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Previously, we showed using a computational agent-based model
that a group of animals moving together can make a collective de-
cision on direction of motion, even if there is a conflict between the
directional preferences of two small subgroups of “informed” individ-
uals and the remaining “uninformed” individuals have no directional
preference. The model requires no explicit signaling or identification
of informed individuals; individuals merely adjust their steering in
response to socially acquired informationon relativemotionofneigh-
bors. In this paper, we show how the dynamics of this system can be
modeled analytically, and we derive a testable result that adding un-
informed individuals improves stability of collective decision making.
We first present a continuous-time dynamic model and prove a nec-
essary and sufficient condition for stable convergence to a collective
decision in thismodel. The stability of thedecision,which corresponds
to most of the group moving in one of two alternative preferred
directions, depends explicitly on the magnitude of the difference in
preferred directions; for a difference above a threshold the decision is
stable and below that same threshold the decision is unstable. Given
qualitative agreement with the results of the previous simulation
study, we proceed to explore analytically the subtle but important
role of the uninformed individuals in the continuous-time model.
Significantly, we show that the likelihood of a collective decision
increases with increasing numbers of uninformed individuals.
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Explaining the ability of animals that move together in a group
to make collective decisions requires an understanding of the

mechanisms of information transfer in spatially evolving dis-
tributions of individuals with limited sensing capability (1–6). In
groups such as fish schools and large insect swarms, it is likely
that individuals can sense only the relative motion of near
neighbors and may not have the capacity to distinguish a well-
informed neighbor from the less well informed (2, 3). Further, it
is increasingly becoming recognized that the emergent in-
telligence of a collective may be more reliable than the in-
telligence provided by a few leaders or well-informed individuals
(7–11). This result suggests a subtle but important role in col-
lective decision making for those individuals that have no par-
ticular information or preference.
In this paper we define and analyze a continuous-time dynamical

system model to examine collective decision making in moving
groups of informed and uninformed individuals that are limited to
sensing the relativemotion of neighbors and adjusting their steering
in response. Informed individuals have a preference for one of two
alternative directions of motion, whereas uninformed individuals
have no preference. The preferences are representative of knowl-
edge of the direction to a food source or of a migration route, etc.
The model is motivated by the discrete-time model of ref. 1, which
is used to investigate, through computation, mechanisms of de-
cision making and leadership in groups moving in the plane; it
extends the continuous-time model of ref. 12, which exhibits only
some of the group behaviors observed in the simulations of ref. 1
(compromises but not decisions).
In the discrete-time model of ref. 1 there is no signaling, no

identification of the informed individuals, and no evaluation of
others’ information. Nonetheless, it is shown in ref. 1 that the group
can make a collective decision: With two informed subgroups of

equal population (one subgroup per preference alternative), a
collective decision to move in one of the two preferred directions is
made with high probability as long as the magnitude of the pref-
erence conflict, i.e., the difference in preferred directions, is suffi-
ciently large. For small conflict, the group follows the average of the
two preferred directions. Further, simulations in ref. 13 provide
evidence that increasing the population size of uninformed indi-
viduals lowers the threshold on magnitude of conflict, making it
“easier” for a collective decision to be made.
Simulations of the kind reported in ref. 1 are highly suggestive,

but because they contain many degrees of freedom, it is difficult to
identify the influences of particular mechanisms. In this paper we
present an approximation to the individual-based model (1) that
allows deeper analysis into the microscopic reasons for the ob-
served macroscopic behaviors and a broader exploration of pa-
rameter space. The model we propose and study is represented by
a system of ordinary differential equations. As in the formulation of
ref. 12, each agent is modeled as a particle moving in the plane at
constant speed with steering rate dependent on interparticle
measurements and, for informed individuals, deviation from
a preferred direction. In ref. 12 two timescales, observed in the
simulations of ref. 1, are formally proved to exist for the system of
equations; in the fast timescale, alignment is established within
each subgroup of agents with the same preference (or lack of
preference), whereas in the slow timescale, the reduced-order
model describes the average motion of each of the two informed
subgroups and the uninformed subgroup.
In ref. 12 assumptions are made that simplify the analysis. First,

examination is restricted to the directional dynamics of the par-
ticles. Second, each individual is assumed capable of sensing the
relative direction of motion of every other individual in the group;
i.e., the social information is globally available. Third, the un-
informed subgroup is ignored in the analysis of the slow timescale
dynamics. A comprehensive bifurcation analysis is presented of
stable and unstable solutions of the reduced-order dynamics; the
results provide insights on stable solutions not explored in the
simulation study, unstable solutions not easily understood through
simulation, and sensitivity to parameters. However, the simplifying
assumptions yield a model that produces some but not all of the
behavior observed in ref. 1; notably, the group does not select to
move as a whole in one of the preferred directions unless a “for-
getting feedback” is introduced such that informed individuals
gradually lose their preference if they find themselves moving in a
direction far from their preference.
The deviation of the results of ref. 12 from those of ref. 1 focuses

attention on a small number of assumptions that may be re-
sponsible. It is the second and third assumptions of global sensing
and neglect of the uninformed individuals that we relax in this
paper. We limit sensing and define dynamics that represent the
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changing sensing neighborhood for each individual.We include the
uninformed individuals in our analysis.
With this unique continuous-time model, we show the stability

of collective decision making without a forgetting factor, and we
derive the critical value of magnitude of conflict that serves as
a threshold for a collective decision. Here a collective decision
refers to all individuals in one informed subgroup and all un-
informed individuals moving together in the informed subgroup’s
preferred direction; this differs slightly from the definition of
a collective decision in ref. 1, where all individuals achieve
consensus and decide on a preferred direction.
Our results agree qualitatively with the results of the study

based on the more complex discrete-time model of ref. 1; ac-
cordingly, we use the continuous-time model to explore the
subtle but important role of the uninformed individuals in col-
lective decision making. In particular, we derive the sensitivity
of the collective decision making to the population size of the
uninformed individuals, showing that increasing numbers of
uninformed individuals increases the likelihood that the group
will make a collective decision.

