, where δR1 is the



604 SUJIT NAIR AND NAOMI EHRICH LEONARD

variation of a path R1 in SO(3) with fixed end points, i.e., δR1(t0) = δR1(t1) = 0.

Since Ω̂1 = RT
1 Ṙ1, we have

δΩ̂1 = RT
1 δṘ1 − RT

1 δR1R
T
1 Ṙ1

= RT
1 δṘ1 − RT

1 δR1R
T
1 Ṙ1 + RT

1 Ṙ1R
T
1 δR1 − RT

1 Ṙ1R
T
1 δR1

= ̂̇η +
[
Ω̂1, η̂

]
.

Therefore, δΩ1 = η̇+Ω1×η. To calculate δXi, define λ̂i = −RT
i+1δRi+XiR

T
i δRiX

−1
i .

Now,

δXi = δ
(
RT

i+1Ri

)

= −RT
i+1δRi+1R

T
i+1Ri + RT

i+1δRi

= −RT
i+1δRi+1Xi + XiR

T
i δRi

= λ̂iXi.

We use the expression for δXi to calculate δwi as follows:

δŵi = δ
(
ẊiX

−1
i

)

= δ
(
Ẋi

)
X−1

i − ẊiX
−1
i δXiX

−1
i

= ̂̇
λi + δXiX

−1
i ŵi − ŵiδXiX

−1
i

=
̂̇
λi + λ̂iŵi − ŵiλ̂i.

The splitting of variations into a vertical variation δV and horizontal variation
δH is then given as

δV (X, w,Ω1) = ((X, w,Ω1), (0, 0, η̇ + Ω1 × η)) (3.7)

δH(X, w,Ω1) =
(
(X, w,Ω1), (λ̂X, λ̇ − w × λ, 0)

)
(3.8)

where η, λ ∈ R3, η(ti) = 0, λj(ti) = 0 for i = 0, 1 and j = 1, . . . , n − 1 and

λ̂X :=
(
λ̂1X1, . . . , λ̂n−1Xn−1

)

λ̇ − w × λ :=
(
λ̇1 − w1 × λ1, . . . , λ̇n−1 − wn−1 × λn−1

)
.

This splitting gives rise to a vertical equation and a horizontal equation of motion,
respectively, by taking the vertical and horizontal variations of the Lagrangian l.
The vertical equation is the momentum conservation equation and is derived as
follows using the fact

δV Ωi = XiδV Ωi−1 = XiXi−1δV Ωi−2 = . . . = RT
i R1δV Ω1.
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We compute the vertical variation of the Lagrangian l as

δV

∫ t1

t0

l(X, w,Ω1)dt = δV

∫ t1

t0

(
1

2

n∑

i=1

ΩT
i IiΩi − V (X)

)
dt

=

∫ t1

t0

(
n∑

i=1

ΩT
i IiδV Ωi

)
dt

=

∫ t1

t0

(
n∑

i=1

ΩT
i IiR

T
i R1

)
δV Ω1dt

=

∫ t1

t0

aT (η̇ + Ω1 × η)dt

=

∫ t1

t0

(−ȧT + (a × Ω1)
T )η(t)dt

where we have used in the last step integration by parts and δV Ω1 = η̇ + Ω1 × η,
where η(t) is arbitrary with η(t0) = η(t1) = 0. Here,

a =

(
n∑

i=1

ΩT
i IiR

T
i R1

)T

= I1Ω1 + RT
1 R2I2Ω2 + . . . + RT

1 RnInΩn, (3.9)

the total angular momentum as seen in body 1 frame. Setting δV

∫ t1

t0
l = 0 we get

ȧ = a × Ω1.

This is the (vertical) equation for conservation of total angular momentum in inertial
space as seen from the body 1 frame.

Before calculating the horizontal equation of motion corresponding to the hori-
zontal variation of l, we first prove the following useful lemma. Let e1 = (1, 0, 0)T ,
e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Lemma 1. Let b ∈ R3 and R ∈ SO(3) where {c1, c2, c3} are the column vectors of

R. Then, tr(Rb̂) = b · v, where v = c1 × e1 + c2 × e2 + c3 × e3 is the eigenvector
of R corresponding to eigenvalue 1 when R 6= I3×3.

Proof: We have

tr(Rb̂) = tr(b̂R)

= tr(b̂[c1 c2 c3])

= tr([b × c1 b × c2 b × c3])

= e1 · (b × c1) + e2 · (b × c2) + e3 · (b × c3)

= b · (c1 × e1 + c2 × e2 + c3 × e3) .

Now let v = c1 × e1 + c2 × e2 + c3 × e3. Then,

b · (Rv) = (RT b) · v

= tr(RR̂T b)

= tr(RRT b̂R)

= tr(b̂R) = tr(Rb̂) = b · v .
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Since b is arbitrary, Rv = v, i.e., v is the eigenvector of R corresponding to eigen-
value 1.

Next we calculate the horizontal variation of V (X). Using Lemma 1, (3.8) and
the fact that trace is a linear operator, we get

δHV (X) = δHσ1tr(

n−1∑

i=1

Xi)

= σ1

n−1∑

i=1

tr(δHXi)

= σ1

n−1∑

i=1

tr(λ̂iXi)

= σ1

n−1∑

i=1

(ups
τi)

T λi (3.10)

where for i = 1, . . . , n − 1

u
ps
τi = (∆i × e1 + Σi × e2 + Γi × e3) (3.11)

and ∆i,Σi,Γi are the column vectors of Xi = RT
i+1Ri. The superscript “ps” refers

to “potential shaping”. From Lemma 1, we get that u
ps
τi is the eigenvector of Xi

corresponding to eigenvalue 1.
Next, we calculate δHΩi for i > 1 using (3.8). Since Ωi+1 = XiΩi − wi, we get

δHΩi+1 = −δHwi + (δHXi)Ωi + XiδHΩi

= −(λ̇i − wi × λi) + λ̂iXiΩi + XiδHΩi.

