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Abstract We analyze a continuous-time model of a multi-agent system motivated by
simulation studies on dynamics of decision making in animal groups in motion. Each
individual moves at constant speed in the plane and adjusts its heading in response to
relative headings of others in the population. The population includes two subgroups
that are “informed” such that individuals in each subgroup have a preferred direction
of motion. The model exhibits fast and slow time scales allowing for a reduction in
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the dimension of the problem. The stable solutions for the reduced model correspond
to compromise by individuals with conflicting preferences. We study the global phase
space for the proposed reduced model by computing equilibria and exploring stability
and bifurcations.

Keywords Decision making · Dynamical systems · Multi-agent systems · Animal
behavior · Collective motion · Coupled oscillators

Mathematics Subject Classification (2000) 93A14 · 35B32 · 92D50 · 34C15

1 Introduction

Recent research in cooperative control of groups of mobile autonomous agents has
led to a growing effort to apply tools from dynamical systems and control theory
toward better understanding how biological systems manage collective tasks such
as social foraging or migration. In this paper, we derive and study the dynamics of
a low-dimensional, minimally parameterized, coordinated control system, motivated
by an interest in modeling and predicting the behavior of animal groups in which
movement decisions depend in part upon social interactions among group members
(Krause and Ruxton 2002; Couzin and Krause 2003; Couzin et al. 2005).

In Couzin et al. (2005), we (IDC and SAL) investigated the mechanisms of deci-
sion making and leadership by using a discrete simulation of particles moving in the
plane. In this simulation, each particle represents an individual animal and the motion
of each individual is influenced by the state of its neighbors (e.g., relative position and
relative heading). Within this group, there are two subgroups of informed individuals
and one subgroup of naive individuals; each subgroup of informed individuals has a
preferred direction of motion (representative of knowledge of the direction to a food
source or of a migration route, for example) that it can use to make decisions along
with the information on its neighbors. It is shown in (Couzin et al. 2005) that infor-
mation can be transferred within groups even when there is no signaling, no identi-
fication of the informed individuals, and no evaluation of others’ information. It was
also observed that with two informed subgroups of equal population, the direction
of group motion depends on the degree to which the preferred directions differ. For
low disagreement, the group follows the average preferred direction of all informed
individuals, while for large disagreement the group selects one of the two preferred
directions.

Simulations of the sort reported in (Couzin et al. 2005) are highly suggestive,
but contain so many degrees of freedom that it becomes difficult to understand the
influences of particular mechanisms. To that end, in this paper we seek a lower-
dimensional approximation to the individual-based model that will allow deeper in-
vestigation of the microscopic reasons for the macroscopic behaviors we observed,
and a broader exploration of parameter space. The model we propose and study in a
simplified form in this paper is represented by a system of ordinary differential equa-
tions. In this formulation, each agent is modeled as a particle moving in the plane at
constant speed with steering rate dependent on interparticle measurements and when
appropriate on prior information concerning preferred directions. This mathemati-
cal framework makes it possible to explore the dynamics in a more general context
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and thereby to uncover unifying principles. We show analytically that there are sta-
ble motions not observed in the simulation study because relevant initial conditions
and/or parameter ranges were not tested. We also explore the nature of instabilities
that are not easily understood through simulation. Of more general interest is the in-
sight gained by means of the analysis in this paper toward isolating a biologically
plausible mechanism for the decision-making behavior observed in (Couzin et al.
2005) when there are two informed subgroups with conflicting information.

The model in this paper is viewed as an interactive partner to further use of the
individual-based simulations, a mutualism that we feel is not sufficiently exploited in
the modeling literature. Specifically, the simplifying assumptions we make in this pa-
per yield a model that produces some but not all of the behavior observed in (Couzin
et al. 2005), and this deviation focuses attention on a small number of assumptions
that may be responsible, including enforcing all-to-all communication, removing a
“forgetting factor” feedback term for the informed individuals and ignoring naive in-
dividuals. In the next section, we show, for example, that we recover the behavior in
(Couzin et al. 2005) when we include only the forgetting factor, a term that allows
informed individuals to dynamically devalue their information if they find themselves
heading in a very different direction. Driven by the analysis described in this paper, in
ongoing work, we are reexamining the simulation to explore the influence of each of
these simplifications. An important discovery, to be reported in a future publication,
concerns the subtle and nontrivial role of the naive individuals in achieving con-
sensus. These findings complement findings in other contexts, for example, finance
(Mauboussin 2006), in which it is increasingly becoming recognized that collective
intelligence may be more reliable than what a few leaders provide.

The model presented in this paper is similar to models used for cooperative
control of engineered multi-agent systems. For instance, a continuous model of
particles moving at constant speed in the plane with steering control (heading
rate) designed to couple the dynamics of the particles has been used for stabi-
lization of circular and parallel collective motion (Justh and Krishnaprasad 2004;
Sepulchre et al. 2007). The use of the same kinds of models in the engineered and
natural settings is no accident. The very efficient and robust ways that animals move
together and make collective decisions provide inspiration for design in engineering.
Likewise, tools that have been developed for analysis and synthesis in the engineering
context may prove useful for investigation in the natural setting. We note that the ob-
jectives in engineering applications may be analogous to objectives in the natural set-
ting. For example, in the design of mobile sensor networks (such as the autonomous
ocean sampling network described in (Leonard et al. 2007)), the goal is to maximize
information intake. This has parallels with optimal social foraging.

The central immediate objective in the present work is to study the global phase
space for the proposed simple model by computing equilibria and proving stability
and bifurcations. Starting from a large-scale particle model, we reduce it to a sim-
ple planar model using a time-scale separation. Fast dynamics are associated with
consensus of individuals with similar information and slow dynamics with the subse-
quent behavior of these different subgroups. In Biyik and Arcak (2006), the authors
also use time-scale separation to reduce the dimension of consensus dynamics in
complex networks. There the slow and fast times scales are due to sparse and dense
connections among nodes in the network.
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Our planar particle model includes key features of the discrete-time model of
(Couzin et al. 2005), but with important simplifications. For example, we study only
the dynamics of the headings, although we define our model for the full spatial dy-
namics so that positions of agents can also be computed. This specialization is pos-
sible because we examine steering laws associated with alignment of individuals and
directional preference, consistent with the focus of (Couzin et al. 2005). We prove
the validity of a time-scale separation for the model of the heading dynamics of two
informed subgroups and one uninformed (naive) subgroup. This time-scale separa-
tion was observed in the simulations of (Couzin et al. 2005), even in the case of local
sensing. For the bifurcation analysis of the slow dynamics, we focus our study on just
two informed subgroups, and motivate the study of the role of uninformed individ-
uals at the end of the paper. We study bifurcations as a function of two bifurcation
parameters: K ≥ 0, the coupling gain that weights the attention paid to neighbors
versus the preferred direction, and θ̄2 ∈ [0,π], the relative angle of the two preferred
directions.

In Sect. 2, we present the model. We identify fast and slow time scales and prove,
for the system with two informed subgroups and one naive group, invariance and
attractivity of the reduced (slow) manifold. In Sect. 3, we classify the equilibria of
the reduced-order system with no naive individuals. In Sect. 4, we prove bifurcations
in the system as a function of the coupling gain K . In Sects. 5 and 6, we study
two specific choices for the parameters K and θ̄2 for which we can find a closed-
form expression for the equilibrium points and compute analytically the bifurcation
diagrams. In Sect. 7, we summarize and interpret the results. We explain how the
results change for unevenly sized groups of informed individuals. We make final
remarks in Sect. 8.

2 Models and Time-Scale Separation

2.1 Particle Model

We consider a population of N individuals each modeled as a particle moving in
the plane. For the purpose of this paper, we assume that every individual can sense
every other individual in the population. In the natural setting this all-to-all coupling
assumption may be reasonably well justified for tightly clustered groups. Further, as
argued in the Introduction, this assumption contributes to our ongoing program to
isolate mechanisms and distinguish which are critical to the fundamental behavior
observed in (Couzin et al. 2005). In future investigations, we can consider limited
sensing and bring to bear the associated theory described in (Sepulchre et al. 2008).

The population is classified into three subgroups. Let N1 and N2 be the number of
agents, respectively, in two different subgroups of informed individuals and let N3 be
the number of naive (uninformed) individuals such that N1 + N2 + N3 = N . Let N1
and N2, respectively, be the subsets of indices in {1, . . . ,N} corresponding to indi-
viduals in subgroups 1 and 2, which comprise the two different groups of informed
individuals. Let N3 be the remaining subset of indices corresponding to the naive
individuals. Then the cardinality of Nk is Nk , k = 1,2,3. The preferred heading di-
rection for the individuals in subgroup i is denoted θ̄i , for i = 1,2.
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We model each individual as a particle moving in the plane at constant speed. The
heading direction of individual j is denoted θj , and θj is allowed to take any value
in the circle S1. Let rj ∈ R

2 be the position of the j th individual moving at constant
speed V0, then

ṙj = (V0 cos θj ,V0 sin θj ), j = 1, . . . ,N.

Our simple model describes the dynamics of the heading angles for all individuals in
the population independent of their positions. This model defines steering terms that
depend only on relative heading angles. The dynamics are modeled as

θ̇j = sin(θ̄1 − θj ) + K

N

N∑

l=1

sin(θl − θj ), j ∈ N1,

θ̇j = sin(θ̄2 − θj ) + K

N

N∑

l=1

sin(θl − θj ), j ∈ N2,

θ̇j = K

N

N∑

l=1

sin(θl − θj ), j ∈ N3 .

(1)

We note that the form of the coupling is based on the Kuramoto model for popula-
tions of coupled oscillators (Kuramoto 1984). The model is similar to that used by
Mirollo and Strogatz to represent a group of coupled spins in a random magnetic field
(Mirollo and Strogatz 1990). In the coupled spin model, there are no subgroups; in-
stead, each individual oscillator has a randomly assigned “pinning” angle θ̄j such that
the pinning angles are uniformly distributed around the circle. The studied system is
known in physics as the mean-field theory for the random-field XY model (Cardy and
Ostlund 1982). In (Mirollo and Strogatz 1990), it is proven that the system exhibits a
jump bifurcation and hysteresis as K is varied.

2.2 Model representation with two time scales

Now let pk ∈ C denote the average of the phasors on the unit circle in the complex
plane for the individuals in Nk . In the coupled oscillator literature, pk is known as
the complex order parameter and ρk := |pk| provides a measure of synchrony among
the phases. The average phasor pk is computed as

pk = ρke
iΨk = 1

Nk

∑

l∈Nk

eiθl , k = 1,2,3. (2)

The parameter ρk takes values in the interval [0,1]. It follows that ρk = 1 if all indi-
viduals in Nk are heading in the same direction (synchronized headings) and ρk = 0
if individuals in Nk head in directions such that their averaged velocity is zero. The
average direction of individuals in Nk is Ψk .