Model
The discrete-time model of ref. 1, like the model of ref. 14,
considers a group of individuals, each represented as a self-
propelled particle in the plane that adjusts its direction of motion
in response to the relative motion of local neighbors and random
influences. In ref. 14, individuals steer to align with the average
direction of others within a circular neighborhood. In ref. 1,
individuals also use circular neighborhoods but make it a priority
to steer away from any others that are too close. If there are no
such very close neighbors, they steer to align and to attract to
neighbors that are not quite so close. Informed individuals sum
the steering term that derives from measurements of neighbors
with a steering term that heads them toward one of two alter-
native fixed preferred directions. As the individuals move about,
relative positions among them can change and thus the local
neighborhood of any given individual can change with time.
Wemodel the discrete-time dynamics of ref. 1 with a continuous-

time model that looks much like a spatial extension of coupled
oscillator dynamics (15, 16). That is, an individual’s heading angle,
which determines its direction of motion, resembles a phase angle,
and the steering laws, which depend on relative headings (and
possibly relative positions) of individuals, serve to dynamically
couple the phases among the individuals; see refs. 17 and 18. As in
ref. 12, we include the alignment steering term but neglect the re-
pulsion and attraction steering terms of ref. 1; we also include
a term that couples the heading angle of each informed individual
with one of the two fixed preferred directions. The model is similar
to that used in ref. 19 to represent a group of coupled spins in a
random magnetic field, where each individual oscillator has a
randomly assigned “pinning” angle.
Unlike what is done in any of these continuous-time models,

we propose a dynamic model for coupling weights. There is
some similarity with coupling weights in the linear consensus
dynamic model of ref. 20, which change as a static function of
relative distance, decaying exponentially with distance. The
coupling weights in our model change as a sigmoidal function
of the integrated relative distance between neighbors; this dy-
namic endows individuals with a fading memory of neighbors.
The weight dynamics are similar to Hebbian plasticity in neural
circuits with a saturation; the latter is a reinforcing process
that strengthens effective synapses and weakens ineffective syn-
apses (21).
Additionally, we use relative direction of motion rather than

relative spatial distance as a means of determining neighbors.
This is justified by our focus on the decision-making dynamics of
groups of informed and uninformed individuals that are initially
closely aggregated; for an initially aggregated group of individ-
uals, those that head in the same direction remain close whereas
those that head in very different directions quickly separate.
With our model of neighbors, the steering laws do not depend on

spatial position, and we can analyze the dynamics of the heading
directions independently. The lower dimensionality of the
heading plus coupling weight dynamics compared with the di-
mensionality of the full spatial dynamics contributes to making
the analysis tractable.
Our model is deliberately made deterministic so that we can

investigate mechanisms of collective decision making outside of
stochasticity. The model studied in ref. 12 is also deterministic,
and the stability and bifurcation results of ref. 12 were shown to
persist in the presence of randomness in the investigation of ref.
22. Simulations of the model presented here with some ran-
domness suggest similarly that our results are robust (SI Text).
Let N be the total number of individuals in a population; each

individual is modeled as a particle moving in the plane at con-
stant speed vc. We denote by angle θj(t) the direction of motion
of individual j at time t. Then, the planar velocity of j at time t is
vj = (vccos θj(t), vcsin θj(t)).
We associate every individual with one of three subgroups:

The N1 individuals in subgroup 1 have a preference to move in
the direction defined by the angle �θ1, the N2 individuals in sub-
group 2 have a preference to move in the direction defined by the
angle �θ2, and the N3 individuals in subgroup 3 have no prefer-
ence. We have that N1 + N2 + N3 = N.
We define the rate-of-change of direction of motion for each

individual in subgroup 1 as

dθj
dt

¼ sin
�
�θ1 − θjðtÞ

�þ K1

N

XN
l¼1

ajlðtÞsin
�
θlðtÞ− θjðtÞ

�
; [1]

in subgroup 2 as

dθj
dt

¼ sin
�
�θ2 − θjðtÞ

�þ K1

N

XN
l¼1

ajlðtÞsin
�
θlðtÞ− θjðtÞ

�
; [2]

and in subgroup 3 as

dθj
dt

¼ K1

N

XN
l¼1

ajlðtÞsin
�
θlðtÞ− θjðtÞ

�
: [3]

The constant parameter K1 > 0 weights the attention paid to
other individuals versus the attention paid to the preferred di-
rection. The dynamic variable 0 ≤ ajl(t) ≤ 1 defines the weight
individual j puts on the information it gets from individual l at
time t. A value ajl = 0 implies that j cannot sense l.
We model the social interaction (coupling) weights ajl(t) as

evolving in time according to saturated integrator dynamics that
depend on how “close” individuals are from one another, where
closeness is defined in terms of relative heading:

dηjl
dt

¼ K2

�
ρjlðtÞ− r

�
;

ajlðtÞ ¼ 1
1þ e− ηjlðtÞ:

[4]

In the model of Eq. 4, ηjl = ηlj is an integrated variable, the
constant parameter K2 > 0 quantifies the speed at which the

interaction gains evolve, ρjl ¼ jcosð1
2
ðθj − θlÞÞj gives a measure of

synchrony of direction of motion of l and j, and 0≤ r≤ 1 is
a chosen fixed threshold representing an individual’s sensing
range. It holds that ρjl ¼ 1 if l and j move in the same direction
and ρjl ¼ 0 if they move in opposite directions. If ρjl > r, then j
and l are close enough to sense each other so ηjl increases and ajl
eventually converges to the maximum interaction strength of 1. If
ρjl < r, then j and l are not close enough to sense each other so ηjl
decreases and ajl eventually converges to 0. Eq. 4 is equivalent to
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dajl
dt

¼ K2
�
1− ajlðtÞ

�
ajlðtÞ

�
ρjlðtÞ− r

�
: [5]

Equilibrium solutions correspond to ajl(t) = 0 and ajl(t) = 1.
The state space for the model of Eqs. 1–3 and 5 is compact
because each θj is an angle and each ajl is a real number in the
interval [0, 1].