Using this recursively with δHΩ1 = 0 from (3.8) and the identity Y (z1 × z2) =
(Y z1) × (Y z2) for z1, z2 ∈ R3 and rotation matrix Y ∈ SO(3), we get

δHΩi+1 = −λ̇i + wi × λi + λi × (XiΩi) − xiλ̇i−1 + Xiwi−1 × Xiλi−1

+Xiλi−1 × (XiXi−1Ωi−1) + XiXi−1δHΩi−1

= X−1
i+1

i∑

j=1

Xi+1Xi · · ·Xj+2Xj+1

(
−λ̇j + wj × λj + λj × (XjΩj)

)

=
i∑

j=1

RT
i+1Rj+1

(
−λ̇j + wj × λj + λj × (XjΩj)

)
. (3.12)
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Further,

∫ t1

t0

n∑

i=2

ΩT
i IiδHΩi =

∫ t1

t0

n∑

i=2

ΩT
i Ii

i−1∑

j=1

RT
i Rj+1

(
−λ̇j + wj × λj + λj × (XjΩj)

)
dt

=

∫ t1

t0

n∑

i=2

i−1∑

j=1

(
RT

j+1RiIiΩi

)T(
−λ̇j + wj × λj + λj × (XjΩj)

)
dt

=

∫ t1

t0

n∑

i=2

i−1∑

j=1

( d

dt

(
RT

j+1RiIiΩi

)T
λj

+
(
RT

j+1RiIiΩi

)T
(wj × λj + λj × (XjΩj))

)
dt

=

∫ t1

t0

n∑

i=2

i−1∑

j=1

λT
j

( d

dt

(
RT

j+1RiIiΩi

)

+
(
RT

j+1RiIiΩi

)
× (wj − XjΩj)

)
dt

=

∫ t1

t0

n−1∑

j=1

λT
j

n∑

i=j+1

( d

dt

(
RT

j+1RiIiΩi

)

+
(
RT

j+1RiIiΩi

)
× (wj − XjΩj)

)
dt (3.13)

where we have used integration by parts and the fact that λ(t) vanishes at t0, t1.
Using (3.6), (3.10), (3.12) and (3.13), we compute the horizontal variation of

Lagrangian l as

δH

∫ t1

t0

l(x, w,Ω1)dt = δH

∫ t1

t0

1

2

(
n∑

i=1

ΩT
i IiΩi − 2V (X)

)
dt

=

∫ t1

t0

(

n∑

i=2

ΩT
i IiδHΩi − δHV (X))dt

=

∫ t1

t0

n−1∑

j=1

λ
T
j

n∑

i=j+1

( d

dt

(
RT

j+1RiIiΩi

)

+
(
RT

j+1RiIiΩi

)
× (wj − XjΩj) − σ1u

ps
τj

)
dt.

We set δH

∫ t1

t0
l = 0 and note that this holds for arbitrary λj(t). Again, using the

fact that Ωi+1 = XiΩi−wi, we get the horizontal equations to be for j = 1, . . . , n−1

d

dt




n∑

i=j+1

RT
j+1RiIiΩi


 =




n∑

i=j+1

RT
j+1RiIiΩi


× (Ωj+1) + σ1u

ps
τj. (3.14)

Since j goes from 1 to n − 1, we have n − 1 horizontal vector equations. When
j = n − 1, (3.14) becomes

InΩ̇n = (InΩn) × (Ωn) + σ1u
ps
τ,n−1.

Let ups
τn = u

ps
τ0 = 0. We now show that if

IjΩ̇j = (IjΩj) × (Ωj) + σ1(u
ps
τ,j−1 − u

ps
τj) (3.15)
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for j = k + 1, . . . , n where k ≥ 1, then (3.15) also holds for j = k. For j = 1, . . . , n
let

aj−1 =




n∑

i=j

RT
j RiIiΩi


 = IjΩj + RT

j




n∑

i=j+1

RiIiΩi


 . (3.16)

Note that a0 = a defined in (3.9). We have

ȧj−1 = IjΩ̇j − Ω̂jR
T
j




n∑

i=j+1

RiIiΩi


+RT

j

n∑

i=j+1

(
RiΩ̂i(IiΩi) + RiIiΩ̇i

)
. (3.17)

Using (3.14), (3.16) and (3.17), we get

IjΩ̇j + RT
j

n∑

i=j+1

Ri

(
Ω̂i(IiΩi) + IiΩ̇i

)
= (IjΩj) × Ωj + σ1u

ps
τ,j−1. (3.18)

Now we use the assumption that for j = k + 1, . . . , n for any integer k, n > k ≥ 1,
(3.15) is satisfied. Then, for j = k, . . . , n (3.18) implies

IjΩ̇j + RT
j

n∑

i=j+1

Ri

(
σ1(u

ps
τ,i−1 − u

ps
τi)
)

= (IjΩj) × Ωj + σ1u
ps
τ,j−1. (3.19)

Now use the fact that u
ps
τi is the eigenvector of Xi = RT

i+1Ri corresponding to ei-
genvalue 1, i.e., Ri+1u

ps
τi = Riu

ps
τi . This implies that all the terms in the summation

in (3.19) cancel except for σ1R
T
j Rj+1u

ps
τj = σ1u

ps
τj. So (3.19) becomes

IjΩ̇j = (IjΩj) × Ωj + σ1(u
ps
τ,j−1 − u

ps
τ,j). (3.20)

Equation (3.20) is satisfied for j = 1, . . . , n.
Equation (3.20) together with (3.3) for the dynamics of relative orientations Xi,

i = 1, . . . , n − 1 give the complete, reduced, closed-loop equations of motion in
T (SO(3)n)/SO(3). Since ∆i,Σi,Γi are the column vectors of Xi, (3.3) can be
equivalently written for i = 1, . . . , n − 1 as

d

dt

[
∆i Σi Γi

]
=
[

∆i Σi Γi

]
Ω̂i − Ω̂i+1

[
∆i Σi Γi

]
.

The closed-loop dynamics are the Lagrangian dynamics corresponding to the La-
grangian (3.2). By comparing these dynamics with equation (2.1), the control inputs
can be read off as the last term on the right side of (3.20) .

3.2. Reduction for SE(3)n network. For the rigid body network on SE(3)n, we
define the coupling potential to be

Ṽ2 =

n−1∑

i=1

(
σ1tr(R

T
i+1Ri) +

σ2

2
‖bi − bi+1‖

2
)

, (3.21)

where σ1, σ2 ∈ R. Note that Ṽ2 depends only on relative orientations and relative
positions that can be measured given the communication graph. When σ1 < 0 and
σ2 > 0, the global minimum of Ṽ2 is R1 = R2 = · · · = Rn and b1 = b2 = · · · = bn

as desired.
We define the controlled system by the Lagrangian dynamics with Lagrangian

L′ equal to the sum of the kinetic energies of each individual system minus the
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coupling potential:

L′ =
n∑

i=1

1

2

(
ΩT

i IiΩi + vT
i Mivi

)
− σ1tr(

n−1∑

i=1

RT
i+1Ri) −

σ2

2

n−1∑

i=1

‖bi − bi+1‖
2. (3.22)

L′ has SE(3) as its symmetry group with the symmetry action given by

(R̄, b̄) · (R1, . . . , Rn, Ṙ1, . . . , Ṙn, b1, . . . , bn, ḃ1, . . . , ḃn)

= (R̄R1, . . . , R̄Rn, R̄Ṙ1, . . . , R̄Ṙn, R̄b1 + b̄, . . . , R̄bn + b̄, R̄ḃ1, . . . , R̄ḃn).

