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Abstract— Motivated by the problem of decentralized
direction-tracking, we consider the general problem of co-
operative learning in multi-agent systems with time-varying
connectivity and intermittent measurements. We propose a
distributed learning protocol capable of learning an unknown
vector µ from noisy measurements made independently by
autonomous nodes. Our protocol is completely distributed and
able to cope with the time-varying, unpredictable, and noisy
nature of inter-agent communication, and intermittent noisy
measurements of µ. Our main result bounds the learning speed
of our protocol in terms of the size and combinatorial features
of the (time-varying) network connecting the nodes.

I. INTRODUCTION

Widespread deployment of mobile sensors is expected to
revolutionize our ability to monitor and control physical
environments. However, for these networks to reach their full
range of applicability they must be capable of operating in
uncertain and unstructured environments. Realizing the full
potential of networked sensor systems will require the devel-
opment of protocols that are fully distributed and adaptive in
the face of persistent faults and time-varying, unpredictable
environments.

Our goal in this paper is to initiate the study of cooperative
multi-agent learning by distributed networks operating in
unknown and changing environments, subject to faults and
failures of communication links. While our focus here is
on the basic problem of learning an unknown vector, we
hope to contribute to the development of a broad theory
of cooperative, distributed learning in such environments,
with the ultimate aim of designing sensor network protocols
capable of adaptability.

We will study a simple, local protocol for learning a vector
from intermittent measurements and evaluate its performance
in terms of the number of nodes and the (time-varying)
network structure. Our direct motivation is the problem of
direction tracking from chemical gradients. A network of
mobile sensors needs to move in a direction µ (understood
as a vector on the unit circle), which none of the sensors
initially knows; however, intermittently some sensors are able
to obtain a sample of µ. The sensors can observe the velocity
of neighboring sensors but, as the sensors move, the set of
neighbors of each sensor changes; moreover, new sensors
occasionally join the network and current sensors sometimes
permanently leave the network. The challenge is to design
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a protocol by means of which the sensors can adapt their
velocities based on the measurements of µ and observations
of the velocities of neighboring sensors so that every node’s
velocity converges to µ as fast as possible. This challenge
is further complicated by the fact that all estimates of µ as
well as all observations of the velocities of neighbors are
assumed to be noisy.

We will consider a natural generalization in the problem,
wherein we abandon the constraint that µ lies on the unit
circle and instead consider the problem of learning an
arbitrary vector µ by a network of mobile nodes subject
to time-varying (and unpredictable) inter-agent connectivity,
and intermittent, noisy measurements. We will be interested
in the speed at which local, distributed protocols are able
to drive every node’s estimate of µ to the correct value.
We will be especially concerned with identifying the salient
features of network topology that result in good (or poor)
performance.

II. COOPERATIVE MULTI-AGENT LEARNING

We begin by formally stating the problem for a fixed
number of nodes. We consider n autonomous nodes engaged
in the task of learning a vector µ ∈ Rl. At each time
t = 0, 1, 2, . . . we denote by G(t) = (V (t), E(t)) the
graph of inter-agent communications at time t: two nodes
are connected by an edge in G(t) if and only if they are
able to exchange messages at time t. Note that by definition
the graph G(t) is undirected. If (i, j) ∈ G(t) then we will
say that i and j are neighbors at time t. We will adopt the
convention that G(t) contains no self-loops. We will assume
the graphs G(t) satisfy a standard condition of uniform
connectivity over a long-enough time scale: namely, there
exists some constant positive integer B (unknown to any of
the nodes) such that the graph sequence G(t) is B-connected,
i.e. the graphs ({1, . . . , n},

⋃(k+1)B
kB+1 E(t)) are connected for

each integer k ≥ 0. Intuitively, the uniform connectivity
condition means that once we take all the edges that have
appeared between times kB and (k + 1)B, the graph is
connected.