Results
The model exhibits fast and slow timescale behavior even for
moderate values of gains K1 and K2. Let N k be the subset of
indexes corresponding to individuals j in subgroup k for k = 1, 2,
3. For an initially aggregated group, the fast dynamics corre-
spond to the individuals in subgroup k (for each k = 1, 2, 3),
quickly becoming tightly coupled with one another: The coupling
weights ajl(t) for j ∈ N k and l ∈ N k converge to 1, and the di-
rection of motion θj(t) for each j ∈ N k converges to a common
angle Ψk(t). Also, for each pair of subgroups m and n where m ≠
n the coupling weights ajl(t) for j ∈ Nm and l ∈ N n quickly ap-
proach a common value of either 0 or 1. Thus, after the fast
transient, individuals in each subgroup move together in the
same direction and the coupling between subgroups becomes
constant; the slow dynamics describe the evolution of the average
direction of each of the three possibly interacting subgroups.
We can formally derive the fast and slow timescale dynamics

in the case that ε ¼ maxð1=K1; 1=K2Þ<< 1, using singular per-
turbation theory (23). We define for k = 1, 2, 3

Ψk ¼ arg

 
1

vcNk

X
l∈N k

vl

!
; ρk ¼

����� 1
vcNk

X
l∈N k

vl

�����:
Then Ψk is the average direction of motion of subgroup k and ρk
is the magnitude of the normalized average speed of subgroup k.
The variable ρk provides a measure of synchrony of all of the
heading directions in subgroup k; if ρk = 1, then all individuals in
subgroup k are heading in the same direction.
For every j = 1, . . . , N we associate the value of k such that j ∈

N k, and we define a variable αj as a function of Nkθj −
P

l∈N k
θl so

that it quantifies how close the heading of individual j is to the
average direction Ψk of its subgroup k. Rewriting Eqs. 1–4 in
terms of coordinates Ψk, αj, and ajl reveals that the variables Ψk
evolve at a slow (order 1) rate whereas αj and ajl evolve at a fast
(order 1/ε) rate (SI Text).
The fast dynamics have a number of isolated solutions. We

consider isolated solutions that correspond to ρk = 1 and ajl = 1,
for both j and l in subgroup k for k = 1, 2, 3. These solutions
correspond to those that emerge from groups that are initially
aggregated and correspond to every individual j in subgroup k
heading in the same direction Ψk. It follows that for these sol-
utions, every coupling weight ajl between an individual j in sub-
group 1 and an individual l in subgroup 2 takes the same value
A12. Likewise, ajl = A13 for j in subgroup 1 and l in subgroup 3
and ajl = A23 for j in subgroup 2 and l in subgroup 3. Each of A12,
A13, and A23 can take the value 0 or 1; so there are a total of
eight such solutions.
Each of these eight solutions defines an invariant manifold:

Each invariant manifold is defined such that if the dynamics start
with synchronized subgroups and interconnections between
subgroups defined by constants A12;A13;A23 each having value of
0 or 1, then they remain so for all time.
We identify the eight manifolds as follows. Manifold M101 is

defined by (A12, A13, A23) = (1, 0, 1) and manifold M110 by (A12,
A13, A23) = (1, 1, 0). M101 describes the case in which the two
informed subgroups 1 and 2 are coupled but the uninformed
subgroup 3 is coupled only with informed subgroup 2; M110
describes the symmetric case in which subgroups 1 and 2 are
coupled and subgroup 3 is coupled only with subgroup 1. Man-
ifold M000, defined by (A12, A13, A23) = (0, 0, 0), corresponds to
decoupled subgroups. Manifold M010 is defined by (A12, A13,
A23) = (0, 1, 0) where the coupling is between informed

subgroup 1 and the uninformed subgroup 3 as shown in Fig. 1,
Left. Manifold M001, defined by (A12, A13, A23) = (0, 0, 1),
describes the case symmetric to M010, where the coupling is
between informed subgroup 2 and the uninformed subgroup 3 as
shown in Fig. 1, Right. Manifold M100, defined by (A12, A13, A23)
= (1, 0, 0), corresponds to coupling only between the two in-
formed subgroups 1 and 2. Manifold M011, defined by (A12, A13,
A23) = (0, 1, 1), describes the case in which the uninformed
subgroup 3 is coupled with each informed subgroup 1 and 2, but
the two informed subgroups are not coupled with each other.
Manifold M111, defined by (A12, A13, A23) = (1, 1, 1), corre-
sponds to coupling among all three subgroups.
The derived (slow) dynamics on each of the eight manifolds

are defined by the rate-of-change of the average direction of
motion for each of the three subgroups:

dΨ1

dt
¼ sinð�θ1 −Ψ1ðtÞÞþ K1

N
ðA12N2sinðΨ2ðtÞ−Ψ1ðtÞÞ

þ A13N3sinðΨ3ðtÞ−Ψ1ðtÞÞÞ

dΨ2

dt
¼ sin

�
�θ2 −Ψ2

�
t
��þ K1

N
ðA12N1sinðΨ1ðtÞ−Ψ2ðtÞÞ

þ A23N3sinðΨ3ðtÞ−Ψ2ðtÞÞÞ

dΨ3

dt
¼ K1

N
ðA13N1sinðΨ1ðtÞ−Ψ3ðtÞÞ

þA23N2sinðΨ2ðtÞ−Ψ3ðtÞÞÞ:
[6]