For i = 1, . . . , n − 1, Xi = RT
i+1Ri and wi = ẊiX

−1
i = XiΩi − Ωi+1 as defined

in §3.1 and let yi = bi+1 − bi. We identify the reduced space as
[
R1, R2, . . . , Rn, b1, . . . , bn, R1Ω̂1, R2Ω̂2, . . . , RnΩ̂n, ḃ1, . . . , ḃn

]
SE(3)

= (X1, . . . , Xn−1, y1, . . . , yn−1, Ẋ1X
−1
1 , . . . , Ẋn−1X

−1
n−1, ẏ1, . . . , ẏn−1,Ω1, v1)

= (X1, . . . , Xn−1, y1, . . . , yn−1, w1, . . . , wn−1, ẏ1, . . . , . . .yn−1,Ω1, v1)

= (X, y, w, ẏ,Ω1, v1). (3.23)

As in §3.1 for the SO(3)n reduction, we have used the notion of a principal con-
nection on a principal bundle. The value of the principal connection is the angular
and linear velocity of the first rigid body in its body frame and belongs to se(3).
Just as in the SO(3)n case, there are various choices of principal connection, each
of which gives rise to its own horizontal and vertical equation, which after change
of variables, can be reduced to our choice. For example, one can choose the angular
and linear velocity of any of the n rigid bodies in its body frame as a principal
connection. The corresponding vertical equation is just the conservation of total
angular and linear momentum, expressed in that particular body frame.

We denote by l′ the Lagrangian (3.22) on the reduced space such that

l′(X, y, w, ẏ,Ω1, v1) =
1

2

n∑

i=1

(
ΩT

i IiΩi + vT
i Mivi

)
− V ′(X, y)

where

V ′(X, y) = σ1

n−1∑

i=1

tr(Xi) +
σ2

2

n−1∑

i=1

‖yi‖
2.

The equations of motion are derived using the variational formulations of me-
chanics. Horizontal and vertical variations correspond to the identification made
in (3.23). The vertical variations correspond to variations in the symmetry group
direction, i.e., to variations in (Ω1, v1). These variations preserve the shape of the
system. The horizontal variations correspond to variations in the reduced space
(X, y, w, ẏ) and preserve the total momentum of the system [5]. Let t0, t1 be the
initial and final time, respectively, of the paths in the variations. The splitting of
variations into a vertical variation δV and horizontal variation δH can be computed
to be

δV (X, y, w, ẏ,Ω1, v1) =
(
(X, y, w, , ẏ,Ω1, v1), (0, 0, 0, 0, δΩ1, δv1)

)

δH(X, y, w, ẏ,Ω1, v1) =
(
(X, y, w, ẏ,Ω1, v1), (λ̂X, δy, λ̇ − w × λ, δẏ, 0, 0)

)
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where η, λ ∈ R3, η1(ti) = 0, η2(ti) = 0, λj(ti) = 0 for i = 0, 1 and j = 1, . . . , n − 1.
Here

δΩ1 = η̇1 + Ω1 × η1

δv1 = η̇2 + Ω1 × η2 + v1 × η1

and λ̂X , λ̇ − w × λ are as defined in §3.2.
The splitting gives rise to a vertical equation and a horizontal equation of motion,

respectively, by taking the vertical and horizontal variations of the Lagrangian l′.
This follows analogously to the SO(3)n case. Details can be found in [26]. As before
let ∆i,Σi,Γi be the column vectors of RT

i+1Ri. The reduced, closed-loop equations
of motion in T (SE(3)n)/SE(3) are as follows:

IiΩ̇i = (IiΩi) × Ωi + (Mivi) × vi + σ1(u
ps
τ,i−1 − u

ps
τi)

Miv̇i = (Mivi) × Ωi + σ2

(
u

ps
f,i−1 − u

ps
fi

)
(3.24)

where

u
ps
τi = (∆i × e1 + Σi × e2 + Γi × e3) , i = 1, . . . , n − 1,

u
ps
τ0 = ups

τn = 0,

u
ps
fi = −RT

i (bi − bi+1), i = 1, . . . , n − 1,

u
ps
f1 = u

ps
fn = 0.

The closed-loop dynamics are the Lagrangian dynamics corresponding to the La-
grangian (3.22). By comparing these dynamics with equation (2.3), the control
inputs can be read off as the last term on the right side of (3.24).

4. Stability of rigid body networks. In this section we prove stability of the de-
sired relative equilibria defined by (2.2) for the SO(3)n network and by (2.4) for the
SE(3)n network. Recall that for the SO(3)n case, the desired equilibrium motion
corresponds to the bodies all aligned and rotating about their short axis. For the
SE(3) case, the desired equilibrium motion corresponds to the bodies aligned, both
in orientation and position, and at the same time rotating about and translating
along their short axis. The non-rotating SO(3)n network stability is proven in [10]
using the Energy-Casimir method; the authors in [10] are not able to prove stability
when the bodies are rotating as they are not able to find Casimir functions for this
case.

Since we are eventually interested in exponentially stabilizing the synchronized
steady motion of the networks, we break some of the symmetry that remains after
coupling to shrink the symmetry to an Abelian group. The symmetry breaking
corresponds to alignment of the short axis of each rigid body (the axis of rota-
tion/translation) with the inertial axis e1 as desired. This allows us to use Routh
reduction to prove stability of the network and also to use a result from [3] to prove
exponential stability by constructing a Lyapunov function for the desired relative
equilibrium manifold.