Each node maintains an estimate of µ; we will denote the
estimate of node i at time t by vi(t). At time t, node i can
update vi(t) as a function of the noise-corrupted estimates
vj(t) of its neighbors. We will use oij(t) to denote the noise-
corrupted estimate of the offset vj(t) − vi(t) available to
neighbor i at time t:

oij(t) = vj(t)− vi(t) + wij(t)

Here wij(t) is a zero-mean random vector every entry of
which has variance (σ′)2, and all wij(t) are assumed to



be independent of each other, as well as all other random
variables in the problem (which we will define shortly).
These updates may be the result of a wireless message
exchange or may come about as a result of sensing by each
node. Physically, each node is usually able to sense (with
noise) the relative difference vj(t) − vi(t), for example if
vi(t) represent velocities and measurements by the agents
are made in their frame of reference; alternatively, it may
be that nodes are able to measure the absolute quantities
vj(t), vi(t) and then wij(t) is the sum of the noises in these
two measurements.

Occasionally, some nodes have access to a noisy measure-
ment

µi(t) = µ+ wi(t),

where wi(t) is a zero-mean random vector every entry of
which has variance σ2; we assume all vectors wi(t) are
independent of each other and of all wij(t). In this case, node
i incorporates this measurement into its updated estimate
vi(t + 1). We will refer to a time t when at least one node
has a measurement as a measurement time. For the rest of
the paper, we will be making an assumption of uniform
measurement speed, namely that no more than T steps
pass between successive measurement times; more precisely,
letting tk be the times when at least one node makes a
measurement, we will assume that t0 = 0 and |tk+1−tk| ≤ T
every all nonnegative integer k.

It is useful to think of this formalization in terms of our
motivating scenario, which is a collection of nodes - vehicles,
UAVs, mobile sensors, or underwater gliders - which need
to learn and follow a direction. Updated information about
the direction arrives from time to time as one or more
of the nodes takes measurements, and the nodes need a
protocol by which they update their velocities vi(t) based
on the measurements and observations of the velocities of
neighboring nodes.

This formalization also describes the scenario in which
a moving group of animals must all learn which way to
go based on intermittent samples of a preferred direction
and social interactions with near neighbors. An example
is collective migration where high costs associated with
obtaining measurements of the migration route suggest that
the majority of individuals rely on the more accessible
observations of the relative motion of their near neighbors
when they update their own velocities vi(t) [22].

III. OUR RESULTS

We now describe the protocol which we analyze for the
remainder of this paper. If at time t node i does not have a
measurement of µ, it moves its velocity in the direction of
its neighbors:

vi(t+ 1) = vi(t) +
∆(t)

4

∑
j∈Ni(t)

oij(t)

max(di(t), dj(t))
. (1)

where Ni(t) is the set of neighbors of node i, di(t) is the
cardinality of Ni(t), and ∆(t) is a stepsize which we will
specify later.

On the other hand, if node i does have a measurement
µi(t), it updates as

vi(t+ 1) = vi(t) +
∆(t)

4
(µi(t)− vi(t))

+
∆(t)

4

∑
j∈Ni(t)

oij(t)

max(di(t), dj(t))
. (2)

Intuitively, each node seeks to align its estimate vi(t) with
both the measurements it takes and estimates of neighboring
nodes. As nodes align with one another, information from
each measurement slowly propagates throughout the system.

Our protocol is motivated by a number of recent ad-
vances within the literature on multi-agent consensus. On
the one hand, the weights (1/4)/max(d(i), d(j)) we accord
to neighboring nodes are based on Metropolis weights (first
introduced within the context of multi-agent control in [9])
and are chosen because they lead to a tractable Lyapunov
analysis as in [41]. On the other hand, we introduce a stepsize
∆(t) which we will later choose to decay to zero with t at
an appropriate speed by analogy with the recent work on
multi-agent optimization [42], [55], [60].