Each of the eight invariant manifolds is defined to be stable if
solutions corresponding to initial conditions near the manifold
approach the manifold with time; in this case the full dynamical
solution is well approximated by the stable solution of the slow
dynamics of Eq. 6. We can determine conditions under which
each of the eight manifolds is stable by computing the stability of
the boundary layer dynamics (fast dynamics) evaluated at the
stable solution(s) of the slow dynamics (23) (SI Text). Without
loss of generality we set �θ1 ¼ 0 and 0≤ �θ2 ≤ π ; thus, the differ-
ence in preferred directions �θ2 − �θ1 = �θ2. We focus on the case in
which the two informed subgroups have equal population size;
i.e., we take N1 = N2.
Our analysis shows that manifolds M101 and M110 (where the

uninformed subgroup couples with only one of the coupled informed
subgroups) are always unstable, but there are conditions such that
the remaining six manifolds are stable. The manifolds M010 and
M001 (where the uninformed subgroup couples with only one of the
uncoupled informed subgroups) are both stable if and only if

cos�θ2 < 2r2 − 1;

i.e., if and only if the difference in preferred direction �θ2 > �θc,
where the critical difference in preference direction �θc is given by

�θc ¼ cos− 1�2r2 − 1
�
: [7]

On the other hand, manifold M111 (where all subgroups are
coupled) is stable if �θ2 < �θc, i.e., if

Fig. 1. Coupling in manifolds M010 (Left) and M001 (Right) among sub-
groups 1, 2, and 3 as indicated by arrows.
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cos�θ2 > 2r2 − 1:

The dependency of the stability of the manifolds on the critical
angle �θc can be interpreted as follows. Given a value of sensing
range parameter r, for sufficiently large difference �θ2 between
the two preferred directions, the two informed subgroups will be
pulled enough in their preferred directions such that they will
lose direct connection with each other. Depending on initial
conditions the uninformed subgroup may become connected
with one or the other of the two informed subgroups corre-
sponding to the interconnections on M010 or M001 in Fig. 1. On
the other hand, for sufficiently small difference �θ2 between the
two preferred directions, the two informed subgroups can stay
connected with each other and with the uninformed subgroup
corresponding to the fully connected case of M111.
The stable solution of the slow dynamics of Eq. 6 on themanifold

M010 corresponds to all of the informed individuals in subgroup 1
and all of the uninformed individuals (subgroup 3) moving steadily
in the preferred direction �θ1 ; the informed individuals in subgroup
2 are disconnected from the greater aggregation and move off
by themselves in their preferred direction �θ2. We classify this so-
lution as (most of) the group making a decision for preference 1.
Likewise, the stable solution on the manifoldM001 corresponds to
all of the informed individuals in subgroup 2 and all of the un-
informed individuals (subgroup 3) moving steadily in the preferred
direction �θ2 ; the informed individuals in subgroup 1 are discon-
nected from the greater aggregation and move off by themselves in
their preferred direction �θ1. We classify this solution as (most of)
the group making a decision for preference 2.
Fig. 2 shows a simulation of N = 30 individuals obeying the

dynamics of Eqs. 1–4 with N1 = N2 = 5 and N3 = 20. Here r =
0.9, which corresponds to �θc ¼ 528. Further, �θ2 ¼ 908, which is
greater than �θc so that M010 and M001 are both stable. Indeed,
for the initial conditions illustrated in the plot in Fig. 2 (see also
Fig. S1), the solution converges to a group decision for prefer-
ence 1 as in the slow dynamics on M010.
Depending on parameters, the slow dynamics of Eq. 6 on the

manifold M111, corresponding to the fully connected case, can
have up to two stable solutions. In the first stable solution each of
the two informed subgroups compromises between its preferred
directions and the average of the two preferred directions,
whereas the uninformed subgroup travels in the average of the
two preferred directions. Fig. 3 shows a simulation of N = 30
individuals obeying the dynamics of Eqs. 1–4 with N1 = N2 = 5

and N3 = 20. Here r = 0.6, which corresponds to �θc ¼ 1068. As in
the previous example, �θ2 ¼ 908, but now this is less than �θc so
that M010 and M001 are unstable and M111 is stable. Indeed, for
the initial conditions of Fig. 3 (the same as in Fig. 2), the solution
converges to the compromises as in the first stable solution of the
slow dynamics on M111. If N3 > 2N1, i.e., for a sufficiently large
population of uninformed individuals, M111 is attractive only
near the first stable solution if �θ2 < �θc.
The second stable solution of Eq. 6 on the manifold M111 is

symmetric to the first stable solution: The uninformed subgroup
moves in the direction 180° from the average of the two preferred
directions and each informed subgroup compromises between this
direction and its preferred direction. This is a somewhat patho-
logical solution that is very far from a group decision. However, this
second solution does not exist in the presence of a sufficiently large
population of uninformed individuals, notably in the case that

�
N3

2N1

�2=3

> 1−

 
2N1K1

Nsinð�θ2=2Þ

!2=3

: [8]

Inequality Eq. 8, which derives from our stability analysis, is al-
ways satisfied for N3 > 2N1 or for sufficiently large strength of
social interactions given by K1 ≥ 2. Thus, under the condition
N3 > 2N1, M111 is unstable precisely when M010 and M001 are
stable. Fig. 4 illustrates stability of decisions (onM010 andM001)
versus compromise (on M111) as a function of preference dif-
ference �θ2.
Fig. 5, Upper Left plots r as a function of �θ2 given by Eq. 7; this

curve defines the condition for stability of a collective decision
for preference 1 as defined by the solution on M010 and for
preference 2 as defined by the solution onM001. The gray region
illustrates the parameter space corresponding to stability of
a collective decision. The decision is unstable in the parameter
space defined by the white region. Given a fixed value of r, the
curve provides a lower bound on the preference difference �θ2 for
which a decision is stable.
Now suppose that a number of uninformed individuals are

added to the aggregation; i.e., the density is increased. For any
individual to retain roughly the same number of neighbors after
the addition of individuals as before, it can decrease its sensing
range. A decrease in sensing range corresponds to an increase in
r. As seen in Fig. 5, an increase in r corresponds to a decrease in
the lower bound �θc ; i.e., with increased numbers of uninformed
individuals, a collective decision is stable for lower values of
preference difference �θ2.

0

Fig. 2. Simulation of dynamics of Eqs. 1–4 with N = 30 individuals, r = 0.9,
and �θ1 ¼ 08 and �θ2 ¼ 908 as shown with black arrows on the top of the cyl-
inder. The solution for each individual is shown evolving on the surface of
the cylinder; the azimuth describes the angle θj and the vertical axis describes
time t. For this example, �θ2 > �θc ¼ 528 and it can be observed that a decision is
made for preference 1.