Simulations of the model (1), as shown in Fig. 1, reveal two time scales in the
dynamics. First, during a short initial transient time, the heading angles of the indi-
viduals in each subgroup synchronize. Then we observe a slow drift until the three av-
erage subgroup directions reach the steady state. Motivated by these observations, we
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Fig. 1 Phase angle of each individual in the group versus time for K = 1. For this simulation, there are
5 individuals with preferred direction 0 rad, 5 individuals with preferred direction 2 rad, and 20 individ-
uals with no preferred direction. Two time scales in the dynamics can be observed. During a short initial
transient time, the heading angles of the individuals in each subgroup synchronize. Then the three average
subgroup directions change slowly to their steady state values

define a new set of independent variables that distinguishes slow and fast variables.
The average headings Ψ1,Ψ2, and Ψ3 are the slow variables since they characterize
the lumped behavior of each of the three subgroups.

Following (Strogatz 2000),

1

N

N∑

l=1

sin(θl − θj ) = 1

N

(
3∑

k=1

Nkρk sin(Ψk − θj )

)
(3)

and the model (1) becomes

θ̇j = sin(θ̄1 − θj ) + K

N

(
3∑

k=1

Nkρk sin(Ψk − θj )

)
, j ∈ N1,

θ̇j = sin(θ̄2 − θj ) + K

N

(
3∑

k=1

Nkρk sin(Ψk − θj )

)
, j ∈ N2,

θ̇j = K

N

(
3∑

k=1

Nkρk sin(Ψk − θj )

)
, j ∈ N3.

(4)
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Summing over each subgroup in (4), we can compute

∑

j∈N1

θ̇j = ρ1N1 sin(θ̄1 − Ψ1) + K

N
ρ1N1ρ2N2 sin(Ψ2 − Ψ1)

+ K

N
ρ1N1ρ3N3 sin(Ψ3 − Ψ1),

∑

j∈N2

θ̇j = ρ2N2 sin(θ̄2 − Ψ2) + K

N
ρ1N1ρ2N2 sin(Ψ1 − Ψ2)

+ K

N
ρ2N2ρ3N3 sin(Ψ3 − Ψ2),

∑

j∈N3

θ̇j = K

N
ρ1N1ρ3N3 sin(Ψ1 − Ψ3) + K

N
ρ2N2ρ3N3 sin(Ψ2 − Ψ3).

To represent the fast dynamics, we define variables αj ∈ C where

αj = e
i(Nkθj −∑

l∈Nk
θl ), j ∈ Nk.

Then

α̇j = iNkαj

(
θ̇j − 1

Nk

∑

l∈Nk

θ̇l

)
, j ∈ Nk.

The unit phasors αj represent how much the heading of individual j ∈ Nk differs
from Ψk , the average direction of the subgroup k. When all the individuals in the kth
subgroup have the same heading, αj = 1, ∀j ∈ Nk . Denote θ = (θ1, . . . , θN) ∈ T N

and αk = (αj(k,1)
, . . . , αj(k,Nk−1)

) ∈ C
Nk−1, where Nk = {j(k,1), . . . , j(k,Nk)}, and con-

sider change of variables θ �→ {α1,α2,α3,Ψ1,Ψ2,Ψ3}. Further, suppose K ≥ N � 1
and let ε = 1/K . By definition, N3 is of the same order or smaller than N . We assume
that N1 and N2 are such that none of the following are as small as ε: 1/N1, 1/N2,
N1/N , N2/N . For example, in case K = N = 100,N1 = N2 = 10,N3 = 80, then
ε = 0.01 and 1/N1 = 1/N2 = N1/N = N2/N = 0.1 = √

ε. Given these assumptions,
in the new coordinates, the coupled multi-agent system dynamics (1) become

εα̇j = iN1αj

(
ε
(
sin(θ̄1 − θj ) − ρ1 sin(θ̄1 − Ψ1)

) + N1

N
ρ1 sin(Ψ1 − θj )

+
∑

k=2,3

Nk

N
ρk

(
sin(Ψk − θj ) − ρ1 sin(Ψk − Ψ1)

)
)

=: g1
j

(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
, j ∈ N1, j 	= j(1,N1), (5)
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εα̇j = iN2αj

(
ε
(
sin(θ̄2 − θj ) − ρ2 sin(θ̄2 − Ψ2)

) + N2

N
ρ2 sin(Ψ2 − θj )

+
∑

k=1,3

Nk

N
ρk

(
sin(Ψk − θj ) − ρ2 sin(Ψk − Ψ2)

))

=: g2
j

(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
, j ∈ N2, j 	= j(2,N2), (6)

εα̇j = iN1αj

(
N3

N
ρ3 sin(Ψ3 − θj ) +

∑

k=2,3

Nk

N
ρk

(
sin(Ψk − θj )

− ρ3 sin(Ψk − Ψ3)
))

=: g3
j

(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
, j ∈ N3, j 	= j(3,N3), (7)

Ψ̇1 = 1

ρ1

∑

j∈N1

(
1

N1
sin(θ̄1 − θj ) + K

N

(
3∑

k=1

Nk

N1
ρk sin(Ψk − θj )

))
cos(Ψ1 − θj )

=: f1
(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
, (8)

Ψ̇2 = 1

ρ2

∑

j∈N2

(
1

N2
sin(θ̄2 − θj ) + K

N

(
3∑

k=1

Nk

N2
ρk sin(Ψk − θj )

))
cos(Ψ2 − θj )

=: f2
(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
, (9)

Ψ̇3 = 1

ρ3

∑

j∈N3

(
K

N

(
3∑

k=1

Nk

N3
ρk sin(Ψk − θj )

))
cos(Ψ3 − θj )

=: f3
(
α1,α2,α3,Ψ1,Ψ2,Ψ3, ε

)
(10)

for ρk 	= 0, k = 1,2,3. In Appendix A, we show that this change of coordinates is
well defined.

The models (5)–(10) with ε 
 1 is in the form of a singular perturbation model
(Khalil 2002); it exhibits two time scales where the variables α1,α2,α3 are the N −3
fast variables and Ψ1,Ψ2,Ψ3 are the three slow variables. The solution αj = 1 for j ∈
Nk , k = 1,2,3, equivalently θj = Ψk , j ∈ Nk , k = 1,2,3, is an isolated solution of
gk

j (α
1,α2,α3,Ψ1,Ψ2,Ψ3,0) = 0, k = 1,2,3. For this solution, ρk = 1, k = 1,2,3. In

other words, θj = Ψk , j ∈ Nk , k = 1,2,3 is an invariant manifold of our system (1).
Physically, this means that if we start with all individuals synchronized within their
respective subgroup (i.e., θj = Ψk , j ∈ Nk , k = 1,2,3), they will stay like this for all
time. Let 1 = (1, . . . ,1)T . From the representation of the system dynamics (1) as (5)–
(10) with ε 
 1, the corresponding slow dynamics, i.e., dynamics on the invariant
manifold are

Ψ̇k = fk

(
α1 = 1,α2 = 1,α3 = 1,Ψ1,Ψ2,Ψ3,0

)
, k = 1,2,3,
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which can be written as

Ψ̇1 = sin(θ̄1 − Ψ1) + K

N
N2 sin(Ψ2 − Ψ1) + K

N
N3 sin(Ψ3 − Ψ1),

Ψ̇2 = sin(θ̄2 − Ψ2) + K

N
N1 sin(Ψ1 − Ψ2) + K

N
N3 sin(Ψ3 − Ψ2),

Ψ̇3 = K

N
N1 sin(Ψ1 − Ψ3) + K

N
N2 sin(Ψ2 − Ψ3).

(11)

In Appendix B, we prove the reduction by proving the stability of the invariant man-
ifold for the boundary layer dynamics. Singular perturbation theory (see, e.g., Khalil
2002) guarantees then that solutions to the unreduced dynamics stay close to solu-
tions of the reduced system.

Consistent with the observations from simulations in (Couzin et al. 2005), the
solution of the fast dynamics corresponds to synchronization of all particle headings
in subgroup k to common heading Ψk , for k = 1,2,3. The slow dynamics, described
by the reduced model (11), dictate the behavior of the common heading Ψk of each
of the three subgroups, k = 1,2,3. This reduced model is one in which all the agents
in a subgroup (informed subgroups 1 and 2 and naive subgroup 3) behave as a single
entity (thus the qualifier “lumped” model) and the intersubgroup coupling term is
weighted by the corresponding subgroup population size. This grouping of identical
individuals was also observed in the simulation from (Couzin et al. 2005). In that
model, the grouping was spatial; each subgroup made a cluster within the group.

In the remaining sections of this paper, we focus our bifurcation analysis on the re-
duced dynamic model derived here. To further simplify this analysis, we first consider
the case that N1 = N2 and N3 = 0 (i.e., equal population for the two informed sub-
groups and no naive individuals) and then extend conclusions to the case N1 	= N2,
N3 = 0 (i.e., when one informed subgroup is more populated than the other and there
are still no naive individuals). In the case N1 = N2 and N3 = 0, (11) becomes

Ψ̇1 = sin(θ̄1 − Ψ1) + K

2
sin(Ψ2 − Ψ1),

Ψ̇2 = sin(θ̄2 − Ψ2) + K

2
sin(Ψ1 − Ψ2).

(12)

This model also corresponds to the reduced dynamics in the case N1 = N2 � 1 and
K ≥ 0 not necessarily large. Without loss of generality, we set θ̄1 = 0. The two bi-
furcation parameters are K ≥ 0 and θ̄2 ∈ [0,π]. We note that the general reduced
system (11) is a gradient system. In the case of N1 = N2 and N3 = 0, the dynam-
ics (12) are gradient dynamics such that

Ψ̇k = − ∂V

∂Ψk

,

where V is given by

V (Ψ1,Ψ2) = − cosΨ1 − cos(θ̄2 − Ψ2) − K

2
cos(Ψ2 − Ψ1).



408 J Nonlinear Sci (2009) 19: 399–435

Thus, by LaSalle’s invariance principle, all solutions converge to the set of critical
points of V (Ψ1,Ψ2) and there are no periodic solutions.