RIGID BODY NETWORKS 611

4.1. Stability of SO(3)n network. The potential function we use for the SO(3)n

network is a modification of Ṽ1 given by

V1 = σ1tr(
n−1∑

i=1

RT
i+1Ri) + σ1e

T
1 R1e1. (4.1)

The extra term VB1 := σ1e
T
1 R1e1 in the potential V1, as compared to Ṽ1, reflects the

interest in aligning the short axis of each body with the inertial axis e1 (the choice
of e1 is arbitrary). Without this term, the symmetry group is SO(3). With this
term, the symmetry group is the abelian group S1, corresponding here to rotation
about the e1 axis. The equations of motion for the network are identical to (3.20)
except that here

u
ps
τ0 = −RT

1 ((R1e1) × e1) (4.2)

due to the new term in the potential V1. To see how this term arises, consider the

most general variation of VB1. Let δθi be the variation in Ri, i.e., δRi = δ̂θiRi.
We have,

δVB1 = σ1e
T
1 δR1e1

= σ1e
T
1 δ̂θ1R1e1

= σ1δθ
T
1 ((R1e1) × e1) . (4.3)

When the variation is vertical, i.e., δθ1‖e1 in (4.3), then we have δV VB1 = 0. Hence,
the only additional term that arises is due to the horizontal variation and equal to
σ1 ((R1e1) × e1) in the δθ1 direction. After premultiplying by RT

1 to transform the
new term from inertial frame to body frame, we define u

ps
τ0, consistent with how it

appears in (3.20), to get (4.2).
Consider the following function

V A
1 = σ1tr(

n−1∑

i=1

RT
i+1Ri) + σ1e

T
1 R1e1 −

1

2

n∑

i=1

eT
1 I l

ie1

where I l
i = RiIiR

T
i is the moment of inertia of the ith body in inertial space. V A

1

is the amended potential [22] for the SO(3)n network corresponding to the relative
equilibrium given by (2.2). To prove that the relative equilibrium given by (2.2)
is stable, we show that the amended potential V A

1 has a positive definite variation
in directions away from the relative equilibrium solution (see Proposition 8.9.4 in
[23]). That is, we show that δ2V A

1 ≥ 0 and is equal to zero only when the conditions
in (2.2) are met. When Ri = Rj = Re, we compute

δ2V A
1 = −2σ1

n−1∑

i=1

(δθi+1 − δθi)
T (δθi+1 − δθi) − σ1(δθ1 × e1)

T (δθ1 × e1)

+

n∑

i=1

(δθi × e1)
T (Ii,11I3×3 − I l

i)(δθi × e1).

Details of the computation can be found in [26]. When σ1 < 0, then δ2V A
1 ≥ 0 and

is equal to zero only when (2.2) is satisfied. We have proved the following theorem.

Theorem 1. The steady motion given by (2.2) is a stable relative equilibrium for the
rigid body SO(3)n network with controlled equations of motion given by (3.20) with
(3.11) and (4.2). This equilibrium corresponds to all n rigid bodies with synchronized
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orientations. Each body is rotating about its short axis which is aligned with the e1

axis in the inertial frame.

4.2. Stability of SE(3)n network. The potential function we use for the SE(3)n

network is a modification of Ṽ2 given by

V2 = σ1tr(

n−1∑

i=1

RT
i+1Ri) + σ1e

T
1 R1e1 +

σ2

2
‖bi+1 − bi‖

2 +
σ2

2
(b2

12 + b2
13). (4.4)

The extra term VB2 = σ1e
T
1 R1e1+(σ2/2)(b2

12+b2
13) in the potential V2, as compared

to Ṽ2, reflects the interest in aligning the short axis (of rotation and translation)
with the inertial e1 axis (the choice of e1 is arbitrary). Without these terms, the
symmetry of the SE(3)n network is SE(3). With these terms, the symmetry group
is the abelian group S1 ×R, corresponding to rotation about and translation along
the e1 axis. The equations of motion for the network are identical to (3.24) except
that here

u
ps
τ0 = −RT

1 ((R1e1) × e1)

u
ps
f0 = −RT

1 ((b1 · e2)e2 + (b1 · e3)e3). (4.5)

To see how these terms arise, consider the most general variation of VB2. We
have

δVB2 = σ1e
T
1 δR1e1 + σ2 (b12δb12 + b13δb13)

= σ1e
T
1 δ̂θ1R1e1 + σ2 (b12δb12 + b13δb13)

= σ1δθ
T
1 ((R1e1) × e1) + σ2 (b12δb12 + b13δb13) . (4.6)

When the variation is vertical, i.e., δθ1‖e1 and δb12 = δb13 = 0 in (4.6), then we
have δV VB2 = 0. Hence, the only additional terms that arise are all due to the
horizontal variation and equal to σ1 ((R1e1) × e1) in the δθ1 direction, σ2b12 in the
δb12 direction which is the e2 direction and σ2b13 in the δb13 direction which is the
e3 direction. We can substitute the identities: b12 = (b1 · e2) and b13 = (b1 · e3).
After premultiplying all new terms by RT

1 to transform from inertial to body frame,
we define u

ps
τ0 and u

ps
f0, consistent with how they appear in (3.24), to get (4.5).

Consider the following function

V A
2 =σ1tr(

n−1∑

i=1

RT
i+1Ri)+σ1e

T
1 R1e1+σ2‖bi+1−bi‖

2+σ2(b
2
12+b2

13)−
1

2

n∑

i=1

eT
1

(
I l
i +M l

i

)
e1

where I l
i = RiIiR

T
i and M l

i = RiMiR
T
i . V A

2 is the amended potential [22] for the
SE(3)n network corresponding to the relative equilibrium given by (2.4). To prove
that the relative equilibrium given by (2.4) is stable, we show that the amended
potential V A

2 has a positive definite variation in directions away from the relative
equilibrium solution. (see Proposition 8.9.4 in [23]) That is, we show that δ2V A

2 ≥ 0
and is equal to zero only when the conditions in (2.4) are met. When Ri = Rj = Re
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and bi = bj‖e1, we compute

δ2V A
2 = −2σ1

n−1∑

i=1

(δθi+1 − δθi)
T (δθi+1 − δθi) − σ1(δθ1 × e1)

T (δθ1 × e1)

+

n∑

i=1

(δθi × e1)
T (Ii,11I3×3 − I l

i)(δθi × e1)

+2σ2

n−1∑

i=1

(δbi+1 − δbi)
T (δbi+1 − δbi) + σ2((δb12)

2 + (δb13)
2)

+
n∑

i=1

(δθi × e1)
T (Mi,11I3×3 − M l

i )(δθi × e1).

Details of the computation can be found in [26]. When σ1 < 0 and σ2 > 0, then
δ2V A

2 ≥ 0 and is equal to zero only when (2.4) is satisfied. We have proved the
following theorem.

Theorem 2. The steady motion (2.4) is a stable relative equilibrium for the rigid
body SE(3)n network with controlled equations of motion given by (3.24). This
equilibrium corresponds to all n rigid bodies having the same orientation and position
vectors with each one rotating about its short axis and translating along the same
axis aligned with the e1 axis in the inertial frame.