Fig. 3. Simulation of dynamics of Eqs. 1–4 with N = 30 individuals, r = 0.6,
and �θ1 ¼ 08 and �θ2 ¼ 908. For this example, �θ2 < �θc ¼ 1068 and it can be ob-
served that no decision is made. Instead, the agents collect in subgroups that
compromise.
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For some range of parameter values for whichM010 andM001
are stable, it is possible that M000, M100, and/or M011 are also
stable. This means that even if M010 and M001 are stable, for
some initial conditions the solution may converge to the stable
solutions of M000, M100, and/or M011, none of which corre-
sponds to a collective decision for preference 1 or 2. In fact, the
only stable solution on M000 corresponds to the three subgroups
moving apart. M100 can have up to two stable solutions and
M011 can have one stable solution; all of these correspond to
compromise solutions. Therefore, we examine the conditions
for stability of M000, M100, and M011 to isolate the parameter
space in which M010 and M001 are the only stable manifolds
among the eight under investigation.
The condition �θ2 > �θc is necessary for stability of M000.

However, M000 is unstable as long as the initial average heading
of the uninformed individuals is greater than −�θ2 and less than
2�θ2, i.e., as long as the uninformed individuals are not headed in
a direction that is dramatically different from the average of the
two preferred directions. The latter is not so likely for initially

aggregated individuals. Further, the likelihood of M000 being
stable shrinks as �θ2 grows.
M100 (coupled informed subgroups) is also unstable if the

initial average heading of the uninformed is not dramatically
different from the average of the two preferred directions.
Otherwise, if �θ2 < �θc, M100 is stable about its first stable solution.
The second stable solution of M100 does not exist if K1 < 2N/N1
and is not attracting if

r>
ffiffiffiffiffiffiffiffiffiffiffiffi
1− d2

p
; d ¼ Nsinð�θ2=2Þ

2N1K1
: [9]

The condition �θ2 > �θc is a necessary condition for stability of
M011 (uninformed coupled to uncoupled informed subgroups).
However, M011 is unstable if either of the following is satisfied:

r<
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2
p or r>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p
s

; [10]

where

ν ¼ Nsinð�θ2=2Þ
N3K1 þ Ncosð�θ2=2Þ

:

Table 1 summarizes the possible coexistence of stable manifolds
for different parameter ranges, assuming N3 > 2N1. For the
initial conditions we consider, M000 and M100 will be unstable,
in which case, when M111 is stable, it is exclusively stable among
the eight manifolds. Further, the parameter values that yield the
exclusive stability of M010 and M001 among the eight invariant
manifolds are those that satisfy Eq. 10; these values are shown as
dark gray regions in the parameter space plots in Fig. 5. In three
plots, the green curve plots r as a function of �θ2 in the case of
equality in the first condition of Eq. 10, and the orange curve
plots r as a function of �θ2 in the case of equality in the second
condition of Eq. 10. In each of the plots, N1 = N2 = 5 and K1 =
2. The number of uninformed individuals N3 ranges from N3 =
11 (Fig. 5, Upper Right) to N3 = 50 (Fig. 5, Lower Left) to N3 =
500 (Fig. 5, Lower Right). The plots show the dark gray region
expanding with increasing N3; i.e., the region of parameter space
that ensures unique stability of the collective decision for one
or the other preference expands with increasing number of un-
informed individuals. An increase in strength of social inter-
action K1 also increases this parameter space.

Discussion
The continuous-time, deterministic, dynamical system model
presented and analyzed in this paper approximates the decision
making of a group of informed and uninformed individuals on
the move as studied in ref. 1. In the case that the two informed
subgroups 1 and 2 are equally sized (N1 = N2), it is shown in ref.
1 that the whole group will decide with high probability to move
in one of the two preferred directions, as long as the difference in
directions �θ2 is greater than some critical threshold. Otherwise,
the group will compromise.
Our stripped-down model retains dynamically changing, local

social interactions, but neglects some of the details of the zonal-
based interaction rules of ref. 1. Nonetheless, it provides the

Table 1. Possible combinations of stable (S) and unstable (U)
manifolds given N3 > 2N1

M101 M110 M000 M010 M001 M100 M011 M111

U U S S S U U U
U U S S S U S U
U U S S S S U U
U U S S S S S U
U U U U U S U S

Fig. 4. Stability of decisions (onM010 andM001) versus compromise (onM111)
illustrated in a plot of direction of uninformed subgroup Ψ3 as a function of
preference difference �θ2. Here r = 0.707 and so �θc ¼ π=2. A solid line denotes
a stable solution and a dashed line denotes an unstable solution.

Fig. 5. Curves in the space of parameters �θ2 and r that determine the stability
ofmanifoldsM010 andM001 and, thus, the stability of a collective decision. In all
plots, K1 = 2 and N1 = N2 = 5. (Upper Left) Light gray parameter space corre-
sponds to stability ofM010 andM001, independent ofN3. (Upper Right)N3 = 11.
(Lower Left) N3 = 50. (Lower Right) N3 = 500. Dark gray parameter space cor-
responds to M010 and M001 being the only stable manifolds among the eight
invariant manifolds studied. The dark gray parameter space increases with in-
creasing number of uninformed individuals N3.
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same fundamental result in the case N1 = N2 without requiring
any additional modeling terms such as a forgetting factor on
information that is not reinforced (12). Further, simulations of
the continuous-time model with random terms suggest that the
analysis of the deterministic model is robust to a small level of
uncertainty (SI Text and Fig. S2). In the case N1 ≠ N2, our model
yields the same necessary and sufficient conditions for stability
of a decision (see SI Text and Fig. S3 for simulations). In the case
of a decision, simulations show a dominating region of attrac-
tion for the decision to move in the preferred direction of the
majority informed subgroup (SI Text and Fig. S3), consistent
with ref. 1.
A decision in the continuous-time model corresponds to one