Before developing this analysis, we consider an extension of the model (12) where
we include a forgetting factor feedback term used in (Couzin et al. 2005) and de-
scribed in Sect. 1. We compute a corresponding bifurcation plot that exhibits the
behavior observed in (Couzin et al. 2005). Although the extended model below is
not formally derived by means of the reduction, numerical experiments suggest that
it is consistent with the time-scale separation and reflects well the behavior of the
unreduced model (1) with the additional forgetting factor feedback. In this extension,
the weight an individual places on its preferred direction depends dynamically on
how close it is from this preferred direction. When individuals are heading in their
preferred direction, the attraction to it is maximal; this influence fades as the heading
of an individual moves away from the preferred direction. To introduce this effect in
the reduced model, we multiply the “preferred direction” term of (12) by a Gaussian
shaped gain as follows:

Ψ̇1 = −e− sin(Ψ1)2

α sinΨ1 + K

N
sin(Ψ2 − Ψ1),

Ψ̇2 = e− sin(θ̄2−Ψ2)2

α sin(θ̄2 − Ψ2) + K

N
sin(Ψ2 − Ψ1),

(13)

where α is a positive constant chosen to control the width of the Gaussian. The
smaller α the quicker an individual gives up on its preferred direction. With this
model, for θ̄2 below a threshold θ̄∗

2 , the stable motion corresponds to the two informed
groups compromising and splitting the difference in direction of motion. For θ̄2 above
the threshold, the group selects (depending on initial conditions) one of the preferred
directions. Figure 2 shows the bifurcation plot for K = 2.5 and α = 0.2. For θ̄2 < θ̄∗

2 ,

the stable motion corresponds to the synchronized motion of both informed sub-
groups in the average direction, and for θ̄2 > θ̄∗

2 there are two stable motions syn-
chronized; one in each of the two preferred directions. There is another bifurcation
near θ̄∗

2 when synchronized motion in the direction opposite the average direction
becomes stable. The bifurcation plot also illustrates several other unstable solutions,
all of these unexplored in the simulation studies of (Couzin et al. 2005).

3 Equilibria

The equilibria of system (12) are given by

− sinΨ1 + K

2
sin(Ψ2 − Ψ1) = 0,

sin(θ̄2 − Ψ2) + K

2
sin(Ψ1 − Ψ2) = 0.
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Fig. 2 Bifurcation diagrams for the system (13) with K = 2.5, α = 0.2. The bifurcation parameter is θ̄2
and Ψ1 is plotted as a function of θ̄2 for all equilibria of the system. We observe the supercritical pitchfork
bifurcation at θ̄2 = θ̄∗

2

There are two sets of solutions, the first set given by

Ψ1 = π − θ̄2 + Ψ2,

sin(Ψ2 − θ̄2) = K

2
sin θ̄2,

(14)

and the second set given by

Ψ1 = θ̄2 − Ψ2, (15)

sin(θ̄2 − Ψ2) = K

2
sin(2Ψ2 − θ̄2). (16)

First Set of Solutions Equation (14) has two solutions: Ψ2 = θ̄2 + arcsin(K
2 sin θ̄2)

and Ψ2 = π + θ̄2 − arcsin(K
2 sin θ̄2). These two solutions exist if and only if

|K
2 sin θ̄2| ≤ 1.

Lemma 3.1 If |K
2 sin θ̄2| < 1, the two equilibria ψS1 = (Ψ1,Ψ2)S1 and ψS2 =

(Ψ1,Ψ2)S2 satisfying (14) given by

ψS1 =
(

π + arcsin

(
K

2
sin θ̄2

)
, θ̄2 + arcsin

(
K

2
sin θ̄2

))
, (17)
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ψS2 =
(

− arcsin

(
K

2
sin θ̄2

)
,π + θ̄2 − arcsin

(
K

2
sin θ̄2

))
, (18)

are saddle points ∀K > 0 and ∀θ̄2 ∈ [0,π]. If K
2 sin θ̄2 = 1, then ψS1 = ψS2. In this

case, if also K > 0 and θ̄2 ∈ (0, π
2 ) ∪ (π

2 ,π) then ψS1 = ψS2 is unstable with one
zero eigenvalue and one positive real eigenvalue. If θ̄2 = π

2 (and K = 2) then both
eigenvalues are zero.

Proof The linearization of (12) at each of the two equilibria ψS1 or ψS2 gives the
same symmetric Jacobian with eigenvalues λ1, λ2 ∈ R satisfying

λ1λ2 = K2

4
sin2 θ̄2 − 1 < 0 for

∣∣∣∣
K

2
sin θ̄2

∣∣∣∣ < 1.

For θ̄2 ∈ [0,π], the eigenvalues are of opposite sign. This implies that ψS1 and ψS2
are saddle points ∀K > 0 and ∀θ̄2 ∈ [0,π] if K

2 sin θ̄2 < 1. In the case |K
2 sin θ̄2| = 1,

ψS1 = ψS2 = ( 3π
2 , π

2 + θ̄2) and the eigenvalues are λ1 = 0 and λ2 = K cos θ̄2 > 0.
Therefore, for θ̄2 ∈ (0, π

2 ) ∪ (π
2 ,π), the equilibria ψS1 = ψS2 = ( 3π

2 , π
2 + θ̄2) are

unstable with one zero eigenvalue and one strictly positive eigenvalue. In case θ̄2 =
π/2 and K = 2, λ1 = λ2 = 0. �

The case in which θ̄2 = π
2 is studied further in Sect. 4.2.

Second Set of Solutions In order to study (15)–(16), we make a change of variables
(Ψ1,Ψ2) �→ (ρ,Ψ ) where ρ ∈ [0,1] and Ψ ∈ S1 are defined by

ρeiΨ = 1

2

(
eiΨ1 + eiΨ2

) = cos

(
Ψ1 − Ψ2

2

)
ei(Ψ1+Ψ2)/2 (19)

= cos

(
θ̄2

2
− Ψ2

)(
cos

θ̄2

2
+ i sin

θ̄2

2

)
(20)

and (20) follows from (15). For θ̄2 ∈ [0,π], (15) then implies that Ψ = θ̄2
2 or Ψ =

θ̄2
2 + π . We can rewrite (16) as

sin
θ̄2

2
cos

(
θ̄2

2
− Ψ2

)
+ cos

θ̄2

2
sin

(
θ̄2

2
− Ψ2

)

+ K sin

(
θ̄2

2
− Ψ2

)
cos

(
θ̄2

2
− Ψ2

)
= 0. (21)

In Sect. 6, we study the special case θ̄2 = π . Here, we focus on θ̄2 ∈ [0,π).

For Ψ = θ̄2
2 , (20) implies that cos( θ̄2

2 − Ψ2) = ρ and sin( θ̄2
2 − Ψ2) = ±√

1 − ρ2.
Accordingly, (21) implies that ρ satisfies

ρ sin
θ̄2

2
+

√
1 − ρ2 cos

θ̄2

2
+ Kρ

√
1 − ρ2 = 0 (22)
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or

ρ sin
θ̄2

2
−

√
1 − ρ2 cos

θ̄2

2
− Kρ

√
1 − ρ2 = 0. (23)

These imply that ρ = 1 if and only if θ̄2 = 0, and ρ = 0 if and only if θ̄2 = π . For
θ̄2 ∈ (0,π), (22) does not have any solution for ρ ∈ (0,1) since every term on the
left is positive, and (23) has one solution for ρ ∈ (0,1). We call the corresponding
equilibrium ψ sync1 := (Ψ1,Ψ2)sync1. In the case θ̄2 = 0, ψ sync1 = (0,0).

Lemma 3.2 The equilibrium ψ sync1 is a stable node for all (K, θ̄2) ∈ [0,∞)×[0,π).

Proof Using cos( θ̄2
2 − Ψ2) = ρ and sin( θ̄2

2 − Ψ2) = −√
1 − ρ2, the Jacobian at the

equilibrium is computed; it is symmetric and the corresponding eigenvalues are

λ1,2 = −
(

ρ cos
θ̄2

2
+

√
1 − ρ2 sin

θ̄2

2
+ K

2

(
2ρ2 − 1

)) ± K

2

(
2ρ2 − 1

)
.

We find using (23) for all (K, θ̄2) ∈ [0,∞) × [0,π) that

−
√

1 − ρ2 sin
θ̄2

2
− K

(
2ρ2 − 1

) = − 1

ρ

(
1 − ρ2) cos

θ̄2

2
− Kρ2 < 0. (24)

Thus, for all (K, θ̄2) ∈ [0,∞) × [0,π), using (24) both eigenvalues are real and neg-
ative. Hence, ψ sync1 is a stable node for all (K, θ̄2) ∈ [0,∞) × [0,π). �

For Ψ = θ̄2
2 + π , (20) implies that cos( θ̄2

2 − Ψ2) = −ρ and sin( θ̄2
2 − Ψ2) =

±√
1 − ρ2. Hence, by (21) ρ has to satisfy

−ρ sin
θ̄2

2
+

√
1 − ρ2 cos

θ̄2

2
− Kρ

√
1 − ρ2 = 0 (25)

or

−ρ sin
θ̄2

2
−

√
1 − ρ2 cos

θ̄2

2
+ Kρ

√
1 − ρ2 = 0. (26)

Equation (25) has one solution for ρ ∈ [0,1]; we call the corresponding equilibrium
ψantisync1 := (Ψ1,Ψ2)antisync1.

Lemma 3.3 The equilibrium ψantisync1 is unstable for all (K, θ̄2) ∈ [0,∞) × [0,π).

Proof Using cos( θ̄2
2 − Ψ2) = −ρ and sin( θ̄2

2 − Ψ2) = √
1 − ρ2, the Jacobian evalu-

ated at this equilibrium has eigenvalues

λ1,2 = ρ cos
θ̄2

2
+

√
1 − ρ2 sin

θ̄2

2
− K

2

(
2ρ2 − 1

) ± K

2

(
2ρ2 − 1

)
.
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One eigenvalue is equal to ρ cos θ̄2
2 + √

1 − ρ2 sin θ̄2
2 > 0 for all (K, θ̄2) ∈ [0,∞) ×

[0,π). Hence, ψantisync1 is unstable for all (K, θ̄2) ∈ [0,∞) × [0,π). �

Equation (26) has between zero and two solutions for ρ ∈ [0,1]. The equilibria
we get from (26) when they exist are called ψ sync2 := (Ψ1,Ψ2)sync2 and ψantisync2 :=
(Ψ1,Ψ2)antisync2.