5. Exponential stability. In this section, we show how to add a dissipative term
to the control law designed in §4.1 and §4.2 to achieve exponential stability of
the relative equilibria given by (2.2) and (2.4). The idea is to first construct a
Lyapunov function for the relative equilibrium manifold, i.e., a function that has its
minimum on the relative equilibrium manifold and has a definite second variation
in a neighborhood of the relative equilibrium manifold. Once we have made this
construction, we can use a result from [3] to appropriately design dissipative controls
to prove nonlinear exponential stability of the relative equilibrium manifold. Note
that the notion of exponential convergence is not coordinate independent in the
nonlinear setting where coordinate transformations can be nonlinear [35]. That is, if
the state converges exponentially to a particular value in one set of coordinates, this
does not imply that the state converges to that value exponentially in another set
of coordinates. However, one can define a coordinate-free exponential convergence
(that we call nonlinear exponential stability) by looking at the exponential decay
of Lyapunov functions as in [3]. Following [3], nonlinear exponential stability of
an equilibrium point x0 ∈ M means that there is a Lyapunov function Φ : M →
R that is zero at x0 and positive elsewhere in a neighborhood of x0 and there
exist positive constants c1 and c2 such that along the system dynamics Φ(x(t)) ≤
c1Φ(x(0)) exp(−c2t). For convenience, we recall the nonlinear exponential stability
theorem from [3] that will be used in this section.

Theorem 3. [3] Let M be a smooth m-dimensional manifold and consider the
control system on M with coordinates x defined by

ẋ = f (x) +

m∑

j=1

gj(x)uj (5.1)

where f , gj are smooth vector fields and uj(t) are bounded measurable functions.
Let Φ be a smooth function such that Φ(x) = 0 for x ∈ S where S is a smooth,
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one-dimensional submanifold of M . Let BS be a neighborhood of S in M and Φ be
such that Φ(x) > 0 whenever x ∈ BS − S. Let Φ be a first integral of f and uj be
chosen to be uj = −κ∇Φ·gj. If the system (5.1) is linearly controllable at each point
in BS then the submanifold S is asymptotically stable in the sense that x(t) → S
as t → ∞. If additionally δ2Φ(x) > 0 for each x ∈ S, then the submanifold S is
(nonlinearly) exponentially stable in the sense that Φ(x(t)) ≤ c1Φ(x(0)) exp−c2t for
some positive constants c1, c2.

5.1. Exponential stability for SO(3)n network. Consider the equations of mo-
tion defined by (3.20) with (3.11) and (4.2) where we add a dissipative term udiss

τi

to each control input uτi, for i = 1, . . . , n:

IiΩ̇i = (IjΩi) × Ωi + σ1(u
ps
τ,i−1 − u

ps
τi) + udiss

τi . (5.2)

We design the terms udiss
τi and prove nonlinear exponential stability of the relative

equilibrium (2.2). Given that we have already proved that (2.2) is Lyapunov stable
in §1, we construct a Lyapunov function for the relative equilibrium manifold as
follows. Consider the following function:

E1 =
1

2

n∑

i=1

(
(ωi − e1)

T I l
i(ωi − e1)

)
+ V A

1 − V A
1e (5.3)

where V A
1e is the constant value of V A

1 at the relative equilibrium (2.2) and σ1 < 0.
To apply Theorem 3 we let the manifold M be TSO(3)n, the one-dimensional

submanifold S be the relative equilibrium (2.2) and the function Φ be E1. The
dimension of M is m = 6n. For notational convenience, we choose coordinates for
the whole 6n-dimensional system to be (R1, ω1, . . . , Rn, ωn). In these coordinates,
the vector field corresponding to the control input for the ith vehicle is given by∗

3∑

k=1

gi,kudiss
τi,k =

[
03×3

I3×3

]
udiss

τi =

[
03×1

udiss
τi

]
. (5.4)

Since the system is fully actuated, it is also linearly controllable at each point.
By construction, E1 is zero on the relative equilibrium manifold and positive

elsewhere. Note that on the set E1 = 0, it holds that ωi = e1, R1 = · · · = Rn = Re

and Ree1 = e1. Since Ree1 = e1, we get Ωi = RT
e ωi = RT

e e1 = e1. In §4.1
we showed that the second variation of V A

1 is positive semi-definite. The kinetic
energy part of E1 always has a positive definite second variation because of the
regularity of the corresponding Lagrangian. Hence, the second variation of E1 is
positive definite throughout. Let the gradient vector of E1 with respect to the ith

body state be denoted by ∇iE1. Then (again with abuse of notation)

∇iE1 ⊙

(
3∑

k=1

gi,k

)
= (0, 0, 0, (I l

i(ωi − e1))
T )T (5.5)

∗ Note that we are abusing notation in (5.4), which is technically the embedding of the i
th

body controller in the 6n dimensional system, i.e.,

3
X

k=1

gi,ku
diss
τi,k =

2

4

0(6i−3)×1

ui

06(n−i)×1

3

5 .
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where x⊙ y is a vector with ith entry xiyi, i.e., a pointwise product of two vectors.
From (5.4) and (5.5), we see that if we choose the dissipation control terms (in body
frames) such that

Riu
diss
τi = −κI l

i(ωi − e1), κ > 0, (5.6)

for i = 1, . . . , n, then (5.6) satisfies the requirement in Theorem 3. Note that for
this particular form of dissipation, the time derivative of E1 is non-positive. This
can be checked using the computation from Appendix A which yields

Ė1 =

n∑

i=1

(ωi − e1) · (Riu
diss
τi ). (5.7)

Then Ė1 ≤ 0 for udiss
τi given by (5.6). Also, E1 is conserved when udiss

τi = 0. Thus,
all the conditions in Theorem 3 are satisfied and we conclude that the solution goes
to the set E1 = 0, i.e., E1 decays to zero exponentially. By Theorem 3 the solution
converges exponentially to the desired relative equilibrium (2.2) and we have proved
the following theorem.

Theorem 4. The steady motion given by (2.2) is an exponentially stable relative
equilibrium for the rigid body SO(3)n network with equations of motion given by
(5.2) with (3.11) and (4.2), σ1 < 0 and dissipation chosen as in (5.6).

Note that our choice of unit angular velocity is arbitrary. If one wants the rigid
bodies to be synchronized and rotating at k rad/s, then all one needs to do is replace
e1 in the right side of (5.6) with ke1.