The use of a stepsize ∆(t) is crucial for the system to be
able to successfully learn the unknown vector µ. Intuitively,
as t gets large, the nodes should avoid overreacting by
changing their estimates in response to every new noisy
sample. Rather, the influence of every new sample on the
estimates v1(t), . . . , vn(t) should decay with t: the more
information the sensors have collected in the past, the less
they should be inclined to revise their estimates in response
to a new sample. This is accomplished by ensuring that the
influence of each successive new sample decays with the
stepsize ∆(t).

Our protocol is also motivated by models used to analyze
collective decision making and collective motion in animal
groups [20], [33]. Our time varying stepsize rule is similar
to models of context-dependent interaction in which indi-
viduals reduce their reliance on social cues when they are
progressing towards their target [57].

We now proceed to set the background for our main result,
which bounds the rate at which the estimates vi(t) converge
to µ. We first state a proposition which assures us that the
estimates vi(t) do indeed converge to µ almost surely. A
proof may be found in the technical report [32].

Proposition 1. If the stepsize ∆(t) is nonnegative, non-
increasing and satisfies

∞∑
t=1

∆(t) = +∞,
∞∑
t=1

∆2(t) <∞,

sup
t≥1

∆(t)

∆(t+ c)
<∞ for any integer c

then for any initial values v1(0), . . . , vn(0), we have that
with probability 1

lim
t→∞

vi(t) = µ for all i.



We remark that this proposition may be viewed as a
generalization of earlier results on leader-following, which
achieved similar conclusions either without the assumptions
of noise, or on fixed graphs, or with the assumption of a
fixed leader (see [23], [43], [38], [40]). Our protocol is very
much in the spirit of this earlier literature. All the previous
protocols (as well as ours) may be thought of consensus
protocols driven by noisy inputs, and we note there are a
number of other possible variations on this theme which can
accomplish the task of learning the unknown vector µ.

Our main result in this paper is a strengthened version
of Proposition 1 which provides quantitative bounds on
the rate at which convergence to µ takes place. We are
particularly interested in the scaling of the convergence time
with the number of nodes and with the combinatorics of
the interconnection graphs G(t). We will adopt the natural
measure of how far we are from convergence, namely the
sum of the squared distances from the final limit:

Z(t) =

n∑
i=1

||vi(t)− µ||22.

We will refer to Z(t) as the variance at time t.
Before we state our main theorem, we introduce some no-

tation. First, we define the the notion of the lazy Metropolis
walk on an undirected graph: this is the random walk which
moves from i to j with probability 1/(4 max(d(i), d(j)))
whenever i and j are neighbors. Moreover, given a random
walk on a graph, the hitting time from i to j is defined to be
the expected time until the walk visits j starting from i. We
will use dmax to refer to the largest degree of any node in
the sequence G(t) and M to refer to the largest number of
nodes that have a measurement at any one time; clearly both
dmax and M are at most n. Finally, dxe denotes the smallest
integer which is at least x. With this notation in place, we
now state our main result. A proof of it may be found in the
technical report [32].

Theorem 2. Let the stepsize be ∆(t) = 1/(t + 1)1−ε

for some ε ∈ (0, 1). Suppose each of the graphs G(t) is
connected and let H be the largest hitting time from any
node to any node in a lazy Metropolis walk on any of the
graphs G(t). If t satisfies the lower bound

t ≥ 3T

[
432TH

ε
ln

(
144TH

ε

)]1/ε
,

then we have that Eq. (3) holds.
In the general case when each G(t) is not necessarily

connected but the sequence G(t) is B-connected, we have
that if t satisfies the lower bound

t ≥ 2

[
576Tn2dmax

ε
ln

(
192Tn2dmax

ε

)]1/ε
,

then we have that Eq. (4) holds.

Our theorem provides a quantitative bound on the con-
vergence time of the repeated alignment process of Eq. (1)

and Eq. (2). We believe this is the first time a convergence
time result has been demonstrated in the setting of time-
varying (not necessarily connected) graphs, intermittent mea-
surements by possibly different nodes, and noisy communi-
cations among nodes. The convergence time expressions are
somewhat unwieldy, and we pause now to discuss some of
their features.