Lemma 3.4 Equation (26) has two solutions (ρantisync2, ρsync2) when K > K1,

K1 =
(

cos

(
θ̄2

2

) 2
3 + sin

(
θ̄2

2

) 2
3
) 3

2

,

such that

0 < ρantisync2 <

√√√√
1 −

(
sin θ̄2

2

K

) 2
3

< ρsync2 <

√√√√
1 −

(
sin θ̄2

2

K

)2

< 1. (27)

Proof We define K ′ = K

sin
θ̄2
2

, which is valid except for the trivial case when θ̄2 = 0.

Equation (26) becomes

g(ρ) := ρ

(
1√

1 − ρ2
− K ′

)
= − cot

θ̄2

2
. (28)

The solutions of (26) exist when the function g(ρ) intersects the constant y =
− cot θ̄2

2 < 0. The function g(ρ) goes to zero when ρ → 0, and to +∞ when ρ → 1

reaching its minimum of −K ′(ρ∗)3 at ρ∗ =
√

1 − 1
K ′2/3 . Equation (26) will have two

solutions (ρ1, ρ2) flanking ρ∗ if and only if g(ρ∗) < − cot θ̄2
2 , which is satisfied if

and only if

K > K1 =
(

cos

(
θ̄2

2

) 2
3 + sin

(
θ̄2

2

) 2
3
) 3

2

. (29)

The two solutions (ρantisync2, ρsync2) have to be smaller than the zero of the function
g(ρ) given by

√√√√
1 −

(
sin θ̄2

2

K

)2

< 1,

which concludes the proof. We note that given the form of g(ρ), ρantisync2 (ρsync2) is
a decreasing (increasing) function of K . �

We now present stability results for these equilibria.
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Lemma 3.5 The equilibrium ψ sync2 is unstable for all (K, θ̄2) ∈ [K1,∞) × [0, π
2 ) ∪

[K0,∞) × (π
2 ,π) and stable for all (K, θ̄2) ∈ [K1,K0) × (π

2 ,π), where K1 < K0 =
2

sin θ̄2
.

Proof We prove these results by looking at the eigenvalues of the Jacobian. We first
consider the case when θ̄2 < π

2 and K > K1 and show that one eigenvalue is real and
positive. The eigenvalues of the Jacobian are given by

λ1,2 = ρ cos
θ̄2

2
−

√
1 − ρ2 sin

θ̄2

2
− K

2

(
2ρ2 − 1

) ± K

2

(
2ρ2 − 1

)
. (30)

For all K > K1, the inequalities in (27) yield

λ1 >

√
1

1 + tan( θ̄2
2 )

2
3

cos
θ̄2

2
−

√
1

1 + cot( θ̄2
2 )

2
3

sin
θ̄2

2
> 0 if θ̄2 <

π

2
, (31)

proving that for (K, θ̄2) ∈ [K1,∞) × [0, π
2 ) the equilibrium ψ sync2 is unstable.

We now consider the case when θ̄2 > π
2 and show that for K ∈ (K1,K0), both

eigenvalues λ1, λ2 are negative and that for K > K0 λ1 > 0. When K = K1, (26) has
one solution in [0,1], namely

ρ1 =
√√√√ cos( θ̄2

2 )
2
3

cos( θ̄2
2 )

2
3 + sin( θ̄2

2 )
2
3

.

The eigenvalues λ1 and λ2 evaluated at K = K1, ρ = ρ1 are given by

λ1|K1,ρ1
=

√
1

1 + tan( θ̄2
2 )

2
3

cos
θ̄2

2
− sin

θ̄2

2

√
1

1 + cot( θ̄2
2 )

2
3

< 0 if θ̄2 >
π

2
,

λ2|K1,ρ1
= 0.

The derivatives of λ1 and λ2 with respect to K are given by

∂λ1

∂K
=

(
cos

θ̄2

2
+ ρ√

1 − ρ2
sin

θ̄2

2

)
∂ρ

∂K
,

∂λ2

∂K
=

(
cos

θ̄2

2
+ ρ√

1 − ρ2
sin

θ̄2

2
− 4Kρ

)
∂ρ

∂K
− (

2ρ2 − 1
)
. (32)

As we noted in the proof of Lemma 3.4, ρsync2 is an increasing function of K , im-
plying that ∂ρ

∂K
|Ψsync2 > 0. Using, in addition, the inequalities (27) we get for θ̄2 > π

2
that

∂λ1

∂K

∣∣∣∣
Ψsync2

> 0, (33)
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∂λ2

∂K

∣∣∣∣
Ψsync2

< −2 cos
θ̄2

2
− 3 cos

(
θ̄2

2

) 1
3

sin

(
θ̄2

2

) 2
3 + sin( θ̄2

2 )
2
3 − cos( θ̄2

2 )
2
3

sin( θ̄2
2 )

2
3 + cos( θ̄2

2 )
2
3

< 0.

(34)

Equation (34) implies that λ2|Ψsync2 < 0, ∀K > K1. Equation (33) implies that
λ1|Ψsync2 is a strictly increasing function of K . Since λ1|K1,ρ1 < 0, λ1|Ψsync2 will

cross zero exactly once. When K = K0, the solution of (26) is ρ0 = sin θ̄2
2 and so

λ1|K0,ρ0 = 0. Thus, λ1 will be negative for K < K0 and positive for K > K0. �

Lemma 3.6 The equilibrium ψantisync2 is unstable for all (K, θ̄2) ∈ [K1,∞)×[0,π).

Proof We prove this lemma by showing that λ2|ψantisync2
> 0. Since on the branch of

equilibria ψantisync2, (26) is satisfied, taking partial derivative of both sides of (26)
with respect to K and using the expression for λ2 (30) yields

∂ρ

∂K
= ρ(ρ2 − 1)

λ2
. (35)

Plugging (35) into (32), we get

∂λ2

∂K
= −ρ3 cos θ̄2

2 + K − (1 − ρ2)
3
2 sin θ̄2

2

λ2
. (36)

For all K > K1, ρ ∈ [0,1], the numerator of (36) is strictly positive. This implies
that λ2 does not change sign as a function of K . At K = K1, λ2 = 0. We check
that on the branch of ψantisync2, when K = 2, λ2 = cos θ̄2 > 0 implying that for all
K > K1, λ2|ψantisync2

> 0. �

For all solutions (of the second set), in (23), (25), and (26), as K gets increasingly
large, Kρ

√
1 − ρ2 must approach zero. This means that as K → ∞ then ρ → 0 or

ρ → 1. We call an equilibrium synchronized if Ψ1 = Ψ2 mod 2π and antisynchro-
nized if Ψ1 − Ψ2 = π mod 2π . Thus, for very large values of K , all the equilibria
will be either synchronized (ρ → 1) or anti-synchronized (ρ → 0). For modest val-
ues of K , the strength of the coupling is less than or equal to the strength of the
attraction to the preferred direction, and the equilibria are typically neither fully syn-
chronized nor fully antisynchronized. In this case, we call an equilibrium K-almost
synchronized (K-almost antisynchronized) if the corresponding equilibrium in the
case K � 1, is synchronized (antisynchronized). Thus, K-almost synchronization

occurs at Ψ = θ̄2
2 and Ψ = θ̄2

2 + π . Note that these solutions correspond to an exact
compromise between the two preferred directions.

Figure 3 shows two bifurcation diagrams in the cases (a) θ̄2 = 1 rad and (b) θ̄2 =
2 rad with bifurcation parameter K . The synchrony measure ρ, as defined by (19), is
plotted as a function of K for all equilibria in the second set of solutions. There are
two equilibria that do not exist for low enough values of K ; these two equilibria are
the solution from (26). We also note in comparing Figs. 3(a) and (b) that the stability
of these two equilibria changes as a function of K and θ̄2, indicating the presence
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Fig. 3 Bifurcation diagrams in cases (a) θ̄2 = 1 rad and (b) θ̄2 = 2 rad. The bifurcation parameter is K

and ρ is plotted as a function of K for all equilibria in the second set of solutions. We note that two
equilibria do not exist for low values of K . Stability of these same two equilibria changes type between (a)
and (b), indicating the presence of bifurcations

of bifurcations. The other two equilibria can be seen to be defined for all values of
K . The stable node is ψ sync1 which is the solution to (23). This equilibrium becomes
synchronized as K increases, i.e., ρ → 1 as K → ∞. The unstable node is ψantisync1
which comes from (25). This equilibrium becomes antisynchronized as K increases,
i.e., ρ → 0 as K → ∞. As predicted above, it can be seen that as K increases ρ

approaches 0 or 1 also for the two other equilibria.

4 Bifurcations in the (K,Ψi) Plane

As we observed in Sect. 3, the system (12) undergoes bifurcations as we vary the
two bifurcation parameters K and θ̄2. For example, the two equilibria given by the
first set of solutions, ψS1 and ψS2, are defined if and only if K

2 sin θ̄2 ≤ 1. Also, we
recall that the equilibria given by (26) are not always defined and their stability type
is dependent on the values of K and θ̄2. In Sect. 5, we study the analytically solv-
able case K = 2. The case θ̄2 = π , also solvable analytically, is treated in Sect. 6.
In this section, we consider bifurcations in K for θ̄2 taking fixed value in three dif-
ferent intervals; first for π

2 < θ̄2 < π , then for θ̄2 = π
2 , and finally for 0 < θ̄2 < π

2 .
Figure 4 shows bifurcation diagrams with θ̄2 fixed in each of these three intervals.
The angle Ψ1 is plotted as a function of bifurcation parameter K . These plots are
computed by solving numerically for the equilibria and characterizing the stability
by computing the eigenvalues of the Jacobian.

4.1 Bifurcations in the (K,Ψi) Plane for π
2 < θ̄2 < π

The bifurcation diagram in the (K,Ψi) plane for θ̄2 = 3π
4 is plotted in Fig. 4(a).