informed subgroup and the uninformed individuals choosing to
move together in the same preferred direction. This decision differs
slightly from the decision in ref. 1 where all individuals move to-
gether in the preferred direction. However, the result is qualita-
tively the same, and the continuous-time model has the advantage
of analytical tractability. Indeed, the critical threshold �θc is explicitly
defined in Eq. 7 (and illustrated in Fig. 5, Upper Left). This
threshold provides a sharp condition for stability of the two sym-
metric collective decision solutions versus stability of a compromise
solution. Further, the decision in ref. 1 can be recovered with the
continuous-time model by the addition of a mechanism inspired by
the repulsive term in the dynamics of ref. 1.
The analytical tractability of the continuous-time model allows

formal investigation into the sensitivity of the decision-making
results to model parameters. In particular, our analysis permits
a formal examination of the role of the uninformed population size
in the group decision-making dynamics. Our results provide formal
evidence that an increase in uninformed population size N3 can
improve decision making for a group in motion by increasing the
likelihood that the group will make a decision rather than com-
promise. A first supporting result concerns the second stable
compromise solution on M111. This solution is worse for decision
making than the first stable compromise solution because not only
does the group not make a decision, but also it moves in the di-
rection opposite the average of the two preferred directions. The
presence of a sufficient number of uninformed individuals prevents
such a solution, throwing off the delicate balance that is required
for its existence. Further, a large enoughN3 limits the attractiveness
of the first stable compromise solution, making the sufficient con-
dition for stability of M111 also a necessary condition.
A second supporting piece of evidence derives from the result

that the minimum difference in preference direction required

for a group decision decreases with a decreasing sensing range
(equivalently, an increasing threshold r on synchrony of directions
sensed) (Eq. 7). This result suggests that the more local the
sensing is, the better the sensitivity to the conflict in preference;
when individuals sense too much of the group, the result is a fil-
tering of the local influences and an averaged (compromised)
collective response. By increasing the density of the group, even
by adding uninformed individuals, an individual can reduce its
sensing range and keep track of the same number of neighbors; in
such a way an increase in population size of uninformed individ-
uals lowers the critical difference in preference direction, making
a group decision more likely.
The third supporting result, illustrated in three plots in Fig. 5,

shows that an increasing uninformed population size N3 increases
the region of parameter space for which a decision solution is ex-
clusively stable among the eight solutions studied. A sufficiently
large number of uninformed individuals throws off the delicate
balance for the uninformed individuals to be connected to both in-
formed subgroups without the two informed subgroups connecting
with each other (M011). The uninformed individuals provide a kind
of “glue”; indeed, the larger N3 provides the same effect as in-
creasing the social interaction strength K1. Overall, the result shows
that with larger numbers of uninformed individuals, a collective
decision is more likely and more robust to variations in parameters
r (sensing range) and �θ2 (difference in preferred directions).
The improvements we have shown in decision making with

increased uninformed population size are striking and provide
a testable result. Adding individuals that do not invest directly in
an external preference provides a low-cost way in which groups
can enhance decision making. Our analysis addresses the sym-
metric case of a group in motion in which there are two equally
sized informed subgroups, each preferring to move in one of two
alternative directions. Our results on stability of decision versus
compromise persist in the case of unequal sized informed sub-
groups. In related work (24), we study the influence of un-
informed individuals in the case that there is heterogeneity
among informed individuals in the strength of their response to
preference relative to social interactions.

ACKNOWLEDGMENTS. This research was supported in part by Office of
Naval Research Grant N00014-09-1-1074 (to N.E.L., T.S., L.S., and I.D.C.), Air
Force Office of Scientific Research Grant FA9550-07-1-0-0528 (to N.E.L., B.N.,
and L.S.), Defense Advanced Research Planning Agency Grant HR0011-09-1-
0055 (to S.A.L., N.E.L., and I.D.C.), and Army Research Office Grant W911NG-
11-1-0385 (to N.E.L., I.D.C., and S.A.L.).

1. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-

making in animal groups on the move. Nature 433:513–516.
2. Krause J, Ruxton GD (2002) Living in Groups (Oxford Univ Press, Oxford).
3. Couzin ID, Krause J (2003) Self-organization and collective behaviour in vertebrates.

Adv Stud Behav 32:1–75.
4. Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow,

opinion polling and collective intelligence in house-hunting social insects. Philos Trans

R Soc Lond B Biol Sci 357:1567–1583.
5. Lindauer M (1957) Communication in swarm-bees searching for a new home. Nature

179:63–67.
6. Seeley TD (2003) Consensus building during nest-site selection in honey bee swarms:

The expiration of dissent. Behav Ecol Sociobiol 53:417–424.
7. Reebs SG (2000) Can a minority of informed leaders determine the foraging move-

ments of a fish shoal? Anim Behav 59:403–409.
8. Biro D, Sumpter DJT, Meade J, Guilford T (2006) From compromise to leadership in

pigeon homing. Curr Biol 16:2123–2128.
9. Mauboussin MJ (2006) More Than You Know: Finding Wisdom in Unconventional

Places (Columbia Univ Press, New York).
10. Krause J, Ruxton GD, Krause S (2010) Swarm intelligence in animals and humans.

Trends Ecol Evol 25:28–34.
11. Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13:36–43.
12. Nabet B, Leonard NE, Couzin ID, Levin SA (2009) Dynamics of decision making in

animal group motion. J Nonlinear Sci 19:399–435.

13. Nabet B (2009) Dynamics and control in natural and engineered multi-agent systems.
PhD thesis (Princeton Univ, Princeton).

14. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase
transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229.

15. Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence (Springer, Berlin).
16. Strogatz SH (2000) From Kuramoto to Crawford: Exploring the onset of synchroni-

zation in populations of coupled oscillators. Physica D 143:1–20.
17. Sepulchre R, Paley D, Leonard NE (2008) Stabilization of planar collective motion with

limited communication. IEEE Trans Automat Contr 53:706–719.
18. Justh E, Krishnaprasad PS (2004) Equilibria and steering laws for planar formations.