First, observe that the convergence times are a sum of two
terms: the first which decays with t as O(1/t2−2ε) and the
second which decays as O(e−t

ε

) (here O-notation hides all
terms that do not depend on t). In the limit of large t, the
second will be negligible and we may focus our attention
solely on the first. Thus our finding is that it is possible
to achieve a nearly quadratic decay with time by picking a
stepsize 1/(t+ 1)1−ε with ε close to zero.

Moreover, we find that for every choice of ε ∈ (0, 1),
the scaling with the number of nodes n is polynomial.
Moreover, in analogy to some recent work on consensus
[41], better convergence time bounds are available when
the largest degree of any node is small. This is somewhat
counter-intuitive since higher degrees are associated with
improved connectivity. A plausible intuitive explanation for
this mathematical phenomenon is that low degrees ensure
that the influence of new measurements on nodes does not
get repeatedly diluted in the update process.

Furthermore, while it is possible to obtain a nearly
quadratic decay with the number of iterations t as we just
noted, such a choice of ε blows up the bound on the transient
period before the asymptotic decay bound kicks in. Every
choice of ε then provides a tradeoff between the transient
size and the asymptotic rate of decay. This is to be contrasted
with the usual situation in distributed optimization (see e.g.,
[49], [55]) where a specific choice of stepsize usually results
in the best bounds.

Moreover, the constant in front of asymptotically dominant
1/t2−2ε decay in Theorem 2 scales as some function of the
graph sequence (i.e., as either maximum hitting time or as
n2dmax) raised to the power 1/ε. Thus the choice of the
constant ε may additionally be thought to tradeoff scaling
between scaling with time (where ε close to zero gives the
better scaling) and network features (where ε close to one
gives the better scaling).

Finally, in the case when all graphs are connected, the
effect of network topology on the convergence time comes
through the maximum hitting time H in all the individual
graphs G(t). There are a variety of results on hitting times
for various graphs which may be plugged into Theorem
2 to obtain precise topology-dependent estimates. We first
mention the general result that H = O(n2) for an arbitrary
connected graph from [44]. On a variety of reasonably
connected graphs, hitting times are considerably smaller. A
recent preprint [59] shows that for many graphs, hitting times
are proportional to the inverse degrees. In a 2D grid, hitting
time is O(n log2 n) while in the 3D grid hitting time is
O(n log n) [15].

We illustrate the convergence times of Theorem 2 with a
concrete example. Suppose we have a collection of nodes



E[Z(t) | v(0)] ≤ 9lT 2
(
Mσ2 + nT (σ′)2

) (24TH)1/ε

t2−2ε
+ Z(0)e−((t/T−1)

ε−1)/(24THε). (3)

E[Z(t) | v(0)] ≤ 9lmax(T,B)2(Mσ2 + nmax(T,B)(σ′)2)
(32 max(T,B)n2dmax)1/ε

t2−2ε

+Z(0)e−((t/max(T,B)−1)ε−1)/(32n2dmax max(T,B)ε). (4)

interconnected in (possibly time-varying) 2D grids with a
single (possibly different) node sampling at every time.
Let us further assume that communication among nodes is
noiseless (σ′ = 0) while the dimension l of the vector we
are learning as well as the noise variance σ2 are constants
independent of the number of nodes. Choosing a step size
∆(t) = 1/

√
t, we have that Theorem 2 implies that variance

E[Z(t) | Z(0)] will fall below δ after

max

(
O

(
n2 log4 n

δ

)
, O

(
n2 log4 n

[
log

Z(0)

δ

]2))
steps of the protocol.

IV. RELATED WORK

We believe that our paper is the first to derive rigorous
convergence time results for the problem of cooperative
multi-agent learning by a network subject to unpredictable
communication disruptions and intermittent measurements.
The key features of our model are 1) its cooperative nature
(many nodes working together) 2) its reliance only on
distributed and local observations 3) the incorporation of
time-varying communication restrictions.