This is representative of the case π
2 < θ̄2 < π . There are two bifurcations: one at

K = K1 when two equilibria appear and one at K = K0 > K1 when two equilibria
disappear. For K1 < K < K0, there are two stable equilibria whereas there is only
one stable equilibrium when K is outside this region. The one stable equilibrium
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Fig. 4 Bifurcation diagrams in cases (a) θ̄2 = 3π
4 , (b) θ̄2 = π

2 , and (c) θ̄2 = π
4 . The bifurcation parameter

is K and Ψ1 is plotted as a function of K for all equilibria of the system. We observe the hypercritical
pitchfork bifurcation for θ̄2 = 3π

4 at K = K0. For the case θ̄2 = π
4 , the bifurcation at K = K0 only

consists of a change in the number of equilibria, but does not affect the stability of the system. In the case
that θ̄2 = π

2 , the bifurcation only consists in the disappearance of two saddle points simultaneously with
the appearance of two new ones

that exists for all K ≥ 0 is ψ sync1. The second stable equilibrium appears through
a saddle node bifurcation. We can (partially) prove that the second stable equilib-
rium disappears through a hypercritical pitchfork at K = K0. From Lemma 3.1,
when K = K0 = 2/ sin θ̄2, the two equilibria ψS1 and ψS2 meet and are equal to
ψ0 = (Ψ1,Ψ2)0 = ( 3π

2 , θ̄2 + π
2 ). For K > K0, ψS1 and ψS2 no longer exist. With the

change of variable (Ψ1,Ψ2) �→ (ρ,Ψ ) defined by (19) where ρ ∈ [0,1] and Ψ ∈ S1,

the equilibrium ψS1 = ψS2 = ψ0 for K = K0 becomes (ρ,Ψ )0 = (sin θ̄2
2 , θ̄2

2 + π).
This equilibrium also solves (26) and corresponds to ψ sync2 at K = K0. Hence, a
third branch of equilibria from the second set of solutions goes through the bifurca-
tion point K = K0. It is easy to show that no other branch of equilibria crosses.

In order to prove that the bifurcation K = K0 is a hypercritical pitchfork bifur-
cation, we use the extension for pitchforks of the general theorem for saddle node
bifurcations in (Guckenheimer and Holmes 1983). However, of the three conditions
to check in the theorem, we can verify only the first two. Thus, this is a partial proof.

1. Nondegeneracy of the linearization.
The linearization of (12) at ψ = ψ0 and K = K0 is easily checked to be non-

degenerate since the Jacobian has a simple zero eigenvalue.
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2. Transversality condition to control nondegeneracy with respect to the parameter.
To check this, we show that the equilibrium ψ sync2 goes from stable to unstable

through the bifurcation. This follows from the proof of Lemma 3.5, since λ1|ψsync2

is negative for K < K0 and positive for K > K0 and λ2|ψsync2
is negative for

K > K0 > K1.
3. Transversality condition to control nondegeneracy with respect to the dominant

effect of the cubic nonlinear term.
A straightforward computation is inconclusive. Instead, to prove the condition,

we suggest to show that the dynamics on the center manifold have a nondegenerate
cubic term. If this can successfully be carried out, we expect the sign of the cubic
term to be positive proving that the bifurcation is a hypercritical pitchfork.

4.2 Bifurcations in the (K,Ψi) Plane for θ̄2 = π
2

The bifurcation diagram in the (K,Ψi) plane for θ̄2 = π
2 is plotted in Fig. 4(b). There

is one bifurcation at K = 2 when two equilibria disappear and two new ones appear.
From Sect. 3, we observe that there is a bifurcation at K

2 sin θ̄2 = 1, i.e., two equilibria
in the first set disappear. For θ̄2 = π

2 , this corresponds to the bifurcation point at
K = 2. This case is solvable analytically.

4.2.1 Equilibria

Equation (16) at θ̄2 = π
2 becomes

K cos2 Ψ2 + cosΨ2 − K

2
= 0. (37)

We consider first the case that K ∈ (0,2). In this case, (37) has two solutions

Ψ2 = ± arccos

(−1 + √
1 + 2K2

2K

)
.

This and the solutions of (14) give us a total of four equilibria as follows:

1. ψ sync1 = (π
2 − arccos(−1+

√
1+2K2

2K
), arccos(−1+

√
1+2K2

2K
)).

By Lemma 3.2, the equilibrium ψ sync1 is a stable node for K ∈ (0,2).

2. ψantisync1 = (π
2 − arccos(−1+

√
1+2K2

2K
),− arccos(−1+

√
1+2K2

2K
)).

By Lemma 3.3, the equilibrium ψantisync1 is an unstable node for K ∈ (0,2).

3. ψS1 = (π
2 + arccos(−K

2 ), arccos(−K
2 )).

By Lemma 3.1, ψS1 is a saddle point for all K ∈ (0,2).
4. ψS2 = (π

2 − arccos(−K
2 ),− arccos(−K

2 )).
By Lemma 3.1, ψS2 is a saddle point for all K ∈ (0,2).

We consider next the case that K > 2. The equilibria from the first set of solutions
are not defined when K > 2 and θ̄2 = π

2 . Equation (37) in this case has four solutions

Ψ2 = ± arccos

(−1 ± √
1 + 2K2

2K

)
.
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This gives us a total of four equilibria as follows:

1. ψ sync1 = (π
2 − arccos(−1+

√
1+2K2

2K
), arccos(−1+

√
1+2K2

2K
)).

By Lemma 3.2, the equilibrium ψ sync1 is a stable node for K > 2.

2. ψantisync1 = (π
2 − arccos(−1+

√
1+2K2

2K
),− arccos(−1+

√
1+2K2

2K
)).

By Lemma 3.3, the equilibrium ψantisync1 is an unstable node for K > 2.

3. ψantisync2 = (π
2 − arccos(−1−

√
1+2K2

2K
), arccos(−1−

√
1+2K2

2K
)).

By a check of the Jacobian, the equilibrium ψantisync2 is seen to be a saddle point
for all K > 2.

4. ψ sync2 = (π
2 + arccos(−1−

√
1+2K2

2K
),− arccos(−1−

√
1+2K2

2K
)).

By a check of the Jacobian, the equilibrium ψ sync2 is seen to be a saddle point for
all K > 2.

4.2.2 Analysis of the bifurcation diagram

The analysis of the previous subsection shows that the bifurcation at K = 2 consists
in the disappearance of two saddles (ψS1 and ψS2), and the simultaneous appearance
of two new saddles (ψantisync2 and ψ sync2). At the bifurcation, these four equilibria

come together at (Ψ1,Ψ2)K=2,θ̄2= π
2

= ( 3π
2 ,π). This equilibrium is highly degener-

ate; the linearization J is equal to the zero matrix (see Lemma 3.1). This degenerate
equilibrium will be encountered again in Sect. 5 when we set K = 2 and study bi-
furcation in the (θ̄2,Ψi) plane. The θ̄2 = π

2 plane studied here and the K = 2 plane
studied in Sect. 5 are two orthogonal slices of the full parameter space (K, θ̄2,Ψi).

4.3 Bifurcation in the (K,Ψi) Plane for 0 < θ̄2 < π
2

The bifurcation diagram in the (K,Ψi) plane for θ̄2 = π
4 is plotted in Fig. 4(c). This

is representative of the case 0 < θ̄2 < π
2 . There are two bifurcations: one at K = K1

when two equilibria appear and one at K = K0 > K1 when two equilibria disappear.
For K1 < K < K0, there are two additional equilibria, but the system still only has
one stable equilibrium, unlike the case of π

2 < θ̄2 < π .
When the two saddles from the first set of solutions disappear, there is no pitch-

fork, rather the equilibrium from (26), ψantisync2, switches from being an unstable
node to a saddle. To prove this, we consider the linearization of the system near this
bifurcation evaluated on the branch of the equilibria corresponding to ψantisync2. The
eigenvalues of the Jacobian are λ1 = − cos(θ̄2 − Ψ2) and λ2 = − cos(θ̄2 − Ψ2) −
K cos(2Ψ2 − θ̄2). For θ̄2 < π

2 , in some neighborhood of the bifurcation, λ2 > 0 since
λ2|ψ0,K0 = cot θ̄2 > 0 for θ̄2 < π

2 . The eigenvalue λ1, as we saw in Sect. 4.1, changes
sign through the bifurcation. In order to determine if the change is from positive to
negative or negative to positive, we examine how Ψ2 changes as a function of K near
the bifurcation. We compute

∂Ψ2

∂K

∣∣∣∣
ψ0,K0

= −1

4
sin θ̄2 tan θ̄2 < 0, ∀θ̄2 ∈

(
0,

π

2

)
.
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Hence, Ψ2 is a strictly decreasing function of K around the bifurcation. It is then
easy to see that λ1|ψantisync2

= − cos(θ̄2 − Ψ2)|ψantisync2
becomes negative as K crosses

the bifurcation value K0. This proves that ψantisync2 is an unstable node before the
bifurcation and a saddle after the bifurcation. Thus, the disappearance of the saddles
ψS1 and ψS2 at K0 does not affect the stable equilibria of the system, only the number
of unstable equilibria and the type of one unstable equilibrium.

5 Bifurcations in the Case K = 2

In this section, we set K = 2 and study the bifurcations in the (θ̄2,Ψi) plane. This
case is solvable analytically. In model (12), K = 2 implies for each subgroup that the
strength of the attraction toward the preferred direction is equal to the strength of the
attraction to align with the other subgroup. The system (12) dynamics become

Ψ̇1 = − sinΨ1 + sin(Ψ2 − Ψ1),

Ψ̇2 = sin(θ̄2 − Ψ2) − sin(Ψ2 − Ψ1).

5.1 Equilibria

For K = 2, (16) becomes sin(θ̄2 − Ψ2) = sin(2Ψ2 − θ̄2). This equation has four solu-
tions,

Ψ2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
3 θ̄2,

2
3 θ̄2 + 2π

3 ,

2
3 θ̄2 + 4π

3 ,

π.

The system therefore has a total of six equilibria as follows:

1. ψ sync1 = ( 1
3 θ̄2,

2
3 θ̄2).

By Lemma 3.2, the equilibrium ψ sync1 is a stable node for θ̄2 ∈ [0,π].
2. ψ sync2 = ( 1

3 θ̄2 − 2π
3 , 2

3 θ̄2 + 2π
3 ).

By a check of the Jacobian, the equilibrium ψ sync2 is seen to be an unstable node
for θ̄2 ∈ [0, π

2 ) and a stable node for θ̄2 ∈ (π
2 ,π].

3. ψantisync1 = ( 1
3 θ̄2 − 4π

3 , 2
3 θ̄2 + 4π

3 ).
By Lemma 3.3, the equilibrium ψantisync1 is an unstable node for θ̄2 ∈ [0,π].

4. ψantisync2 = (θ̄2 − π,π).
By a check of the Jacobian, the equilibrium ψantisync2 is seen to be a saddle point
for θ̄2 ∈ [0, π

2 ) ∪ (π
2 ,π].

5. ψS1 = (θ̄2 + π,2θ̄2).
By Lemma 3.1, the equilibrium ψS1 is a saddle point for all θ̄2 ∈ [0, π

2 ) ∪ (π
2 ,π].