Syst Control Lett 52:25–38.
19. Mirollo RE, Strogatz SH (1990) Jump bifurcation and hysteresis in an infinite-di-

mensional dynamical system of coupled spins. SIAM J Appl Math 50:108–124.
20. Cucker F, Smale S (2007) Emergent behavior in flocks. IEEE Trans Automat Contr 52:

852–862.
21. Abbott LF, Nelson SB (2000) Synaptic plasticity: Taming the beast. Nat Neurosci 3

(Suppl):1178–1183.
22. Moon SJ, Nabet B, Leonard NE, Levin SA, Kevrekidis IG (2007) Heterogeneous animal

group models and their group-level alignment dynamics: An equation-free approach.
J Theor Biol 246:100–112.

23. Kokotovic PV, Khalil HK, O’Reilly J (1986) Singular Perturbations Methods in Control:
Analysis and Design (Academic, New York).

24. Couzin ID, et al. (2011) Uninformed individuals promote democratic consensus in
animal groups. Science, in press.

232 | www.pnas.org/cgi/doi/10.1073/pnas.1118318108 Leonard et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118318108/-/DCSupplemental/pnas.201118318SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/doi/10.1073/pnas.1118318108


Supporting Information
Leonard et al. 10.1073/pnas.1118318108
SI Text
Model Reduction.To formalize the timescale separation, we define

a coordinate transformation from the original N þ NðN − 1Þ
2

variables to a new set of independent variables that distinguishes
between slow and fast variables. The original variables (defined
in the main text) include the direction of motion of each of the N

individuals θj, j = 1, . . . , N, and the
NðN − 1Þ

2
independent social

interaction weights ajl, j = 1, . . . , N, l = j + 1, . . . , N.
Let N ′k ⊂N k denote the set of Nk − 1 indexes in N k corre-

sponding to the individuals in subgroup k excluding the in-
dividual with the largest index. Let i ¼ ffiffiffiffiffiffiffi

− 1
p

. For each j∈N ′k and
each k = 1, 2, 3, we define the complex variable αj as follows:

αj ¼ cos

 
Nkθj −

X
l∈N k

θl

!
þ isin

 
Nkθj −

X
l∈N k

θl

!
: [S1]

The variable αj quantifies how close the direction of motion of
individual j is to the average direction of motion of its subgroup
Ψk. When all individuals in subgroup k move in the same di-
rection, αj = 1 for every j∈N ′k. We define the new set of inde-

pendent variables by the N +
NðN − 1Þ

2
set of variables (Ψk, αj,

ajl). That this change of variables is well defined near the in-
variant manifolds described below is proved in ref. 1.

Let ε = max
� 1
K1

;
1
K2

�
. Eqs. 1–4 from the main text can be

written with respect to the new variables as
dΨ1

dt
¼ 1

N1ρ1

X
l∈N 1

 
sinð�θ1 − θlÞ

þ K1

N

 XN
n¼1

alnsinðθn − θlÞ
!!

cosðΨ1 − θlÞ; [S2]

dΨ2

dt
¼ 1

N2ρ2

X
l∈N 2

 
sinð�θ2 − θlÞ

þ K1

N

 XN
n¼1

alnsinðθn − θlÞ
!!

cosðΨ2 − θlÞ; [S3]

dΨ3

dt
¼ 1

N3ρ3

X
l∈N 3

 
K1

N

 XN
n¼1

alnsinðθn − θlÞ
!!

cosðΨ3 − θlÞ; [S4]

ε
dαj
dt

¼ iN1αj
�
ε
�
sin
�
�θ1 − θj

�
− ρ1sinð�θ1 −Ψ1Þ

�þ εK1

N XN
n¼1

ajnsin
�
θn − θj

�
−

1
N1

X
l∈N 1

XN
n¼1

alnsinðθn − θlÞ
!!

; j∈N ′1

[S5]

ε
dαj
dt

¼ iN2αj
�
ε
�
sin
�
�θ2 − θj

�
− ρ2sin

�
�θ2 −Ψ j

��þ εK1

N XN
n¼1

ajnsin
�
θn − θj

�
−

1
N2

X
l∈N 2

XN
n¼1

alnsinðθn − θlÞ
!!

; j∈N ′2

[S6]

ε
daj
dt

¼ iN3αj

 
εK1

N

 XN
n¼1

ajnsin
�
θn − θj

�

−
1
N3

X
l∈N 3

XN
n¼1

alnsinðθn − θlÞ
!!

; j∈N ′3

[S7]

ε
dalj
dt

¼ εK2
�
1− alj

�
alj
�
ρlj − r

�
; l∈ f1; . . . ;Ng; j∈ flþ 1; . . . ;Ng;

[S8]

for ρk ≠ 0, k = 1, 2, 3.
For ε� 1, we have that εK1 and εK2 are of order of magnitude

1. We also assume that Nk=N and K1/(NNk) are of order of
magnitude 1. Then, the model of Eqs. S2–S8 has the form of
a standard singular perturbation model (2):

dx
dt

¼ fðx; z; εÞ [S9]

ε
dz
dt

¼ gðx; z; εÞ; [S10]

where x is the vector of the three slow variables Ψk and z is the

N − 3þ NðN − 1Þ
2

vector of fast variables (αj, ajl). Each of the

eight invariant manifoldsM101,M110,M000,M010,M001,M100,
M011, and M111, described in the main text, is computed as an
isolated equilibrium solution of the fast dynamics given by Eqs.
S5–S8 when ε = 0, i.e., an isolated solution z = h(x) of g = (x, z,
0) = 0. These eight solutions correspond to α j = 1 for all j, which
implies that ρk = 1 and θj = Ψk for j ∈ N k and k = 1, 2, 3.
Additionally, ajl ∈ {0, 1} for all j, l, and in particular ajl = 1 when
j ∈ N k and l ∈ N k. If j ∈ Nm and l ∈ N n, m ≠ n, then ajl = Anm.
The reduced dynamics on each invariant manifold (Eq. 6 in the

main text) are derived by substituting the corresponding isolated
solution into the slow dynamics given by Eqs. S2–S4; i.e., dx/dt =
f(x, h(x), 0). These dynamics are gradient dynamics; i.e., they can
be written in the form

dΨk

dt
¼ −

∂V
∂Ψk

; k ¼ 1; 2; 3;

where V = V(Ψ1, Ψ2, Ψ3). As a result, all equilibrium solutions on
each manifold are critical points of V and there are no periodic
solutions. An equilibrium solution on a manifold is (exponentially)
stable if the eigenvalues of the Jacobian of the reduced dynamics
evaluated at that equilibrium all have strictly negative real part.