Naturally, our work is not the first attempt to fuse learning
algorithms with distributed control or multi-agent settings.
Indeed, the study of learning in games is a classic subject
which has attracted considerable attention within the last
couple of decades due in part to its applications to multi-
agent systems. We refer the reader to the recent papers [2],
[7], [8], [17], [16], [10], [21], [39], [1], [37], [24] as well as
the classic works [34], [19] which study multi-agent learning
in a game-theoretic context. Moreover, the related problem of
distributed reinforcement learning has attracted some recent
attention; we refer the reader to [34], [56], [50]. We make
no attempt to survey these literatures here and refer the
reader to the references in the above papers, as well as the
surveys [54], [47]. Moreover, we note that much of the recent
literature in distributed robotics has focused on distributed
algorithms robust to faults and communication link failures.
We refer the reader to the representative papers [4], [36].

Our work here is very much in the spirit of the recent
literature on distributed filtering [45], [46], [52], [3], [53],
[13], [35], [14], [28], [30], [51] and especially [12]. These
works consider the problem of tracking a time-varying signal
from local measurements by each node, which are then
repeatedly combined through a consensus-like iteration. The
above-referenced papers consider a variety of schemes to
this effect and obtain bounds on their performance, usually

stated in terms of solutions to certain Lyapunov equations.
Our work is also related to a number of recent papers on
distributed detection [28], [25], [5], [6], [30], [29], [26], [27]
which seek to evaluate protocols for networked cooperative
hypothesis testing and related problems. Like the previously
mentioned work on distributed filtering, these papers use
the idea of local iterations which are combined through a
distributed consensus update, termed “consensus plus inno-
vations”; a similar idea is called “diffusion adaptation” in
[51]. The focus of the distributed detection literature has been
on obtaining large deviation bounds for choosing the right
hypothesis in fixed and i.i.d. random networks.

In this work, we consider the related (and often simpler)
question of learning a static unknown vector. However, we
derive results which are considerably stronger compared to
what is available in the filtering literature, obtaining conver-
gence rates in settings when the network is time-varying and
measurements are intermittent. Most importantly, we are able
to explicitly bound the speed of convergence to the unknown
vector µ in these unpredictable settings in terms of network
size and combinatorial features of the networks.

V. CONCLUSION

We have proposed a model for cooperative learning by
multi-agent systems facing time-varying connectivity and in-
termittent measurements. We have proved a protocol capable
of learning an unknown vector from independent measure-
ments in this setting and provided quantitative bounds on its
learning speed. Crucially, these bounds have a dependence on
the number of agents n which grows only polynomially fast,
leading to reasonable scaling for our protocol. On sequences
of connected graphs, the largest hitting time turned out to be
the most relevant combinatorial primitivie.

Our research points to a number of intriguing open ques-
tions. Our results are for undirected graphs and it is unclear
whether there is a learning protocol which will achieve
similar bounds (i.e., a learning speed which depends only
polynomially on n) on directed graphs. It appears that our
bounds on the learning speed are loose by several orders of
magnitude when compared to simulations, so that the learn-
ing speeds we have presented in this paper could potentially
be further improved. Moreover, it is further possible that a
different protocol provides a faster learning speed compared
to the one we have provided here.

Finally, and most importantly, it is of interest to develop a
general theory of decentralized learning capable of handling
situations in which complex concepts need to be learned



by distributed network subject to time-varying connectivity
and intermittent arrival of new information. Consider, for
example, a group of UAVs all of which need to learn a new
strategy to deal with an unforeseen situation, for example,
how to perform formation maintenance in the face of a
particular pattern of turbulence. Given that selected nodes
can try different strategies, and given that nodes can observe
the actions and the performance of neighboring nodes, is
it possible for the entire network of nodes to collectively
learn the best possible strategy? A theory of general-purpose
decentralized learning, designed to parallel the theory of PAC
(Provably Approximately Correct) learning in the centralized
case, is warranted.
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