6. ψS2 = (−θ̄2,π).
By Lemma 3.1, the equilibrium ψS2 is a saddle point for all θ̄2 ∈ [0, π

2 ) ∪ (π
2 ,π].
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Fig. 5 Picture of the 6 equilibria for K = 2 and θ̄2 = 1 rad. The solid arrow represents Ψ1 on the unit
circle, i.e., the average heading of the first informed subgroup, and the dashed arrow represents Ψ2, the
average heading of the second informed subgroup

Figure 5 shows an example of the six equilibria in the case K = 2 and θ̄2 = 1 rad.
The only stable equilibrium is ψ sync1, which for this example corresponds to motion
in the Ψ = 0.5 rad direction.

5.2 Analysis of the Bifurcation Diagram

The analysis of Sect. 5.1 shows that the stability type of one of the equilibria, ψ sync2,
changes at θ̄2 = π

2 from an unstable node to a stable node. The equilibrium ψ sync2

for θ̄2 = π
2 is a highly degenerate equilibrium; the Jacobian is equal to the zero ma-

trix. This is the same bifurcation point encountered in Sect. 4.2, but approached from
an orthogonal direction in the full parameter space (K, θ̄2,Ψi). Figure 6 shows the
bifurcation diagram in the (θ̄2,Ψ1) plane, i.e., Ψ1 as a function of bifurcation para-
meter θ̄2. In the bifurcation diagram (Fig. 6), 4 equilibria come together at the point
in phase space (Ψ1,Ψ2) = ( 3π

2 ,π) when θ̄2 = π
2 . This bifurcation is one of Thom’s

seven elementary catastrophes; it is called the elliptic umbilic (Thom 1972).
Catastrophe theory applies to gradient systems, and the elementary catastrophes

are classified by looking at the form of the potential. As discussed in Sect. 2, our
system obeys gradient dynamics and the associated potential for K = 2 is

V = cosΨ1 + cos(θ̄2 − Ψ2) + cos(Ψ1 − Ψ2). (38)
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Fig. 6 Bifurcation diagram in the (θ̄2,Ψ1) plane, i.e., Ψ1 as a function of bifurcation parameter θ̄2 fixing
K = 2. Since the equilibria ψantisync2 and ψS1 have the same value for Ψ1 (but a different value for Ψ2),

we see on this diagram only 5 equilibria even though there are six. At θ̄2 = π
2 , there are only three distinct

equilibria; this is the degenerate point of the system. The multiplicity of the equilibrium ( 3π
2 ,π) is four

To identify the bifurcation as an elliptic umbilic, we examine the unfolding of this
potential near the catastrophe (Ψ1,Ψ2, θ̄2) = ( 3π

2 ,π, π
2 ). We write (38) as

V = cos

(
u + 3π

2

)
+ cos

(
π

2
+ a − (π + v)

)
+ cos

(
u + 3π

2
− (π + v)

)
, (39)

where u, v, and a are respectively the deviation of Ψ1 from 3π
2 , Ψ2 from π, and θ̄2

from π
2 . A Taylor expansion of (39), keeping terms up to third order in u and v gives

V = (cosa − 1)

3! v3 + uv2

2
− vu2

2
− sina

2
v2 + (1 − cosa)v + sina.

After the following change of variables:

x = 1

2
3

√
(4 cosa − 1)

3
v,

y = 3

√
2
√

6√
4 cosa − 1

(
1√
6
u − 1

2
√

6
v

)
,

the potential becomes

V = x3 − 3xy2 − 2 × 3
2
3 sina

(4 cosa − 1)
2
3

x2 − 2 × 3
1
3 (cosa − 1)

(4 cosa − 1)
1
3

x + sina. (40)
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Fig. 7 These diagrams show pictures of all the equilibria for θ̄2 = π
4 . This is representative of the pos-

sible equilibria for the system in Region 1A without its boundary, i.e., for θ̄2 ∈ [0, π
2 ). The only stable

equilibrium is ψsync1, which for this example corresponds to motion in the Ψ = π
8 direction

In (40), we recognize the standard unfolding of the potential of an elliptic umbilic
(Poston and Stewart 1978).

In the following, we examine the different equilibria in each of the various regions
of the bifurcation diagram shown in Fig. 6. Region 1.A is defined by θ̄2 ∈ [0, π

2 ] and
Region 1.B by θ̄2 ∈ (π

2 ,π]. For each case studied, we draw the pictures of each pos-
sible equilibrium (stable and unstable) on the unit circle, a solid arrow corresponding
to Ψ1 and a dashed arrow corresponding to Ψ2. Because K = 2 implies equal at-
traction to the preferred direction as to the other subgroup, equilibria are usually not
fully synchronized nor antisynchronized. Instead, the equilibria ψ sync1 and ψ sync2 are
K-almost synchronized and ψantisync1 and ψantisync2 are K-almost antisynchronized.
Since ψS1 and ψS2 from (14) are not defined for K � 1, we cannot use this termi-
nology. However, we note that the relative heading of Ψ1 with respect to Ψ2 is equal
to π − θ̄2 for ψS1 and π + θ̄2 for ψS2 independent of K . As θ̄2 increases to π , the
two saddles become synchronized. We call an equilibrium θ̄2-almost synchronized if
the corresponding equilibrium is synchronized in the case θ̄2 → π .

Region 1.A θ̄2 ∈ [0, π
2 ]. The equilibria in the case θ̄2 ∈ [0, π

2 ) are shown in Fig. 7.
Figure 8 shows the equilibria at the bifurcation point θ̄2 = π

2 . In Fig. 7, there are
three types of equilibria: the K-almost synchronized ψ sync1 and ψ sync2, the K-almost
antisynchronized ψantisync1 and ψantisync2 and the θ̄2-almost synchronized ψS1 and
ψS2. The only stable equilibrium, ψ sync1, is the K-almost synchronized motion of

Ψ1 and Ψ2 in the direction Ψ = θ̄2
2 with each heading remaining on its side (nearest

its preferred direction) of Ψ = θ̄2
2 . The unstable equilibria are the two K-almost anti-

synchronized ψantisync1 and ψantisync2, the remaining K-almost synchronized ψ sync2
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Fig. 8 These diagrams show the equilibria of the system at the critical point, i.e., when both K = 2 and
θ̄2 = π

2 . We only have 3 equilibria. The second equilibrium drawn is the superposition of 4 equilibria
ψsync2, ψantisync2, ψS1 and ψS2; it has multiplicity four. It is called a monkey-saddle in the catastrophe
theory literature

which flanks Ψ = θ̄2
2 + π and the two θ̄2-almost synchronized saddles. As θ̄2 → π,

the first saddle ψS1 will tend to go closer to the preferred direction θ̄1 = 0, and the
second saddle ψS2 will go closer to θ̄2.

As mentioned previously, the case at the boundary θ̄2 = π
2 is highly degenerate.

There are only three distinct equilibria. There is still only one stable equilibrium

which is K-almost synchronized at Ψ = θ̄2
2 = π

4 . There is also an unstable K-almost

antisynchronized equilibrium ψantisync1 at Ψ = θ̄2
2 + π = 5π

4 . The other equilibrium

corresponds to Ψ = θ̄2
2 +π = 5π

4 . As can be seen in the bifurcation diagram of Fig. 6,
there is the superposition of four equilibria ψ sync2, ψS1, ψS2, and ψantisync2. This
equilibrium is called a monkey-saddle in the catastrophe theory literature (Poston and
Stewart 1978).

Region 1.B θ̄2 ∈ (π
2 ,π]. The equilibria in the case θ̄2 ∈ (π

2 ,π) are shown in Fig. 9.
Figure 10 shows the equilibria at the boundary θ̄2 = π . In Fig. 9, the equilibria are
similar to those from the case where θ̄2 ∈ [0, π

2 ) in Fig. 7 except that now the K-

almost synchronized equilibrium ψ sync2 at θ̄2
2 +π is stable. Two of the unstable equi-

libria (ψantisync1,ψantisync2) are K-almost anti-synchronized. As mentioned above, for
ψS1 and ψS2, the particles synchronize as θ̄2 increases; the saddle ψS1 is closer to
the preferred direction of the first particle and the saddle ψS2 is closer to the preferred
direction of the second particle.

In the case θ̄2 = π (Fig. 10), there are still two stable equilibria (ψ sync1,ψ sync2)

which are K-almost synchronized at Ψ = θ̄2
2 = π

2 and Ψ = θ̄2
2 + π = 3π

2 , respec-
tively. The unstable equilibria ψantisync1 and ψantisync2 are antisynchronized. The two
saddles are synchronized: ψS1 is synchronized at the preferred direction of the first
particle (θ̄1 = 0) and ψS2 is synchronized at the preferred direction of the second
particle (θ̄2 = π ).

6 Bifurcation in the (K,Ψi) Plane for θ̄2 = π

In this section, we set θ̄2 = π , and study the bifurcation in the (K,Ψi) plane. This
case is solvable analytically. For this case, the two preferred headings differ by 180
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Fig. 9 These diagrams show the pictures of all the equilibria for θ̄2 = 3π
4 . This is representative of the

possible equilibria for the system in Region 1B without its boundary, i.e., for θ̄2 ∈ ( π
2 ,π). The two saddles,

ψS1 and ψS2, tend to be more synchronized (than in Fig. 7) since θ̄2 is closer to π . ψS1 is closer to the
preferred direction of the first subgroup and ψS2 is closer to the preferred direction of the second subgroup.
There are two stable equilibria, ψsync1 and ψsync2

degrees. Since the disagreement is so large, for some range of small values of K the
group will split without making any compromise. This kind of splitting is sometimes
observed in swarm-bees (Lindauer 1957). The system (12) becomes

Ψ̇1 = − sinΨ1 + K

2
sin(Ψ2 − Ψ1),

Ψ̇2 = sinΨ2 + K

2
sin(Ψ1 − Ψ2).

(41)

We note that this system appears in Chap. 8 of (Strogatz 1994).

6.1 Equilibria

For θ̄2 = π , (16) becomes

sinΨ2(1 + K cosΨ2) = 0. (42)

We consider first the case that K ∈ [0,1). In this case, (42) has two solutions

Ψ2 =
{

0,

π.

This give us a total of 4 equilibria as follows.
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Fig. 10 These diagrams show the equilibria of the system at the right boundary of Region 1.B, i.e., for
θ̄2 = π . Only equilibrium ψsync1 and ψsync2 (the K-almost synchronized equilibria) depend on K . The
other equilibria are antisynchronized (ψantisync1 and ψantisync2) or synchronized (ψS1 and ψS2) for all K

1. ψantisync1 = (π,0).
By Lemma 3.3, the equilibrium ψantisync1 is an unstable node for K ∈ [0,1].