Stability of InvariantManifolds.To determine the (local) stability of
each of the eight invariant manifolds, we check stability of the
boundary layer equations about each stable solution on the
manifold. The boundary layer equations can be computed from
the fast dynamics Eqs. S5–S8 as described in ref. 2. An invariant
manifold is stable, i.e., locally attractive near a stable solution on
the manifold, if the boundary layer dynamics are locally expo-
nentially stable near the stable solution on the manifold, uni-
formly in the slow variables (Ψ1, Ψ2, Ψ3). Here, conditions for
local exponential stability can be proved by showing that the
eigenvalues of the Jacobian of the boundary layer equations
evaluated at the stable solution on the manifold have strictly
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negative real part. Singular perturbation theory then guarantees
that solutions to the full dynamics starting close to the stable
solution on the invariant manifold stay close to solutions of the
reduced dynamics. See ref. 2 for details.
Stability of any of the invariant manifolds is satisfied if and only

if the following six terms are all negative when evaluated at the
equilibrium solution on the manifold,

−
1
N

�
1−

1
Nk

� 
Nk þ

X
l≠k

NmAkmcosðΨm −ΨkÞ
!
; k ¼ 1; 2; 3;

[S11]

and (1− 2A12)(ρ12− r), (1− 2A13)(ρ13− r), (1− 2A23)(ρ23− r),

where ρkm ¼ jcosð1
2
ðΨk −ΨmÞÞj.

As an example, consider the manifold M010, where A13 = 1
and A12 = A23 = 0. The only stable solution on this manifold is
(Ψ1, Ψ2, Ψ3) = ð0; �θ2; 0Þ, because �θ1 ¼ 0. Evaluating the sign of
the six terms above at this equilibrium implies thatM010 is stable
if and only if 				cos

��θ2
2

�				− r< 0;

which is equivalent to cos�θ2 < 2r2 − 1, the condition cited in the
main text.

Initial Conditions.Fig. S1 shows the initial direction of motion θj(0)
for individuals j= 1, . . . , N, used in the simulations in Figs. 2 and
3 in the main text and the simulations in Figs. S2 and S3. All
initial values of interaction gains alj(0) are taken from a uniform
distribution with mean = 0.2 and SD = 0.1.

Randomness.Fig. S2 shows two simulations of the dynamics of Eqs.
1–4 in the main text with the same initial conditions and pa-

rameter values as for the simulations shown in Figs. 2 and 3 in
the main text, but with randomness added. For each j, we let wj

be an independent random variable drawn from a uniform dis-
tribution with mean = 0 and SD = 0.5. Eqs. 1–3 from the main
text are modified to include a random term as follows:

dθj
dt

¼ sin
�
�θ1 − θj

�þ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 1

dθj
dt

¼ sin
�
�θ2 − θj

�þ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 2

dθj
dt

¼ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 3:

[S12]

Fig. S2 exhibits the same net behavior as in the case with no
randomness; i.e., for r = 0.9 a decision is made for preference 1
and for r = 0.6 there is a compromise solution. The use of
uniform noise is a conservative choice for examining robustness
because compared with Gaussian noise it gives a higher proba-
bility of large random deviations.

Asymmetric Informed Populations. Fig. S3 shows simulations of the
dynamics of Eqs. 1–4 from the main text with the same initial
conditions and parameter values as for the simulations shown in
Figs. 2 and 3, but for an asymmetry in the sizes of the informed
subgroups. Here we let N1 = 4 and N2 = 6. In Fig. S3, Left as in
Fig. 2, r = 0.9 and a decision is made. In Fig. S3, Right as in Fig.
3, r = 0.6 and a compromise is made. Whereas in the simulation
in Fig. 2, the solution is attracted to the manifold M010 where
a decision for preference 1 is made, in the simulation in Fig. S3,
Left with N2 > N1, the solution is attracted to the manifold M001

where a decision for preference 2 is made.
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Fig. S1. The initial direction of motion θj(0) for each j = 1, . . . , N is displayed on the unit circle. The θj(0) are evenly distributed between −78.5° and −58.5° for
the N1 = 5 individuals in subgroup 1 (blue circles), between 71.5° and 91.5° for the N2 = 5 individuals in subgroup 2 (red circles), and between −53.5° and 66.5°
for the N3 = 20 individuals in subgroup 3 (black circles).

Leonard et al. www.pnas.org/cgi/content/short/1118318108 2 of 3

www.pnas.org/cgi/content/short/1118318108


Fig. S2. Simulation of dynamics of Eqs. 1–4 from the main text modified by additive randomness as given by Eq. S12. (Left) r = 0.9; (Right) r = 0.6. The solution
for each individual is shown evolving on the surface of the cylinder; the azimuth describes the angle θj and the vertical axis describes time t. Blue corresponds to
subgroup 1, red to subgroup 2, and black to subgroup 3. Initial conditions and parameter values are the same as in Figs. 2 and 3 in the main text.

Fig. S3. Simulation of dynamics of Eqs. 1–4 from the main text with informed subgroup sizes N1 = 4 and N2 = 6. Initial conditions and all other parameters are
the same as in Figs. 2 and 3 in the main text. (Left) r = 0.9 and the decision is made for preference 2. (Right) r = 0.6 and a compromise is made between the two
preferred directions and slightly closer to preference 2.
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