Figures 5.1 and 5.2 illustrate the results of a MATLAB simulation for the con-
trolled network of three identical SO(3) systems. The inertia matrix parameters
are Ii,11 = 8 kg-m2, Ii,22 = 4 kg-m2, Ii,33 = 1 kg-m2 for i = 1, 2, 3. The relative
equilibrium velocity is chosen to be ωi = e1 rad/s. Orientation Ri is parametrized
using quaternions given by

qi =
[

cos(θi/2) sin(θi/2)q̄T
i

]T

where qi ∈ R4, q̄i ∈ R3 denotes the axis of rotation and θi denotes the angle
of rotation for the ith body. The control gains are σ1 = −2, κ = 2. The initial
conditions are

q1(0) =




0.88
0.25
0.40
0.05


 , q2(0) =




0.93
0.19
0.24
0.18


 , q3(0) =




0.10
0.01
0.00
0.00


 ,

q̇1(0) =




−0.41
−0.13
0.86
0.79


 , q̇2(0) =




0.41
−0.49
−0.56
−0.84


 , q̇3(0) =




0.01
−0.80
−0.67
−0.67


 .

Figure 5.1 shows plots of Ωi as a function of time and Figure 5.2 shows the ori-
entation of the bodies in inertial space in terms of quartenions qi as a function of
time. Note that in the steady state, the rigid bodies are aligned and the last two
components of the quaternions are zero which indicates that the bodies are rotating
about the e1 axis with angular velocity 1 rad/s. Also note that our initial conditions
are large suggesting a large region of attraction.
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Figure 5.1. The angular velocities Ωi (rad/s) for three SO(3)
systems as a function of time.
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Figure 5.2. The orientations in terms of quaternions qi (rad) for
three SO(3) systems as a function of time.

5.2. Exponential stability for SE(3)n network. Consider the equations of mo-
tion defined by (3.24) with (4.5) where we add dissipative terms udiss

τi and and udiss
fi

to each control input uτi and ufi respectively, for i = 1, . . . , n:

IiΩ̇i = (IiΩi) × Ωi + (Mivi) × vi + σ1(u
ps
τ,i−1 − u

ps
τi) + udiss

τi (5.8)

Miv̇i = (Mivi) × Ωi + σ2u
ps
fi + udiss

fi . (5.9)
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We design the terms udiss
τi , udiss

fi and prove nonlinear exponential stability of the

relative equilibrium (2.4). Given that we have already proved that (2.4) is Lyapunov
stable in §2, we construct a Lyapunov function for the relative equilibrium manifold
as follows. Consider the following function

E2 =
1

2

n∑

i=1

(
(ωi − e1)

T I l
i(ωi − e1)

)
+

1

2

n∑

i=1

(
(vi − e1)

T M l
i (vi − e1)

)
+ V A

2 − V A
2e

(5.10)
where V A

2e is the constant value of V A
2 at the relative equilibrium (2.4), σ1 < 0 and

σ2 > 0.
To apply Theorem 3 we let the manifold M be TSE(3)n, the one-dimensional

submanifold S be the relative equilibrium (2.4) and the function Φ be E2. The
dimension of M is m = 12n. For notational convenience, we choose coordinates
for the whole 12n-dimensional system to be (R1, b1, ω1, ḃ1, . . . , Rn, bn, ωn, ḃn). In
these coordinates, the vector field corresponding to the control input for the ith

vehicle is given by†

6∑

k=1

gi,kui,k =

[
06×6

I6×6

]
ui =

[
06×1

ui

]
. (5.11)

Here ui = (uT
τi, u

T
fi)

T . Since the system is fully actuated, it is also linearly control-
lable at each point.

By construction, E2 is zero on the relative equilibrium manifold and positive
elsewhere. Note that on the set E2 = 0, it holds that ωi = e1, ḃi = e1, R1 = · · · =
Rn = Re and Ree1 = e1, b1 = · · · = bn||e1 and Ree1 = e1. Since Ree1 = e1, we

get Ωi = RT
e ωi = RT

e e1 = e1 and vi = RT
e ḃi = RT

e e1 = e1. . In §4.2 we showed
that the second variation of V A

2 is positive semi-definite. The kinetic energy part of
E2 always has a positive definite second variation because of the regularity of the
corresponding Lagrangian. Hence, the second variation of E2 is positive definite
throughout. Let the gradient vector of E2 with respect to the ith body state be
∇iE2. Then (again with abuse of notation)

∇iE2 ⊙

(
6∑

k=1

gi,k

)
= (0, 0, 0, 0, 0, 0, (I l

i(ωi − e1))
T , (M l

i (vi − e1))
T )T . (5.12)

From (5.11) and (5.12), we see that if we choose the dissipation control terms (in
body frames) such that

Riu
diss
τi = −κI l

i(ωi − e1) (5.13)

Riu
diss
fi = −κM l

i (ḃi − e1), κ > 0, (5.14)

for k = 1, . . . , n, then (5.13) and (5.14) satisfy the requirement in Theorem 3. Note
that for this particular form of dissipation, the time derivative of E2 is non-positive.

† Note that we are abusing notation in (5.11), which is technically the embedding of the i
th

body controller in the 12n dimensional system, i.e.,

6
X

k=1

gi,kui,k =

2

4

0(12i−6)×1

ui

012(n−i)×1

3

5 .
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This can be checked using a calculation similar to the one for Ė1 in §5.1. We get

d

dt
E2 =

n∑

i=1

(ωi − e1) · (Riu
diss
τi ) +

n∑

i=1

(vi − e1) · (Riu
diss
fi ). (5.15)

Then Ė2 ≤ 0 for udiss
τi and udiss

fi given by (5.13) and (5.14) respectively. Also, E2 is

conserved when udiss
τi = 0 and udiss

fi = 0. Thus, all the conditions in Theorem 3 are
satisfied and we conclude that the solution goes to the set E2 = 0, i.e., E2 decays
to zero exponentially. Hence, the solution converges exponentially to the desired
relative equilibrium (2.4) and we have proved the following theorem.

Theorem 5. The steady motion given by (2.4) is an exponentiallly stable relative
equilibrium for the rigid body SE(3)n network with equations of motion given by
(5.8) and (5.9) and dissipation chosen as in (5.13) and (5.14) .

If one wants the rigid bodies to be synchronized, rotating at k1 rad/s and trans-
lating at k2 m/s, then all one needs to do is replace e1 in the right side of (5.13)
with k1e1 and replace e1 in the right side of (5.14) with k2e1.