2. ψantisync2 = (0,π).
By a check of the Jacobian, the equilibrium ψantisync2 is seen to be a stable node
∀K ∈ [0,1).

3. ψS1 = (0,0).
By Lemma 3.1, the equilibrium ψS1 is a saddle point for all K ∈ [0,1].

4. ψS2 = (π,π).
By Lemma 3.1, the equilibrium ψS2 is a saddle point for all K ∈ [0,1].
We consider next the case that K > 1. Equation (42) in this case has four solutions

Ψ2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

arccos(− 1
K

),

− arccos(− 1
K

),

0,

π.

This gives a total of six equilibria as follows:

1. ψ sync1 = (π − arccos(− 1
K

), arccos(− 1
K

)).
By Lemma 3.2, the equilibrium ψ sync1 is a stable node for K > 1.

2. ψ sync2 = (π + arccos(− 1
K

),− arccos(− 1
K

)).
By a check of the Jacobian, the equilibrium ψ sync2 is seen to be a stable node
∀K > 1.
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Fig. 11 Bifurcation diagram in
the (K,Ψ1) plane, i.e., Ψ1 as a
function of bifurcation
parameter K fixing θ̄2 = π . At
K = 1, we have a supercritical
pitchfork bifurcation. We have
one stable equilibrium for
K < 1 and two stable equilibria
for K > 1

3. ψantisync1 = (π,0).
By Lemma 3.3, the equilibrium ψantisync1 is an unstable node for K ≥ 1.

4. ψantisync2 = (0,π).
By a check of the Jacobian, the equilibrium ψantisync2 is seen to be a saddle point
∀K > 1.

5. ψS1 = (0,0).
By Lemma 3.1, the equilibrium ψS1 is a saddle point for all K ≥ 1.

6. ψS2 = (π,π).
By Lemma 3.1, the equilibrium ψS2 is a saddle point for all K ≥ 1.

6.2 Analysis of the bifurcation diagram

The analysis of the previous subsection shows that a bifurcation occurs at K = 1.
The bifurcation diagram (Fig. 11) suggests that there is a supercritical pitchfork bi-
furcation. To prove this, we use the extension for pitchforks of the general theorem
for saddle node bifurcations in (Guckenheimer and Holmes 1983). There are three
conditions to check in the theorem. We define ψ0 = (Ψ1,Ψ2)0 = (0,π), K0 = 1.

1. Nondegeneracy of the linearization.
The linearization of (41) at ψ = ψ0 and K = K0 is

J0 = ∂f
∂ψ

∣∣∣∣
ψ0,K0

=
(− 1

2 − 1
2

− 1
2 − 1

2

)
,

where f is the vector field given by (41) with corresponding state vector ψ =
(Ψ1,Ψ2). This linearization is nondegenerate since it has a simple zero eigenvalue.
We set v = ( 1

−1

)
and w = (1 −1) to be respectively the right and left eigenvectors

for the zero eigenvalue.



J Nonlinear Sci (2009) 19: 399–435 427

2. Transversality condition to control nondegeneracy with respect to the parameter.
We compute

∂2f
∂ψ∂K

∣∣∣∣
ψ0,K0

= 1

2

(
1 −1

−1 1

)
,

which implies that w. ∂2f
∂ψ∂K

|ψ0,K0 .v = 2 	= 0. Hence, the eigenvalues cross the
imaginary axis with nonzero speed which proves the condition.

3. Transversality condition to control nondegeneracy with respect to the dominant
effect of the cubic nonlinear term.

For this condition, we compute

wivjvkvl

∂3fi

∂Ψj∂Ψk∂Ψl

∣∣∣∣
ψ0,K0

= −6 < 0,

for all i, j, k, l ∈ {1,2} and fi is the ith component of f. Since we get a strictly
negative number, the pitchfork is supercritical.

This last condition completes the proof of the existence of a codimension-one super-
critical pitchfork bifurcation at ψ = (0,π), K = 1.

Before the bifurcation (K < 1), the only stable equilibrium is ψantisync2 = (0,π).
This corresponds to the case where each informed subgroup follows its own preferred
direction; there is no compromise between the individuals and the group splits. When
K < 1, the strength of the coupling force compared to the preferred direction is too
weak to influence the stable steady state of the system. The motion of the group is the
same as if there were no coupling between the two informed subgroups. For K > 1,
there are two stable equilibria, ψ sync1 and ψ sync2. These correspond, respectively, to

the motion in the directions Ψ = θ̄2
2 = π

2 and Ψ = θ̄2
2 + π = 3π

2 . As we increase the
bifurcation parameter K , the two directions Ψ1 and Ψ2 become synchronized. θ̄2 = π

is the only case where we have two stable equilibria for large value of K .

7 Interpretation and Extensions of Results

We have modeled and studied equilibria, stability, and bifurcations for a group of
N = N1 + N2 + N3 coupled individuals moving in the plane where there are N1
informed individuals with a preferred direction θ̄1 = 0, N2 = N1 informed individuals
with a second preferred direction θ̄2 and N3 = 0 uninformed individuals. We showed
that the system has either one or two stable equilibria. The K-almost synchronized

motion (ψ sync1) of the two subgroups in the direction Ψ = θ̄2
2 is always stable. This

corresponds to the whole group moving together (when K is large) in the average of
the two preferred directions. This is consistent with the results in the paper (Couzin
et al. 2005) for the case that θ̄2 is below a threshold, i.e., the disagreement in preferred
directions between the two informed subgroups is not too large. This threshold, which
depends on system parameters, can be fairly substantial; in the first case, illustrated
in Fig. 3 of (Couzin et al. 2005), the threshold is somewhat larger than 2π/3 degrees.
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Fig. 12 Phase portrait for heading directions Ψ1 and Ψ2 at three different values of K and two different
values of θ̄2

For K ∈ (K1,K0) and θ̄2 ∈ [π
2 ,π), the K-almost synchronized motion (ψ sync2)

of the two subgroups in the direction Ψ = θ̄2
2 + π is also stable. This corresponds to

the whole group moving together (when K is large) in the opposite of the average
of the two preferred directions. The region of attraction for this equilibrium may be
relatively small and this can explain why this stable solution was not discovered in
the simulation study of (Couzin et al. 2005); see, for example, the middle, right plot
in Fig. 12 and the bell-shaped region of attraction around the stable node located
near the point (4.8,3.8). We showed that this stable node appears at a hypercritical
pitchfork bifurcation at ψ0 = ( 3π

2 , θ̄2 + π
2 ), K = 2/ sin θ̄2 when θ̄2 ∈ [π

2 ,π). We also
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showed that this stable node disappears at the highly degenerate bifurcation point
ψ0 = ( 3π

2 ,π), K = 2 and θ̄2 = π
2 , where the linearization is equal to the zero matrix.

This bifurcation was investigated in the (θ̄2,Ψi) plane and was shown to be an elliptic
umbilic catastrophe.

Figure 12 shows the phase portrait for the subgroup heading directions Ψ1 and Ψ2

for two values of θ̄2 and three values of K . The vertical (and likewise horizontal)
edges are identified since the phase space is the torus. Some of the stable and unsta-
ble manifolds are plotted as solid lines and the vector field is plotted as arrows so
that the flow can be readily observed. For example, as described above, in the right,
middle plot, these manifolds illustrate the region of attraction for the second stable
equilibrium ψ sync2. The middle plots together show before (left) and after (right)
the elliptic umbilic catastrophe. The three panels in the left column, corresponding to
θ̄2 = π/4, show equilibria that can also be observed in the bifurcation plot of Fig. 4(c)
at K = 1 for the top plot, K = 2.5 for the middle plot, and K = 4 for the bottom
plot. For example, the single stable equilibrium can be observed to be near the point
Ψ1 = Ψ2 = π/8, i.e., the K-almost synchronized equilibrium ψ sync1 at θ̄2/2 = π/8.
Likewise, the three panels in the right column, corresponding to θ̄2 = 3π/4, show
equilibria that can also be observed in the bifurcation plot of Fig. 4(a) at K = 1 for
the top plot, K = 2.5 for the middle plot, and K = 4 for the bottom plot.

We illustrate in Fig. 13 the dynamics near one of the instabilities with a simulation
in the case N1 = N2 = 5. Snapshots of the positions and heading directions of all
10 individuals are shown at three different times in the three left column plots. The
corresponding heading directions of all 10 individuals are plotted on the unit circle
together with the preferred heading directions in the right column plots. The initial
condition, shown in Figs. 13(a) and (b) is close to the saddle point ψ sync2 shown in the
bottom right plot of Fig. 12, i.e., the individuals are heading in the opposite direction
of the compromise of the preferred directions. First, as expected (but not shown in
Fig. 13), the individuals with the same preferred direction synchronize. Then more
slowly, the two lumped subgroups both move away from the unstable solution (in
the counter-clockwise direction around the unit circle). Figures 13(c) and (d) show
that they are close together as they move and practically all synchronized as they
pass through the preferred direction of subgroup 1. Figures 13(e) and (f) show the
convergence to the stable solution ψ sync1.

In (Couzin et al. 2005) for θ̄2 greater than a threshold (e.g., a threshold of 2π/3 in
the example cited above), the group was observed to move together in one or the other
of the two preferred directions. Our model does not reproduce this result although
there are similarities in our model in the case in which θ̄2 = π , i.e., when the two
preferred directions are exactly opposite. In this case, there is a supercritical pitchfork
at ψ0 = (0,π), K = 1. Here, for K < 1, each informed subgroup moves stably in its
own preferred direction, while for K > 1, the two subgroups move together (when K

is large) in the average of the preferred directions (i.e., π/2).
In the case N1 	= N2, the persistent stable equilibrium does not correspond to Ψ =

θ̄2
2 , but rather to a weighted average of 0 and θ̄2. For example, if N1 > N2, the stable

solution Ψ corresponds to a direction closer to 0 than to θ̄2. For N2 fixed, the stable
equilibrium value of Ψ asymptotically approaches 0 for increasing N1 as shown in
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Fig. 13 Simulation for two informed subgroups each with a population of five individuals (N1 = N2 = 5).
The plots in the left column show snapshots in the physical plane of the individual positions rj ,
j = 1, . . . ,10 (circles for individuals in subgroup 1 and diamonds for individuals in subgroup 2) and
individual headings θj , j = 1, . . . ,10 (arrows). The plots in the right column show the individual headings
plotted on the unit circle together with the two preferred directions. The headings of the individuals are
initially near the (unstable) equilibrium ψsync2 with K = 70, θ̄2 = 3π

4 . (a) and (b) correspond to initial
time t = 0. (c) and (d) correspond to time t = 11.73. (e) and (f) correspond to time t = 19.16

Fig. 14. Likewise for N1 fixed, the stable equilibrium value of Ψ asymptotically
approaches θ̄2 for increasing N2.

8 Conclusion

We have presented and studied a continuous-time model of a mobile, multi-agent
system in which individuals in the group balance an interest in moving in the same
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Fig. 14 (a) The equilibrium
values of Ψ1 and Ψ2
corresponding to the stable
motion ψsync1 as a function of
subgroup population size N1 for
fixed subgroup population size
N2 = 5. As N1 increases the
stable equilibrium values of both
Ψ1 and Ψ2 approach 0, the
preferred direction θ̄1 of the
subgroup with dominating
population size N1. (b) The
stable equilibrium ψsync1 for
the two extreme values of N1.
The motion of the group is
closer to θ̄2 = 2 rad when
1 = N1 < N2 = 5. The motion
of the group is closer to θ̄1 = 0
rad when 50 = N1 > N2 = 5

direction as others with an interest in moving in a preferred direction. The model
provides a mathematical framework to explore mechanisms at the level of the indi-
vidual that are critical to the macroscopic behavior observed in the study of collective
animal decision making and leadership in (Couzin et al. 2005).

Our model assumes some homogeneity in the group; however, in (Moon et al.
2007), extensions of this homogeneous model are investigated by introducing het-
erogeneity. Heterogeneity is considered both in the context of informed and unin-
formed individuals. With either type of heterogeneity, both the time-scale separation
and the lumped behavior remain unchanged. Indeed some of the very same bifurca-
tions proven in the present paper are recovered numerically in (Moon et al. 2007)
suggesting a measure of robustness to the results here.

The continuous-time model in this paper presents several simplifications as com-
pared to the discrete-time model in (Couzin et al. 2005). First, we constrain our study
to the phase dynamics of the individuals rather than the full spatial dynamics. Also,
we assume that the individuals can be influenced by all other individuals (not just
ones nearby). Finally, we perform the bifurcation analysis of the system in the ab-
sence of uninformed individuals and without a forgetting factor feedback term used
in (Couzin et al. 2005). Our continuous-time model, like the discrete-time model in
(Couzin et al. 2005), shows that consensus is possible within a group of individu-
als with conflicting information and without signaling or identification of informed
individuals. However, unlike the discrete-time model with uninformed individuals,
the continuous-time model restricted to informed individuals only (i.e., N3 = 0) and
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without the forgetting factor does not exhibit full synchronization of the group unless
the coupling gain K is very large (equivalent to the weight ω of the preferred direc-
tion in (Couzin et al. 2005) being very small). This means that for relatively small
weight on the coupling in the model (1) with N3 = 0, the individuals in the popula-
tion do not fully aggregate and the group splits. Also it never happens, in the case of
equal populations for the two informed subgroups (N1 = N2) that the group selects
to move as a whole in one of the preferred directions.

On the other hand, if we introduce a forgetting factor feedback in the form of
a dynamic gain on the relative strength of the attraction to the preferred direction,
analogous to the feedback on the weight ω in (Couzin et al. 2005), which reinforces
(diminishes) the gain if individuals find themselves moving in (away from) their pre-
ferred direction, then simulation results resemble more closely those in (Couzin et al.
2005). That is, there is consensus without a large K and the group can choose one or
the other of the preferred directions.

The results of (Couzin et al. 2005) show that the forgetting factor should not be
necessary for the fundamental behavior. This suggests a possibly interesting role for
the naive individuals and limited communication, which we are investigating both in
simulation and with extensions to the model. For example, we might expect that as
a function of initial conditions, the uninformed individuals could be “won over” by
one of the two informed subgroups. Then in effect, the “winning” informed subgroup
will appear in the model to have its membership greatly increased. In this case, just
like the case N1 > N2 discussed above, the group will move in a weighted average
direction that is close to the preferred direction as long as the number of uninformed
individuals is large as compared to uninformed individuals in the “losing” subgroup.
The dependency on the angle between the two preferred directions revealed in the
discrete-time model might also be reasonably recovered with the inclusion of un-
informed individuals. For small differences in preferred direction, it might be that
the uninformed individuals are not won over by either informed subgroup and in-
stead contribute to consensus at the average, whereas at large differences between
preferred directions, the discussion above might apply so that the group effectively
picks one of the preferred directions.

As the continuous-time model grows to better resemble the behavior of the natural
system, the value of the modeling and analysis will increase. Prediction of stability
and bifurcation of solutions, analogous to those in the present paper, have the poten-
tial to provide new insights by going beyond regions of phase space explored with
discrete simulation. In this paper, we have laid mathematical foundations and devel-
oped insights that contribute to the general interest in isolating a biologically plau-
sible mechanism for the collective decision-making behavior as observed in (Couzin
et al. 2005) when there is conflicting information among agents.
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Appendix A: Proof of Well-Defined Change of Variables

In this appendix, we show that the change of variables θ �→ (α1,Ψ1,α
2,Ψ2,α

3,Ψ3)

from Sect. 2.2 is well defined near the manifold M, where M is the invariant man-
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ifold of (1) defined by θj = Ψk , j ∈ Nk , k = 1,2,3. We write (α1,Ψ1,α
2,Ψ2,α

3,

Ψ3) = F(θ) and prove that F is locally invertible near M. On M, we have

∂αj(k,l)

∂θm

∣∣∣∣
M

=

⎧
⎪⎨

⎪⎩

−i if m 	= j(k,l),

(Nk − 1)i if m = j(k,l),

0 otherwise,

∂Ψk

∂θm

∣∣∣∣
M

=
{

1
Nk

if m ∈ Nk,

0 otherwise.

(A.1)

Using (A.1), the Jacobian of F evaluated on M can be written as

dF

dθ

∣∣∣∣
M

=
⎛

⎜⎝
A1 0N1,N2 0N1,N3

0N2,N1 A2 0N2,N3

0N3,N1 0N3,N2 A3

⎞

⎟⎠ ,

where

Ak =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Nk − 1)i −i · · · · · · −i

−i
. . .

. . . −i
...

...
. . .

. . .
. . .

...

−i · · · −i (Nk − 1)i −i
1

Nk
· · · · · · · · · 1

Nk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
Nk×Nk .

Each Ak, and hence dF
dθ |M is invertible with

A−1
k =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− i
Nk

0 · · · 0 1

0
. . .

. . .
...

...

...
. . .

. . . 0
...

0 · · · 0 − i
Nk

...

i
Nk

· · · · · · i
Nk

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
Nk×Nk . (A.2)

This concludes the proof that F : θ �→ (α1,Ψ1,α
2,Ψ2,α

3,Ψ3) is locally in-
vertible in a neighborhood of M. Hence, the change of variables from θ �→
(α1,Ψ1,α

2,Ψ2,α
3,Ψ3) is well defined near M.

Appendix B: Proof of the Attractivity of the Slow Manifold

In this appendix, we show that M, the invariant manifold of (1) defined by θj = Ψk ,
j ∈ Nk , k = 1,2,3, is attractive. This is done by proving for the boundary layer
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dynamics

dαj

dt
= gj

(
α1,α2,α3,Ψ1,Ψ2,Ψ3,0

)
, j ∈ Nk, j 	= j(k,Nk), k = 1,2,3,

local exponential stability uniformly in Ψ1,Ψ2,Ψ3 of the invariant manifold M.
The boundary layer dynamics can be written as

α̇j = iN1αj

(
−N1

N
ρ1 sin(Ψ1 − θj ) + N2

N
ρ2

(
sin(Ψ2 − θj ) − ρ1 sin(Ψ2 − Ψ1)

)

+ N3

N
ρ3

(
sin(Ψ3 − θj ) − ρ1 sin(Ψ3 − Ψ1)

))
, j ∈ N1, j 	= j(1,N1),

α̇j = iN2αj

(
−N2

N
ρ2 sin(Ψ2 − θj ) + N1

N
ρ1

(
sin(Ψ1 − θj ) − ρ2 sin(Ψ1 − Ψ2)

)

+ N3

N
ρ3

(
sin(Ψ3 − θj ) − ρ2 sin(Ψ3 − Ψ2)

))
, j ∈ N2, j 	= j(2,N2),

α̇j = iN3αj

(
−N3

N
ρ3 sin(Ψ3 − θj ) + N1

N
ρ1

(
sin(Ψ1 − θj ) − ρ3 sin(Ψ1 − Ψ3)

)

+ N2

N
ρ2

(
sin(Ψ2 − θj ) − ρ3 sin(Ψ2 − Ψ3)

))
, j ∈ N3, j 	= j(3,N3).

The linearization of the boundary layer model is given by

∂α̇j

∂αm

∣∣∣∣
M

= −i
Nk

N

(
∂θj

∂αm

∣∣∣∣
M

(
Nk +

∑

l 	=k

Nl cos(Ψl − Ψk)

)

+ ∂ρk

∂αm

∣∣∣∣
M

∑

l 	=k

Nl sin(Ψl − Ψk)

)
,

j ∈ Nk, j 	= j(k,Nk), k = 1,2,3, m ∈ {1, . . . ,N} \ {j(1,N1), j(2,N2), j(3,N3)}. (B.1)

Using (A.2), the values for
∂θj

∂αm
|M can be read as

∂θj

∂αm

∣∣∣∣
M

=
{

− i
Nk

if m = j,

0 otherwise.
(B.2)

Taking partial derivatives with respect to αm of (2) yields

∂ρk

∂αm

eiΨk + ρki
∂Ψk

∂αm

eiΨk = i

Nk

∑

j∈Nk

∂θj

∂αm

eiθj . (B.3)

Evaluating (B.3) on M and using (A.2) gives

∂ρk

∂αm

∣∣∣∣
M

= i

Nk

∑

j

∂θj

∂αm

∣∣∣∣
M

= 0. (B.4)
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Plugging (B.2) and (B.4) into (B.1), the Jacobian can be rewritten as a diagonal ma-
trix J with

Jjj = − 1

N

(
Nk +

∑

l 	=k

Nl cos(Ψl − Ψk)

)
, j ∈ Nk, j 	= j(k,Nk), k = 1,2,3.

When N1 = N2 and N3 = 0, this matrix has all its eigenvalues strictly negative. This
concludes the proof that the boundary layer dynamics are locally exponentially sta-
ble uniformly in Ψ1,Ψ2,Ψ3 at the invariant manifold M. Hence, M the invariant
manifold of (1) defined by θj = Ψk , j ∈ Nk , k = 1,2,3, is attractive.
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