6. Synchronization of unstable rigid body motions. In §4 and §5, we proved
stability and exponential stability for SO(3)n and SE(3)n networks respectively
under the assumption that the individual rigid body was rotating about its short
axis for the SO(3) case and rotating as well as translating about its short axis for
the SE(3) case. We now show how to use kinetic shaping to relax this assumption.
We first stabilize the otherwise unstable middle axis motion using kinetic shaping
and then superimpose upon this, the controllers derived in §4 and §5. The main idea
is to choose controllers such that the closed-loop dynamics are described by rigid
body dynamics with modified mass and inertial matrices. This way, we make the
middle axis effectively behave like the short axis in the closed-loop dynamics. The
particular superposition of the kinetic and potential shaping term in this section is
relatively straightforward in comparision with the work in [28] primarily because of
the Lie group structure and full actuation.

6.1. Kinetic shaping for SO(3)n. Synchronized rotation of a network of rigid
bodies, each rotating about its middle axis, can be exponentially stabilized by com-
bining the kinetic shaping control law developed in [29] with the potential shaping
and dissipative control terms derived in earlier sections. Consider the following
controlled equations of motion for a system in SO(3):

IΩ̇ = (IΩ) × Ω + uks
τ (6.1)

where Ω and I are moment of inertia matrix and body angular velocity for the single
system and superscript “ks” refers to “kinetic shaping”. In the above equations, we
choose the components of uks

τ as follows:

uks
τ,1 = 0

uks
τ,2 =

(
I33(

ρ3

ρ2
− 1) + I11(1 −

1

ρ2
)

)
Ω3Ω1 (6.2)

uks
τ,3 =

(
I11(

1

ρ3
− 1) + I22(1 −

ρ2

ρ3
)

)
Ω1Ω2

where ρ2 and ρ3 satisfy the equation

ρ2I22 − ρ3I33 = I22 − I33. (6.3)



RIGID BODY NETWORKS 619

The closed-loop equations can now be verified to be

ĪΩ̇ = (ĪΩ) × Ω (6.4)

where Ī is a diagonal matrix with entries I11, ρ2I22, ρ3I33. Therefore, the closed-loop
equations correspond to a rigid body with Lagrangian

Lc =
1

2
ΩT ĪΩ. (6.5)

Since I22 > I33, we get ρ2I22 > ρ3I33. If we now choose

ρ3 >
I11

I33
(6.6)

then we get the following inequality

ρ2I22 > ρ3I33 > I11.

Using kinetic shaping, the open-loop middle axis for the inertia matrix is effectively
made the closed-loop short axis in the Lagrangian defining the closed-loop dynamics.
We have therefore stabilized the relative equilibrium when the rigid body is rotating
about its middle axis.

Now consider the following controlled dynamics for the ith body in the n-body
network given by

IiΩ̇i = (IiΩi) × Ωi +




ũτi,1

ũτi,2/ρ2 + uks
τi,2

ũτi,3/ρ3 + uks
τi,3


 (6.7)

where ũτi = (ũτ,1, ũτ,2, ũτ,3)
T = σ1(u

ps
τ,i−1−u

ps
τi)+udiss

τi corresponds to the potential

shaping and dissipation control terms on the right hand side of (5.2). The kinetic
shaping control terms uks

τi,2, u
ks
τi,3 are as given in (6.2) for the ith body. It can easily

be checked that the closed-loop equations now have the form (5.2), but with the
original middle axis now the short axis. Hence, we get the following corollary.

Corollary 1. The steady motion corresponding to n rigid bodies with the same
orientation and each rotating about its unstable, middle axis, is an exponentially
stable relative equilibrium for the controlled dynamics of (6.7) where the gains ρ2

and ρ3 are chosen to satisfy equations (6.3) and (6.6).

6.2. Kinetic shaping for SE(3)n. Synchronized rotation and translation of a
network of rigid bodies, each rotating about and translating along its middle axis,
can be asymptotically stabilized by combining a kinetic shaping control law with
the potential shaping and dissipation control terms developed earlier in this paper.
The method is analogous to the kinetic shaping controller derived in §6.1 for the
SO(3)n case.

Consider the following controlled equations of motion for a system in SE(3):

IΩ̇ = (IΩ) × Ω + (Mv) × v + uks
τ (6.8)

M v̇ = (Mv) × Ω + uks
f (6.9)

where I, M are inertia and mass matrices and Ω, v, body angular and linear
velocities for the single body. In the above equations, we choose the components of
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uks
τ and uks

f as follows:

uks
τ,1 = 0

uks
τ,2 =

(
I33(

ρ3

ρ2
− 1) + I11(1 −

1

ρ2
)

)
Ω3Ω1 +

(
M33(

ρ̄3

ρ2
− 1) + M11(1 −

1

ρ2
)

)
v3v1

uks
τ,3 =

(
I11(

1

ρ3
− 1) + I22(1 −

ρ2

ρ3
)

)
Ω1Ω2 +

(
M11(

1

ρ3
− 1) + M22(1 −

ρ̄2

ρ3
)

)
v1v2

uks
f,1 = ((ρ̄2 − 1)M22v2Ω3 + (1 − ρ̄3)M33v3Ω2)

uks
f,2 =

(
(
ρ̄3

ρ̄2
− 1)M33v3Ω1 + (1 −

1

ρ̄2
)M11v1Ω3

)

uks
f,3 =

(
(

1

ρ̄3
− 1)M11v1Ω2 + (1 −

ρ̄2

ρ̄3
)M22v2Ω1

)
(6.10)

where ρ2 and ρ3 satisfy the equation

ρ2I22 − ρ3I33 = I22 − I33 (6.11)

and ρ̄2 and ρ̄3 satisfy the equation

ρ̄2M22 − ρ̄3M33 = M22 − M33. (6.12)

Here, the superscript ks denotes kinetic shaping. The closed-loop equations can be
verified to be

ĪΩ̇ = (ĪΩ) × Ω + (M̄v) × v

M̄ v̇ = (M̄v) × Ω

where Ī is a diagonal matrix with entries I11, ρ2I22, ρ3I33 and M̄ is a diagonal matrix
with entries M11, ρ̄2M22, ρ̄3M33. Therefore, the closed-loop equations correspond
to a rigid body with Lagrangian

Lc =
1

2

(
ΩT ĪΩ + vT M̄v

)
. (6.13)

Since I22 > I33 and M22 > M33, we get ρ2I22 > ρ3I33 and ρ̄2M22 > ρ̄3M33. If we
now choose

ρ3 >
I11

I33
(6.14)

and

ρ̄3 >
M11

M33
, (6.15)

then we get the following two inequalities

ρ2I22 > ρ3I33 > I11

ρ̄2M22 > ρ̄3M33 > M11.

Using kinetic shaping, the open-loop middle axis for both the mass matrix and
inertia matrix is effectively made the closed-loop short axis in the Lagrangian defin-
ing the closed-loop dynamics. We have therefore stabilized the relative equilibrium
when the rigid body is rotating about its middle axis and translating along its
middle axis.
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Now consider the following controlled dynamics for the ith body given by

IiΩ̇i = (IiΩi) × Ωi + (Mivi) × vi +




ũτi,1

ũτi,2/ρ2 + uks
τi,2

ũτi,3/ρ3 + uks
τi,3


 (6.16)

Miv̇i = (Mivi) × Ωi +




ũfi,1 + uks
fi,1

ũfi,2/ρ̄2 + uks
fi,2

ũfi,3/ρ̄3 + uks
fi,3


 (6.17)

where ũτi = σ1(u
ps
τ,i−1 − u

ps
τi) + udiss

τi and ũfi = σ2u
ps
fj + udiss

fj correspond to the

potential shaping and dissipation control terms on the right hand side of (5.8) and
(5.9), respectively. The kinetic shaping control terms uks

τi , u
ks
fi are as given in (6.10)

for the ith body. It can easily be checked that the closed-loop equations now have
the form (5.8) and (5.9) but with the original middle axis now the short axis. Hence,
we get the following corollary.

Theorem 6. The steady motion corresponding to n rigid bodies with the same ori-
entation and position and each rotating about and translating along its otherwise
unstable, middle axis, is an exponentially stable relative equilibrium for the con-
trolled dynamics of (6.16) and (6.17) where the gains ρ2, ρ3, ρ̄2, ρ̄3 are chosen so as
to satisfy equations (6.11), (6.12), (6.14) and (6.15).

7. Conclusions and future directions. In this paper, we have shown how to ex-
ponentially stabilize synchronized motion of a network of n rigid bodies, each with
configuration space SO(3) or SE(3). We do this even in the case that the desired
steady motion corresponds to an unstable motion for the individual systems. For
the network on SO(3)n, synchronized motion corresponds to alignment of orienta-
tions of n spinning rigid bodies. For the network on SE(3)n, synchronized motion
corresponds to alignment of orientations and positions of n translating and spin-
ning rigid bodies. We design control laws so that the closed-loop dynamics of the
network of rigid bodies are Lagrangian dynamics for which nonlinear exponential
stability can be proved using known energy methods. For the SO(3)n network, we
illustrate our results with simulations.

There are many directions in which the current work can be extended. One of the
immediate tasks is to incorporate collision avoidance into our scheme. See [37, 6], for
example, where the authors design collision avoidance schemes for point particles
based on gyroscopic forcing. Collision avoidance based on gyroscopic forcing is
interesting, both because it preserves energy and because it fits in well with the
geometric approach in this paper. It is promising to consider building on these
results to design gyroscopic collision avoidance schemes in the rigid body setting.

Another important direction is the extension to time-varying communication
topologies. In [32] the authors develop some new results for the SO(3)n network
case using a consensus-based approach. It is also of interest to consider the problem
of optimizing our control laws to reduce the control effort. Integrating our treatment
with optimization techniques based on mechanical integrators (compare [15] for
example) will be a worthwhile effort.

Throughout this paper, we assume a simple diagonal form for the mass and iner-
tial matrices for individual rigid bodies on SE(3) representing underwater vehicles.
As was noted in [17], hydrodynamic coupling between bodies plays a crucial role in
simple models for aquatic locomotion. It will be interesting to consider the effects
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of more general interbody hydrodynamic interaction in our setting and to explore
if including hydrodynamic interaction leads to control efficiency. See [27] for some
efforts along this direction.

Appendix A. Calculation of Ė1. We first write down the equations of motion
given by (5.2) in inertial coordinates using the fact that RiΩi = ωi and Ṙi = ω̂iRi.
The equations of motion in the inertial frame turn out to be

π̇i = σ1(Ai−1 − Ai) + Riu
diss
τi (A.1)

where Ai = Riu
ps
τi for i = 1, . . . , n. Here, u

ps
τi is given as in (5.2) and corresponds to

the control on the ith body in the ith body frame and Ai is the same control with
respect to the inertial frame. Letting I l

i = RiIiR
T
i be the inertia matrix for the ith

body in the inertial frame and πi = I l
iωi the angular momentum of the ith body in

the inertial frame, we can write the above equation as

I l
i ω̇i + ω̂iI

l
iωi = σ1(Ai−1 − Ai) + Riu

diss
τi . (A.2)

Using the expression for E1 given by (5.3), we can calculate its time derivative
to be

Ė1 =

n∑

i=1

(
(ωi − e1)

T I l
i(ω̇i + ωi × e1) + eT

1 (I l
i ω̂i)e1

)

+

n−1∑

i=1

σ1(ωi − ωi+1)
T (Ai) + σ1ω

T
1 ((R1e1) × e1). (A.3)

Plugging in expression for I l
iω̇i from (A.2) into (A.3), we get

Ė1 =

n∑

i=1

(
(ωi − e1)

T (−ω̂iI
l
iωi + σ1(Ai−1 − Ai) + Riu

diss
τi + I l

iω̂ie1) + eT
1 (I l

i ω̂i)e1

)

+

n−1∑

i=1

σ1(ωi − ωi+1)
T (Ai) + σ1ω

T
1 ((R1e1) × e1).

Therefore, we have

Ė1 = σ1

n∑

i=1

ωT
i (Ai−1 − Ai) + σ1

n−1∑

i=1

(ωi − ωi+1)
T (Ai) + σ1ω

T
1 ((R1e1) × e1)

+

n∑

i=1

(
e1ω̂iI

l
iωi + ωT

i I l
iω̂ie1 − eT

1 I l
iω̂ie1 + eT

1 I l
i ω̂ie1

)

+σ1e
T
1

n∑

i=1

(Ai−1 − Ai) +

n∑

i=1

(
(ωi − e1)

T Riu
diss
τi

)
. (A.4)

Rearranging the above equation, we have

Ė1 = σ1ω
T
1 A0 + σ1e

T
1 A0 + σ1ω

T
1 ((R1e1) × e1)

+

n∑

i=1

(
(ωi − e1)

T Riu
diss
τi

)
. (A.5)
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Using the fact that A0 = −((R1e1) × e1), the first line in (A.5) vanishes. Hence,

we get the following expression for Ė1 :

Ė1 =

n∑

i=1

(
(ωi − e1)

T Riu
diss
τi

)
. (A.6)
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